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Abstract.  A thermodynamic potential is found for seawater as a function of Conservative Temperature, Absolute Salinity and 30 

pressure.  From this thermodynamic potential, all the equilibrium thermodynamic properties of seawater can be derived, just 

as all these thermodynamic properties can be found from the TEOS-10 Gibbs function (which is a function of in situ 

temperature, Absolute Salinity and pressure).  Present oceanographic practice in the Gibbs SeaWater Oceanographic Toolbox 

uses a polynomial expression for specific volume (and enthalpy) in terms of Conservative Temperature (as well as of Absolute 

Salinity and pressure), whereas the relationship between in situ temperature and Conservative Temperature is based on the 35 

Gibbs function.  This mixed practice introduces (numerically small) inconsistencies and superfluous conversions between 

variables.  The proposed thermodynamic potential of seawater, being expressed as an explicit function of Conservative 

Temperature, overcomes these small numerical inconsistencies, and in addition, the new approach allows for greater 

computational efficiency in the evaluation of sea surface temperature from Conservative Temperature.   
 40 

1 Introduction  

1.1 Present Practice  

The TEOS-10 (the International Thermodynamic Equation of Seawater – 2010, IOC et al., 2010) Gibbs function of seawater 

is a thermodynamic potential whose arguments are Absolute Salinity, in situ temperature and pressure.  The adoption in 2010 

of TEOS-10 as the official description of the thermodynamic properties of seawater came with the recommendation that the 45 

observed variables Practical Salinity 𝑆!, and in situ temperature, together with longitude, latitude and pressure, are used to 

form Absolute Salinity 𝑆" and Conservative Temperature Θ, and it is these variables, 𝑆" and Θ, that take the place of Practical 

Salinity 𝑆! and potential temperature 𝜃 in our oceanographic research and in the publication of our results in journals (IOC et 

al., 2010, Valladares et al., 2011a,b, McDougall and Barker, 2011, Pawlowicz et al., 2012, Spall et al, 2013).   

The Absolute Salinity variable of TEOS-10 is defined on the Reference-Composition Salinity Scale of Millero et al. (2008) 50 

as an approximation to the mass fraction of dissolved material in seawater.  As described in Pawlowicz (2010, 2011), and 

Wright et al. (2011), while the Gibbs function of a multi-component solution such as seawater should depend on the 

concentrations of all its constituents, Absolute Salinity on the Reference-Composition Salinity Scale is defined so that its use 

yields accurate values of the specific volume of seawater.  Conservative Temperature is proportional to the potential enthalpy 

of seawater referenced to the pressure of the standard atmosphere (McDougall, 2003, IOC et al., 2010, Graham and McDougall, 55 

2013).   
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This paper was motivated by the question “is it possible to define a thermodynamic potential in terms of Conservative 

Temperature rather than, for example, in terms of in situ temperature, as is the case for the TEOS-10 Gibbs function of seawater 

(Feistel, 2008, IAWPS, 2008)?”.  Some progress was already made towards answering this question in appendix P of the 

TEOS-10 Manual (IOC et al., 2010) where it was shown that if expressions were available for both the enthalpy and the 60 

entropy of seawater as functions of Absolute Salinity, Conservative Temperature, and pressure, then all the thermodynamic 

properties of seawater could be derived.   

While in situ temperature is a measured variable, its dependence on pressure (even for adiabatic variations of pressure at 

constant salinity) and its non-conservative nature under turbulent mixing processes, has led to the adoption of Conservative 

Temperature in order to approximate the “heat content” per unit mass of seawater.  It is Conservative Temperature that is now 65 

used as the temperature axis of “salinity-temperature” diagrams and as the model’s temperature variable in ocean models 

(McDougall et al., 2021) because it is approximately conserved under mixing processes; the amount of non-conservation is 

typically two orders of magnitude less than that of potential temperature.  In order to facilitate the use of Conservative 

Temperature in oceanography, Roquet et al. (2015) provided a 75-term polynomial for specific volume, 𝑣%(𝑆", Θ, 𝑃), as a 

function of Absolute Salinity, 𝑆", Conservative Temperature Θ and pressure 𝑃, and this polynomial underlies approximately 70 

75 of the 280 algorithms in the Gibbs Seawater (GSW) Oceanographic Toolbox.  While this polynomial expression is as 

accurate in the oceanographic range of salinity as our present knowledge of seawater properties, it does not give exactly the 

same values for specific volume as are obtained by using the original TEOS-10 Gibbs function.  One consequence of this 

approximation is that there is at present a slight inconsistency in the conversions between different types of temperature 

variables using the Gibbs function compared with using the Roquet et al. (2015) polynomial 𝑣%(𝑆", Θ, 𝑃).  For example, the in 75 

situ and potential temperatures, 𝑡 and 𝜃 respectively, are related through the Gibbs function through the implicit relationship 

𝑔#(𝑆", 𝑇$ + 𝑡, 𝑃) 	= 	𝑔#(𝑆", 𝑇$ + 𝜃, 𝑃%) (where subscripts denote partial differentiation, 𝑃%  is the reference pressure of the 

potential temperature, and 𝑔(𝑆", 𝑇$ + 𝑡, 𝑃) is the Gibbs function), whereas they are related through the forward expression 

(𝑇$ + 𝑡) (𝑇$ + 𝜃)⁄ = 	ℎ2&(𝑆", Θ, 𝑃) 𝑐'$4  in terms of the pressure integral of the 𝑣%(𝑆", Θ, 𝑃) polynomial of Roquet et al., 2015, 

with 𝑐'$ and 𝑇$ being constants, noting that ℎ2((𝑆", Θ, 𝑃) = 𝑣%(𝑆", Θ, 𝑃).  While the inconsistencies in temperature are small, 80 

being no larger than 10)*K, we would prefer if they did not exist, and the use of the thermodynamic potential of this paper in 

place of the Gibbs function eliminates both these small inconsistencies as well as the need for superfluous conversions between 

different temperatures.   
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1.2 Thermodynamic fundamentals   

The First Law of Thermodynamics (Appendix B of IOC et al., 2010)  85 

𝜌 9+,
+-
− 𝑣 +(

+-
; = 𝜌 9+.

+-
+ 𝑃 +/

+-
; = −∇ ∙ 𝑭0 + 𝜌𝜖, (1) 

expresses how the material derivatives of internal energy, 𝑢, and specific volume, 𝑣, are related, and how they respond to the 

local rate of heating by the divergence of the heat flux ∇ ∙ 𝑭0 and by the dissipation of turbulent kinetic energy per unit mass 

𝜖.  The middle part of Eqn. (1) illustrates how the work performed by the environment on the fluid parcel due to its change in 

volume, -𝑃d𝑣, at pressure 𝑃, changes the internal energy d𝑢, while the first part of the equation follows since specific enthalpy 90 

is defined by ℎ = 𝑢 + 𝑃𝑣.  The molecular, boundary and radiative fluxes of heat are represented by 𝑭0, and the contribution 

of the non-conservative nature of Absolute Salinity to the First Law is ignored here (this is discussed in the two paragraphs 

following Eqn. (A.21.13) in Appendix A.21 of the TEOS-10 Manual, IOC et al., 2010, where this contribution was shown to 

be negligible).  The detailed derivation of the First Law (starting from the conservation of total energy) can be found in 

Appendix B of IOC et al., 2010.   95 

Clausius (1876) considered the cyclic reversible exchange of heat between a control volume and the environment and 

deduced that there must be a state variable, which he named entropy, 𝜂 , whose total derivative satisfies the following 

differential relationship,  

dℎ − 𝑣d𝑃 = d𝑢 + 𝑃d𝑣 = 𝑇d𝜂 + 𝜇d𝑆". (2) 

This relationship is now called the Fundamental Thermodynamic Relationship (FTR), and importantly, the total differentials 100 

represent differences between local equilibrium states (de Groot and Mazur, 1984) that are separated by vanishingly small 

differences of state variables.  This restriction is satisfied for infinitesimally small reversible changes of infinitesimally small 

seawater parcels, ensuring that, for example, the in-situ temperature 𝑇 of the seawater parcel is unambiguously defined at all 

times.  Bearing in mind this restriction, the First Law, Eqn. (1), and the FTR, Eqn. (2), may be combined into the following 

form of the First Law,  105 

𝜌 9+,
+-
− 𝑣 +(

+-
; = 𝜌 9+.

+-
+ 𝑃 +/

+-
; = 𝜌 9𝑇 +1

+-
+ 𝜇 +2!

+-
; = −∇ ∙ 𝑭0 + 𝜌𝜖. (3) 

This version of the First Law may be rearranged into the form,  

𝜌 +1
+-
	= 	 3

3-
(𝜌𝜂) + ∇(𝜌𝒖𝜂) 	= 	−∇ ∙ 94

#
𝑭5 − 6

#
𝑭7; + 𝑭5 ∙ ∇ 94

#
; + 𝑭7 ∙ ∇ 9− 6

#
; + 89

#
. (4) 

In doing this rearrangement we have used the evolution equation of Absolute Salinity  

𝜌 +2!
+-
	= 	 3

3-
(𝜌𝑆") + ∇(𝜌𝒖𝑆") = −∇ ∙ 𝑭2, (5) 110 

where 𝑭2 is the flux of Absolute Salinity caused by molecular diffusion.  This form (5) of an evolution equation for a variable 

is the “conservative” form, because the right-hand side of this equation is minus the divergence of a molecular flux (see the 

formal definition of a conservative variable, Eqn. (A.8.1) of the TEOS-10 Manual, IOC et al., 2010).  Using Gauss’ integral 

theorem, it is concluded that the total amount of such a variable in the ocean is then set only by the flux of the variable at the 

ocean boundaries.  A test of the conservative nature (or otherwise) of an oceanographic variable is to consider the turbulent 115 
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mixing of two seawater parcels.  If the total amount of the variable in the final mixed product is the sum of the amounts in the 

two original parcels, then the variable is conservative.  This is rigorously true for enthalpy in an isobaric mixing process (apart 

from the dissipation of turbulent kinetic energy which needs to be budgeted separately) and is close to being true of 

Conservative Temperature (McDougall, 2003, Graham and McDougall, 2013).   

 The entropy evolution equation in the form (4) shows that entropy is not a conservative variable because of the three terms 120 

𝑭5 ∙ ∇(1 𝑇⁄ ), 𝑭7 ∙ ∇(−𝜇 𝑇⁄ ), and 𝜌𝜖 𝑇⁄ .  The Second Law of Thermodynamics can be stated in many forms, and when 

considering the mixing of a pair of fluid parcels, the Second Law requires that the entropy of the final mixture must be not less 

than the sum of the entropies contained in the initial two fluid parcels.  This is clearly true for the last term in Eqn. (4) because 

the dissipation of turbulent kinetic energy, 𝜖, is always non-negative.  The non-negative production of entropy means that the 

terms in Eqn. (4) involving the molecular fluxes of heat 𝑭5 and salt 𝑭7, namely 𝑭5 ∙ ∇(1 𝑇⁄ ) and 𝑭7 ∙ ∇(−𝜇 𝑇⁄ ), also need to 125 

be non-negative, and this requirement is shown by Landau and Lifshitz (1959) to be satisfied when the Gibbs function, 𝑔, 

satisfies 𝑔## < 0 and 𝑔2!2! > 0.  The TEOS-10 Gibbs function of seawater satisfies this thermodynamic stability condition.   

 To understand and quantify the non-conservative production of entropy when turbulent mixing occurs between different 

seawater parcels, a different approach is required because the production terms 𝑭5 ∙ ∇(1 𝑇⁄ ) and 𝑭7 ∙ ∇(−𝜇 𝑇⁄ ) in Eqn. (4) 

involve complicated products of the gradients of in situ temperature, of pressure, and of salinity, bearing in mind that the 130 

molecular fluxes of heat and salt contain contributions from baro-diffusion, and the Soret and Dufour effects (see Appendix B 

of IOC et al., 2010).  These products of gradients would need to be averaged over the time and space of the turbulent mixing 

event.  Such a formidable averaging task has never been undertaken.  Fortunately, there is a much simpler way of evaluating 

the non-conservative production of entropy due to turbulent mixing, namely, to exploit the fact that entropy is a state function, 

so that it can be expressed as a function of salinity, enthalpy, and pressure, 𝜂H(𝑆", ℎ, 𝑃).  Graham and McDougall (2013) used 135 

this approach to show that the production of entropy, 𝛿𝜂 , that occurs when two seawater parcels of equal mass mix to 

completion is  

𝛿𝜂	 = 	− 4
:
J𝜂H,,(∆ℎ); + 2𝜂H,2!∆ℎ∆𝑆" + 𝜂H2!2!(∆𝑆")

;M, (6) 

where ∆ℎ and ∆𝑆" are the differences between the values of enthalpy and Absolute Salinity of the initial seawater parcels.  

Graham and McDougall (2013) also developed the evolution equation for entropy in the presence of turbulent epineutral and 140 

dianeutral turbulent mixing (their Eqn. 48).  This work is summarised in section A.16 of IOC et al. 2010.  There it is shown 

that the sign-definite production of entropy for the turbulent mixing process places exactly the same requirements on the Gibbs 

function of seawater as does molecular diffusion, namely that 𝑔## < 0 and 𝑔2!2! > 0.   

The 𝑇d𝜂 term in Eqn. (2) describes the exchange of heat and constitutes the original definition of entropy by Clausius 

(1876), so that, for example, if a seawater parcel is heated reversibly at constant pressure and salinity, this input of heat is equal 145 

to both dℎ and 𝑇d𝜂.  The last term, 𝜇d𝑆", describes the influence of changes in Absolute Salinity on enthalpy at constant 

entropy and pressure, that is,	𝜇 is the relative chemical potential defined by 𝜇 = 𝜕ℎ 𝜕𝑆"⁄ |1,( , which is also given by 𝜇 =

𝜕𝑢 𝜕𝑆"⁄ |/,(.  While the FTR relates the total derivatives of the several thermodynamic quantities only for thermodynamically 
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reversible processes, importantly all of enthalpy, internal energy, specific volume, entropy, and relative chemical potential are 

state variables so that they can be expressed as functions of, for example, (𝑆", 𝑇, 𝑃).  That is, after a series of irreversible 150 

processes (such as events in which turbulent kinetic energy is dissipated), the differences in these variables are still given by 

the differences in their functional expressions; specifically, the difference in entropy after an irreversible process is given by 

the difference in the values of 𝜂(𝑆", 𝑇, 𝑃) that occur over the time interval of the process (the final value of 𝜂(𝑆", 𝑇, 𝑃) minus 

the initial value) if and only if the sample under consideration is at equilibrium before and after that process.  In practice the 

FTR is used extensively in the construction of the thermodynamic potential that describes seawater, so that all the 155 

thermodynamic variables are related to each other using equations that apply for reversible processes.  Because each of these 

thermodynamic variables are state variables, the use of the FTR is justified; its use essentially finds a route through parameter 

space caused by a series of reversible processes, even though there are other ways of traversing between two (𝑆", 𝑇, 𝑃) states 

that involve irreversible processes.  Thermodynamic state variables, by definition, never depend on the process history that 

has led to the actual state.  Rather, “the actual state of the world depends only on the most recent past, without being directly 160 

influenced, so to speak, by the memory of the distant past” wrote Henri Poincaré in a report to the International Congress of 

Physics in 1900 (Poincaré and Goroff, 1993, pI18).   

Two important characteristics of oceanographic variables are (i) whether they are “potential” variables, and (ii) whether 

they are “conservative” variables; these characteristics are discussed at length in sections A.8 and A.9 of IOC et al., 2010.  A 

“potential” variable is independent of pressure when the pressure change occurs isentropically and without change in Absolute 165 

Salinity.  For example, Absolute Salinity is a potential variable since if the salt flux divergence ∇ ∙ 𝑭2 is zero then the salinity 

of a fluid parcel is unchanged even though its pressure may vary; this follows from the conservation equation of Absolute 

Salinity, 𝜌d𝑆" d𝑡⁄ = −∇ ∙ 𝑭2 of Eqn. (5) (where, again, we are neglecting the influence of the non-conservative source term 

of Absolute Salinity).  Similarly, from Eqn. (3) if in addition to being isohaline, if both ∇ ∙ 𝑭0 = 0 and 𝜖 = 0 so that there is 

no flux of heat across the boundaries of the fluid parcel and no dissipation of turbulent kinetic energy inside the parcel, then 170 

entropy 𝜂 is also constant, showing that entropy also has the “potential” property.  Potential enthalpy, potential density, and 

potential temperature, 𝜃, all have the “potential” property, by construction.   

Since Conservative Temperature Θ is defined as being proportional to potential enthalpy, ℎ(𝑆", 𝑇$ + 𝜃, 𝑃$), it is also a 

potential variable and can be regarded as a function ΘP(𝑆", 𝜃), of only 𝑆" and 𝜃.  It follows that entropy 𝜂 = 𝜂(𝑆", 𝑇$ + 𝑡, 𝑃) =

𝜂(𝑆", 𝑇$ + 𝜃, 𝑃$) = −𝑔#(𝑆", 𝑇$ + 𝜃, 𝑃$) can be expressed as a function of 𝑆" and Θ only, 𝜂 = �̂�(𝑆", Θ), and is not a separate 175 

function of in-situ pressure.  The hat over a variable indicates that it is being expressed as a function of Conservative 

Temperature (rather than in situ temperature 𝑇 =	𝑇$ + 𝑡).  Note that molecular diffusion fluxes heat down the temperature 

gradient (up the gradient of 1 𝑇⁄ ) and, in the presence of gravity, does not act to eliminate entropy gradients.  In contrast, 

turbulent mixing acts to flux “potential” properties down the gradients of these “potential” variables, but, in the presence of 

gravity, establishes a gradient of in situ temperature.  180 
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The Fundamental Thermodynamic Relationship of Eqn. (2) can be regarded as an expression for the total derivative of 

enthalpy when it is expressed as a function of (𝑆", 𝜂, 𝑃) and the three partial derivatives with respect to these variables are 𝜇, 𝑇 

and 𝑣.  Thermodynamically speaking, this form of enthalpy, namely ℎR(𝑆", 𝜂, 𝑃), is the most natural thermodynamic potential 

of seawater (here the cup over a variable’s name indicates that it is being expressed as a function of entropy).  Its “heat-like” 

argument, entropy, is a “potential” variable, and this property leads to simple expressions for quantities such as the adiabatic 185 

and isentropic compressibility, 𝜅 = −ℎR()4ℎR((.  But entropy, 𝜂, is neither a measured quantity (c.f. in situ temperature 𝑇), nor 

is it an almost conservative quantity (c.f. Conservative Temperature Θ).  The Gibbs function 𝑔(𝑆", 𝑇, 𝑃) has proven to be a 

practically more useful thermodynamic potential than ℎR(𝑆", 𝜂, 𝑃) because its “heat-like” argument, 𝑇, is a measured quantity, 

even though 𝑇 is neither a “potential” variable nor is it an almost conservative variable.  We note, from the FTR, that an 

alternative to ℎR(𝑆", 𝜂, 𝑃) as a thermodynamic potential is internal energy as a function of (𝑆", 𝜂, 𝑣) where specific volume (or 190 

density) takes the place of pressure as an independent variable and the partial derivates are 𝜇, 𝑇 and −𝑃.  For completeness it 

may be mentioned that the thermodynamic potential of pure water, which is part of TEOS-10, is a Helmholtz function 

expressed as a function of (𝑇, 𝑣) which permits the joint description of liquid and gaseous water by a single mathematical 

expression (Wagner and Pruß, 2002).   

Importantly, all of those thermodynamic potentials obey the three general criteria which characterise axiomatic systems 195 

(Feistel, 2008, 2018).  The potentials, by their definition, intrinsically exhibit consistency (that is, they exclude the possibility 

of deducing two different mathematical expressions for the same property), independence (that is, they prevent any derived 

function from being deducible from another one) and completeness (that is, they provide an equation for every equilibrium 

thermodynamic bulk property).  For an arbitrary given thermodynamic property equation, the validity of these criteria is not 

trivially fulfilled and needs to be demonstrated in order to regard that equation a thermodynamic potential.  200 

In this paper we derive a new thermodynamic potential of seawater, 𝜙2(𝑆", Θ, 𝑃), whose “heat-like” variable is Conservative 

Temperature, Θ, which, while not being a measured quantity, is a “potential” variable, and is also close to being 100% 

conservative.  That is, of the three desirable attributes of the “heat-like” argument of a thermodynamic potential, namely (i) 

being a measured quantity, (ii) being a “potential” variable, and (iii) being nearly conservative, Θ has two of these attributes, 

while both 𝑇 and 𝜂 have only one attribute each.   205 

2 Thermodynamic potentials versus knowledge of both enthalpy and entropy  

2.1 The case of 𝒉(𝑺𝐀, 𝑻, 𝑷) and 	𝜼(𝑺𝐀, 𝑻, 𝑷)   

The Gibbs function 𝑔(𝑆", 𝑇, 𝑃) is given by enthalpy minus the product of entropy and the absolute temperature, 𝑔 = ℎ −

𝑇𝜂.  The total differential of the Gibbs function, d𝑔 = dℎ − 𝜂d𝑇 − 𝑇d𝜂, can be found from the FTR (Eqn. 2) to be  

d𝑔 = 𝜇d𝑆" − 𝜂d𝑇 + 𝑣d𝑃, (7) 210 
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with the three partial derivatives of 𝑔(𝑆", 𝑇, 𝑃) being 𝜇,−𝜂 and 𝑣.  We can think of the Gibbs function being formed from 

laboratory-derived measurements of these three partial derivatives.  Note that the FTR follows from this expression for the 

total derivative of the Gibbs function if and only if one also knows that 𝑔 = ℎ − 𝑇𝜂; we will return to this later.   

This discussion of the derivation, definition and use of the Gibbs function can be approached via a slightly different line of 

reasoning.  We introduce this alternative line of reasoning because it resonates with the same line of reasoning that we use to 215 

derive/justify the thermodynamic potential 𝜙2(𝑆", Θ, 𝑃) of this paper.  In this alternative way of approaching the Gibbs function, 

one again takes 𝜇(𝑆", 𝑇, 𝑃), 𝜂(𝑆", 𝑇, 𝑃) and 𝑣(𝑆", 𝑇, 𝑃) to be known functions of seawater, but instead of forming a Gibbs 

function 𝑔(𝑆", 𝑇, 𝑃)  according to its total differential, Eqn. (7), we instead form the total derivative of enthalpy in the 

functional form (𝑆", 𝑇, 𝑃), by substituting the total differential of entropy, d𝜂 = 𝜂2"d𝑆" + 𝜂#d𝑇 + 𝜂(d𝑃 , into the FTR, 

obtaining,  220 

dℎ = Z𝜇 + 𝑇𝜂2![d𝑆" + 𝑇𝜂#d𝑇 + (𝑣 + 𝑇𝜂()d𝑃. (8) 

with the three partial derivatives of ℎ(𝑆", 𝑇, 𝑃)  being Z𝜇 + 𝑇𝜂2![ = (𝜇 − 𝑇𝜇>),  𝑇𝜂#  and (𝑣 + 𝑇𝜂() = (𝑣 − 𝑇𝑣#) 

respectively.  We can think of enthalpy being formed from these three partial derivatives using laboratory-derived 

measurements of 𝜇(𝑆", 𝑇, 𝑃), 𝜂(𝑆", 𝑇, 𝑃) and 𝑣(𝑆", 𝑇, 𝑃).  Note that the FTR, dℎ − 𝑣d𝑃 = 𝑇d𝜂 + 𝜇d𝑆" , follows directly 

from this expression for the total derivative of enthalpy by using the total differential of entropy, d𝜂 = 𝜂2"d𝑆" + 𝜂#d𝑇 +225 

𝜂(d𝑃.  Having formed ℎ(𝑆", 𝑇, 𝑃) by integrating its differential definition, Eqn. (8), and also knowing 𝜂(𝑆", 𝑇, 𝑃), all the 

thermodynamic properties can be found.  Despite that, however, the combination of ℎ(𝑆", 𝑇, 𝑃) and 𝜂(𝑆", 𝑇, 𝑃) is not fully 

equivalent to a thermodynamic potential as the function pair violates the criterion of independence.  This is evident from the 

heat capacity for which two different equations can be found,  

𝑐( = 93,
3#
;
2,(

= 𝑇 931
3#
;
2,(

. (9) 230 

Therefore, any suitable thermodynamic potential must intrinsically ensure the validity of the consistency condition,  

93,
3#
;
2,(

≡ 𝑇 931
3#
;
2,(

. (10) 

It is easily verified that this identity in fact holds for the TEOS-10 Gibbs function. 

The last step in this alternative narrative that leads to the Gibbs function is to note that it is more convenient to combine 

the knowledge contained in ℎ(𝑆", 𝑇, 𝑃) and 𝜂(𝑆", 𝑇, 𝑃) into the single function, 𝑔 = ℎ − 𝑇𝜂, whose 𝑇 derivative gives −𝜂 235 

(using ℎ# = 𝑇𝜂#), and enthalpy can then be found by simply adding 𝑇𝜂 to 𝑔 = ℎ − 𝑇𝜂.   

Comparing the traditional with the alternative reasoning surrounding the Gibbs function, we see that via the traditional 

approach, in order to arrive at the FTR one needs to know both (i) how the Gibbs function is found from the observed data, 

namely, the differential expression Eqn. (7), as well as (ii) the definition of the Gibbs function in terms of enthalpy and entropy, 

𝑔 = ℎ − 𝑇𝜂.  In contrast, the alternative approach uses the same observed data of of 𝜇(𝑆", 𝑇, 𝑃), 𝜂(𝑆", 𝑇, 𝑃) and 𝑣(𝑆", 𝑇, 𝑃) 240 

to define specific enthalpy according to Eqn. (8), which is already the FTR.  In this alternative approach both entropy 
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𝜂(𝑆", 𝑇, 𝑃) and enthalpy ℎ(𝑆", 𝑇, 𝑃) are now known and all the thermodynamic variables follow.  That is, having formed 

enthalpy ℎ(𝑆", 𝑇, 𝑃) from its partial derivatives (Eqn. 8) there is no need for an additional definition; the Gibbs function and 

its definition do not need to be introduced.  Rather, the two functions ℎ(𝑆", 𝑇, 𝑃) and 𝜂(𝑆", 𝑇, 𝑃) can be regarded as a pair of 

functions that together define all the thermodynamic properties of seawater.  In this alternative reasoning, the Gibbs function 245 

𝑔(𝑆", 𝑇, 𝑃) is introduced as the last step, for the sole purpose that all the thermodynamic quantities can be derived from a 

single function rather than having to carry along the two separate functions ℎ(𝑆", 𝑇, 𝑃) and 𝜂(𝑆", 𝑇, 𝑃).   

 

2.2 The case of 𝒉](𝑺𝐀, 𝚯, 𝑷) and 𝜼_(𝑺𝐀, 𝚯)  

Now we discuss the case of Conservative Temperature Θ taking the place of in situ temperature 𝑇 as the independent 250 

temperature variable.  Appendix P of IOC et al., 2010 has shown that if expressions for both enthalpy and entropy are known 

in the functional forms ℎ2(𝑆", Θ, 𝑃) and �̂�(𝑆", Θ), this information is sufficient to derive all the thermodynamic quantities.  This 

can be understood from realizing that 𝜂 = �̂�(𝑆, Θ, ) is equivalent to providing the implicit definition of Θ = Θ̀(𝑆, 𝜂) so that 

knowledge of ℎ2(𝑆", Θ, 𝑃)  and �̂�(𝑆", Θ)  is equivalent to knowing ℎa(𝑆", 𝜂, 𝑃) = ℎ2Z𝑆, Θ̀(𝑆, 𝜂), 𝑃[  so that the three partial 

derivatives of ℎa(𝑆", 𝜂, 𝑃) (from which the FTR can be written down) can be written in terms of the partial derivatives of 255 

ℎ2(𝑆, Θ, 𝑃) and �̂�(𝑆, Θ, ) (see Table 1 for these expressions).  IOC et al., 2010 stopped short of finding a single thermodynamic 

potential in terms of (𝑆", Θ, 𝑃); this is done in the present paper.   

First, there are two useful features that follow directly from the definition of Conservative Temperature as being 

proportional to potential enthalpy referenced to 𝑃$, i.e. 𝑐'$Θ ≡ ℎ2(𝑆", Θ, 𝑃$).  The first feature is that that entropy has the 

functional form 𝜂 = �̂�(𝑆", Θ) and is not a function of pressure; this feature is due to Conservative Temperature possessing the 260 

“potential” property (as does both entropy and Absolute Salinity).  The second feature is the very simple form of the first 

derivatives of enthalpy at 𝑃$, namely that ℎ2&(𝑆", Θ, 𝑃$) = 𝑐'$ and ℎ22!(𝑆", Θ, 𝑃$) = 0.  Specific enthalpy is now defined in 

terms of (𝑆", Θ, 𝑃) from its total differential,  

dℎ = Z𝜇 + 𝑇�̂�2![d𝑆" + 𝑇�̂�&dΘ + 𝑣d𝑃, (11) 

which is simply a rearranged version of the Fundamental Thermodynamic Relation (FTR), dℎ − 𝑣d𝑃 = 𝜇d𝑆" + 𝑇d𝜂, since 265 

d𝜂 = �̂�2!d𝑆" + �̂�&dΘ.  Knowledge of �̂�(𝑆", Θ, 𝑃), 𝑇2(𝑆", Θ, 𝑃) and 𝑣%(𝑆", Θ, 𝑃) are needed to find these partial derivatives in 

Eqn. (11), while �̂�(𝑆", Θ) can be found from integrating the first two partial derivatives of Eqn. (11) evaluated at 𝑃$, namely 

0 = �̂�(𝑆", Θ, 𝑃$) + (𝑇$ + 𝜃)�̂�2! and 𝑐'$ = (𝑇$ + 𝜃)�̂�&, where (𝑇$ + 𝜃) = 𝑇2(𝑆", Θ, 𝑃$), together with the arbitrary assignment 

�̂�(𝑆7?, 0℃) = 0.  After having formed both �̂�(𝑆", Θ) and ℎ2(𝑆", Θ, 𝑃) from the differential form Eqn. (11), we know from 

Appendix P of IOC et al. (2010) that all the thermodynamic variables of seawater follow, so that if one is willing to define 270 

seawater properties using these two functions, no more work is required.  However it is convenient to define all the 

thermodynamic properties from a single thermodynamic potential function, and in this paper we have found such a function, 
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𝜙2(𝑆", Θ, 𝑃), given by Eqns. (13) or (14) below, which contains the information of both �̂�(𝑆", Θ) and ℎ2(𝑆", Θ, 𝑃) and from 

which these two functions can be found.  Having a thermodynamic potential ensures not only that every thermodynamic 

property can be derived from it, but also, importantly, that there is only one expression for each thermodynamic quantity.   275 

Note that in the (𝑆", Θ, 𝑃) case, specific volume, 𝑣 = ℎ2(, internal energy, 𝑢 = ℎ2 − 𝑃ℎ2(, and the isentropic compressibility, 

𝜅 = −ℎ2(( ℎ2(⁄ , depend only on enthalpy, ℎ2(𝑆", Θ, 𝑃), and are independent of entropy, �̂�(𝑆", Θ).  This contrasts with the 

(𝑆", 𝑇, 𝑃)  case where specific volume, 𝑣 = 	ℎ( − 𝑇𝜂( , internal energy, 𝑢 = ℎ − 𝑃ℎ( + 𝑇𝑃𝜂( , and the isentropic 

compressibility, 𝜅 = −(ℎ((𝜂# − ℎ#𝜂(( + 𝜂(;) (ℎ(𝜂# − ℎ#𝜂()⁄ , depend not only on enthalpy, ℎ(𝑆", 𝑇, 𝑃),  but also on 

entropy, 𝜂(𝑆", 𝑇, 𝑃).  The simpler expressions for specific volume, internal energy, the isentropic compressibility and the 280 

sound speed in the (𝑆", Θ, 𝑃) case compared with the (𝑆", 𝑇, 𝑃) case is also a feature of the ℎR(𝑆", 𝜂, 𝑃)  thermodynamic 

potential and is due to the Conservative Temperature variable being a ”potential” variable.   

In the next section we introduce the new thermodynamic potential 𝜙2(𝑆", Θ, 𝑃)  and then compare its derivation and 

properties with the corresponding derivation and properties of the Gibbs function.  This leads to a discussion of whether 

𝜙2(𝑆", Θ, 𝑃) is as thermodynamically fundamental as the Gibbs function 𝑔(𝑆", 𝑇, 𝑃).   285 

 

3 A thermodynamic potential of seawater in terms of Conservative Temperature  

3.1 Defining the thermodynamic potential 𝝓](𝑺𝐀, 𝚯, 𝑷)   

Since Conservative Temperature Θ is the temperature variable that is recommended for use in marine science under TEOS-10 

(taking the place of potential temperature 𝜃) it is of interest to determine if a thermodynamic potential of seawater can be found 290 

in terms of	Θ.  From Appendix P of IOC et al. (2010), and section 2 above, we know that if we can find a single function from 

which enthalpy and entropy can be found in the functional forms ℎ2(𝑆", Θ, 𝑃) and �̂�(𝑆", Θ), our aim will have been achieved.  

It is possible to find several such functions from which ℎ2(𝑆", Θ, 𝑃) and �̂�(𝑆", Θ) can be derived, and some of these are 

described in Appendix A.  The one we suggest, Eqn. (13) below, is motivated from section 5 of Feistel (2008) (the paper that 

derived the Gibbs function of seawater as incorporated into TEOS-10), where the differential expression for the Gibbs function, 295 

Eqn. (3), was integrated along an arbitrary but convenient path through (𝑆", 𝑇, 𝑃) space, first with respect to Absolute Salinity 

from the Absolute Salinity of Standard Seawater 𝑆7? at 𝑇 = 𝑇$ and 𝑃 = 𝑃$, then with respect to in situ temperature at the 

given Absolute Salinity and at 𝑃 = 𝑃$, and finally with respect to pressure at the given values of Absolute Salinity and in situ 

temperature, so that the Gibbs function can be written as  
𝑔(𝑆", 𝑇, 𝑃) = 	∫ 𝜇(𝑆"@ , 𝑇$, 𝑃$)d𝑆"@

2!
2#$

− ∫ 𝜂(𝑆", 𝑇@, 𝑃$)d𝑇@
#
#%

+ ∫ 𝑣(𝑆", 𝑇, 𝑃@)d𝑃@
(
(%

. (12) 300 
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where 𝑔(𝑆7?, 𝑇$, 𝑃$) was chosen to be zero with no loss of generality.  This integration method results in a path-independent 

function 𝑔(𝑆", 𝑇, 𝑃) if and only if the three integrands satisfy the integrability conditions (Maxwell relations) 𝜇# = −𝜂2!, 

𝜇( = 𝑣2! and −𝜂( = 𝑣#.   

In this paper we adopt a similar integration of entropy and specific volume, but now with respect to Conservative 

Temperature (rather than in situ temperature) to define the new thermodynamic potential of seawater 𝜙2(𝑆", Θ, 𝑃) as  305 

𝜙2(𝑆", Θ, 𝑃) = 	−∫ �̂�(𝑆", Θ@)dΘ@
&
$ + ∫ 𝑣%(𝑆", Θ, 𝑃@)d𝑃@

(
(%

. (13) 

or equivalently (since we know that 𝑣 = ℎ2( and 𝑐'$Θ	 ≡ 	ℎ2(𝑆", Θ, 𝑃$))  

𝜙2(𝑆", Θ, 𝑃) = 	−∫ �̂�(𝑆", Θ@)dΘ@
&
$ + ℎ2(𝑆", Θ, 𝑃) − 𝑐'$Θ. (14) 

Note that (i), entropy �̂�(𝑆", Θ) is not a function of pressure, and (ii), unlike in Eqn. (12), we find that in Eqn. (13) we do not 

need to perform a salinity integral of relative chemical potential 𝜇 in order to fully define the thermodynamic properties of 310 

seawater from 𝜙2(𝑆", Θ, 𝑃).  Expressions for ℎ2(𝑆", Θ, 𝑃) and �̂�(𝑆", Θ) are obtained from 𝜙2(𝑆", Θ, 𝑃) as follows,  

ℎ2(𝑆", Θ, 𝑃) 	= 	 𝑐'$Θ + 𝜙2(𝑆", Θ, 𝑃) − 𝜙2(𝑆", Θ, 𝑃$) 	= 	 𝑐'$Θ + ∫ 𝜙2((𝑆", Θ, 𝑃@)d𝑃@
(
(%

, (15) 

�̂�(𝑆", Θ) 	= 		−	𝜙2&(𝑆", Θ, 𝑃$) 	= 		−	𝜙2&(𝑆", Θ, 𝑃) + ∫ 𝜙2(&(𝑆", Θ, 𝑃@)d𝑃@
(
(%

, (16) 

and from Appendix P of IOC et al., 2010, we know that all the thermodynamic variables follow once we have expressions for 

ℎ2(𝑆", Θ, 𝑃)  and �̂�(𝑆", Θ) .  For example, the conversion formula of Conservative to in-situ temperature follows from 315 

𝜙2(𝑆", Θ, 𝑃) to be  

𝑇(𝑆, Θ, 𝑃) = ,A&
1B&
= − C'%D	FA&(2!,&,())FA&(2!,&,(%)

FA&&(2!,&,(%)
.  (17) 

Hence, we conclude that 𝜙2(𝑆", Θ, 𝑃), defined by Eqn. (13 or 14), is a thermodynamic potential of seawater.  The expressions 

for several thermodynamic variables in terms of 𝜙2(𝑆", Θ, 𝑃) can be found in Appendix C.   

In summary, we are using polynomial fits to entropy and enthalpy (or equivalently, specific volume), as functions of 320 

Conservative Temperature, knowing from Appendix P of IOC et al. 2010 that these fits in the forms ℎ2(𝑆", Θ, 𝑃) and �̂�(𝑆", Θ) 

are sufficient to define all the thermodynamic variables of seawater.  We have then found a way, Eqns. (13) or (14), to combine 

these two polynomial functions into one function from which both ℎ2(𝑆", Θ, 𝑃) and �̂�(𝑆", Θ) can be found.   

 

3.2 Is the thermodynamic potential 𝝓](𝑺𝐀, 𝚯, 𝑷) equivalent to the Gibbs function?   325 

In section 2 we suggested that enthalpy in the functional form ℎR(𝑆", 𝜂, 𝑃) is the most natural thermodynamic potential, 

because its total differential expression is the Fundamental Thermodynamic Relationship (FTR), Eqn. (2).  In contrast, forming 

the Gibbs function from “observations” (that is, knowledge) of 𝜇(𝑆", 𝑇, 𝑃), 𝜂(𝑆", 𝑇, 𝑃)  and 𝑣(𝑆", 𝑇, 𝑃) , using the total 
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differential d𝑔 = 𝜇d𝑆" − 𝜂d𝑇 + 𝑣d𝑃 is not equivalent to the FTR since there is no link to the total differentials of either 

enthalpy or internal energy.  Rather, to proceed from knowledge of the total differential of the Gibbs function to the FTR one 330 

needs the additional knowledge that 𝑔 = ℎ − 𝑇𝜂.   

In section 2 we introduced an alternate route to deriving the Gibbs function, using knowledge/observations of 𝜇(𝑆", 𝑇, 𝑃), 

𝜂(𝑆", 𝑇, 𝑃) and 𝑣(𝑆", 𝑇, 𝑃) together with the differential form Eqn. (8) of enthalpy to find enthalpy in the form ℎ(𝑆", 𝑇, 𝑃), 

which embodies the FTR.  The combination of the information in ℎ(𝑆", 𝑇, 𝑃)  and 𝜂(𝑆", 𝑇, 𝑃)  serves to define all the 

thermodynamic quantities of seawater, and the FTR follows from Eqn. (8) without the need to introduce another function.  The 335 

last step in this discussion of the Gibbs function is to introduce it as 𝑔(𝑆", 𝑇, 𝑃) = ℎ(𝑆", 𝑇, 𝑃) − 𝑇𝜂(𝑆", 𝑇, 𝑃) for the sole 

purpose that all the thermodynamic quantities can be derived from a single function.   

Similarly, we showed that in the (𝑆", Θ, 𝑃)  case, knowledge/observations of �̂�(𝑆", Θ, 𝑃) , 𝑇2(𝑆", Θ, 𝑃)  and 𝑣%(𝑆", Θ, 𝑃) 

together with the differential form Eqn. (11) gives both enthalpy and entropy in the forms ℎ2(𝑆", Θ, 𝑃) and �̂�(𝑆", Θ) which also 

embody the FTR.  Again, a single thermodynamic potential is not needed either to arrive at the FTR, or to be able to derive all 340 

the thermodynamic quantities of seawater.  In both the (𝑆", 𝑇, 𝑃) and (𝑆", Θ, 𝑃) cases a single thermodynamic potential can be 

found; in one case as 𝑔(𝑆", 𝑇, 𝑃) = ℎ(𝑆", 𝑇, 𝑃) − 𝑇𝜂(𝑆", 𝑇, 𝑃) and in the other as (Eqn. 14), 𝜙2(𝑆", Θ, 𝑃) = ℎ2(𝑆", Θ, 𝑃) −

𝑐'$Θ − ∫ �̂�(𝑆", Θ@)dΘ@
&
$ .   

We conclude that the new thermodynamic potential 𝜙2(𝑆", Θ, 𝑃)  and the Gibbs function 𝑔(𝑆", 𝑇, 𝑃)  are equivalent 

thermodynamic potentials of seawater.  Both thermodynamic potentials are found from “observations” of, in one case 𝜇, 𝜂 and 345 

𝑣, and in the other case 𝜇, 𝑇 and 𝑣, to constrain various derivatives of either ℎ(𝑆", 𝑇, 𝑃) or ℎ2(𝑆", Θ, 𝑃), from which the FTR 

immediately follows.  All the thermodynamic properties of seawater can be derived from these expressions for enthalpy along 

with their corresponding expressions for entropy.  Given these pairs of expressions for enthalpy and entropy, corresponding 

thermodynamic potential functions can be found in the form of the Gibbs function or in the form of 𝜙2(𝑆", Θ, 𝑃).  This 

summarizes the identical nature of the derivations of the two thermodynamic potentials from the viewpoint of the slightly 350 

different derivation of the thermodynamic potentials as described in section 2.  In Appendix D we describe the equivalence of 

the two potential functions on the basis of their differential expressions and their definitions.   

Having argued that the two thermodynamic potentials, 𝑔(𝑆", 𝑇, 𝑃)	and 𝜙2(𝑆", Θ, 𝑃) are equivalent, we add a practical caveat 

regarding how 𝜙2(𝑆", Θ, 𝑃) has actually been found; that is, how we formed the polynomial expressions for 𝑣%(𝑆", Θ, 𝑃) and 

�̂�(𝑆", Θ), that appear in the definition of 𝜙2(𝑆", Θ, 𝑃) in Eqn. (13).  First, all the most accurate data of thermodynamic quantities 355 

(such as specific volume, sound speed, isobaric specific heat capacity, “heat of mixing”, temperature of maximum density, 

freezing point depression, etc.) were absorbed into the TEOS-10 Gibbs function of seawater 𝑔(𝑆", 𝑇$ + 𝑡, 𝑃) (Feistel 2003, 

2008).  It is natural to absorb this information into a Gibbs function because all the laboratory data were obtained at measured 

values of in situ temperature, and the Gibbs function has in situ temperature as its “heat-like” independent variable.  Second, 
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the conversion between in situ and potential temperature used the implicit relationship 𝑔#(𝑆", 𝑇$ + 𝑡, 𝑃) 	= 	𝑔#(𝑆", 𝑇$ + 𝜃, 𝑃$) 360 

which involves the Gibbs function. Third, the conversion between potential temperature and Conservative Temperature used 

the Gibbs function-based equation of potential enthalpy, ℎ(𝑆", 𝑇$ + 𝜃, 𝑃$), which is equated to 𝑐'$Θ.  Fourth, using this 

conversion between 𝑡 and Θ we were able, in Roquet et al. (2015), to form a polynomial expression for 𝑣%(𝑆", Θ, 𝑃) from the 

Gibbs function-based values of 𝑣 = 	𝑔((𝑆", 𝑇$ + 𝑡, 𝑃).  Fifth, and lastly, using the now known conversion between 𝜃 and Θ, 

we are able in this paper to form an algorithm for �̂�(𝑆", Θ) from the Gibbs function-based values of 𝜂e(𝑆", θ) = 	−𝑔#(𝑆", 𝑇$ +365 

𝜃, 𝑃$).  In summary, we have used the TEOS-10 Gibbs function of seawater to relate the different temperature variables and 

to evaluate both specific volume and entropy, which were then fitted with polynomials in the three independent variables 

𝑆", Θ, 𝑃.  In performing these polynomial fits, we ensured that in the oceanographic range of salinity, the 𝑣%(𝑆", Θ, 𝑃) and 

�̂�(𝑆", Θ) polynomials fitted the Gibbs function-derived values of specific volume and entropy more accurately than these 

variables are known from the underlying laboratory measurements.  In this way we claim that the thermodynamic potential 370 

𝜙2(𝑆", Θ, 𝑃)  and the TEOS-10 Gibbs function 𝑔(𝑆", 𝑇$ + 𝑡, 𝑃)  are equally accurate in representing the thermodynamic 

properties of seawater in the oceanographically relevant range of salinity.   

4 An approximate polynomial expression for entropy 

4.1 Beginning with an analogy with a perfect gas  

In order to construct an accurate polynomial expression for the thermodynamic potential of seawater 𝜙2(𝑆", Θ, 𝑃) of Eqn. (13) 375 

we will integrate the 75-term polynomial expression for specific volume 𝑣%(𝑆", Θ, 𝑃) of Roquet et al. (2015) with respect to 

pressure to obtain ℎ2(𝑆", Θ, 𝑃) (using the fact that  ℎ2( = 𝑣), and we also need to find an accurate expression for entropy, 

�̂�(𝑆", Θ), which we will develop in this section.   

The specific entropy of a perfect gas can be expressed in terms of the Celsius potential temperature 𝜃 (with reference sea 

pressure of 𝑝% = 0	dbar; that is, reference absolute pressure of 𝑃% = 𝑃$ ≡ 101	325	Pa) by  380 

𝜂IJK = 𝑐'
IJKln(1 + 𝜃 𝑇$⁄ ) (18) 

where entropy is defined so that it is zero at a Celsius temperature of 0℃ (see Eqn. (J.6) and (J.7) of IOC et al. (2010)).  In 

general, the enthalpy and internal energy of a perfect gas is a general function of (only) temperature, but here we have restricted 

attention to the “calorically perfect gas” where the specific isobaric heat capacity 𝑐'
IJK is a constant.  The enthalpy of a perfect 

gas (e.g. dry air) is also defined to be zero at a Celsius temperature of 0℃, so the potential enthalpy of a perfect gas is ℎ$ =385 

𝑐'
IJK𝜃 and if a “conservative temperature of a perfect gas” were to be defined, then it would be simply equal to potential 

temperature 𝜃.  
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Figure 1.  Panels (a) and (b) are contour plots of 𝑐'$ ln(1 + 𝜃 𝑇$⁄ ) − 𝜂 and 𝑐'$ ln(1 + Θ 𝑇$⁄ ) − 𝜂	respectively, while panels (c) 

and (d) show 𝑐'$ ln(1 + 𝜃 𝑇$⁄ ) + 𝑎(𝑆" 𝑆7?⁄ ) ln(𝑆" 𝑆7?⁄ ) − 𝜂  and 𝑐'$ ln(1 + Θ 𝑇$⁄ ) + 𝑎(𝑆" 𝑆7?⁄ ) ln(𝑆" 𝑆7?⁄ ) − 𝜂 390 

respectively.  All panels in this figure are in the units of entropy, namely J	kg)4	K)4.   

One wonders how accurate a correspondingly simple logarithm expression would be for the entropy of seawater, defined 

by either 𝑐'$ ln(𝑇$ + θ) + constant or by 𝑐'$ ln(𝑇$ + Θ) + constant.  The constants can be chosen so that it makes the estimate 

of entropy zero if 𝜃 = 0℃ or Θ = 0℃ in the two cases respectively, since entropy is zero for Standard Seawater (𝑆" = 𝑆7?) 

at this temperature.  That is, we examine the two estimates 𝑐'$ ln(1 + θ 𝑇$⁄ ) and 𝑐'$ ln(1 + Θ 𝑇$⁄ ) as approximations to the 395 

entropy of seawater.  (Note that for seawater, 𝑐'$ is approximately four times as large as the isobaric specific heat capacity of 
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air,	𝑐'
IJK). The errors in using these two approximate expressions can be seen in Figure 1 (a) and (b).  It is seen that the 

expression involving Conservative Temperature, 𝑐'$ ln(1 + Θ 𝑇$⁄ ) , is a better approximation to entropy than is the one 

involving potential temperature, 𝑐'$ ln(1 + θ 𝑇$⁄ ), with the maximum error being less by approximately an order of magnitude.  

The relative accuracies of these approximate expressions to the specific entropy of seawater can be understood from the 400 

following expressions for the total differential of entropy in terms of 𝜃 and Θ (see Eqns. (A.12.7) and (A..12.8) of IOC et al. 

2010),  

d𝜂	 = 		 𝑐'(𝑆", 𝜃, 𝑃$)	d(ln[1 + 𝜃 𝑇$⁄ ]) 		−		𝜇#(𝑆", 𝜃, 𝑃$)	d𝑆", (19) 

d𝜂	 = 		 𝑐'$ 	
(#%D&)
(#%DL)

	d(ln[1 + Θ 𝑇$⁄ ]) 		−		6B(2!,&,(%)(#%DL)
	d𝑆". (20) 

The partial derivative with respect to Absolute Salinity that has been used in Eqn. (19), namely 𝜂e2! = 𝜂2!(𝑆", 𝜃, 𝑃$), is also 405 

given by −𝜇#(𝑆", 𝜃, 𝑃$)  since both expressions are −𝑔#2!(𝑆", 𝜃, 𝑃$) , while the other partial derivative, 𝜂eL =

𝑐'(𝑆", 𝜃, 𝑃$) (𝑇$ + 𝜃)⁄ , can be gleaned from ℎ# = 𝑇𝜂# (from Eqn. 8) evaluated at 𝑃$, noting that 𝑐'(𝑆", 𝜃, 𝑃$) = ℎ#(𝑆", 𝜃, 𝑃$) 

is the specific isobaric heat capacity of seawater evaluated at 𝑃$ and at the potential temperature 𝜃.  The partial derivatives �̂�2! 

and �̂�& used in Eqn. (20) can be gleaned from Eqn. (11) evaluated at 𝑃$, noting that ℎ22!(𝑆", Θ, 𝑃$) = 0.  The contributions of 

the terms in d𝑆" are small in comparison to the leading terms on the right-hand sides of Eqns. (19) and (20), and the specific 410 

heat capacity 𝑐'(𝑆", θ, 𝑃$) varies by 5.5% in the ocean whereas the ratio (𝑇$ + Θ) (𝑇$ + 𝜃)⁄  varies by no more than 0.67%, 

and this explains why the approximate expression 𝜂 ≈ 𝑐'$ ln(1 + Θ 𝑇$⁄ ) outperforms 𝜂 ≈ 𝑐'$ ln(1 + θ 𝑇$⁄ ) by about an order 

of magnitude.   

 While the fit to entropy in better in Fig. 1(b) than in Fig. 1(a), neither is particularly accurate for our purposes.  For example, 

in determining potential temperature 𝜃  from �̂�& = 𝑐'$ (𝑇$ + 𝜃)⁄ , the remaining error in Fig. 1(b) amounts to an error in 415 

potential temperature of approximately 0.5℃ while that in Fig 1(a), using 𝜂eL = 𝑐'(𝑆", θ, 𝑃$) (𝑇$ + 𝜃)⁄ , amounts to about 

10℃.  

 

4.2 Adding a simple function of Absolute Salinity  

The Second Law of Thermodynamics requires that entropy must be produced when mixing occurs, and the approximation 420 

𝑐'$ ln(1 + Θ 𝑇$⁄ ) does not allow for the production of entropy when mixing occurs between seawater parcels of different 

Absolute Salinities but the same value of Conservative Temperature.  The TEOS-10 Gibbs-function-derived expression for 

specific entropy contains the term 𝑎(𝑆" 𝑆7?⁄ ) ln(𝑆" 𝑆7?⁄ )  with the coefficient  being 𝑎 =

−9.310	292	413	479	596	J	kg)4	K)4  (this is the value of the coefficient derived from the 𝑔44$  coefficient of the Gibbs 

function (appendix H of IOC et al. (2010)), allowing for our version of the normalization of salinity,	(𝑆" 𝑆7?⁄ )).  This term 425 

 a
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was derived by Feistel (2008) to be theoretically correct at very small Absolute Salinities, relying on Plank’s theory of ideal 

solutions and the now-exact value of the molar gas constant.  Here we use the slightly different value 𝑎 =

−9.309	495	003	228	781	𝐽	kg)4	K)4  that comes from a least-squares fit incorporating a particular polynomial form, as 

described below, and tabulated in appendix B.  This slightly different value of 𝑎 allows a more accurate fit to the entropy data 

over the whole range of oceanographic salinities rather than only at vanishingly small salinities.   430 

The accuracy of the approximate expression 𝑐'$ ln(1 + Θ 𝑇$⁄ ) + 𝑎(𝑆" 𝑆7?⁄ ) ln(𝑆" 𝑆7?⁄ ) is shown in Figure 1(d).  There is 

no improvement over 𝑐'$ ln(1 + Θ 𝑇$⁄ ) near zero Absolute Salinity, but at intermediate salinity values the fit is improved over 

that of 𝑐'$ ln(1 + Θ 𝑇$⁄ ) by approximately an order of magnitude.  Over the whole (𝑆", Θ) plane this simple theoretically 

inspired estimate of entropy, illustrated in Figure 1(d) is in error by no more than 0.2% of the full range of entropy.  In contrast, 

when the same expression is used with potential temperature (as in Figure 1(c)) in place of Conservative Temperature, the 435 

relative error is 4% of the full range of entropy.   

 

4.3 The full expression for 𝜼_(𝑺𝐀, 𝚯)  

In order to obtain an expression for �̂�(𝑆", Θ) suitable for combining with the 75-term polynomial for specific volume  

𝑣%(𝑆", Θ, 𝑃) of Roquet et al. (2015) to form the thermodynamic potential of seawater 𝜙2(𝑆", Θ, 𝑃)	of Eqn. (13), we have added 440 

a polynomial in powers of 𝑠 = 	 [𝑆" 𝑆7?⁄ ]$.N and 𝜏 = 	Θ 40℃⁄  with the highest power of each being eight, so that our final 

approximate expression for �̂�(𝑆", Θ) is  

�̂�(𝑆", Θ) 	= 	 𝑐'$ ln(1 + Θ 𝑇$⁄ ) + 𝑎(𝑆" 𝑆7?⁄ ) ln(𝑆" 𝑆7?⁄ ) + 𝑃{8,8}(𝑠, 𝜏), (21) 

and the 45 coefficients of the eighth order bi-polynomial 𝑃{8,8} are listed in Appendix B.  The error of Eqn. (21) in 

approximating �̂�(𝑆", Θ) is shown in Fig. 2(a), from which we see that the typical errors are 2 × 10)O	J	kg)4	K)4.   445 

When the thermodynamic potential 𝜙2(𝑆", Θ, 𝑃) of Eqn. (13 or 14) is used to obtain all the thermodynamic properties of 

seawater, one of the key variables that is obtained from entropy in the form �̂�(𝑆", Θ) is the potential temperature 𝜃 referenced 

to 𝑃$, and this is found from the derivative of entropy with respect to Conservative Temperature, namely  

�̂�& =
C'%

(#%DL)
. (22) 

This relationship was originally derived from the FTR by McDougall (2003) and can be deduced from Eqn. (11); see also Eqn. 450 

(A.12.8) of the TEOS-10 Manual (IOC et al. (2010)).  When the polynomial-based approximate form of �̂�(𝑆", Θ), Eqn. (21), 

is used to evaluate the potential temperature from Eqn. (22), the error is as shown in Fig. 2(b), where we see that the typical 

error is 10𝜇K , with maximum errors of 60𝜇K  at 𝑆" = 0	g	kg)4 .  Since this error seems acceptable in oceanographic 

applications, and since the 75-term polynomial for 𝑣%(𝑆", Θ, 𝑃) of Roquet et al. (2015) is as accurate as the data to which the 
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original Gibbs function of Feistel (2008) was fitted, we conclude that the thermodynamic potential 𝜙2(𝑆", Θ, 𝑃) of Eqn. (13 or 455 

14), which is written in terms of Conservative Temperature, is equally as accurate as the Gibbs function 𝑔(𝑆", 𝑇, 𝑃), and will 

therefore prove sufficiently accurate for use in physical oceanography as the thermodynamic potential of seawater in the 

oceanographic range of salinity.   

 

 460 

Figure 2.  (a) The error in the fit Eqn. (21) to entropy (in units of 10)O	J	kg)4	K)4).  (b) The error in evaluating potential 

temperature 𝜃 (in 𝜇𝐾) from Eqns. (21) and (22).   

 

5 Numerical Implementation  

When calculating Conservative Temperature Θ from observations of in situ temperature 𝑡 using the Gibbs function approach, 465 

the first step is to calculate the potential temperature 𝜃 at the reference pressure 𝑃$ by equating the values of entropy at the in 

situ pressure 𝑃  and at the reference pressure 𝑃$ , that is, by solving the implicit relationship 𝑔#(𝑆", 𝑇$ + 𝑡, 𝑃) =

𝑔#(𝑆", 𝑇$ + 𝜃, 𝑃$).  The second step is to evaluate the parcel’s potential enthalpy, ℎ(𝑆", 𝑇$ + 𝜃, 𝑃$), being 𝑔(𝑆", 𝑇$ + 𝜃, 𝑃$) −

(𝑇$ + 𝜃)𝑔#(𝑆", 𝑇$ + 𝜃, 𝑃$), and the third step is to divide potential enthalpy by 𝑐'$.  The computationally expensive step is the 

first, typically involving a Newton-type iterative procedure.   470 

When adopting the approach of the present paper, the conversion from in situ temperature 𝑡 to Conservative Temperature 

Θ is also computationally expensive, since, from Eqn. (11), Θ is obtained by finding the zero of the function ℎ2& �̂�&⁄ − (𝑇$ + 𝑡).  

This is done by first evaluating both an approximate polynomial for Θ as a function of (𝑆", 𝑇$ + 𝑡, 𝑃), and an approximation 

to the second derivative of Θ with respect to in situ temperature, by differentiating the polynomial.  Then only one pass though 
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the accelerated Newton method of McDougall et al. (2019) is needed to evaluate Θ to machine precision.  This code takes 475 

approximately the same time to compute Θ as does using the Gibbs function approach described in the previous paragraph.   

Having converted observations of in situ temperature into Conservative Temperature, other calculations are more 

computationally efficient when using the thermodynamic potential function, 𝜙2(𝑆", Θ, 𝑃), of the present paper rather than using 

the Gibbs function 𝑔(𝑆", 𝑇, 𝑃).  For example, during the running of an ocean model, the sea surface temperature is needed as 

the input temperature for bulk air-sea flux formulae.  With the 𝜙2(𝑆", Θ, 𝑃) approach this is a forward calculation requiring 480 

only the evaluation of �̂�&  since in this case the sea surface temperature, 𝜃 , is given by the simple forward expression 

(𝑇$ + 𝜃) = 𝑐'$ �̂�&⁄ .  This calculation is a factor of three less computationally expensive than the corresponding calculation 

based on the Gibbs function (where an iterative Newton-based algorithm is required).   

Similar gains in computational efficiency occur when evaluating potential density at a variety of reference pressures when 

using 𝜙2(𝑆", Θ, 𝑃) compared with the Gibbs function approach.  These computational gains occur because the potential specific 485 

volume, referenced to an arbitrary reference pressure 𝑃%, is available from the forward calculation 𝑣%(𝑆", Θ, 𝑃%), whereas with 

the Gibbs function approach, the in situ temperature has to be first evaluated at 𝑃%, and this involves an iterative calculation.   

 

6 Conclusions  

While in situ temperature is relatively simple to measure in the ocean, it is neither a “potential” property, nor is it a 490 

“conservative” property, and these deficiencies of in situ temperature have led to the adoption of Conservative Temperature Θ 

for use in physical oceanography.  This switch to Conservative Temperature, since the introduction of TEOS-10 in 2010, has 

motivated the quest of this paper; to find a thermodynamic potential of seawater in terms of Conservative Temperature, 

Absolute Salinity and pressure.  Roquet et al. (2015) have provided a 75-term polynomial for specific volume in the form 

𝑣%(𝑆", Θ, 𝑃) and this is the basis for many of the functions in the Gibbs Seawater (GSW) Oceanographic Toolbox of TEOS-10.  495 

But to date the conversions between in situ temperature and Conservative Temperature have been done using the TEOS-10 

Gibbs function, and this is not 100% consistent with the use of the Roquet et al. polynomial for 𝑣%(𝑆", Θ, 𝑃).   

When the Roquet et al. (2015) 75-term polynomial for specific volume, 𝑣%(𝑆", Θ, 𝑃), is integrated with respect to pressure 

(noting that 𝑣% = 	ℎ2() and the resulting polynomial for enthalpy is used in the expression for the ratio of the in situ and potential 

temperatures, (𝑇$ + 𝑡) (𝑇$ + 𝜃)⁄ = 	ℎ2&(𝑆", Θ, 𝑃) 𝑐'$4 , the difference between these temperatures, |𝑡 − 𝜃| , compared with 500 

evaluating this temperature difference using the Gibbs function, is typically less than 10)*K (the standard deviation of the 

temperature difference is 4x10)NK; see Table 3 of Roquet et al., 2015).  From Figure 2(b) above we see that the use of the 

�̂�(𝑆", Θ) expression of the present paper has errors when relating potential and Conservative temperatures of 10)NK.  The sum 

of these tiny temperature differences amounts to less than 10)*K, representing the difference in evaluating Conservative 

Temperature from in situ temperature using the Gibbs function versus using the Roquet et al. (2015) expression for 𝑣%(𝑆", Θ, 𝑃), 505 
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together with the present expression for �̂�(𝑆", Θ).  These inconsistencies in temperature between the two approaches are small, 

being more than an order of magnitude smaller than the underlying experimental error in the laboratory data from which the 

TEOS-10 Gibbs function was derived. While these differences are small, it is preferable if all the thermodynamic quantities 

are 100% consistent with each other.   

In this paper we have provided an accurate expression for entropy as a function of Conservative Temperature, �̂�(𝑆", Θ), 510 

and this can be used in conjunction with Roquet et al.’s 𝑣%(𝑆", Θ, 𝑃) to relate in situ temperature and Conservative Temperature.  

These relationships between the different temperature variables can be performed consistently, to machine precision, and 

without further reference to the Gibbs function 𝑔(𝑆", 𝑇, 𝑃).  Appendix P of IOC et al. (2010) has shown that knowledge of 

both enthalpy and entropy in the functional forms ℎ2(𝑆", Θ, 𝑃) and �̂�(𝑆", Θ) is sufficient to derive all thermodynamic variables, 

so it seems advisable that when the 75-term polynomial of Roquet et al. 2015 is used, that it is used in conjunction with the 515 

expression for �̂�(𝑆", Θ) of the present paper.  The functions in the Gibbs SeaWater (GSW) Oceanographic Toolbox of TEOS-

10 (McDougall and Barker, 2011) that need changing are (i) those that calculate one of 𝜂, Θ, 𝜃, 𝑇 from another one, (ii) the 

adiabatic lapse rate, (iii) the calculation of the three chemical potentials and the Gibbs function, as well as (iv) the new 

thermodynamic potential 𝜙2(𝑆", Θ, 𝑃).   

Converting from observed values of in situ temperature to Conservative Temperature takes a similar amount of computer 520 

time using the 𝜙2(𝑆", Θ, 𝑃) approach of the present paper as when using the Gibbs function, but the subsequent calculations of 

various temperatures and potential densities are more computationally efficient using the 𝜙2(𝑆", Θ, 𝑃) approach since these 

quantities require only simple forward (as opposed to iterative) calculations.   

In the (𝑆", Θ, 𝑃) case, specific volume, internal energy, the isentropic compressibility and the sound speed depend only on 

enthalpy, ℎ2(𝑆", Θ, 𝑃), and are independent of entropy, �̂�(𝑆", Θ), whereas the expressions for the corresponding variables in the 525 

(𝑆", 𝑇, 𝑃) case depend not only on enthalpy, ℎ(𝑆", 𝑇, 𝑃), but also on entropy, 𝜂(𝑆", 𝑇, 𝑃).  We conclude that ℎ2(𝑆", Θ, 𝑃) is 

sufficient to describe the heat-like (enthalpy, internal energy) and buoyancy-like (specific volume, compressibility and sound 

speed) properties of seawater, while �̂�(𝑆", Θ) is needed switch between the “temperature-like” variables 𝜂, 𝜃, 𝑇, Θ and to 

evaluate the chemical potentials.  Thus the ℎ2(𝑆", Θ, 𝑃) and �̂�(𝑆", Θ) pair provides a clean separation of the heat and buoyancy 

information (derivable from ℎ2(𝑆", Θ, 𝑃) alone) from the information in �̂�(𝑆", Θ) that is needed to relate the various temperature 530 

variables and the chemical potentials.  Also, unlike in the (𝑆", 𝑇, 𝑃)  case, there is no consistency requirement between 

ℎ2(𝑆", Θ, 𝑃) and �̂�(𝑆", Θ).   

Moreover, we have been able to combine the expressions for specific volume and for entropy into a single thermodynamic 

potential function, 𝜙2(𝑆", Θ, 𝑃), Eqn. (13), from which all the thermodynamic quantities of seawater can be derived (see 

Appendix C).  This provides a theoretical boost to using Conservative Temperature as the temperature variable in physical 535 

oceanography as recommended by TEOS-10 (Valladares et al., 2011a,b).  The thermodynamic potential, 𝜙2(𝑆", Θ, 𝑃), is both 

complete (in that every thermodynamic property can be derived from it), and consistent (in that there is only one expression 

for each thermodynamic quantity).    
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Appendix A: Alternative thermodynamic potentials in terms of Conservative Temperature   

Eqn. (13) (or Eqn. 14) above is the proposed definition of the thermodynamic potential of seawater defined with respect to 540 

Conservative Temperature, but it is not the only possible functional form, and here we present two others.  Eqn. (13) resembles 

the integral definition of the Gibbs function, Eqn. (12), and now we follow an analogy to the 𝑔 = ℎ − 𝑇𝜂 definition of the 

Gibbs function which would suggest another form of the thermodynamic potential to be  

𝜑%(𝑆", Θ, 𝑃) = 	ℎ2(𝑆", Θ, 𝑃) − [𝑇$ + Θ]�̂�(𝑆", Θ), (A1) 

with the expressions for ℎ2(𝑆", Θ, 𝑃) and �̂�(𝑆", Θ) being found from  545 

ℎ2(𝑆", Θ, 𝑃) 	= 	 𝑐'$Θ + 𝜑%(𝑆", Θ, 𝑃) − 𝜑%(𝑆", Θ, 𝑃$) 	= 	 𝑐'$Θ + ∫ 𝜑%((𝑆", Θ, 𝑃@)d𝑃@
(
(%

,  (A2) 

�̂�(𝑆", Θ) 	= 	− �𝜑%(𝑆", Θ, 𝑃$) − 𝑐'$Θ� [𝑇$ + Θ]⁄ = 	− �𝜑%(𝑆", Θ, 𝑃) − ∫ 𝜑%((𝑆", Θ, 𝑃@)d𝑃@
(
(%

− 𝑐'$Θ� [𝑇$ + Θ]4 .        (A3) 

Note that the bracket [𝑇$ + Θ] in both Eqns. (A1) and (A3) could instead be chosen to be any non-zero function F(𝑆", Θ) of 

𝑆" and	Θ including a constant such as 𝑇$ = 273.15℃.  Such a choice does not affect the way enthalpy is calculated in Eqn. 

(A2).  There seems no fundamental reason to prefer Eqn. (14) over Eqn. (A1), but we offer the following three comments.  550 

First, using (14), entropy arises as a temperature derivative of the thermodynamic potential, as it is for the Gibbs function, 

whereas in (A3) entropy arises as a difference between the thermodynamic potential and 𝑐'$Θ.  Second, the calculation of 

entropy from (A3) requires knowledge not only of 𝜑%(𝑆", Θ, 𝑃) but also of the function F(𝑆", Θ) (even if this is simply 𝑇$).  

Third, while we don’t imagine that this is relevant, we note in passing that while 𝜙2(𝑆", Θ, 𝑃) of Eqn. (13 or 14) is not identical 

to the Gibbs function, ℎ − 𝑇𝜂, it is a little closer than is the function 𝜑%(𝑆", Θ, 𝑃) of Eqn. A1, (at 𝑆" = 0, it is closer by a factor 555 

of two).   

Another type of functional from which both enthalpy and entropy can be deduced involves the pressure integral of enthalpy, 

for example,  

𝜓2(𝑆", Θ, 𝑃) 	≡ 	−𝑃$ ∫ �̂�(𝑆", Θ@)dΘ@
&
$ + ∫ ℎ2(𝑆", Θ, 𝑃@)d𝑃@

(
(%

, (A4) 

with enthalpy and entropy being evaluated as  560 

ℎ2(𝑆", Θ, 𝑃) 	= 	𝜓2((𝑆", Θ, 𝑃),  (A5) 

�̂�(𝑆", Θ) 	= 		−𝜓2&(𝑆", Θ, 𝑃$) 𝑃$⁄ = 		−𝜓2&(𝑆", Θ, 𝑃) 𝑃$⁄ + ∫ 𝜓2(&(𝑆", Θ, 𝑃@)d𝑃@
(
(%

𝑃$4 . (A6) 

This functional form does not seem to offer an advantage over our Eqn. (14).  We note in passing that the form Eqn. (A4) of 

thermodynamic potential works also when potential temperature 𝜃 is used in place of Θ as the “heat-like” variable, with the 

caveat that the 𝜂e(𝑆", 𝜃)  and ℎ�(𝑆", θ, 𝑃)  functions need to satisfy the consistency relationship that (𝑇$ + 𝜃) =565 

	ℎ�P(𝑆", 𝜃, 𝑃$) 𝜂eP⁄ .  In contrast, the use of potential temperature in place of Conservative Temperature in Eqns. (13) and (A1) 

does not enable the enthalpy and entropy to be deduced in the forms ℎ�(𝑆", θ, 𝑃) and 𝜂e(𝑆", θ), and hence these forms of 

seawater thermodynamic potential functions do not work for potential temperature 𝜃 .  That is, ℎ�(𝑆", 𝜃, 𝑃)  is not a 

thermodynamic potential, and neither is one found by adopting the forms of either Eqns. (13) or (A1).    
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Appendix B: The polynomial-based expression for entropy  570 

The polynomial-based expression for specific entropy as a function of Absolute Salinity and Conservative Temperature is 
given by Eqn. (21) as the sum of the two dominant logarithm terms plus an eighth-order polynomial in the two dimensionless 
variables 𝑠 = 	 [𝑆" 𝑆7?⁄ ]$.N  and 𝜏 = 	Θ 40℃⁄ , where 𝑆7? = 35.165	04	g	kg)4 is the Standard Ocean Reference Salinity (IOC 
et al. (2010)),  

�̂�(𝑆", Θ) 	= 	 𝑐'$ ln(1 + Θ 𝑇$⁄ ) + 𝑎(𝑆" 𝑆7?⁄ ) ln(𝑆" 𝑆7?⁄ ) + 𝑃{8,8}(𝑠, 𝜏),	 (B1) 575 
where 𝑇$ = 273.15K is the Celsius zero point, 𝑐'$ = 3991.867	957	119	63	J	kg)4	K)4, and the least-squares fit gives the 
constant 𝑎 = −9.309	495	003	228	781	J	kg)4	K)4 and the eighth order polynomial coefficients given by  

𝑃{8,8}(𝑠, 𝜏) =	  
   (((((((ETA08*𝜏+ETA17*s+ETA07)*𝜏   
   + (ETA26*s+ETA16)*s+ETA06)*𝜏  580 
   + ((ETA35*s+ETA25)*s+ETA15)*s+ETA05)*𝜏  
   + (((ETA44*s+ETA34)*s+ETA24)*s+ETA14)*s+ETA04)*𝜏              (B2) 
   + ((((ETA53*s+ETA43)*s+ETA33)*s+ETA23)*s+ETA13)*s+ETA03)*𝜏  
   + (((((ETA62*s+ETA52)*s+ETA42)*s+ETA32)*s+ETA22)*s+ETA12)*s+ETA02)*𝜏  
   + ((((((ETA71*s+ETA61)*s+ETA51)*s+ETA41)*s+ETA31)*s+ETA21)*s+ETA11)*s+ETA01)*𝜏  585 
   + (((((((ETA80*s+ETA70)*s+ETA60)*s+ETA50)*s+ETA40)*s+ETA30)*s+ETA20)*s+ETA10)*s+ETA00  

and the 45 constants (each of which has units of J	kg)4	K)4) are given by  

ETA00 = -3.7102436569e-01; ETA10 =  3.0834502223e-04; ETA20 = -3.2916987818e+00;  
ETA30 =  7.2818259040e+00; ETA40 = -5.6657256773e+00; ETA50 =  2.8402903938e+00;  
ETA60 = -8.9615123138e-01; ETA70 =  1.0035964794e-01; ETA80 =  1.8140964105e-03;  590 
ETA01 =  3.0779211774e-02; ETA11 =  1.5006196848e-03; ETA21 =  1.2029316021e-01;  
ETA31 =  3.7464975805e-01; ETA41 = -6.0590428227e-01; ETA51 =  6.4365865093e-02;  
ETA61 =  2.4626795446e-02; ETA71 = -1.0335853091e-02; ETA02 =  2.3045093877e+00;  
ETA12 = -5.4154968624e-03; ETA22 = -2.5098282844e+00; ETA32 =  1.9163697628e-02;  
ETA42 =  9.6230320461e-02; ETA52 =  3.7953034101e-02; ETA62 = -5.1206778774e-04;  595 
ETA03 = -8.4974032876e-01; ETA13 = -1.3727475447e-02; ETA23 =  8.6969911602e-01;  
ETA33 =  1.1127539375e-01; ETA43 = -8.7616123860e-02; ETA53 = -1.6250024449e-02;  
ETA04 =  4.1807750439e-01; ETA14 =  5.1388181100e-02; ETA24 = -3.1917000611e-01;  
ETA34 = -4.4999965986e-02; ETA44 =  3.3822211876e-02; ETA05 = -1.9191736060e-01;  
ETA15 = -5.3890029514e-02; ETA25 =  9.3472917957e-02; ETA35 = -4.9779616704e-04;  600 
ETA06 =  6.6066546976e-02; ETA16 =  2.4144978278e-02; ETA26 = -1.2850921670e-02;  
ETA07 = -1.3678360946e-02; ETA17 = -4.1337102429e-03; ETA08 =  1.1180283076e-03;  
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Appendix C: Expressions for thermodynamic variables in terms of ℎ2(𝑆", Θ, 𝑃), �̂�(𝑆", Θ) and 𝜙2(𝑆", Θ, 𝑃)   

C.1 Expressions for entropy and enthalpy in terms of 𝒈(𝑺𝐀, 𝑻, 𝑷) and 𝝓](𝑺𝐀, 𝚯, 𝑷)  

Eqns. (15) and (16) for entropy 𝜂 and enthalpy ℎ in terms of 𝜙2(𝑆", Θ, 𝑃) are compared to the corresponding expressions for 

these variables in terms of the Gibbs function 𝑔(𝑆", 𝑇, 𝑃),  

𝜂	 = 		−	𝜙2&(𝑆", Θ, 𝑃$) 	= 		−	𝜙2&(𝑆", Θ, 𝑃) + ∫ 𝜙2(&(𝑆", Θ, 𝑃@)d𝑃@
(
(%

  610 

=	−𝑔#(𝑆", 𝑇, 𝑃) 		= 	−𝑔#(𝑆", 𝑇, 𝑃$) − ∫ 𝑔(#(𝑆", 𝑇, 𝑃@)d𝑃@
(
(%

. (C1) 

and  

ℎ	 = 	 𝑐'$Θ + 𝜙2(𝑆", Θ, 𝑃) − 𝜙2(𝑆", Θ, 𝑃$) 	= 	 𝑐'$Θ + ∫ 𝜙2((𝑆", Θ, 𝑃@)d𝑃@
(
(%

   

= 𝑔(𝑆", 𝑇, 𝑃) − 𝑇𝑔#(𝑆", 𝑇, 𝑃) 	= 	ℎ(𝑆", 𝑇, 𝑃$) + ∫ 𝑔((𝑆", 𝑇, 𝑃@)d𝑃@
(
(%

− 𝑇∫ 𝑔(#(𝑆", 𝑇, 𝑃@)d𝑃@
(
(%

. (C2) 

There are some similarities between these expressions using the two different thermodynamic potentials, and there are 615 

differences.  When expressed using Conservative Temperature, �̂�(𝑆", Θ) is not a separate function of pressure, so that in the 

first line of Eqn. (C1), where −	𝜙2&(𝑆", Θ, 𝑃) is evaluated at pressure 𝑃, this pressure dependence needs to be subtracted.  In 

Eqn. (C2) note that ℎ(𝑆", 𝑇, 𝑃$) is not the same as potential enthalpy 𝑐'$Θ except when the in situ pressure 𝑃 happens to be 𝑃$.   

C.2 Variables expressed using 𝒉](𝑺𝐀, 𝚯, 𝑷) and 𝜼_(𝑺𝐀, 𝚯) compared with 𝒉(𝑺𝐀, 𝑻, 𝑷) and	𝜼(𝑺𝐀, 𝑻, 𝑷)   

Considering changes occurring at constant Absolute Salinity and pressure, the FTR in the forms Eqns. (8) and (11) show 620 

that in situ temperature 𝑇 = 𝑇$ + 𝑡 is given by  

𝑇 = 𝜕ℎ 𝜕𝜂⁄ |2!,( =	ℎ# 𝜂#⁄ = 	ℎ2& �̂�&⁄ . (C3) 

The ℎ# 𝜂#⁄  part of this equation is a consistency requirement between the temperature dependence of the ℎ(𝑆", 𝑇, 𝑃) and 

𝜂(𝑆", 𝑇, 𝑃) expressions.  That is, expressions for ℎ(𝑆", 𝑇, 𝑃) and 𝜂(𝑆", 𝑇, 𝑃) cannot be formed independently of each other but 

rather must satisfy the consistency relationship, 𝑇 =	ℎ# 𝜂#⁄ , since 𝑇  is one of the independent variables.  If necessary, 625 

however, the required consistency may be established by the integration,  

𝜂(𝑆", 𝑇, 𝑃) = ∫ ,((2!,#@,()
#@

	𝑑𝑇′#
#%

+ 𝜂(𝑆", 𝑇$, 𝑃), (C4) 

so that already ℎ(𝑆", 𝑇, 𝑃)  in combination with an independent function 𝜂(𝑆", 𝑇$, 𝑃)  taken at an arbitrary reference 

temperature 𝑇$ provide together the necessary information. The corresponding relationship in the (𝑆", Θ, 𝑃) case, 𝑇 = ℎ2& �̂�&⁄ , 

does not impose any such consistency requirement on ℎ2(𝑆", Θ, 𝑃) and �̂�(𝑆", Θ) because 𝑇 is not an independent variable in 630 

this case.   

The expression for specific volume in terms of the Gibbs function is very neat and compact, being 𝑣 = 𝑔(, while the 

corresponding expression in terms of ℎ(𝑆", 𝑇, 𝑃) and 𝜂(𝑆", 𝑇, 𝑃) is 𝑣 = 	ℎ( − (ℎ# 𝜂#⁄ )𝜂( (see Eqn. 8).  Since 𝑆", Θ and 𝜂 are 
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all “potential” variables, when the material derivative of enthalpy in the FTR is expressed in the form	ℎ22!d𝑆" + ℎ2&dΘ + ℎ2(d𝑃, 

one finds (from Eqn. (11) by considering the adiabatic and isohaline situation when 	d𝑆" = d𝜂 = dΘ = 0) that specific volume 635 

is given by ℎ2(, hence we have  

𝑣 = 𝑔( = ℎ( − (ℎ# 𝜂#⁄ )𝜂( =	ℎ2(. (C5) 

Note that specific volume can also be expressed in terms of ℎ2(𝑆", Θ, 𝑃) and �̂�(𝑆", Θ) as v = ℎ2( − Zℎ2& �̂�&⁄ [�̂�( because �̂�( is 

zero, and so the last two equalities in Eqn. (C5) are more similar than they appear.   

In terms of the Gibbs function, the adiabatic lapse rate (the rate of change of in situ temperature with an adiabatic and 640 

isohaline change in pressure, see McDougall and Feistel, 2003) is Γ = 	−𝑔#( 𝑔##⁄ , while using the two expressions in terms 

of enthalpy and entropy gives (by differentiating Eqn. C3 with respect to pressure)  

Γ = 	−𝜂( 𝜂#⁄ = 	ℎ2(& �̂�&⁄ 	= 	𝑣# 𝜂#⁄ = 	𝑣%& �̂�&⁄ , (C6) 

where the last two expressions are written in terms of specific volume and entropy.  Another expression for Γ that corresponds 

to −𝜂( 𝜂#⁄  is −Z𝜕Θ 𝜕𝑃⁄ |2!,#[ Z𝜕Θ 𝜕𝑇⁄ |2!,([4 .   645 

The relative chemical potential 𝜇 = 𝑔2! = 𝜕ℎ 𝜕𝑆"⁄ |1,( =	ℎR2! can be expressed as (from the partial differentials in Eqn. 

(8) and (11))   

𝜇 = ℎ2! − (ℎ# 𝜂#⁄ )𝜂2! = ℎ22! − Zℎ2& �̂�&⁄ [�̂�2! , (C7) 

and the chemical potential of water in seawater, 𝜇Q = 𝑔 − 𝑆"𝑔2!, is  

𝜇Q = Zℎ − 𝑆"ℎ2![ − (ℎ# 𝜂#⁄ )Z𝜂 − 𝑆"𝜂2![ = Zℎ2 − 𝑆"ℎ22![ − Zℎ2& �̂�&⁄ [Z�̂� − 𝑆"�̂�2![. (C8) 650 

Again, it is interesting these expressions for both 𝜇 and 𝜇Q, written in terms of enthalpy and entropy, have the same form 

whether as functions of (𝑆", 𝑇, 𝑃) or (𝑆", Θ, 𝑃).   

The adiabatic and isohaline compressibility has the following compact expression in terms of ℎ2(𝑆", Θ, 𝑃)  

𝜅 = 	−ℎ2(( ℎ2(⁄ , (C9) 

but because in situ temperature does not possess the “potential” property the expressions in terms of (𝑆", 𝑇, 𝑃) are not as 655 

compact, being  

𝜅 = 	−𝑔(( 𝑔(⁄ + (𝑔#(); (𝑔(𝑔##) 	= 	−(ℎ((𝜂# − ℎ#𝜂(( + 𝜂(;) (ℎ(𝜂# − ℎ#𝜂()⁄⁄ . (C10) 

It is interesting that 𝜅 can also be expressed by the same expressions as in Eqn. (C10) even when enthalpy and entropy are 

functions of (𝑆", Θ, 𝑃), namely as −Zℎ2((�̂�& − ℎ2&�̂�(( + �̂�(;[ Zℎ2(�̂�& − ℎ2&�̂�([4 , because �̂�( and �̂�(( are both zero.  That is, the 

last expressions in Eqns. (C9) and (C10) are more similar than they appear.   660 

These expressions for the various thermodynamic variables are summarized in Table 1.   
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C.3 The constraints on thermodynamic variables revealed by cross-differentiation  665 

When the second order cross derivatives of the thermodynamic potential, ℎa(𝑆", 𝜂, 𝑃), are taken, we find the following relations 

between the observed quantities 𝑣, 𝑇 and 𝜇,  

𝑇R( = 𝑣H1 ,  (C11) 

𝜇H( = 𝑣H2! , (C12) 

𝜇H1 = 𝑇R2!, (C13) 670 

and when the second order cross derivatives of the Gibbs function, 𝑔(𝑆", 𝑇, 𝑃), are taken, we find the following relations 

between the observed quantities 𝑣(𝑆", 𝑇, 𝑃), 𝜂(𝑆", 𝑇, 𝑃) , and 𝜇(𝑆", 𝑇, 𝑃)  (these are sometimes called the Maxwell 

relationships)  

−𝜂( = 𝑣# ,  (C14) 

𝜇( = 𝑣2!, (C15) 675 

𝜇# = −𝜂2! . (C16) 

 For our new thermodynamic potential, 𝜙2(𝑆", Θ, 𝑃), we write the total differential of 𝜙2(𝑆", Θ, 𝑃) in the form (using Eqns. 

(11) and (14))  

d𝜙2 	= 	 �−∫ �̂�2!(𝑆", Θ
@)dΘ@&

$ + �̂� + 𝑇2�̂�2!� dS" 	+	 J−�̂� + 𝑇2�̂�& − 𝑐'
$MdΘ	 +	𝑣%d𝑃 (C17) 

which involves the three partial derivatives,  680 

𝜙22! =	−∫ �̂�2!(𝑆", Θ
@)dΘ@&

$ + �̂� + 𝑇2�̂�2! , (C18) 

𝜙2& =	−�̂� + 𝑇�̂�& − 𝑐'$, (C19) 

𝜙2( =	𝑣%. (C20) 

The three cross-derivatives yield  

𝑇2(�̂�& = 𝑣%&,  (C21) 685 

�̂�( + 𝑇2(�̂�2! = 𝑣%2!, (C22) 

�̂�& + 𝑇2&�̂�2! = 𝑇22!�̂�&. (C23) 

after subtracting the two terms −�̂�2! and 𝑇2�̂�2!& that appear in both 𝜙22!& and 𝜙2&2!.  

Note that the equality between 𝑣# and −𝜂( in (C14) does not resemble the balance 𝑇2(�̂�& = 𝑣%& in (C21), and moreover we 

know that the corresponding pressure derivative, �̂�(, is zero.  Rather, the expression (C21) for the adiabatic lapse rate, Γ =690 

𝑇R( = 𝑇2( = (𝑣%& �̂�&⁄ ), resonates with the result 𝑇R( = 𝑣H1  of Eqn. (C11).  The additional term 𝑇2(�̂�2! = (𝑣%& �̂�&⁄ )�̂�2!  in Eqn. 

(C22) compared with the corresponding formulae in Eqns. (C12) or (C15) is small (being less than 0.5% of both 𝑣%2! and �̂�().  

The relationship (C23) that comes from equating 𝜙22!& and 𝜙2&2! has some similarities with both (C13) and (C16), with 𝑇2&�̂�2! 

appearing to be an additional term in one case and 𝑇22!�̂�& in the other case.   
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It can be shown by coordinate transformation that each of (C21) – (C23) contain exactly the same information as (C14) – 695 

(C16).  This is, each of the equations (C21) – (C23) can be found by transforming the corresponding equation in (C14) – (C16) 

from (𝑆", 𝑇, 𝑃) coordinates into (𝑆", Θ, 𝑃)  coordinates.   
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Appendix D: Deducing the FTR from the differential of a thermodynamic potential and its definition in terms of 

enthalpy and entropy.   
 

The Fundamental Thermodynamic Relationship (FTR) can be deduced from knowledge of the total differential of the Gibbs 

function d𝑔 = 𝜇d𝑆" − 𝜂d𝑇 + 𝑣d𝑃, together the definition of the Gibbs function in terms of enthalpy and entropy, 𝑔 = ℎ −705 

𝑇𝜂.  Here we show that the FTR can also be found from knowledge of the total differential of 𝜙2(𝑆", Θ, 𝑃) as well as its 

definition in terms of enthalpy and entropy.   

 We write the total differential of 𝜙2(𝑆", Θ, 𝑃) in the form (C17)  

d𝜙 = �−∫ �̂�2!(𝑆", Θ
@)dΘ@&

$ + �̂�(𝑆", Θ, 𝑃) + 𝑇�̂�2!� dS" + J−�̂�(𝑆", Θ) + 𝑇�̂�& − 𝑐'
$MdΘ + 𝑣%(𝑆", Θ, 𝑃)d𝑃 (D1) 

and we use the definition of 𝜙2(𝑆", Θ, 𝑃) in the form Eqn. (14), repeated here,  710 

𝜙2(𝑆", Θ, 𝑃) = 	−∫ �̂�(𝑆", Θ@)dΘ@
&
$ + ℎ2(𝑆", Θ, 𝑃) − 𝑐'$Θ, (D2) 

and we ask whether the FTR can be deduced from knowledge of Eqns. (D1) and (D2), in direct analogy to what is possible for 

the Gibbs function.   

 Because of the definition of Conservative Temperature, 𝑐'$Θ ≡ ℎ2(𝑆", Θ, 𝑃$), we know that 𝜂 = �̂�(𝑆", Θ), ℎ2&(𝑆", Θ, 𝑃$) =

𝑐'$  and ℎ22!(𝑆", Θ, 𝑃$) = 0.  Equating the three partial derivatives of Eqn. (D1) with the corresponding expressions from 715 

differentiating Eqn. (D2) shows that ℎ22! = 𝜇 + 𝑇�̂�2!, ℎ2& = 𝑇�̂�& and ℎ2( = 𝑣, so that the expression, Eqn. (11), for the total 

derivative of enthalpy has been found.  Using d𝜂 = �̂�2!d𝑆" + �̂�&dΘ, the FTR follows, and the analogy with the Gibbs function 

is complete. 
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Code availability  

Upon acceptance of this paper for publication, the 24 Gibbs SeaWater Oceanographic Toolbox (GSW) subroutines in Matlab 

that we have prepared will replace existing subroutines of the same name that are presently in the GSW code on the TEOS-10 

web site ( http://www.teos-10.org/software.htm ).   
 725 
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Figure Captions 

Figure 1.  Panels (a) and (b) are contour plots of 𝑐'$ ln(1 + 𝜃 𝑇$⁄ ) − 𝜂 and 𝑐'$ ln(1 + Θ 𝑇$⁄ ) − 𝜂	respectively, while panels (c) 

and (d) show 𝑐'$ ln(1 + 𝜃 𝑇$⁄ ) + 𝑎(𝑆" 𝑆7?⁄ ) ln(𝑆" 𝑆7?⁄ ) − 𝜂  and 𝑐'$ ln(1 + Θ 𝑇$⁄ ) + 𝑎(𝑆" 𝑆7?⁄ ) ln(𝑆" 𝑆7?⁄ ) − 𝜂 

respectively.  All panels in this figure are in the units of entropy, namely	J	kg)4	K)4.   
 790 

Figure 2.  (a) The error in the fit Eqn. (21) to entropy (in units of 10)O	J	kg)4	K)4).  (b) The error in evaluating potential 

temperature 𝜃 (in 𝜇𝐾) from Eqns. (21) and (22).   
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Table 1. Expressions for various therm
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