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Abstract.  A thermodynamic potential is derived for seawater as a function of Conservative Temperature, Absolute Salinity 

and pressure.  From this thermodynamic potential, all the equilibrium thermodynamic properties of seawater can be found, 20 

just as all these thermodynamic properties can be found from the TEOS-10 Gibbs function (which is a function of in situ 

temperature, Absolute Salinity and pressure).  Present oceanographic practice in the Gibbs SeaWater Oceanographic Toolbox 

uses a polynomial expression for specific volume (and enthalpy) in terms of Conservative Temperature (as well as of Absolute 

Salinity and pressure), whereas the relationship between in situ temperature and Conservative Temperature is based on the 

Gibbs function.  This mixed practice introduces (numerically small) inconsistencies and superfluous conversions between 25 

variables.  The proposed thermodynamic potential of seawater, being expressed as an explicit function of Conservative 

Temperature, overcomes these small numerical inconsistencies, and in addition, the new approach allows for greater 

computational efficiency in the evaluation of sea surface temperature from Conservative Temperature.  It is also shown that 

when using Conservative Temperature, the thermodynamic information in enthalpy is independent of that contained in entropy.  

This contrasts with the cases where either in-situ temperature or potential temperature is used.  In these cases, a single 30 

thermodynamic potential serves the important purpose of avoiding having to impose a separate consistency requirement 

between the functional forms of enthalpy and entropy.   

 

1 Introduction  

1.1 Present Practice  35 

The TEOS-10 (the International Thermodynamic Equation of Seawater – 2010, IOC et al., 2010) Gibbs function of seawater 

is a thermodynamic potential whose arguments are Absolute Salinity, in situ temperature and pressure.  The adoption in 2010 

of TEOS-10 as the official description of the thermodynamic properties of seawater came with the recommendation that the 

observed variables Practical Salinity 𝑆!, and in situ temperature, together with longitude, latitude and pressure, be used to form 

Absolute Salinity 𝑆" and Conservative Temperature Θ, and it is these variables, 𝑆" and Θ, that take the place of Practical 40 

Salinity 𝑆! and potential temperature 𝜃 in our oceanographic research and in the publication of our results in journals (IOC et 

al., 2010, Valladares et al., 2011a,b, McDougall and Barker, 2011, Pawlowicz et al., 2012, Spall et al, 2013).  Conservative 

Temperature is proportional to the potential enthalpy of seawater referenced to the pressure of the standard atmosphere 

(McDougall, 2003, IOC et al., 2010, Graham and McDougall, 2013).   
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The Absolute Salinity variable of TEOS-10 is defined on the Reference-Composition Salinity Scale of Millero et al. (2008) 45 

as an approximation to the mass fraction of dissolved material in seawater.  As described in Pawlowicz (2010, 2011) and 

Wright et al. (2011), while the Gibbs function of a multi-component solution such as seawater should depend on the 

concentrations of all its constituents, Absolute Salinity on the Reference-Composition Salinity Scale is defined so that its use 

yields accurate values of the specific volume of seawater.   

This paper was motivated by the question “is it possible to define a thermodynamic potential in terms of Conservative 50 

Temperature rather than, for example, in terms of in situ temperature, as is the case for the TEOS-10 Gibbs function of seawater 

(Feistel, 2008, IAWPS, 2008)?”.  Progress had already been made towards answering this question in appendix P of the TEOS-

10 Manual (IOC et al., 2010) where it was shown that if expressions were available for both the enthalpy and the entropy of 

seawater as functions of Absolute Salinity, Conservative Temperature, and pressure, then all the thermodynamic properties of 

seawater could be derived.   55 

While in situ temperature is a measured variable, its dependence on pressure (even for adiabatic variations of pressure at 

constant salinity) and its non-conservative nature under turbulent mixing processes, has led to the adoption of Conservative 

Temperature in order to approximate the “heat content” per unit mass of seawater.  It is Conservative Temperature that is now 

used as the temperature axis of “salinity-temperature” diagrams and as the model’s temperature variable in ocean models 

(McDougall et al., 2021) because it is approximately conserved under mixing processes: the amount of non-conservation is 60 

typically two orders of magnitude less than that of potential temperature.  In order to facilitate the use of Conservative 

Temperature in oceanography, Roquet et al. (2015) provided a 75-term polynomial for specific volume, 𝑣%(𝑆", Θ, 𝑃), as a 

function of Absolute Salinity, 𝑆", Conservative Temperature Θ and pressure 𝑃, and this polynomial underlies approximately 

75 of the 280 algorithms in the Gibbs Seawater (GSW) Oceanographic Toolbox.  The hat over a variable indicates that it is 

being expressed as a function of Conservative Temperature (rather than the in situ absolute temperature 𝑇 =	𝑇# + 𝑡, where 𝑡 65 

is the in-situ temperature on the Celsius temperature scale and 𝑇# = 273.15K is the Celsius zero point).  While the polynomial 

expression 𝑣%(𝑆", Θ, 𝑃) is as accurate in the oceanographic range of salinity as our present knowledge of seawater properties, 

it does not give exactly the same values for specific volume as are obtained by using the original TEOS-10 Gibbs function.  

One consequence of this approximation is that there is at present a slight inconsistency in the conversions between different 

types of temperature variables using the Gibbs function compared with using the Roquet et al. (2015) polynomial 𝑣%(𝑆", Θ, 𝑃).  70 

For example, the in-situ and potential temperatures, 𝑡 and 𝜃 respectively (both measured on the Celsius temperature scale), are 

related through the Gibbs function through the implicit relationship 𝑔$(𝑆", 𝑇# + 𝑡, 𝑃) 	= 	𝑔$(𝑆", 𝑇# + 𝜃, 𝑃%) (where the 𝑇 

subscripts denote partial differentiation, 𝑃% is the reference pressure of the potential temperature, and 𝑔(𝑆", 𝑇# + 𝑡, 𝑃) is the 

Moved (insertion) [1]
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Gibbs function).  These temperatures are also related through the forward expression (𝑇# + 𝑡) (𝑇# + 𝜃)⁄ = 	ℎ9&(𝑆", Θ, 𝑃) 𝑐'#;  

in terms of the Θ derivative of enthalpy: note that ℎ9((𝑆", Θ, 𝑃) = 𝑣%(𝑆", Θ, 𝑃) and that 𝑐'# and 𝑇# are constants.  By “forward 75 

expression” we mean that the calculation is performed without doing a series of iterations such as occurs in a Newton-Raphson 

iterative calculation that is often required in thermodynamic calculations.  When the Roquet et al. (2015) polynomial of 

𝑣%(𝑆", Θ, 𝑃) is used to evaluate ℎ9&(𝑆", Θ, 𝑃), the differences in temperature are small compared with using the Gibbs function 

itself, being no larger than 10)*K, but we would prefer if they did not exist, and the use of the thermodynamic potential of this 

paper in place of the Gibbs function eliminates both these small inconsistencies as well as the need for superfluous conversions 80 

between different temperatures.   

1.2 Thermodynamic fundamentals   

The First Law of Thermodynamics (see sections 49, 57 and 58 of Landau and Lifshitz (1959) and Appendix B of IOC et al., 

2010),  

𝜌 >
+,
+-
+ 𝑃 +.

+-? = −∇ ∙ 𝑭/ + 𝜌𝜖, (1) 85 

expresses how the material derivatives of internal energy, 𝑢, and specific volume, 𝑣, are related, and how they respond to the 

local rate of heating by the divergence of the heat flux ∇ ∙ 𝑭/ and by the dissipation of turbulent kinetic energy per unit mass 

𝜖.  In Eq. (1) 𝑡 stands for time, not in situ temperature; we trust the context makes this use obvious.  The symbols used in this 

paper can be found in Table 1.  

Equation (1) illustrates how the work performed by the environment on the fluid parcel due to its change in volume at 90 

pressure 𝑃, -𝑃d𝑣, changes the internal energy d𝑢.  The molecular, boundary and radiative fluxes of heat are represented by 

𝑭/, and the contribution of the non-conservative nature of Absolute Salinity to the First Law is ignored here; this is discussed 

in the two paragraphs following Eqn. (A.21.13) in Appendix A.21 of the TEOS-10 Manual, IOC et al. (2010), where this 

contribution was shown to be a factor of thirty smaller than the 𝜌𝜖 term in Eq. (1) which itself is routinely ignored.  The 

detailed derivation of the First Law (starting from the conservation of total energy) can be found in Appendix B of IOC et al., 95 

2010.   

Clausius (1876) considered the cyclic reversible exchange of heat between a control volume and the environment and 

inferred that there must be a state variable, which he named entropy, 𝜂, whose total derivative is related to the total derivatives 

of internal energy d𝑢 and volume d𝑣 by the following differential relationship,  

dℎ − 𝑣d𝑃 = d𝑢 + 𝑃d𝑣 = 𝑇d𝜂 + 𝜇d𝑆", (2) 100 

and the first part of this equation has been added using the definition of specific enthalpy, ℎ ≡ 𝑢 + 𝑃𝑣.  This relationship (2) 

is now called the Fundamental Thermodynamic Relationship (FTR), and the total differentials represent differences between 

equilibrium states (de Groot and Mazur, 1984, chapter III section 2) that are separated by vanishingly small differences of state 

variables.  This restriction is satisfied for infinitesimally small reversible changes of infinitesimally small seawater parcels, 

Deleted: in terms of the pressure integral of the 𝑣"(𝑆!, Θ, 𝑃) 105 
polynomial of Roquet et al., 2015, with

Deleted: , noting that ℎ*"(𝑆!, Θ, 𝑃) = 𝑣"(𝑆!, Θ, 𝑃).  

Deleted: 𝜌 -
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− 𝑣 #"
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ensuring that, the in-situ temperature 𝑇, the relative chemical potential 𝜇 and the pressure 𝑃 are unambiguously defined.  

Cullen (1985, section 4.2) explains that Eqns. (1) and (2) apply to “quasi-static” processes that are defined as a series of 

vanishingly small property changes occurring between a dense succession of “local” equilibrium states.  It is only for such 

“quasi-static” processes that -𝑃d𝑣 can be identified as mechanical work and 𝑇d𝜂 as the heat transfer, for otherwise there are 

choices to be made of the values of 𝑃 and 𝑇, choices that would introduce errors into Eqns. (1) and (2).  The infinitesimally 115 

small differences dℎ, d𝑃, d𝜂 and d𝑆" in Eqn. (2) need not only represent difference in time between successive states but may 

equally well represent difference between states that are well separated in space and time.  The key feature is to realize that, 

for example, when Absolute Salinity and pressure are both constant, the temperature 𝑇 is unambiguously defined in all three 

parts (ℎ$, 𝑇, and 𝜂$) of the differential equation ℎ$(𝑆", 𝑇, 𝑃) = 𝑇𝜂$(𝑆", 𝑇, 𝑃) = 𝑐'(𝑆", 𝑇, 𝑃).  Bearing in mind this type of 

restriction, the First Law of Thermodynamics, Eqn. (1), and the FTR, Eqn. (2), may be combined into the following form of 120 

the First Law,  

𝜌 >
+0
+-
− 𝑣 +(

+-? = 𝜌 >
+,
+-
+ 𝑃 +.

+-? = 𝜌 >𝑇
+1
+-
+ 𝜇 +2!

+- ? = −∇ ∙ 𝑭/ + 𝜌𝜖. (3) 

This version of the First Law may be combined with the equation for the conservation of mass (the so-called “continuity” 

equation, 𝜕𝜌 𝜕𝑡⁄ + ∇ ∙ (𝜌𝒖) = 0 where the bold 𝒖 is the velocity vector) and rearranged into the form,  

𝜌 +1
+-
	= 	 3

3- (𝜌𝜂) + ∇ ∙ (𝜌𝒖𝜂) 	= 	−∇ ∙ >
4
$
𝑭5 − 6

$
𝑭7? + 𝑭

5 ∙ ∇ >
4
$? + 𝑭

7 ∙ ∇ >−
6
$? +

89
$

. (4) 125 

In doing this rearrangement we have used the evolution equation of Absolute Salinity  

𝜌 +2!
+-
	= 	 3

3- (𝜌𝑆") + ∇ ∙ (𝜌𝒖𝑆") = −∇ ∙ 𝑭2, (5) 

where 𝑭2 is the flux of Absolute Salinity caused by molecular diffusion.  This form (5) of an evolution equation for a variable 

is the “conservative” form, because the right-hand side of this equation is minus the divergence of a molecular flux (see the 

formal definition of a conservative variable, Eqn. (A.8.1) of the TEOS-10 Manual, IOC et al., 2010).  Using Gauss’ integral 130 

theorem, it is concluded that the total amount of such a variable in the ocean is then set only by the flux of the variable at the 

ocean boundaries.  Since mixing occurs between fluid parcels only when the fluid parcels are brought together to the same 

location and therefore the same pressure, it follows that apart from the warming due to the dissipation of turbulent kinetic 

energy, enthalpy is a conservative quantity during an individual mixing process.  This is the most important single fact about 

thermodynamics of importance to physical oceanography.  Graham and McDougall (2013) have exploited this fact and have 135 

further particularized it by saying that “apart from the warming caused by the dissipation of turbulent kinetic energy, potential 

enthalpy referenced to the pressure of the mixing process is conserved during the mixing process”.  The reasons why we can 

make this statement are that (i) enthalpy enters Eqn. (3) as density times the material derivative of enthalpy and (ii) mixing 

processes occur at constant pressure.  We are not able to make the corresponding statement about entropy because it enters 

Eqn. (3) as density times T times the material derivative of entropy (and also because of the non-constancy of 𝜇).  The presence 140 

of this multiplicative factor, T, is key to explaining why enthalpy is an isobaric-conservative variable while entropy is not.   
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We note that there is a fundamental difference in the language and symbols used in thermodynamics versus in fluid 

dynamics.  As we have noted, the FTR applies only to reversible processes and yet the FTR, Eqn. (2), has been combined with 

the First Law of Thermodynamics, Eqn. (1), to arrive at Eqn. (3) and Eqn. (4) which are written in typical fluid dynamics form 

using material derivatives.  There is a disconnect here; a disconnect that is common in the literature and is the source of much 145 

confusion.  In fluid dynamics we do not require mixing processes to occur only for an instant and then to have these process 

switch off while the fluid slowly comes to thermodynamic equilibrium (as would be required to technically obey the 

thermodynamic restrictions associated with the FTR which we have used).  Rather, in fluid dynamics we imagine the mixing 

processes and the dissipation of turbulent kinetic energy to occur continuously.  Moreover, a state of thermodynamic 

equilibrium has spatially uniform fields of in situ temperature and chemical potential, and such a state is not what we observe 150 

or expect in the ocean which is mixed by turbulent mixing processes (see the discussion of this point on the last page Appendix 

B of IOC et al. (2010)).  Hence it is clear that the restrictions associated with use of the FTR are not fulfilled when we combine 

it with the First Law and write the result using fluid dynamic notation and interpretation as though it might apply to the real 

ocean.  We conclude that there are small thermodynamic inconsistencies involved with combining the FTR and the First Law 

into the forms of Eqns. (3) and (4).  This same inconsistency is common to all advanced thermodynamics textbooks and is 155 

rarely discussed; a rare mention of the issue appears on the last page of section 49 of Landau and Lifshitz (1959).  Importantly, 

we point out below (in the paragraph that contains our Eqn. (6)) that in physical oceanography we do not need to use the 

evolution of entropy as it appears in Eqns. (3) and (4), but rather we exploit the fact that entropy is a function only of state 

variables and so can be expressed in the functional form  𝜂L(𝑆", ℎ, 𝑃).  This sidesteps the otherwise annoying conceptual issues 

that would arise when applying fluid mechanics concepts and fluid mechanical mathematical nomenclature (such as material 160 

derivatives) to the FTR where the same symbols have a different and more restrictive meaning.   

 A test of the conservative nature (or otherwise) of an oceanographic variable is to consider the turbulent mixing of two 

seawater parcels.  If the total amount of the variable in the final mixed product is the sum of the amounts in the two original 

parcels, then the variable is conservative.  This is rigorously true for enthalpy in an isobaric mixing process (apart from the 

dissipation of turbulent kinetic energy which needs to be budgeted separately) and is close to being true of Conservative 165 

Temperature (McDougall, 2003, Graham and McDougall, 2013).   

 Temporarily setting aside the reservations we have outlined above with the evolution expressions for entropy in the forms 

Eqns. (3) and (4), it is customary to note from Eqn. (4) that entropy is not a conservative variable because of the three terms 

𝑭5 ∙ ∇(1 𝑇⁄ ), 𝑭7 ∙ ∇(−𝜇 𝑇⁄ ), and 𝜌𝜖 𝑇⁄ .  The Second Law of Thermodynamics can be stated in many forms, and when 

considering the mixing of a pair of fluid parcels, the Second Law requires that the entropy of the final mixture must be not less 170 

than the sum of the entropies contained in the initial two fluid parcels.  This is clearly true for the last term in Eqn. (4) because 

the dissipation of turbulent kinetic energy, 𝜖, is always non-negative.  The non-negative production of entropy means that the 

terms in Eqn. (4) involving the molecular fluxes of heat 𝑭5 and salt 𝑭7, namely 𝑭5 ∙ ∇(1 𝑇⁄ ) and 𝑭7 ∙ ∇(−𝜇 𝑇⁄ ), also need to 

be non-negative, and this requirement is shown by Landau and Lifshitz (1959) to be satisfied when the Gibbs function, 𝑔, 

satisfies 𝑔$$ < 0 and 𝑔2!2! > 0.  The TEOS-10 Gibbs function of seawater satisfies this thermodynamic stability condition.   175 
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 To understand and quantify the non-conservative production of entropy when turbulent mixing occurs between different 

seawater parcels, a different approach is required because the production terms 𝑭5 ∙ ∇(1 𝑇⁄ ) and 𝑭7 ∙ ∇(−𝜇 𝑇⁄ ) in Eqn. (4) 

involve complicated products of the gradients of in situ temperature, of pressure, and of salinity, bearing in mind that the 

molecular fluxes of heat and salt contain contributions from baro-diffusion, and the Soret and Dufour effects (see Appendix B 

of IOC et al., 2010).  These products of gradients would need to be averaged over the time and space scales of the turbulent 180 

mixing event.  Such a formidable averaging task has never been undertaken and is probably impossible.  Fortunately, there is 

a much simpler way of evaluating the non-conservative production of entropy due to turbulent mixing, namely, to exploit the 

fact that entropy is a state variable, so that it can be expressed as a function of salinity, enthalpy, and pressure, 𝜂L(𝑆", ℎ, 𝑃) 

(here the cup over a variable’s name indicates that it is being expressed as a function of enthalpy, ℎ).  Graham and McDougall 

(2013) used this approach to show that the irreversible production of entropy, 𝛿𝜂, that occurs when two seawater parcels of 185 

equal mass mix to completion is, to lowest expansion order,   

𝛿𝜂	 = 	− 4
: P𝜂L00(∆ℎ)

; + 2𝜂L02!∆ℎ∆𝑆" + 𝜂L2!2!(∆𝑆")
;
R, (6) 

where ∆ℎ and ∆𝑆" are the differences between the values of enthalpy and Absolute Salinity of the initial seawater parcels.  

Graham and McDougall (2013) also developed the evolution equation for entropy in the presence of turbulent epineutral and 

dianeutral turbulent mixing (their Eqn. 48), and this work is summarised in section A.16 of IOC et al. 2010.  There it is shown 190 

that the sign-definite nature of the production of entropy for the turbulent mixing process places exactly the same requirements 

on the Gibbs function of seawater as does molecular diffusion, namely that 𝑔$$ < 0 and 𝑔2!2! > 0.  Using this method which 

recognises that entropy is a state variable so that it is possible to express entropy in the functional form 𝜂L(𝑆", ℎ, 𝑃), largely 

circumvents the theoretical difficulty of using the FTR in real fluid situations that are clearly not in a state of thermodynamic 

equilibrium.   195 

The 𝑇d𝜂 term in Eqn. (2) describes the exchange of an infinitesimally small amount of heat and constitutes the original 

definition of entropy by Clausius (1876), so that, for example, if a seawater parcel is heated reversibly at constant pressure and 

salinity, this input of heat is equal to both dℎ and 𝑇d𝜂.  The last term, 𝜇d𝑆", describes the influence of changes in Absolute 

Salinity on enthalpy at constant entropy and pressure, that is,	𝜇 is the relative chemical potential defined by 𝜇 = 𝜕ℎ 𝜕𝑆"⁄ |1,(, 

which is also given by 𝜇 = 𝜕𝑢 𝜕𝑆"⁄ |.,(.  While the FTR relates the total derivatives of the several thermodynamic quantities 200 

only for thermodynamically reversible processes, importantly all of enthalpy, internal energy, specific volume, entropy, and 

relative chemical potential are state variables so that they can be expressed as functions of, for example, (𝑆", 𝑇, 𝑃).  That is, 

after a series of irreversible processes (such as events in which turbulent kinetic energy is dissipated), the differences in these 

variables are still given by the differences in their functional expressions.  Specifically, knowing the values of salinity, 

temperature and pressure both before and after the occurrence of an irreversible process, the difference in entropy after this 205 

irreversible process is given by the difference between the final and initial values of 𝜂(𝑆", 𝑇, 𝑃)), under the assumption that 

the fluid sample under consideration is at thermodynamic equilibrium both before and after that process.  Given this, the nature 

of the processes occurring between the initial and final times is irrelevant.  
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In practice the FTR is used extensively in the construction of the thermodynamic potentials that describes seawater, so that 

all the thermodynamic variables are related to each other using equations that apply for reversible processes.  Because each of 210 

these thermodynamic variables are state variables, the use of the FTR is justified; its use essentially finds a route through 

parameter space caused by a series of reversible processes, even though there are many other ways of traversing between two 

(𝑆", 𝑇, 𝑃) states, specifically, ways that involve irreversible processes.  Thermodynamic state variables, by definition, never 

depend on the process history that has led to the actual state.  Rather, “the actual state of the world depends only on the most 

recent past, without being directly influenced, so to speak, by the memory of the distant past” wrote Henri Poincaré in a report 215 

to the International Congress of Physics in 1900 (Poincaré and Goroff, 1993, pI18).   

Two important characteristics of oceanographic variables are (i) whether they are “potential” variables, and (ii) whether 

they are “conservative” variables: these characteristics are discussed at length in sections A.8 and A.9 of IOC et al., 2010.  A 

“potential” variable is independent of pressure when the pressure change occurs isentropically and without change in Absolute 

Salinity.  For example, Absolute Salinity is a potential variable since if the salt flux divergence, ∇ ∙ 𝑭2, is zero then the salinity 220 

of a fluid parcel is unchanged even though its pressure may vary: this follows from the conservation equation of Absolute 

Salinity, 𝜌d𝑆" d𝑡⁄ = −∇ ∙ 𝑭2 of Eqn. (5) (where, again, we are neglecting the influence of the non-conservative source term 

of Absolute Salinity).  Similarly, from Eqn. (3), if in addition to being isohaline, if both ∇ ∙ 𝑭/ = 0 and 𝜖 = 0 so that there is 

no net flux of heat across the boundaries of the fluid parcel and no dissipation of turbulent kinetic energy inside the parcel, 

then entropy 𝜂 is also constant, showing that entropy also has the “potential” property; indeed this is a fundamental definitional 225 

property of entropy.  Potential enthalpy, potential density, and potential temperature, 𝜃, all have the “potential” property, by 

construction.   

Since Conservative Temperature Θ is defined as being proportional to potential enthalpy, ℎ(𝑆", 𝑇# + 𝜃, 𝑃#), it is also a 

“potential” variable and can be regarded as a function ΘT(𝑆", 𝜃) of only 𝑆" and 𝜃.  It follows that entropy, which is also a 

“potential” variable, obeys 𝜂 = 𝜂(𝑆", 𝑇# + 𝑡, 𝑃) = 𝜂(𝑆", 𝑇# + 𝜃, 𝑃#)  = −𝑔$(𝑆", 𝑇# + 𝜃, 𝑃#)  and so can be expressed as a 230 

function of 𝑆" and Θ only, 𝜂 = 𝜂̂(𝑆", Θ), and is not a separate function of in-situ pressure.  Note that molecular diffusion acts 

primarily to flux heat down the temperature gradient (up the gradient of 1 𝑇⁄ ) and, in the presence of a pressure gradient (such 

as that caused by the gravitational hydrostatic balance) does not act to eliminate entropy gradients.  In contrast, turbulent 

mixing, by exchanging fluid parcels, acts to flux “potential” properties (such as entropy and Conservative Temperature) down 

the gradients of these “potential” variables, and, in the presence of a pressure gradient, establishes a gradient of in situ 235 

temperature.  

1.3 An introduction to thermodynamic potentials   

The Fundamental Thermodynamic Relationship of Eqn. (2) can be regarded as an expression for the total derivative of 

enthalpy when it is expressed as a function of (𝑆", 𝜂, 𝑃) and the three partial derivatives with respect to these variables are 𝜇, 𝑇 

and 𝑣.  Thermodynamically speaking, this form of enthalpy, namely ℎ⏞(𝑆", 𝜂, 𝑃), is the most natural thermodynamic potential 240 

Moved up [1]: The hat over a variable indicates that it is being 
expressed as a function of Conservative Temperature (rather than in 
situ temperature 𝑇 = 	𝑇& + 𝑡).  
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of seawater because turbulent mixing events in the ocean occur at constant pressure rather than at constant volume (here the 

bracket over a variable’s name indicates that it is being expressed as a function of entropy).  This is because for mixing between 

seawater parcels to occur, these parcels need to be in contact with each other, irrespective of whether the seawater parcels have 

previously travelled through physical space vertically or along a surface of constant potential density.  This need for identical 250 

geolocation is why turbulent mixing between a pair of fluid parcels occurs at a given value of pressure.  The “heat-like” 

argument of  ℎ⏞(𝑆", 𝜂, 𝑃), namely entropy, is a “potential” variable, and this “potential” property leads to simple expressions 

for quantities such as the adiabatic and isentropic compressibility, 𝜅 = −ℎ⏞(
)4
ℎ⏞((.  But entropy, 𝜂, is neither a measured 

quantity (c.f. in situ temperature 𝑇), nor is it an almost conservative quantity (c.f. Conservative Temperature Θ).  The Gibbs 

function 𝑔(𝑆", 𝑇, 𝑃) has proven to be a practically more useful thermodynamic potential than ℎ⏞(𝑆", 𝜂, 𝑃) because its “heat-255 

like” argument, 𝑇, is a measured quantity, even though 𝑇 is neither a “potential” variable nor is it an almost conservative 

variable.  We note, from the FTR, that an alternative to ℎ⏞ (𝑆", 𝜂, 𝑃) as a thermodynamic potential is internal energy as a 

function of (𝑆", 𝜂, 𝑣) where specific volume (or density) takes the place of pressure as an independent variable and the partial 

derivatives are 𝜇, 𝑇 and −𝑃.  For completeness it may be mentioned that the thermodynamic potential of pure water, which is 

part of TEOS-10, is a Helmholtz function expressed as a function of (𝑇, 𝑣) which permits the joint description of liquid and 260 

gaseous water by a single mathematical expression (Wagner and Pruß, 2002).   

Importantly, all thermodynamic potentials obey the three general criteria which characterise axiomatic systems (Feistel, 

2008, 2018).  That is, thermodynamic potentials must exhibit consistency (that is, they exclude the possibility of deducing two 

different mathematical expressions for the same property), independence (that is, they prevent any derived function from being 

deducible from another one) and completeness (that is, they provide an equation for every equilibrium thermodynamic bulk 265 

property).  For an arbitrary given thermodynamic property equation, the validity of these criteria is not trivially fulfilled and 

needs to be demonstrated in order to regard that equation a thermodynamic potential.  The new thermodynamic potentials of 

this paper do obey these three essential criteria.   

1.4 A guide to this paper  
In this paper we derive a new thermodynamic potential of seawater, 𝜙9(𝑆", Θ, 𝑃), whose “heat-like” variable is Conservative 270 

Temperature, Θ, which, while not being a measured quantity, is a “potential” variable, and is also close to being 100% 

conservative.  We also find a new thermodynamic potential, 𝜓Z(𝑆", 𝜃, 𝑃), whose “heat-like” variable is potential temperature, 

𝜃.  Of the three desirable attributes of the “heat-like” argument of a thermodynamic potential, namely (i) being a measured 

quantity, (ii) being a “potential” variable, and (iii) being nearly conservative, Θ has two of these attributes, while all of 𝑇, 𝜃 

and 𝜂 have only one attribute each.   275 

In section 2 we compare two ways of defining the properties of seawater.  In one way we claim to have knowledge of both 

enthalpy and entropy as functions of in situ temperature, that is, we claim to know both ℎ(𝑆", 𝑇, 𝑃) and 𝜂(𝑆", 𝑇, 𝑃), while in 

the other case we claim to know enthalpy and entropy as functions of Conservative Temperature, that is, we claim to know 
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both ℎ9(𝑆", Θ, 𝑃) and 𝜂̂(𝑆", Θ).  We show that the ℎ9(𝑆", Θ, 𝑃) and 𝜂̂(𝑆", Θ) pair provides a clean separation of the heat and 280 

buoyancy information, namely specific volume, internal energy, isentropic compressibility and sound speed, all of which are 

found from ℎ9(𝑆", Θ, 𝑃) alone, while the information in 𝜂̂(𝑆", Θ) is needed to relate Θ to the other temperature variables and to 

evaluate the chemical potentials.  This contrasts with the (𝑆", 𝑇, 𝑃) case where these same thermodynamic properties, namely 

specific volume, internal energy, isentropic compressibility, and sound speed, all depend on both ℎ(𝑆", 𝑇, 𝑃) and 𝜂(𝑆", 𝑇, 𝑃).  

Also, the information in ℎ(𝑆", 𝑇, 𝑃) and 𝜂(𝑆", 𝑇, 𝑃) is not independent of each other since these functions need to satisfy the 285 

constraint ℎ$ = 𝑇𝜂$.  In contrast, there is no such consistency requirement between the ℎ9(𝑆", Θ, 𝑃) and 𝜂̂(𝑆", Θ) functions 

because in the equation, ℎ9&(𝑆", Θ, 𝑃) = 𝑇	𝜂̂&(𝑆", Θ), in-situ temperature 𝑇 is not an independent variable in this case.   

In section 3 we find a new thermodynamic potential 𝜙9(𝑆", Θ, 𝑃)  from which both enthalpy ℎ9(𝑆", Θ, 𝑃)  and entropy 

𝜂̂(𝑆", Θ) can be found, and we argue that this thermodynamic potential is as fundamental as the Gibbs function, and that the 

approach using 𝜙9(𝑆", Θ, 𝑃)  has several advantages over the Gibbs function, owing to the facts that (i) Conservative 290 

Temperature is a “potential” variable, and (ii) it is an almost conservative variable.  The formation of the combined logarithm 

and polynomial construction of the expression for 𝜂̂(𝑆", Θ) is described in section 4, while section 5 describes how the new 

thermodynamic potential is used in observational oceanography and in numerical ocean models.  The paper ends with the 

conclusions section, section 5.   

2 Thermodynamic potentials versus knowledge of both enthalpy and entropy  295 

2.1 Four known thermodynamic potential functions    

The FTR, Eqn. (2), in its original form, d𝑢 + 𝑃d𝑣 = 𝑇d𝜂 + 𝜇d𝑆", is an expression for the total derivative of internal 

energy in terms of the total derivatives of its natural (or conjugate) variables, Absolute Salinity, entropy and specific volume.  

This describes the thermodynamic potential 𝑢(𝑆", 𝜂, 𝑣) and we describe this as the most basic, or “original” thermodynamic 

potential because it follows from the original form of the FTR.  Enthalpy is obtained through the Legendre transformation of 300 

internal energy plus the product of pressure and specific volume, ℎ ≡ 𝑢 + 𝑃𝑣, so that, from the FTR we have dℎ − 𝑣d𝑃 =

𝑇d𝜂 + 𝜇d𝑆", which is equivalent to the thermodynamic potential ℎ(𝑆", 𝜂, 𝑃), written in terms of its canonical independent 

variables.  Note that the original form of the FTR, namely d𝑢 + 𝑃d𝑣 = 𝑇d𝜂 + 𝜇d𝑆", can be deduced from the expression for 

the total derivative of enthalpy, dℎ = 𝑇d𝜂 + 𝜇d𝑆" + 𝑣d𝑃, if and only if one also knows that enthalpy is defined in terms of 

internal energy by ℎ = 𝑢 − 𝑃𝑣.   305 

The Gibbs function 𝑔(𝑆", 𝑇, 𝑃) is found from the Legendre transformation of enthalpy minus the product of entropy and 

the absolute temperature, 𝑔 ≡ ℎ − 𝑇𝜂 ≡ 𝑢 + 𝑃𝑣 − 𝑇𝜂.  The total differential of the Gibbs function, d𝑔 = dℎ − 𝜂d𝑇 − 𝑇d𝜂, 

can be found from the FTR (Eqn. 2) to be  

d𝑔 = 𝜇d𝑆" − 𝜂d𝑇 + 𝑣d𝑃, (7) 
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with the three partial derivatives of 𝑔(𝑆", 𝑇, 𝑃) being 𝜇,−𝜂 and 𝑣.  We can think of the Gibbs function being formed from 310 

laboratory-derived measurements of these three partial derivatives.  Note that the FTR can only be deduced from this 

expression for the total derivative of the Gibbs function if and only if one also knows that the Gibbs function is defined ini 

terms of enthalpy by 𝑔 = ℎ − 𝑇𝜂.  The Helmholtz free energy 𝑓(𝑆", 𝑇, 𝑣) is found from the Legendre transformation of 

internal energy minus the product of entropy and the absolute temperature, 𝑓 = 𝑢 − 𝑇𝜂.  The total differential of the Helmholtz 

free energy is d𝑓 = 𝜇d𝑆" − 𝜂d𝑇 − 𝑃d𝑣.  Again, the FTR can only be deduced from this expression for the total derivative of 315 

the Helmholtz free energy if and only if one also knows that 𝑓 = 𝑢 − 𝑇𝜂.  The Gibbs function and the Helmholtz free energy 

are the thermodynamic potentials that prove useful for describing phase transitions because they both have in-situ temperature 

as an independent variable, and in-situ temperature is common to both phases during an equilibrium phase transition.   

Each of the thermodynamic potentials ℎ(𝑆", 𝜂, 𝑃), 𝑔(𝑆", 𝑇, 𝑃), and 𝑓(𝑆", 𝑇, 𝑣) follow from the original thermodynamic 

potential 𝑢(𝑆", 𝜂, 𝑣)  by a Legendre transformation (and in the case of the Gibbs function, via a sequence of two such 320 

transformations) which have the effect of changing the natural (or canonical) independent variables of each thermodynamic 

potential.  In each of these three cases, the original form of the FTR is not deducible from the differential expression of the 

thermodynamic potential unless one also knows how the thermodynamic potential is defined in terms of internal energy.  In 

the present paper we present a new thermodynamic potential of seawater, and even though its derivation does not rely on a 

Legendre transformation, it has the same important characteristic described above, namely that if one knows both the definition 325 

of the new thermodynamic potential and the expression for its total differential, then the FTR follows, with the detailed proof 

of this to be found in Appendix D.   

2.2 The case of 𝒉(𝑺𝐀, 𝑻, 𝑷) and 	𝜼(𝑺𝐀, 𝑻, 𝑷)   

This discussion of the derivation, definition and use of the Gibbs function can be approached via a slightly different line of 

reasoning.  We introduce this alternative line of reasoning because it resonates with the same line of reasoning that we use to 330 

derive/justify the thermodynamic potential 𝜙9(𝑆", Θ, 𝑃) of this paper.  In this alternative way of approaching the Gibbs function, 

one again takes 𝜇(𝑆", 𝑇, 𝑃), 𝜂(𝑆", 𝑇, 𝑃) and 𝑣(𝑆", 𝑇, 𝑃) to be known functions of seawater, but instead of forming a Gibbs 

function 𝑔(𝑆", 𝑇, 𝑃)  according to its total differential, Eqn. (7), we instead form the total derivative of enthalpy in the 

functional form (𝑆", 𝑇, 𝑃), by substituting the total differential of entropy, d𝜂 = 𝜂2"d𝑆" + 𝜂$d𝑇 + 𝜂(d𝑃 , into the FTR, 

obtaining,  335 

dℎ = a𝜇 + 𝑇𝜂2!bd𝑆" + 𝑇𝜂$d𝑇 + (𝑣 + 𝑇𝜂()d𝑃, (8) 

with the three partial derivatives of ℎ(𝑆", 𝑇, 𝑃)  being a𝜇 + 𝑇𝜂2!b = (𝜇 − 𝑇𝜇>),  𝑇𝜂$  and (𝑣 + 𝑇𝜂() = (𝑣 − 𝑇𝑣$) 

respectively.  We can think of enthalpy being formed from these three partial derivatives using laboratory-derived 

measurements of 𝜇(𝑆", 𝑇, 𝑃), 𝜂(𝑆", 𝑇, 𝑃) and 𝑣(𝑆", 𝑇, 𝑃).  Note that the FTR in the original form, d𝑢 + 𝑃d𝑣 = 𝑇d𝜂 + 𝜇d𝑆", 

follows from this expression for the total derivative of enthalpy by using the total differential of entropy, d𝜂 = 𝜂2"d𝑆" +340 

𝜂$d𝑇 + 𝜂(d𝑃, as well as the knowledge of the definition of enthalpy in terms of internal energy, ℎ ≡ 𝑢 + 𝑃𝑣.  Having formed 
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ℎ(𝑆", 𝑇, 𝑃) by integrating its differential definition, Eqn. (8), and also separately knowing 𝜂(𝑆", 𝑇, 𝑃), all the thermodynamic 

properties can be found.  Despite that, however, the combination of ℎ(𝑆", 𝑇, 𝑃) and 𝜂(𝑆", 𝑇, 𝑃) is not fully equivalent to a 

thermodynamic potential as this function pair violates the criterion of independence.  This is evident from the heat capacity 

for which two different equations can be found,  345 

𝑐( = >
30
3$?2!,(

= 𝑇>
31
3$?2!,(

. (9) 

Therefore, any suitable thermodynamic potential must intrinsically ensure the validity of the consistency condition between 

enthalpy and entropy,  

>
30
3$?2!,(

≡ 𝑇 >
31
3$?2!,(

. (10) 

This identity holds for the TEOS-10 Gibbs function, as can be deduced from Eq. (8) which relies on the differential form, Eq. 350 

(7), of the Gibbs function, and its definition in terms of enthalpy and entropy, 𝑔 = ℎ − 𝑇𝜂.   

The last step in this alternative narrative that leads to the Gibbs function is to note that it is more convenient to combine 

the knowledge contained in ℎ(𝑆", 𝑇, 𝑃) and 𝜂(𝑆", 𝑇, 𝑃) into the single function, 𝑔 = ℎ − 𝑇𝜂, whose 𝑇 derivative gives −𝜂 

(using ℎ$ = 𝑇𝜂$), and enthalpy can then be found by simply adding 𝑇𝜂 to 𝑔 = ℎ − 𝑇𝜂.   

Comparing the traditional with the alternative reasoning surrounding the Gibbs function, we see that via the traditional 355 

approach, in order to deduce at the FTR from knowledge of the Gibbs function one needs to know both (i) how the Gibbs 

function is found from the observed data, namely, the differential expression Eqn. (7), as well as (ii) the definition of the Gibbs 

function in terms of enthalpy and entropy, 𝑔 = ℎ − 𝑇𝜂.  Similarly, with the alternative approach of arriving at the Gibbs 

function, use of the same observed data of of 𝜇(𝑆", 𝑇, 𝑃), 𝜂(𝑆", 𝑇, 𝑃) and 𝑣(𝑆", 𝑇, 𝑃) to define specific enthalpy according to 

Eqn. (8), also needs knowledge of how enthalpy is related to internal energy (ℎ ≡ 𝑢 + 𝑃𝑣) in order to arrive at the FTR.  In 360 

this alternative approach both entropy 𝜂(𝑆", 𝑇, 𝑃)  and enthalpy ℎ(𝑆", 𝑇, 𝑃)  are now known and all the thermodynamic 

variables follow.  That is, having formed enthalpy ℎ(𝑆", 𝑇, 𝑃) from its partial derivatives (Eqn. 8) there is no need for an 

additional definition; the Gibbs function and its definition do not need to be introduced.  Rather, the two functions ℎ(𝑆", 𝑇, 𝑃) 

and 𝜂(𝑆", 𝑇, 𝑃) can be regarded as a pair of functions that together define all the thermodynamic properties of seawater.  In 

this alternative reasoning, the Gibbs function 𝑔(𝑆", 𝑇, 𝑃) is introduced as the last step, for the sole purpose that all the 365 

thermodynamic quantities can be derived from a single function rather than having to carry along the two separate functions 

ℎ(𝑆", 𝑇, 𝑃) and 𝜂(𝑆", 𝑇, 𝑃).  In this case, the adoption of the Gibbs function rather than using the two functions ℎ(𝑆", 𝑇, 𝑃) 

and 𝜂(𝑆", 𝑇, 𝑃) serves the important service that the consistency requirement, ℎ$ = 𝑇𝜂$ , does not need to be separately 

enforced.   

2.3 The case of 𝒉c(𝑺𝐀, 𝚯, 𝑷) and 𝜼e(𝑺𝐀, 𝚯)  370 

Now we consider the case of Conservative Temperature Θ taking the place of in situ temperature 𝑇 as the independent 

temperature variable.  Appendix P of IOC et al., 2010 has shown that if expressions for both enthalpy and entropy are known 
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in the functional forms ℎ9(𝑆", Θ, 𝑃) and 𝜂̂(𝑆", Θ), this information is sufficient to derive all the thermodynamic quantities.  This 

can be understood from realizing that 𝜂 = 𝜂̂(𝑆", Θ) is equivalent to providing the implicit definition of Θ = Θf(𝑆", 𝜂) so that 

knowledge of ℎ9(𝑆", Θ, 𝑃) and 𝜂̂(𝑆", Θ) is equivalent to knowing ℎg(𝑆", 𝜂, 𝑃) = ℎ9a𝑆", Θf(𝑆", 𝜂), 𝑃b, so that the three partial 

derivatives of ℎg(𝑆", 𝜂, 𝑃) can be written in terms of the partial derivatives of ℎ9(𝑆", Θ, 𝑃) and 𝜂̂(𝑆", Θ) (see Table 2 for these 385 

expressions).  Since ℎg(𝑆", 𝜂, 𝑃) is a well-known and fundamental thermodynamic potential, this completes the discussion of 

why all thermodynamic properties can be found from knowledge of the two functions ℎ9(𝑆", Θ, 𝑃) and 𝜂̂(𝑆", Θ).  IOC et al., 

(2010) stopped short of finding a single thermodynamic potential in terms of (𝑆", Θ, 𝑃); this is done in the present paper.   

There are two useful features that follow directly from the definition of Conservative Temperature as being proportional 

to potential enthalpy referenced to 𝑃#, i.e. 𝑐'#Θ ≡ ℎ9(𝑆", Θ, 𝑃#).  The first feature is that that entropy has the functional form 390 

𝜂 = 𝜂̂(𝑆", Θ) and is not a function of pressure: this feature is due to Conservative Temperature possessing the “potential” 

property (as does both entropy and Absolute Salinity).  The second feature is the very simple form of the first derivatives of 

enthalpy at 𝑃#, namely that ℎ9&(𝑆", Θ, 𝑃#) = 𝑐'# and ℎ92!(𝑆", Θ, 𝑃#) = 0.  Specific enthalpy is now defined in terms of (𝑆", Θ, 𝑃) 

from its total differential,  

dℎ = a𝜇 + 𝑇𝜂̂2!bd𝑆" + 𝑇𝜂̂&dΘ + 𝑣d𝑃, (11) 395 

which is simply a rearranged version of the Fundamental Thermodynamic Relation (FTR) in the form, dℎ − 𝑣d𝑃 = 𝜇d𝑆" +

𝑇d𝜂, since d𝜂 = 𝜂̂2!d𝑆" + 𝜂̂&dΘ.  Knowledge of 𝜇̂(𝑆", Θ, 𝑃), 𝑇9(𝑆", Θ, 𝑃) and 𝑣%(𝑆", Θ, 𝑃) are needed to find these partial 

derivatives in Eqn. (11), while 𝜂̂(𝑆", Θ) can be found from integrating the first two partial derivatives of Eqn. (11) evaluated 

at 𝑃# , namely 0 = 𝜇̂(𝑆", Θ, 𝑃#) + (𝑇# + 𝜃)𝜂̂2!  and 𝑐'# = (𝑇# + 𝜃)𝜂̂& , where (𝑇# + 𝜃) = 𝑇9(𝑆", Θ, 𝑃#) , together with the 

arbitrary assignment 𝜂̂(𝑆7?, 0℃) = 0.  After having formed both 𝜂̂(𝑆", Θ) and ℎ9(𝑆", Θ, 𝑃) from the differential form Eqn. (11), 400 

we know from Appendix P of IOC et al. (2010) that all the thermodynamic variables of seawater follow, so that if one is 

willing to define seawater properties using these two functions, no more work is required.  However it is convenient to define 

all the thermodynamic properties from a single thermodynamic potential function, and in this paper we have found such a 

function, 𝜙9(𝑆", Θ, 𝑃), given by Eqn. (14) below, which contains the information of both 𝜂̂(𝑆", Θ) and ℎ9(𝑆", Θ, 𝑃) and from 

which these two functions can be found.   405 

Note that in this (𝑆", Θ, 𝑃)  case, specific volume, 𝑣 = ℎ9( , internal energy, 𝑢 = ℎ9 − 𝑃ℎ9( , and the isentropic 

compressibility, 𝜅 = −ℎ9(( ℎ9(⁄ , depend only on enthalpy, ℎ9(𝑆", Θ, 𝑃) , and are independent of entropy, 𝜂̂(𝑆", Θ) .  This 

contrasts with the (𝑆", 𝑇, 𝑃) case where specific volume, 𝑣 = 	ℎ( − 𝑇𝜂( , internal energy, 𝑢 = ℎ − 𝑃ℎ( + 𝑇𝑃𝜂( , and the 

isentropic compressibility, 𝜅 = −(ℎ((𝜂$ − ℎ$𝜂(( + 𝜂(;) (ℎ(𝜂$ − ℎ$𝜂()⁄ , depend not only on enthalpy, ℎ(𝑆", 𝑇, 𝑃), but also 

on entropy, 𝜂(𝑆", 𝑇, 𝑃).  The simpler expressions for specific volume, internal energy, the isentropic compressibility and the 410 

sound speed in the (𝑆", Θ, 𝑃) case compared with the (𝑆", 𝑇, 𝑃) case is also a feature of the ℎi(𝑆", 𝜂, 𝑃)  thermodynamic 

potential and is due to the Conservative Temperature variable being a ”potential” variable.   
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In the next section we introduce the new thermodynamic potential 𝜙9(𝑆", Θ, 𝑃)  and then compare its derivation and 

properties with the corresponding derivation and properties of the Gibbs function.  This leads to a discussion of whether 

𝜙9(𝑆", Θ, 𝑃) is as thermodynamically fundamental as the Gibbs function 𝑔(𝑆", 𝑇, 𝑃).   415 

3 A thermodynamic potential of seawater in terms of Conservative Temperature  

3.1 Defining the thermodynamic potential 𝝓c(𝑺𝐀, 𝚯, 𝑷)   

Since Conservative Temperature Θ is the temperature variable that is recommended for use in marine science under TEOS-10 

(taking the place of potential temperature 𝜃) it is of interest to determine if a thermodynamic potential of seawater can be found 

in terms of	Θ.  From Appendix P of IOC et al. (2010), and section 2 above, we know that if we can find a single function from 420 

which enthalpy and entropy can be found in the functional forms ℎ9(𝑆", Θ, 𝑃) and 𝜂̂(𝑆", Θ), our aim will have been achieved.  

It is possible to find several such functions from which ℎ9(𝑆", Θ, 𝑃) and 𝜂̂(𝑆", Θ) can be derived, and some of these are 

described in Appendix A.  The one we suggest, Eqn. (14) below, is motivated from section 5 of Feistel (2008) (the paper that 

derived the Gibbs function of seawater as incorporated into TEOS-10), where the differential expression for the Gibbs function, 

Eqn. (3), was integrated along an arbitrary but convenient path through (𝑆", 𝑇, 𝑃) space, first with respect to Absolute Salinity 425 

from the Absolute Salinity of Standard Seawater 𝑆7? at 𝑇 = 𝑇# and 𝑃 = 𝑃#, then with respect to in situ temperature at the 

given Absolute Salinity and at 𝑃 = 𝑃#, and finally with respect to pressure at the given values of Absolute Salinity and in situ 

temperature, so that the Gibbs function can be written as  

𝑔(𝑆", 𝑇, 𝑃) = 	∫ 𝜇(𝑆"@ , 𝑇#, 𝑃#)d𝑆"@
2!
2#$

− ∫ 𝜂(𝑆", 𝑇@, 𝑃#)d𝑇@
$
$%

+ ∫ 𝑣(𝑆", 𝑇, 𝑃@)d𝑃@
(
(%

. (12) 

where 𝑔(𝑆7?, 𝑇#, 𝑃#) was chosen to be zero with no loss of generality.  This integration method results in a path-independent 430 

function 𝑔(𝑆", 𝑇, 𝑃) if and only if the three integrands satisfy the integrability conditions (Maxwell relations) 𝜇$ = −𝜂2!, 

𝜇( = 𝑣2! and −𝜂( = 𝑣$.   

In this paper we adopt a similar integration of entropy and specific volume, but now with respect to Conservative 

Temperature (rather than in situ temperature) to define the new thermodynamic potential of seawater 𝜙9(𝑆", Θ, 𝑃) as  

𝜙9(𝑆", Θ, 𝑃) = 	∫ 𝑣%(𝑆", Θ, 𝑃@)d𝑃@
(
(%

	−	∫ 𝜂̂(𝑆", Θ@)dΘ@
&
# . (13) 435 

or equivalently (since we know that 𝑣 = ℎ9( and 𝑐'#Θ	 ≡ 	ℎ9(𝑆", Θ, 𝑃#))  

𝜙9(𝑆", Θ, 𝑃) ≡ 	ℎ9(𝑆", Θ, 𝑃) − 𝑐'#Θ	 −	∫ 𝜂̂(𝑆", Θ@)dΘ@
&
# . (14) 
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Note that (i), entropy 𝜂̂(𝑆", Θ) is not a function of pressure, and (ii), unlike in Eqn. (12), we find that in Eqn. (13) we do not 

need to perform a salinity integral of relative chemical potential 𝜇 in order to fully define the thermodynamic properties of 

seawater from 𝜙9(𝑆", Θ, 𝑃).  Expressions for ℎ9(𝑆", Θ, 𝑃) and 𝜂̂(𝑆", Θ) are obtained from 𝜙9(𝑆", Θ, 𝑃) as follows,  440 

ℎ9(𝑆", Θ, 𝑃) 	= 	 𝑐'#Θ + 𝜙9(𝑆", Θ, 𝑃) − 𝜙9(𝑆", Θ, 𝑃#) 	= 	 𝑐'#Θ + ∫ 𝜙9((𝑆", Θ, 𝑃@)d𝑃@
(
(%

, (15) 

𝜂̂(𝑆", Θ) 	= 		−	𝜙9&(𝑆", Θ, 𝑃#) 	= 		−	𝜙9&(𝑆", Θ, 𝑃) + ∫ 𝜙9(&(𝑆", Θ, 𝑃@)d𝑃@
(
(%

, (16) 

and from Appendix P of IOC et al., 2010, we know that all the thermodynamic variables follow once we have expressions for 

ℎ9(𝑆", Θ, 𝑃)  and 𝜂̂(𝑆", Θ) .  For example, the conversion formula of Conservative to in-situ temperature follows from 

𝜙9(𝑆", Θ, 𝑃) to be  445 

𝑇(𝑆, Θ, 𝑃) =
0A&
1B&
= − C'%D	FA&(2!,&,())FA&(2!,&,(%)

FA&&(2!,&,(%)
.  (17) 

Hence, we conclude that 𝜙9(𝑆", Θ, 𝑃), defined by Eqn. (14), is a thermodynamic potential of seawater.  The expressions for 

several thermodynamic variables in terms of 𝜙9(𝑆", Θ, 𝑃) can be found in Appendix C.   

In summary, we are using polynomial fits to entropy and enthalpy (or equivalently, specific volume), as functions of 

Conservative Temperature, knowing from Appendix P of IOC et al. 2010 that these fits in the forms ℎ9(𝑆", Θ, 𝑃) and 𝜂̂(𝑆", Θ) 450 

are sufficient to define all the thermodynamic variables of seawater.  We have then found a way, Eqn. (14), to combine these 

two polynomial functions into one function from which both ℎ9(𝑆", Θ, 𝑃) and 𝜂̂(𝑆", Θ) can be found.   

3.2 Is the thermodynamic potential 𝝓c(𝑺𝐀, 𝚯, 𝑷) equivalent to the Gibbs function?   

In section 2 we suggested that internal energy expressed as a function of Absolute Salinity, entropy and specific volume is 

the most natural thermodynamic potential, but since mixing processes in the ocean occur at constant pressure rather than at 455 

constant volume, a more useful thermodynamic potential for seawater is enthalpy in the functional form ℎi(𝑆", 𝜂, 𝑃).  Once one 

knows that enthalpy is defined in terms of internal energy by ℎ ≡ 𝑢 + 𝑃𝑣, the FTR in its original form, d𝑢 + 𝑃d𝑣 = 𝑇d𝜂 +

𝜇d𝑆", follows from ℎi(𝑆", 𝜂, 𝑃).  Similarly, forming the Gibbs function from “observations” (that is, knowledge) of 𝜇(𝑆", 𝑇, 𝑃),

𝜂(𝑆", 𝑇, 𝑃) and 𝑣(𝑆", 𝑇, 𝑃), using the total differential d𝑔 = 𝜇d𝑆" − 𝜂d𝑇 + 𝑣d𝑃 is not equivalent to the FTR since there is no 

link to the total differentials of either enthalpy or internal energy.  Rather, to proceed from knowledge of the total differential 460 

of the Gibbs function to the FTR one needs the additional knowledge that 𝑔 ≡ ℎ − 𝑇𝜂 .  The same result for our new 

thermodynamic potential, 𝜙9(𝑆", Θ, 𝑃), is proven in Appendix D, namely that knowledge of its definition, Eqn. (14), and its 

total derivative, Eqn. (C17), leads directly to the FTR.  

In section 2 we introduced an alternate route to deriving the Gibbs function, using knowledge/observations of 𝜇(𝑆", 𝑇, 𝑃), 

𝜂(𝑆", 𝑇, 𝑃) and 𝑣(𝑆", 𝑇, 𝑃) together with the differential form Eqn. (8) of enthalpy, ℎ ≡ 𝑢 + 𝑃𝑣, to find enthalpy in the form 465 

ℎ(𝑆", 𝑇, 𝑃), which embodies the FTR.  During this process the constraint ℎ$ = 𝑇𝜂$ must be enforced.  The combination of 

Deleted: is the most natural thermodynamic potential, because its 
total differential expression is the Fundamental Thermodynamic 
Relationship (FTR), Eqn. (2).  In contrast
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the information in ℎ(𝑆", 𝑇, 𝑃) and 𝜂(𝑆", 𝑇, 𝑃) serves to define all the thermodynamic quantities of seawater, and the FTR 470 

follows from Eqn. (8) without the need to introduce another function.  The last step in this discussion of the Gibbs function is 

to introduce it as 𝑔(𝑆", 𝑇, 𝑃) = ℎ(𝑆", 𝑇, 𝑃) − 𝑇𝜂(𝑆", 𝑇, 𝑃) for the sole purpose that all the thermodynamic quantities can be 

derived from a single function.   

Similarly, we showed in the (𝑆", Θ, 𝑃)  case that knowledge/observations of 𝜇̂(𝑆", Θ, 𝑃) , 𝑇9(𝑆", Θ, 𝑃)  and 𝑣%(𝑆", Θ, 𝑃) 

together with the differential form Eqn. (11) gives both enthalpy and entropy in the forms ℎ9(𝑆", Θ, 𝑃) and 𝜂̂(𝑆", Θ) which also 475 

embody the FTR.  In this case however a single thermodynamic potential is not needed either to arrive at the FTR or to be able 

to derive all the thermodynamic quantities of seawater.  In both the (𝑆", 𝑇, 𝑃) and (𝑆", Θ, 𝑃) cases a single thermodynamic 

potential can be found; in one case as 𝑔(𝑆", 𝑇, 𝑃) = ℎ(𝑆", 𝑇, 𝑃) − 𝑇𝜂(𝑆", 𝑇, 𝑃) and in the other as (Eqn. 14), 𝜙9(𝑆", Θ, 𝑃) =

ℎ9(𝑆", Θ, 𝑃) − 𝑐'#Θ − ∫ 𝜂̂(𝑆", Θ@)dΘ@
&
# .   

We conclude that the new thermodynamic potential 𝜙9(𝑆", Θ, 𝑃)  and the Gibbs function 𝑔(𝑆", 𝑇, 𝑃)  are equivalent 480 

thermodynamic potentials of seawater.  Both thermodynamic potentials are found from “observations” of, in one case 𝜇, 𝜂 and 

𝑣, and in the other case 𝜇, 𝑇 and 𝑣, to constrain various derivatives of either ℎ(𝑆", 𝑇, 𝑃) or ℎ9(𝑆", Θ, 𝑃), from which the FTR 

follows.  All the thermodynamic properties of seawater can be derived from these expressions for enthalpy along with their 

corresponding expressions for entropy.  Given these pairs of expressions for enthalpy and entropy, corresponding 

thermodynamic potential functions can be found in the form of the Gibbs function or in the form of 𝜙9(𝑆", Θ, 𝑃).  This 485 

summarizes the identical nature of the derivations of the two thermodynamic potentials from the viewpoint of the slightly 

different derivation of the thermodynamic potentials as described in section 2.  In Appendix D we describe the equivalence of 

these two potential functions on the basis of their differential expressions and their definitions.   

Having argued that the two thermodynamic potentials, 𝑔(𝑆", 𝑇, 𝑃)	and 𝜙9(𝑆", Θ, 𝑃) are equivalent, we add a practical caveat 

regarding how 𝜙9(𝑆", Θ, 𝑃) has actually been found; that is, how we formed the polynomial expressions for 𝑣%(𝑆", Θ, 𝑃) and 490 

𝜂̂(𝑆", Θ), that appear in the definition of 𝜙9(𝑆", Θ, 𝑃) in Eqn. (13).  First, all the most accurate data of thermodynamic quantities 

(such as specific volume, sound speed, isobaric specific heat capacity, “heat of mixing”, temperature of maximum density, 

freezing point depression, etc.) were absorbed into the TEOS-10 Gibbs function of seawater 𝑔(𝑆", 𝑇# + 𝑡, 𝑃) (Feistel 2003, 

2008).  It is natural to absorb this information into a Gibbs function because all the laboratory data were obtained at measured 

values of in situ temperature, and the Gibbs function has in situ temperature as its “heat-like” independent variable.  Second, 495 

the conversion between in situ and potential temperature used the implicit relationship 𝑔$(𝑆", 𝑇# + 𝑡, 𝑃) 	= 	𝑔$(𝑆", 𝑇# + 𝜃, 𝑃#) 

which involves the Gibbs function. Third, the conversion between potential temperature and Conservative Temperature used 

the Gibbs function-based equation of potential enthalpy, ℎ(𝑆", 𝑇# + 𝜃, 𝑃#), which is equated to 𝑐'#Θ.  Fourth, using this 

conversion between 𝑡 and Θ we were able, in Roquet et al. (2015), to form a polynomial expression for 𝑣%(𝑆", Θ, 𝑃) from the 

Gibbs function-based values of 𝑣 = 	𝑔((𝑆", 𝑇# + 𝑡, 𝑃).  Fifth, and lastly, using the now known conversion between 𝜃 and Θ, 500 
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we are able in this paper to form an algorithm for 𝜂̂(𝑆", Θ) from the Gibbs function-based values of 𝜂l(𝑆", θ) = 	−𝑔$(𝑆", 𝑇# +

𝜃, 𝑃#).   

In summary, we have used the TEOS-10 Gibbs function of seawater to relate the different temperature variables and to 

evaluate both specific volume and entropy, which were then fitted with polynomials in the three independent variables 𝑆", Θ, 𝑃.  

In performing these polynomial fits, we ensured that in the oceanographic range of salinity, the 𝑣%(𝑆", Θ, 𝑃) and 𝜂̂(𝑆", Θ) 505 

polynomials fitted the Gibbs function-derived values of specific volume and entropy more accurately than these variables are 

known from the underlying laboratory measurements.  In this way we claim that the thermodynamic potential 𝜙9(𝑆", Θ, 𝑃) and 

the TEOS-10 Gibbs function 𝑔(𝑆", 𝑇# + 𝑡, 𝑃) are equally accurate in representing the thermodynamic properties of seawater 

in the oceanographically relevant range of salinity.   

4 An approximate polynomial expression for entropy 510 

4.1 An analogy with a perfect gas  

In order to construct an accurate polynomial expression for the thermodynamic potential of seawater 𝜙9(𝑆", Θ, 𝑃) of Eqn. (13) 

we will integrate the 75-term polynomial expression for specific volume 𝑣%(𝑆", Θ, 𝑃) of Roquet et al. (2015) with respect to 

pressure to obtain ℎ9(𝑆", Θ, 𝑃) (using the fact that  ℎ9( = 𝑣), and we also need to find an accurate expression for entropy, 

𝜂̂(𝑆", Θ), which we will develop in this section.   515 

The specific entropy of a perfect gas can be expressed in terms of the Celsius potential temperature 𝜃 (with reference sea 

pressure of 𝑝% = 0	dbar; that is, reference absolute pressure of 𝑃% = 𝑃# ≡ 101	325	Pa) by  

𝜂IJK = 𝑐'
IJKln(1 + 𝜃 𝑇#⁄ ) (18) 

where entropy is defined so that it is zero at a Celsius temperature of 0℃ (see Eqn. (J.6) and (J.7) of IOC et al. (2010)).  In 

general, the enthalpy and internal energy of a perfect gas is a general function of (only) temperature, but here we have restricted 520 

attention to the “calorically perfect gas” where the specific isobaric heat capacity 𝑐'
IJK is a constant.  The enthalpy of a perfect 

gas (e.g. dry air) is also defined to be zero at a Celsius temperature of 0℃, so the potential enthalpy of a perfect gas is ℎ# =

𝑐'
IJK𝜃 and if a “conservative temperature of a perfect gas” were to be defined, then it would be simply equal to potential 

temperature 𝜃.  
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 525 
Figure 1.  Panels (a) and (b) are contour plots of 𝑐'# ln(1 + 𝜃 𝑇#⁄ ) − 𝜂 and 𝑐'# ln(1 + Θ 𝑇#⁄ ) − 𝜂	respectively, while panels (c) 

and (d) show 𝑐'# ln(1 + 𝜃 𝑇#⁄ ) + 𝑎(𝑆" 𝑆7?⁄ ) ln(𝑆" 𝑆7?⁄ ) − 𝜂  and 𝑐'# ln(1 + Θ 𝑇#⁄ ) + 𝑎(𝑆" 𝑆7?⁄ ) ln(𝑆" 𝑆7?⁄ ) − 𝜂 

respectively.  All panels in this figure are in the units of entropy, namely J	kg)4	K)4.   
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One wonders how accurate a correspondingly simple logarithm expression would be for the entropy of seawater, defined 

by either 𝑐'# ln(𝑇# + θ) + constant or by 𝑐'# ln(𝑇# + Θ) + constant.  The constants can be chosen so that it makes the estimate 530 

of entropy zero if 𝜃 = 0℃ or Θ = 0℃ in the two cases respectively, since entropy is zero for Standard Seawater (𝑆" = 𝑆7?) 

at this temperature.  That is, we examine the two estimates 𝑐'# ln(1 + θ 𝑇#⁄ ) and 𝑐'# ln(1 + Θ 𝑇#⁄ ) as approximations to the 

entropy of seawater.  (Note that for seawater, 𝑐'# is approximately four times as large as the isobaric specific heat capacity of 

air,	𝑐'
IJK). The errors in using these two approximate expressions can be seen in Figure 1 (a) and (b).  It is seen that the 

expression involving Conservative Temperature, 𝑐'# ln(1 + Θ 𝑇#⁄ ) , is a better approximation to entropy than is the one 535 

involving potential temperature, 𝑐'# ln(1 + θ 𝑇#⁄ ), with the maximum error being less by approximately an order of magnitude.  

The relative accuracies of these approximate expressions to the specific entropy of seawater can be understood from the 

following expressions for the total differential of entropy in terms of 𝜃 and Θ (see Eqns. (A.12.7) and (A.12.8) of IOC et al. 

2010),  

d𝜂	 = 		 𝑐'(𝑆", 𝜃, 𝑃#)	d(ln[1 + 𝜃 𝑇#⁄ ]) 		−		𝜇$(𝑆", 𝜃, 𝑃#)	d𝑆", (19) 540 

d𝜂	 = 		 𝑐'# 	(
$%D&)
($%DL)

	d(ln[1 + Θ 𝑇#⁄ ]) 		−		
6B(2!,&,(%)
($%DL)

	d𝑆". (20) 

The partial derivative with respect to Absolute Salinity that has been used in Eqn. (19), namely 𝜂l2! = 𝜂2!(𝑆", 𝜃, 𝑃#), is also 

given by −𝜇$(𝑆", 𝜃, 𝑃#)  since both expressions are −𝑔$2!(𝑆", 𝜃, 𝑃#) , while the other partial derivative, 𝜂lL =

𝑐'(𝑆", 𝜃, 𝑃#) (𝑇# + 𝜃)⁄ , can be gleaned from ℎ$ = 𝑇𝜂$ (from Eqn. 8) evaluated at 𝑃#, noting that 𝑐'(𝑆", 𝜃, 𝑃#) = ℎ$(𝑆", 𝜃, 𝑃#) 

is the specific isobaric heat capacity of seawater evaluated at 𝑃# and at the potential temperature 𝜃.  The partial derivatives 𝜂̂2! 545 

and 𝜂̂& used in Eqn. (20) can be gleaned from Eqn. (11) evaluated at 𝑃#, noting that ℎ92!(𝑆", Θ, 𝑃#) = 0.  The contributions of 

the terms in d𝑆" are small in comparison to the leading terms on the right-hand sides of Eqns. (19) and (20), and the specific 

heat capacity 𝑐'(𝑆", θ, 𝑃#) varies by 5.5% in the ocean whereas the ratio (𝑇# + Θ) (𝑇# + 𝜃)⁄  varies by no more than 0.67%, 

and this explains why the approximate expression 𝜂 ≈ 𝑐'# ln(1 + Θ 𝑇#⁄ ) out-performs 𝜂 ≈ 𝑐'# ln(1 + θ 𝑇#⁄ ) by about an order 

of magnitude.   550 

 While the fit to entropy in better in Fig. 1(b) than in Fig. 1(a), neither is particularly accurate for our purposes.  For example, 

in determining potential temperature 𝜃  from 𝜂̂& = 𝑐'# (𝑇# + 𝜃)⁄ , the remaining error in Fig. 1(b) amounts to an error in 

potential temperature of approximately 0.5℃ while that in Fig 1(a), using 𝜂lL = 𝑐'(𝑆", θ, 𝑃#) (𝑇# + 𝜃)⁄ , amounts to about 

10℃.  

4.2 Adding a simple function of Absolute Salinity  555 

The Second Law of Thermodynamics requires that entropy must be produced when mixing occurs, and the approximation 

𝑐'# ln(1 + Θ 𝑇#⁄ ) does not allow for the production of entropy when mixing occurs between seawater parcels of different 
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Absolute Salinities but the same value of Conservative Temperature.  The TEOS-10 Gibbs-function-derived expression for 

specific entropy contains the term 𝑎(𝑆" 𝑆7?⁄ ) ln(𝑆" 𝑆7?⁄ )  with the coefficient  being 𝑎 =

−9.310	292	413	479	596	J	kg)4	K)4  (this is the value of the coefficient derived from the 𝑔44#  coefficient of the Gibbs 560 

function (appendix H of IOC et al. (2010)), allowing for our version of the normalization of salinity,	(𝑆" 𝑆7?⁄ )).  This term 

was derived by Feistel (2008) to be theoretically correct at very small Absolute Salinities, relying on Plank’s theory of ideal 

solutions and the now-exact value of the molar gas constant.  Here we use the slightly different value 𝑎 =

−9.309	495	003	228	781	𝐽	kg)4	K)4  that comes from a least-squares fit incorporating a particular polynomial form, as 

described below, and tabulated in appendix B.  This slightly different value of 𝑎 allows a more accurate fit to the entropy data 565 

over the whole range of oceanographic salinities rather than only at vanishingly small salinities.   

The accuracy of the approximate expression 𝑐'# ln(1 + Θ 𝑇#⁄ ) + 𝑎(𝑆" 𝑆7?⁄ ) ln(𝑆" 𝑆7?⁄ ) is shown in Figure 1(d).  There is 

no improvement over 𝑐'# ln(1 + Θ 𝑇#⁄ ) near zero Absolute Salinity, but at intermediate salinity values the fit is improved over 

that of 𝑐'# ln(1 + Θ 𝑇#⁄ ) by approximately an order of magnitude.  Over the whole (𝑆", Θ) plane this simple theoretically 

inspired estimate of entropy, illustrated in Figure 1(d) is in error by no more than 0.2% of the full range of entropy.  In contrast, 570 

when the same expression is used with potential temperature (see Figure 1(c)) in place of Conservative Temperature, the 

relative error is 4% of the full range of entropy.   

4.3 The full expression for 𝜼e(𝑺𝐀, 𝚯)  

In order to obtain an expression for 𝜂̂(𝑆", Θ) suitable for combining with the 75-term polynomial for specific volume  

𝑣%(𝑆", Θ, 𝑃) of Roquet et al. (2015) to form the thermodynamic potential of seawater 𝜙9(𝑆", Θ, 𝑃)	of Eqn. (13), we have added 575 

a polynomial in powers of 𝑠 = 	 [𝑆" 𝑆7?⁄ ]#.N and 𝜏 = 	Θ 40℃⁄  with the highest power of each being eight, so that our final 

approximate expression for 𝜂̂(𝑆", Θ) is  

𝜂̂(𝑆", Θ) 	= 	 𝑐'# ln(1 + Θ 𝑇#⁄ ) + 𝑎(𝑆" 𝑆7?⁄ ) ln(𝑆" 𝑆7?⁄ ) + 𝑃{8,8}(𝑠, 𝜏), (21) 

and the 45 coefficients of the eighth order bi-polynomial 𝑃{8,8} are listed in Appendix B.  The error of Eqn. (21) in 

approximating 𝜂̂(𝑆", Θ) is shown in Fig. 2(a), from which we see that the typical error is 2 × 10)O	J	kg)4	K)4.   580 

When the thermodynamic potential 𝜙9(𝑆", Θ, 𝑃) of Eqn. (13 or 14) is used to obtain all the thermodynamic properties of 

seawater, one of the key variables that is obtained from entropy in the form 𝜂̂(𝑆", Θ) is the potential temperature 𝜃 referenced 

to 𝑃#, and this is found from the derivative of entropy with respect to Conservative Temperature, namely  

𝜂̂& =
C'%

($%DL)
. (22) 

This relationship was originally derived from the FTR by McDougall (2003) and can be deduced from Eqn. (11); see also Eqn. 585 

(A.12.8) of the TEOS-10 Manual (IOC et al. (2010)).  When the polynomial-based approximate form of 𝜂̂(𝑆", Θ), Eqn. (21), 

is used to evaluate the potential temperature from Eqn. (22), the error is as shown in Fig. 2(b), where we see that the typical 

 a
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error is 10𝜇K , with maximum errors of 60𝜇K  at 𝑆" = 0	g	kg)4 .  Since this error seems acceptable in oceanographic 

applications, and since the 75-term polynomial for 𝑣%(𝑆", Θ, 𝑃) of Roquet et al. (2015) is as accurate in the oceanographic range 

of salinity as the data to which the original Gibbs function of Feistel (2008) was fitted, we conclude that the thermodynamic 590 

potential 𝜙9(𝑆", Θ, 𝑃) of Eqn. (13 or 14), which is written in terms of Conservative Temperature, is equally as accurate as the 

Gibbs function 𝑔(𝑆", 𝑇, 𝑃) , and will therefore prove sufficiently accurate for use in physical oceanography as the 

thermodynamic potential of seawater in the oceanographic range of salinity.   

 

 595 

Figure 2.  (a) The error in the fit Eqn. (21) to entropy (in units of 10)O	J	kg)4	K)4).  (b) The error in evaluating potential 

temperature 𝜃 (in 𝜇𝐾) from Eqns. (21) and (22).   

 

5 Numerical Implementation  

When calculating Conservative Temperature Θ from observations of in situ temperature 𝑡 using the Gibbs function approach, 600 

the first step is to calculate the potential temperature 𝜃 at the reference pressure 𝑃# by equating the values of entropy at the in 

situ pressure 𝑃  and at the reference pressure 𝑃# , that is, by solving the implicit relationship 𝑔$(𝑆", 𝑇# + 𝑡, 𝑃) =

𝑔$(𝑆", 𝑇# + 𝜃, 𝑃#).  The second step is to evaluate the parcel’s potential enthalpy, ℎ(𝑆", 𝑇# + 𝜃, 𝑃#), being 𝑔(𝑆", 𝑇# + 𝜃, 𝑃#) −

(𝑇# + 𝜃)𝑔$(𝑆", 𝑇# + 𝜃, 𝑃#), and the third step is to divide potential enthalpy by 𝑐'#.  The computationally expensive step is the 

first, typically involving a Newton-type iterative procedure.   605 
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When adopting the approach of the present paper, the conversion from in situ temperature 𝑡 to Conservative Temperature 

Θ is also computationally expensive, since, from Eqn. (11), Θ is obtained by finding the zero of the function ℎ9& 𝜂̂&⁄ − (𝑇# + 𝑡).  

This is done by first evaluating both an approximate polynomial for Θ as a function of (𝑆", 𝑇# + 𝑡, 𝑃), and an approximation 

to the second derivative of Θ with respect to in situ temperature, by differentiating the polynomial.  Then only one pass though 

the accelerated Newton method of McDougall et al. (2019) is needed to evaluate Θ to machine precision.  This code takes 610 

approximately the same time to compute Θ as does using the Gibbs function approach described in the previous paragraph.   

Having converted observations of in situ temperature into Conservative Temperature, other calculations are more 

computationally efficient when using the enthalpy and entropy combination of ℎ9(𝑆", Θ, 𝑃) and 𝜂̂(𝑆", Θ) of the present paper 

rather than the Gibbs function 𝑔(𝑆", 𝑇, 𝑃).  For example, during the running of an ocean model, the sea surface temperature is 

needed as the input temperature for bulk air-sea flux formulae.  With the approach of the present paper this is a forward 615 

calculation requiring only the evaluation of 𝜂̂& since in this case the sea surface temperature, 𝜃, is given by the simple forward 

expression (𝑇# + 𝜃) = 𝑐'# 𝜂̂&⁄ .  This calculation is a factor of three less computationally expensive than the corresponding 

calculation based on the Gibbs function (where an iterative Newton-based algorithm is required).   

Similar gains in computational efficiency occur when evaluating potential density at a variety of reference pressures when 

using 𝑣%(𝑆", Θ, 𝑃) compared with the Gibbs function approach.  These computational gains occur because the potential specific 620 

volume, referenced to an arbitrary reference pressure 𝑃%, is available from the forward polynomial expression 𝑣%(𝑆", Θ, 𝑃%), 

whereas with the Gibbs function approach, the potential temperature referenced to 𝑃% needs to be evaluated and this involves 

an iterative calculation.  

We have written algorithms to evaluate all of the thermodynamic quantities of seawater using only one or both of 

ℎ9(𝑆", Θ, 𝑃) and 𝜂̂(𝑆", Θ), and we have not found the need to use the new thermodynamic potential 𝜙9(𝑆", Θ, 𝑃) itself nor any 625 

of its derivatives.  That is, the most direct and computationally efficient way of adopting the approach of this paper was found 

to be to use ℎ9(𝑆", Θ, 𝑃) and 𝜂̂(𝑆", Θ) rather than their parent function 𝜙9(𝑆", Θ, 𝑃).  This is because the thermodynamic 

information in ℎ9(𝑆", Θ, 𝑃)  is independent of that in 𝜂̂(𝑆", Θ) , and would it suggest that the fact that we have found a 

thermodynamic potential for seawater in the functional form, 𝜙9(𝑆", Θ, 𝑃), is of theoretical thermodynamic interest, but so far 

has not yielded a practical benefit.  630 

5 Conclusions  

While in situ temperature is relatively simple to measure in the ocean, it is neither a “potential” property, nor is it a 

“conservative” property, and these deficiencies of in situ temperature have led to the adoption of Conservative Temperature Θ 

for use in physical oceanography.  This switch to Conservative Temperature since the introduction of TEOS-10 in 2010, has 

motivated the quest of this paper: to find a thermodynamic potential of seawater in terms of Conservative Temperature, 635 

Absolute Salinity and pressure.  Roquet et al. (2015) have provided a 75-term polynomial for specific volume in the form 
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𝑣%(𝑆", Θ, 𝑃) and this is the basis for many of the functions in the Gibbs Seawater (GSW) Oceanographic Toolbox of TEOS-10.  

But to date the conversions between in situ temperature and Conservative Temperature have been done using the TEOS-10 640 

Gibbs function, and this is not 100% consistent with the use of the Roquet et al. polynomial for 𝑣%(𝑆", Θ, 𝑃).   

When the Roquet et al. (2015) 75-term polynomial for specific volume, 𝑣%(𝑆", Θ, 𝑃), is integrated with respect to pressure 

(noting that 𝑣% = 	ℎ9() and the resulting polynomial for enthalpy is used in the expression for the ratio of the in situ and potential 

temperatures, (𝑇# + 𝑡) (𝑇# + 𝜃)⁄ = 	ℎ9&(𝑆", Θ, 𝑃) 𝑐'#; , the difference between these temperatures, |𝑡 − 𝜃| , compared with 

evaluating this temperature difference using the Gibbs function, is not quite zero, with typical values being less than 10)*K 645 

(the standard deviation of the temperature difference is 4x10)NK; see Table 3 of Roquet et al., 2015).  From Figure 2(b) above 

we see that the use of the 𝜂̂(𝑆", Θ) expression of the present paper has errors when relating potential and Conservative 

temperatures of 10)NK.  The sum of these tiny temperature differences amounts to less than 10)*K, representing the difference 

in evaluating Conservative Temperature from in situ temperature using the Gibbs function versus using the Roquet et al. (2015) 

expression for 𝑣%(𝑆", Θ, 𝑃) together with the present expression for 𝜂̂(𝑆", Θ).  These inconsistencies in temperature between 650 

the two approaches are small, being more than an order of magnitude smaller than the underlying experimental error in the 

laboratory data from which the TEOS-10 Gibbs function was derived.  While these differences are small, it is preferable if all 

the thermodynamic quantities are 100% consistent with each other, and the approach presented in the present paper ensures 

this.   

In this paper we have provided an accurate expression for entropy as a function of Conservative Temperature, 𝜂̂(𝑆", Θ), 655 

and this can be used in conjunction with Roquet et al.’s 𝑣%(𝑆", Θ, 𝑃) to relate in situ temperature and Conservative Temperature.  

These relationships between the different temperature variables can be performed consistently, to machine precision, and 

without further reference to the Gibbs function 𝑔(𝑆", 𝑇, 𝑃).  Appendix P of IOC et al. (2010) has shown that knowledge of 

both enthalpy and entropy in the functional forms ℎ9(𝑆", Θ, 𝑃) and 𝜂̂(𝑆", Θ) is sufficient to derive all thermodynamic variables, 

so it seems advisable that when the 75-term polynomial of Roquet et al. 2015 is used, that it is used in conjunction with the 660 

expression for 𝜂̂(𝑆", Θ) of the present paper.  When the results of the present paper are implemented in the Gibbs SeaWater 

(GSW) Oceanographic Toolbox of TEOS-10 (McDougall and Barker, 2011), the functions that will be changed are (i) those 

that calculate one of 𝜂, Θ, 𝜃, 𝑇 from another one, (ii) the adiabatic lapse rate, (iii) the calculation of the three chemical potentials 

and the Gibbs function, as well as (iv) the provision of the new thermodynamic potential 𝜙9(𝑆", Θ, 𝑃).   

Converting from observed values of in situ temperature to Conservative Temperature takes a similar amount of computer 665 

time using the (𝑆", Θ, 𝑃) approach of the present paper as when using the Gibbs function, but the subsequent calculations of 

various temperatures and potential densities are more computationally efficient using the (𝑆", Θ, 𝑃) approach since these 

quantities require only simple forward (as opposed to iterative) calculations.   

In the (𝑆", Θ, 𝑃) case, specific volume, internal energy, the isentropic compressibility and the sound speed depend only on 

enthalpy, ℎ9(𝑆", Θ, 𝑃), and are independent of entropy, 𝜂̂(𝑆", Θ), whereas the expressions for the corresponding variables in the 670 

(𝑆", 𝑇, 𝑃) case depend not only on enthalpy, ℎ(𝑆", 𝑇, 𝑃), but also on entropy, 𝜂(𝑆", 𝑇, 𝑃).  In the (𝑆", Θ, 𝑃) case, the additional 
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information in 𝜂̂(𝑆", Θ) is needed to switch between the “temperature-like” variables 𝜂, 𝜃, 𝑇, Θ and to evaluate the chemical 

potentials.  Thus the ℎ9(𝑆", Θ, 𝑃) and 𝜂̂(𝑆", Θ) pair provides a clean separation of the heat and buoyancy information (derivable 

from ℎ9(𝑆", Θ, 𝑃) alone) from the information in 𝜂̂(𝑆", Θ) that is needed to relate the various temperature variables and the 

chemical potentials.  Also, unlike in the (𝑆", 𝑇, 𝑃) case, there is no consistency requirement between ℎ9(𝑆", Θ, 𝑃) and 𝜂̂(𝑆", Θ).   675 

Moreover, we have been able to combine the expressions for specific volume and for entropy into a single thermodynamic 

potential function, 𝜙9(𝑆", Θ, 𝑃), Eqn. (14), repeated here,  

𝜙9(𝑆", Θ, 𝑃) 	= 	ℎ9(𝑆", Θ, 𝑃)	−	∫ �𝑐'
# + 𝜂̂(𝑆", Θ@)�dΘ

@&
# ,  

from which all the thermodynamic quantities of seawater can be derived (see Appendix C).  The clean separation of the various 

thermodynamic information between the ℎ9(𝑆", Θ, 𝑃) and 𝜂̂(𝑆", Θ) pair of functions, as well as the new-found ability to form 680 

the thermodynamic potential 𝜙9(𝑆", Θ, 𝑃) perhaps provides a theoretical boost to using Conservative Temperature as the 

temperature variable in physical oceanography as recommended by TEOS-10 (Valladares et al., 2011a,b).  The thermodynamic 

potential, 𝜙9(𝑆", Θ, 𝑃), is both complete (in that every thermodynamic property can be derived from it), and consistent (in that 

there is only one expression for each thermodynamic quantity).  As an aside, we mention that we have also been able to find a 

thermodynamic potential of seawater, 𝜓Z(𝑆", 𝜃, 𝑃), in terms of potential temperature 𝜃, Eqn. (A8), repeated here,  685 

		𝜓Z(𝑆", 𝜃, 𝑃) 	≡ 	ℎZ(𝑆", 𝜃, 𝑃) 	−	[𝑇# + 𝜃]	𝜂l(𝑆", 𝜃),   

        =	∫ 𝑣l(𝑆", 𝜃, 𝑃@)d𝑃@
(
(%

	+ 	𝑔(𝑆", 𝜃, 𝑃#),   

The fact that we have been able to form the new thermodynamic potential, 𝜙9(𝑆", Θ, 𝑃), is perhaps less important than the 

key insight of Appendix P of IOC et al. (2010) that knowledge of both ℎ9(𝑆", Θ, 𝑃) and 𝜂̂(𝑆", Θ) is sufficient to describe all the 

thermodynamic properties of seawater.  We now better appreciate this insight, and also the importance of the fact that the 690 

thermodynamic information in ℎ9(𝑆", Θ, 𝑃) is completely independent of that in 𝜂̂(𝑆", Θ).  While finding a thermodynamic 

potential for seawater in the functional form 𝜙9(𝑆", Θ, 𝑃) is of theoretical thermodynamic interest, so far this has not yielded a 

practical benefit that exceeds the knowledge of both ℎ9(𝑆", Θ, 𝑃) and 𝜂̂(𝑆", Θ) individually.  That is, these two functions, 

together, act like a thermodynamic potential, and we have not actually found a pressing need to combine them into a single 

function, even though we have been able to do so.  By contrast, the thermodynamic information in enthalpy is not independent 695 

of that in entropy when expressed as functions of (𝑆", 𝜃, 𝑃), so that finding the thermodynamic potential, 𝜓Z(𝑆", 𝜃, 𝑃), in terms 

of potential temperature does add value because its use automatically enforces the consistency requirement ℎZL(𝑆", 𝜃, 𝑃#) =

[𝑇# + 𝜃]𝜂lL(𝑆", 𝜃).   

The thermodynamic independence of the information contained in ℎ9(𝑆", Θ, 𝑃) and 𝜂̂(𝑆", Θ) appears to be a unique feature, 

due to the use of Conservative Temperature.  For example, when changing thermodynamic potentials from 𝑢(𝑆", 𝜂, 𝑣) to 700 

ℎ(𝑆", 𝜂, 𝑃) = 𝑢(𝑆", 𝜂, 𝑃) + 𝑃𝑣(𝑆", 𝜂, 𝑃), one cannot simply use the combination of 𝑢(𝑆", 𝜂, 𝑃) and 𝑣(𝑆", 𝜂, 𝑃) as effectively 

a thermodynamic potential without first imposing the consistency constraint 𝑢((𝑆", 𝜂, 𝑃) = −𝑃𝑣((𝑆", 𝜂, 𝑃).  Similarly when 

Deleted: We conclude that ℎ*(𝑆!, Θ, 𝑃) is sufficient to describe the 
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forming the Helmholtz function by 𝑓(𝑆", 𝑇, 𝑣) = 𝑢(𝑆", 𝑇, 𝑣) − 𝑇𝜂(𝑆", 𝑇, 𝑣), one cannot simply use 𝑢(𝑆", 𝑇, 𝑣) together with 

𝜂(𝑆", 𝑇, 𝑣) as effectively a thermodynamic potential without first imposing the constraint 𝑢$(𝑆", 𝑇, 𝑣) = 𝑇𝜂$(𝑆", 𝑇, 𝑣).  So, 

among all the thermodynamic potential functions in common use, it is only when the “temperature-like” variable is 

Conservative Temperature that the thermodynamic information in enthalpy is independent of that in entropy so that the 710 

combined knowledge of ℎ9(𝑆", Θ, 𝑃) and 𝜂̂(𝑆", Θ) can be used to define all the thermodynamic properties of seawater without 

the need of an additional consistency constraint.   
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Appendix A: Alternative thermodynamic potentials in terms of Conservative Temperature and potential temperature  715 

Eqn. (14) (or Eqn. (13)) above is the proposed definition of the thermodynamic potential of seawater defined with respect 

to Conservative Temperature, but it is not the only possible functional form, and here we present other possibilities.  Eqns. 

(13) and (14) resemble the integral definition of the Gibbs function, Eqn. (12), and now we follow an analogy with the 𝑔 =

ℎ − 𝑇𝜂 definition of the Gibbs function by considering the following three possible thermodynamic potentials   

𝜑%(𝑆", Θ, 𝑃) ≡ 	ℎ9(𝑆", Θ, 𝑃) − 𝑇#	𝜂̂(𝑆", Θ), (A1) 720 

𝜛e(𝑆", Θ, 𝑃) ≡ 	ℎ9(𝑆", Θ, 𝑃) − [𝑇# + Θ]𝜂̂(𝑆", Θ), (A2) 

𝜋%(𝑆", Θ, 𝑃) ≡ 	ℎ9(𝑆", Θ, 𝑃) −	𝑐'#𝜂̂(𝑆", Θ) 𝜂̂&(𝑆", Θ)⁄ , (A3) 

where in the last equation 𝑐'# 𝜂̂&(𝑆", Θ)⁄  is another way of writing [𝑇# + θ].  In each of these cases enthalpy can be found using 

the same functional form as Eqn. (15), that is,  

ℎ9(𝑆", Θ, 𝑃) 	= 	 𝑐'#Θ + 𝜑%(𝑆", Θ, 𝑃) − 𝜑%(𝑆", Θ, 𝑃#) 		= 	 𝑐'#Θ + ∫ 𝜑%((𝑆", Θ, 𝑃@)d𝑃@
(
(%

,  725 

=	𝑐'#Θ +𝜛e(𝑆", Θ, 𝑃) − 𝜛e(𝑆", Θ, 𝑃#) 	= 	 𝑐'#Θ + ∫ 𝜛e((𝑆", Θ, 𝑃@)d𝑃@
(
(%

,  (A4) 

=	𝑐'#Θ + 𝜋%(𝑆", Θ, 𝑃) − 𝜋%(𝑆", Θ, 𝑃#) 		= 	 𝑐'#Θ + ∫ 𝜋%((𝑆", Θ, 𝑃@)d𝑃@
(
(%

.  
In the case of 𝜑%(𝑆", Θ, 𝑃), entropy is readily found from,  

𝜂̂(𝑆", Θ) 	= 	 �𝑐'
#Θ − 𝜑%(𝑆", Θ, 𝑃#)� 𝑇#⁄ . (A5) 

In the case of 𝜛e(𝑆", Θ, 𝑃), values of entropy can be evaluated from  730 

𝜂̂(𝑆", Θ) 	= 	 �𝑐'
#Θ −𝜛e(𝑆", Θ, 𝑃#)� [𝑇# + Θ]⁄ , (A6) 

but to obtain a functional expression (for example, a polynomial) for 𝜂̂(𝑆", Θ) requires equating powers of 𝑆" and Θ between 

[𝑇# + Θ]𝜂̂(𝑆", Θ)	and �𝑐'
#Θ −𝜛e(𝑆", Θ, 𝑃#)�.  This is quite possible but is a little less convenient than using Eqn. (16) or (A5).    

In the case of 𝜋%(𝑆", Θ, 𝑃), entropy must obey the differential equation,  

𝜂̂&(𝑆", Θ)�𝜋%(𝑆", Θ, 𝑃#) − 𝑐'
#Θ� + 𝑐'

#𝜂̂(𝑆", Θ) = 	0, (A7) 735 

whose solution is not straightforward.  For example, if 𝜋%(𝑆", Θ, 𝑃#) were a polynomial in 𝑆" and Θ, then 𝜂̂(𝑆", Θ) cannot be a 

polynomial because if it were, the powers of Θ would be unbalanced in Eqn. (A7).   

We conclude that both Eqns. (14) and (A1) are straightforward to use as thermodynamic potentials in terms of (𝑆", Θ, 𝑃), 

while with a little more effort, Eqn. (A2) can also be made to work.  However, Eqn. (A3), whose right-hand side can be 

expressed as ℎ9(𝑆", Θ, 𝑃) −	[𝑇# + θ]𝜂̂(𝑆", Θ), is unworkable.  We have a slight preference for Eqn. (14) over Eqns. (A1) or 740 

(A2), because when using (14), entropy arises as a temperature derivative of the thermodynamic potential, as it does for the 

Gibbs function, whereas in (A5) and (A6) entropy is proportional to the difference between 𝑐'#Θ and the thermodynamic 

potential.   

Deleted: 𝜑"(𝑆!, Θ, 𝑃) ≡ 	ℎ*(𝑆!, Θ, 𝑃) − [𝑇& + Θ]𝜂̂(𝑆!, Θ), (A1)¶
with the expressions for ℎ*(𝑆!, Θ, 𝑃) and 𝜂̂(𝑆!, Θ) being ¶745 
ℎ*(𝑆!, Θ, 𝑃) 	= 	 𝑐,&Θ + 𝜑"(𝑆!, Θ, 𝑃) − 𝜑"(𝑆!, Θ, 𝑃&) 	= 	 𝑐,&Θ +

∫ 𝜑""(𝑆!, Θ, 𝑃-)d𝑃-
"
"!

,  (A2)¶
𝜂̂(𝑆!, Θ) 	= 	− ?𝜑"(𝑆!, Θ, 𝑃&) − 𝑐,&Θ@ [𝑇& + Θ]⁄ =
	− B𝜑"(𝑆!, Θ, 𝑃) − ∫ 𝜑""(𝑆!, Θ, 𝑃-)d𝑃-

"
"!

− 𝑐,&ΘC [𝑇& + Θ]D .        (A3)¶
Note that the bracket [𝑇& + Θ] in both Eqns. (A1) and (A3) could 750 
instead be chosen to be any non-zero function F(𝑆!, Θ) of 𝑆! and	Θ 
including a constant such as 𝑇& = 273.15℃.  Such a choice does not 
affect the way enthalpy is calculated in Eqn. (A2).  There seems no 
fundamental reason to prefer
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We note that the functional form of Eqn. (A2) also works as a thermodynamic potential when potential temperature 𝜃 is 755 

used in place of Θ as the “heat-like” variable, with the caveat that the 𝜂l(𝑆", 𝜃) and ℎZ(𝑆", 𝜃, 𝑃) functions that are used to 

construct this thermodynamic potential, (A8), need to satisfy the consistency relationship ℎZL(𝑆", 𝜃, 𝑃#) 	≡ 	 [𝑇# + 𝜃]𝜂lL(𝑆", 𝜃).  

This thermodynamic potential is  

		𝜓Z(𝑆", 𝜃, 𝑃) 	≡ 	ℎZ(𝑆", 𝜃, 𝑃) 	−	 [𝑇# + 𝜃]	𝜂l(𝑆", 𝜃),  (A8) 

=	∫ 𝑣l(𝑆", 𝜃, 𝑃@)d𝑃@
(
(%

	+ 	𝑔(𝑆", 𝜃, 𝑃#),   760 

with the expressions for ℎZ(𝑆", 𝜃, 𝑃) and 𝜂l(𝑆", 𝜃) being  

ℎZ(𝑆", 𝜃, 𝑃) 	= 	𝜓Z(𝑆", 𝜃, 𝑃) 	−	[𝑇# + 𝜃]	𝜓ZL(𝑆", 𝜃, 𝑃#), (A9) 

𝜂l(𝑆", 𝜃) 	= 	−	𝜓ZL(𝑆", 𝜃, 𝑃#). (A10) 

These expressions for enthalpy and entropy are similar to the corresponding expressions in terms of the Gibbs function, with 

the difference being that entropy here is evaluated at 𝑃# rather than at the in-situ pressure 𝑃 (this last observation also applies 765 

to Eqn. (16)).  If we restrict attention to processes occurring at 𝑃# , the thermodynamic potential (A8) is a Legendre 

transformation of the thermodynamic potential ℎg(𝑆", 𝜂, 𝑃) .  At this pressure, (A8) is the Gibbs function.  The other 

thermodynamic potentials discussed in this paper (as well as (A8) at pressures other than 𝑃#) are not the result of Legendre 

transformations.  The second line of Eqn. (A8) has exploited the fact that the pressure derivative of ℎZ(𝑆", 𝜃, 𝑃) is specific 

volume.  In this form of Eqn. (A8) a new polynomial expression for 𝜂l(𝑆", 𝜃) is not required.  Rather the Gibbs function itself 770 

is used, along with a polynomial expression for 𝑣l(𝑆", 𝜃, 𝑃).   

Of the other functional forms we have used above, namely Eqns. (14), (A1) and (A3), the only other viable form we have 

found as a function of (𝑆", 𝜃, 𝑃) is one that is similar to (14), being  

𝜗�(𝑆", 𝜃, 𝑃) ≡ 	ℎZ(𝑆", 𝜃, 𝑃) 	−	∫ 𝜂l(𝑆", 𝜃@)d𝜃@
L
# . (A11) 

Differentiating Eqn. (A11) with respect to potential temperature at 𝑃#, and using ℎZL(𝑆", 𝜃, 𝑃#) = [𝑇# + 𝜃]𝜂lL(𝑆", 𝜃), it is found 775 

that entropy must obey the differential equation,  

𝜗�L(𝑆", 𝜃, 𝑃#) = 	 [𝑇# + 𝜃]𝜂lL(𝑆", 𝜃) 	−	𝜂l(𝑆", 𝜃). (A12) 

To obtain a functional expression (for example, a polynomial) for 𝜂l(𝑆", 𝜃) requires equating powers of 𝑆" and 𝜃 in Eqn. 

(A12).  This is quite possible but is less convenient than using Eqn. (10).  Having found 𝜂l(𝑆", 𝜃), this can be integrated with 

respect to 𝜃 and used, together with 𝜗�(𝑆", 𝜃, 𝑃), to find enthalpy, ℎZ(𝑆", 𝜃, 𝑃), from Eqn. (A11).  780 

 If one did want to express all the thermodynamic variables in terms of (𝑆", 𝜃, 𝑃), a thermodynamic potential such as Eqn. 

(A8) is required (as opposed to using the two separate functions ℎZ(𝑆", 𝜃, 𝑃)  and 𝜂l(𝑆", 𝜃) ) because the use of the 

thermodynamic potential ensures that the consistency relationship ℎZL(𝑆", 𝜃, 𝑃#) = [𝑇# + 𝜃]𝜂lL(𝑆", 𝜃) is obeyed, just as using 

the Gibbs function is much preferred to using the two functions ℎ(𝑆", 𝑇, 𝑃)  and 𝜂(𝑆", 𝑇, 𝑃)  because the consistency 

requirement ℎ$ = 𝑇𝜂$  is automatically satisfied when using the Gibbs function.  By contrast, the use of one of the 785 
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(even if this is simply 𝑇&).  Third, while we don’t imagine that this is 
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identical to the Gibbs function, ℎ − 𝑇𝜂, it is a little closer than is the 790 
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thermodynamic potentials of this paper in terms of (𝑆", Θ, 𝑃) is not required to ensure any consistency property.  Rather the 

existence of these thermodynamic potentials, (13 or 14), (A1) and (A2) provides a thermodynamic “completeness” to the use 

of Conservative Temperature in marine science.  The use of one of these thermodynamic potentials, (13 or 14), (A1) and (A2) 795 

is equivalent to simply using the combination of ℎ9(𝑆", Θ, 𝑃) and 𝜂̂(𝑆", Θ).   
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Appendix B: The polynomial-based expression for entropy  

The polynomial-based expression for specific entropy as a function of Absolute Salinity and Conservative Temperature is 800 
given by Eqn. (21) as the sum of the two dominant logarithm terms plus an eighth-order polynomial in the two dimensionless 
variables 𝑠 = 	 [𝑆" 𝑆7?⁄ ]#.N  and 𝜏 = 	Θ 40℃⁄ , where 𝑆7? = 35.165	04	g	kg)4 is the Standard Ocean Reference Salinity (IOC 
et al. (2010)),  

𝜂̂(𝑆", Θ) 	= 	 𝑐'# ln(1 + Θ 𝑇#⁄ ) + 𝑎(𝑆" 𝑆7?⁄ ) ln(𝑆" 𝑆7?⁄ ) + 𝑃{8,8}(𝑠, 𝜏),	 (B1) 
where 𝑇# = 273.15K is the Celsius zero point, 𝑐'# = 3991.867	957	119	63	J	kg)4	K)4, and the least-squares fit gives the 805 
constant 𝑎 = −9.309	495	003	228	781	J	kg)4	K)4 and the eighth order polynomial coefficients given by  

𝑃{8,8}(𝑠, 𝜏) =	  
   (((((((ETA08*𝜏+ETA17*s+ETA07)*𝜏   
   + (ETA26*s+ETA16)*s+ETA06)*𝜏  
   + ((ETA35*s+ETA25)*s+ETA15)*s+ETA05)*𝜏  810 
   + (((ETA44*s+ETA34)*s+ETA24)*s+ETA14)*s+ETA04)*𝜏              (B2) 
   + ((((ETA53*s+ETA43)*s+ETA33)*s+ETA23)*s+ETA13)*s+ETA03)*𝜏  
   + (((((ETA62*s+ETA52)*s+ETA42)*s+ETA32)*s+ETA22)*s+ETA12)*s+ETA02)*𝜏  
   + ((((((ETA71*s+ETA61)*s+ETA51)*s+ETA41)*s+ETA31)*s+ETA21)*s+ETA11)*s+ETA01)*𝜏  
   + (((((((ETA80*s+ETA70)*s+ETA60)*s+ETA50)*s+ETA40)*s+ETA30)*s+ETA20)*s+ETA10)*s+ETA00  815 

and the 45 constants (each of which has units of J	kg)4	K)4) are given by  

ETA00 = -3.7102436569e-01; ETA10 =  3.0834502223e-04; ETA20 = -3.2916987818e+00;  
ETA30 =  7.2818259040e+00; ETA40 = -5.6657256773e+00; ETA50 =  2.8402903938e+00;  
ETA60 = -8.9615123138e-01; ETA70 =  1.0035964794e-01; ETA80 =  1.8140964105e-03;  
ETA01 =  3.0779211774e-02; ETA11 =  1.5006196848e-03; ETA21 =  1.2029316021e-01;  820 
ETA31 =  3.7464975805e-01; ETA41 = -6.0590428227e-01; ETA51 =  6.4365865093e-02;  
ETA61 =  2.4626795446e-02; ETA71 = -1.0335853091e-02; ETA02 =  2.3045093877e+00;  
ETA12 = -5.4154968624e-03; ETA22 = -2.5098282844e+00; ETA32 =  1.9163697628e-02;  
ETA42 =  9.6230320461e-02; ETA52 =  3.7953034101e-02; ETA62 = -5.1206778774e-04;  
ETA03 = -8.4974032876e-01; ETA13 = -1.3727475447e-02; ETA23 =  8.6969911602e-01;  825 
ETA33 =  1.1127539375e-01; ETA43 = -8.7616123860e-02; ETA53 = -1.6250024449e-02;  
ETA04 =  4.1807750439e-01; ETA14 =  5.1388181100e-02; ETA24 = -3.1917000611e-01;  
ETA34 = -4.4999965986e-02; ETA44 =  3.3822211876e-02; ETA05 = -1.9191736060e-01;  
ETA15 = -5.3890029514e-02; ETA25 =  9.3472917957e-02; ETA35 = -4.9779616704e-04;  
ETA06 =  6.6066546976e-02; ETA16 =  2.4144978278e-02; ETA26 = -1.2850921670e-02;  830 
ETA07 = -1.3678360946e-02; ETA17 = -4.1337102429e-03; ETA08 =  1.1180283076e-03;  
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Appendix C: Expressions for thermodynamic variables in terms of ℎ9(𝑆", Θ, 𝑃), 𝜂̂(𝑆", Θ) and 𝜙9(𝑆", Θ, 𝑃)   855 

C.1 Expressions for entropy and enthalpy in terms of 𝒈(𝑺𝐀, 𝑻, 𝑷) and 𝝓c(𝑺𝐀, 𝚯, 𝑷)  

Eqns. (15) and (16) for entropy 𝜂 and enthalpy ℎ in terms of 𝜙9(𝑆", Θ, 𝑃) are compared to the corresponding expressions for 

these variables in terms of the Gibbs function 𝑔(𝑆", 𝑇, 𝑃),  

𝜂	 = 		−	𝜙9&(𝑆", Θ, 𝑃#) 	= 		−	𝜙9&(𝑆", Θ, 𝑃) + ∫ 𝜙9(&(𝑆", Θ, 𝑃@)d𝑃@
(
(%

  

=	−𝑔$(𝑆", 𝑇, 𝑃) 		= 	−𝑔$(𝑆", 𝑇, 𝑃#) − ∫ 𝑔($(𝑆", 𝑇, 𝑃@)d𝑃@
(
(%

. (C1) 860 

and  

ℎ	 = 	 𝑐'#Θ + 𝜙9(𝑆", Θ, 𝑃) − 𝜙9(𝑆", Θ, 𝑃#) 	= 	 𝑐'#Θ + ∫ 𝜙9((𝑆", Θ, 𝑃@)d𝑃@
(
(%

   

= 𝑔(𝑆", 𝑇, 𝑃) − 𝑇𝑔$(𝑆", 𝑇, 𝑃) 	= 	ℎ(𝑆", 𝑇, 𝑃#) + ∫ 𝑔((𝑆", 𝑇, 𝑃@)d𝑃@
(
(%

− 𝑇∫ 𝑔($(𝑆", 𝑇, 𝑃@)d𝑃@
(
(%

. (C2) 

There are some similarities between these expressions using the two different thermodynamic potentials, and there are 

differences.  When expressed using Conservative Temperature, 𝜂̂(𝑆", Θ) is not a separate function of pressure, so that in the 865 

first line of Eqn. (C1), where −	𝜙9&(𝑆", Θ, 𝑃) is evaluated at pressure 𝑃, this pressure dependence needs to be subtracted.  In 

Eqn. (C2) note that ℎ(𝑆", 𝑇, 𝑃#) is not the same as potential enthalpy 𝑐'#Θ except when the in-situ pressure 𝑃 happens to be 𝑃#.   

C.2 Variables expressed using 𝒉c(𝑺𝐀, 𝚯, 𝑷) and 𝜼e(𝑺𝐀, 𝚯) compared with 𝒉(𝑺𝐀, 𝑻, 𝑷) and	𝜼(𝑺𝐀, 𝑻, 𝑷)   

Considering changes occurring at constant Absolute Salinity and pressure, the FTR in the forms Eqns. (8) and (11) show 

that in situ temperature 𝑇 = 𝑇# + 𝑡 is given by  870 

𝑇 = 𝜕ℎ 𝜕𝜂⁄ |2!,( =	ℎ$ 𝜂$⁄ = 	ℎ9& 𝜂̂&⁄ . (C3) 

The ℎ$ 𝜂$⁄  part of this equation is a consistency requirement between the temperature dependence of the ℎ(𝑆", 𝑇, 𝑃) and 

𝜂(𝑆", 𝑇, 𝑃) expressions.  That is, expressions for ℎ(𝑆", 𝑇, 𝑃) and 𝜂(𝑆", 𝑇, 𝑃) cannot be formed independently of each other but 

rather must satisfy the consistency relationship, 𝑇 =	ℎ$ 𝜂$⁄ , since 𝑇  is one of the independent variables.  If necessary, 

however, the required consistency may be established by the integration,  875 

𝜂(𝑆", 𝑇, 𝑃) = ∫
0((2!,$@,()

$@
	𝑑𝑇′$

$%
+ 𝜂(𝑆", 𝑇#, 𝑃), (C4) 

so that ℎ(𝑆", 𝑇, 𝑃) in combination with an independent function 𝜂(𝑆", 𝑇#, 𝑃) taken at an arbitrary reference temperature 𝑇# 

provide together the necessary information.  The corresponding relationship in the (𝑆", Θ, 𝑃) case, 𝑇 = ℎ9& 𝜂̂&⁄ , does not 

impose any such consistency requirement on ℎ9(𝑆", Θ, 𝑃) or 𝜂̂(𝑆", Θ) because 𝑇 is not an independent variable in this case.   

The expression for specific volume in terms of the Gibbs function is very neat and compact, being 𝑣 = 𝑔(, while the 880 

corresponding expression in terms of ℎ(𝑆", 𝑇, 𝑃) and 𝜂(𝑆", 𝑇, 𝑃) is 𝑣 = 	ℎ( − (ℎ$ 𝜂$⁄ )𝜂( (see Eqn. 8).  Since 𝑆", Θ and 𝜂 are 

all “potential” variables, when the material derivative of enthalpy in the FTR is expressed in the form	ℎ92!d𝑆" + ℎ9&dΘ + ℎ9(d𝑃, 



31 
 

one finds (from Eqn. (11) by considering the adiabatic and isohaline situation when 	d𝑆" = d𝜂 = dΘ = 0) that specific volume 

is given by ℎ9(, hence we have  

𝑣 = 𝑔( = ℎ( − (ℎ$ 𝜂$⁄ )𝜂( =	ℎ9(. (C5) 885 

Note that specific volume can also be expressed in terms of ℎ9(𝑆", Θ, 𝑃) and 𝜂̂(𝑆", Θ) as v = ℎ9( − aℎ9& 𝜂̂&⁄ b𝜂̂( because 𝜂̂( is 

zero, and so the last two equalities in Eqn. (C5) are more similar than they appear to be.   

In terms of the Gibbs function, the adiabatic lapse rate (the rate of change of in situ temperature with an adiabatic and 

isohaline change in pressure, see McDougall and Feistel, 2003) is Γ = 	−𝑔$( 𝑔$$⁄ , while using the two expressions in terms 

of enthalpy and entropy gives (by differentiating ℎ9& 𝜂̂&⁄  (from Eqn. C3) with respect to pressure)  890 

Γ = −𝑔$( 𝑔$$⁄ = 	−𝜂( 𝜂$⁄ = 	ℎ9(& 𝜂̂&⁄ 	= 	𝑣$ 𝜂$⁄ = 	𝑣%& 𝜂̂&⁄ , (C6) 

where the last two expressions are written in terms of specific volume and entropy.  Another expression for Γ that corresponds 

to −𝜂( 𝜂$⁄  is −a𝜕Θ 𝜕𝑃⁄ |2!,$b a𝜕Θ 𝜕𝑇⁄ |2!,(b; .   

The relative chemical potential 𝜇 = 𝑔2! = 𝜕ℎ 𝜕𝑆"⁄ |1,( =	ℎi2! can be expressed as (from the partial differentials in Eqn. 

(8) and (11))   895 

𝜇 = ℎ2! − (ℎ$ 𝜂$⁄ )𝜂2! = ℎ92! − aℎ9& 𝜂̂&⁄ b𝜂̂2! , (C7) 

and the chemical potential of water in seawater, 𝜇P = 𝑔 − 𝑆"𝑔2!, is  

𝜇P = aℎ − 𝑆"ℎ2!b − (ℎ$ 𝜂$⁄ )a𝜂 − 𝑆"𝜂2!b = aℎ9 − 𝑆"ℎ92!b − aℎ9& 𝜂̂&⁄ ba𝜂̂ − 𝑆"𝜂̂2!b. (C8) 

Again, it is interesting that these expressions for 𝜇 and 𝜇P, written in terms of enthalpy and entropy, have the same form 

whether as functions of (𝑆", 𝑇, 𝑃) or (𝑆", Θ, 𝑃).   900 

The adiabatic and isohaline compressibility has the following compact expression in terms of ℎ9(𝑆", Θ, 𝑃)  

𝜅 = 	−ℎ9(( ℎ9(⁄ , (C9) 

but because in situ temperature does not possess the “potential” property the expressions in terms of (𝑆", 𝑇, 𝑃) are not as 

compact, being,  

𝜅 = 	−𝑔(( 𝑔(⁄ + (𝑔$(); (𝑔(𝑔$$) 	= 	−(ℎ((𝜂$ − ℎ$𝜂(( + 𝜂(;) (ℎ(𝜂$ − ℎ$𝜂()⁄⁄ . (C10) 905 

It is interesting that 𝜅 can also be expressed by the same expression as this last one in Eqn. (C10) even when enthalpy and 

entropy are functions of (𝑆", Θ, 𝑃), namely as −aℎ9((𝜂̂& − ℎ9&𝜂̂(( + 𝜂̂(
;
b aℎ9(𝜂̂& − ℎ9&𝜂̂(b; , because 𝜂̂( and 𝜂̂(( are both zero.  

That is, the last expressions in Eqns. (C9) and (C10) are more similar than they appear to be.   

These expressions for the various thermodynamic variables are summarized in Table 2.   

 910 

C.3 The constraints on thermodynamic variables revealed by cross-differentiation  

When we take the second order cross derivatives of the thermodynamic potential ℎ⏞ (𝑆", 𝜂, 𝑃), we find the following relations 

between the observed quantities 𝑣, 𝑇 and 𝜇,  
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𝑇⏞( =	 𝑣⏞1 ,  (C11) 915 

𝜇⏞( = 𝑣⏞2! , (C12) 

𝜇⏞1 = 𝑇⏞2!, (C13) 

and the second order cross derivatives of the Gibbs function 𝑔(𝑆", 𝑇, 𝑃) give the following relations between the observed 

quantities 𝑣(𝑆", 𝑇, 𝑃), 𝜂(𝑆", 𝑇, 𝑃), and 𝜇(𝑆", 𝑇, 𝑃) (the so-called Maxwell relationships)  

−𝜂( = 𝑣$ ,  (C14) 920 

𝜇( = 𝑣2!, (C15) 

𝜇$ = −𝜂2! . (C16) 

 For our new thermodynamic potential, 𝜙9(𝑆", Θ, 𝑃), we write the total differential of 𝜙9(𝑆", Θ, 𝑃) in the form (using Eqns. 

(11) and (14))  

d𝜙9 = �𝜇̂ + 𝑇𝜂̂2! − ∫ 𝜂̂2!(𝑆", Θ
@)dΘ@

&
# � dS" + P𝑇𝜂̂& − 𝑐'

# − 𝜂̂RdΘ + 𝑣%d𝑃 (C17) 925 

which involves the three partial derivatives,  

𝜙92! =	 𝜇̂ + 𝑇𝜂̂2! − ∫ 𝜂̂2!(𝑆", Θ
@)dΘ@

&
# , (C18) 

𝜙9& = 	𝑇𝜂̂& − 𝑐'# − 𝜂̂, (C19) 

𝜙9( =	𝑣%, (C20) 

so that the three cross-derivatives yield  930 

𝑇9(𝜂̂& = 𝑣%&,  (C21) 

𝜇̂( + 𝑇9(𝜂̂2! = 𝑣%2!, (C22) 

𝜇̂& + 𝑇9&𝜂̂2! = 𝑇92!𝜂̂&. (C23) 

after subtracting the two terms −𝜂̂2! and 𝑇9𝜂̂2!& that appear in both 𝜙92!& and 𝜙9&2! and would have appeared on both sides of 

Eqn. (C23).  935 

Note that the equality between −𝜂( and 𝑣$ in (C14) does not resemble the balance 𝑇9(𝜂̂& = 𝑣%& in (C21), and moreover we 

know that the corresponding pressure derivative of entropy, 𝜂̂(, is zero.  Rather, the expression (C21) for the adiabatic lapse 

rate, Γ = 𝑇⏞( = 𝑇9( = (𝑣%& 𝜂̂&⁄ ), resonates with the result 𝑇⏞( =	 𝑣⏞1 of Eqn. (C11).  The additional term 𝑇9(𝜂̂2! = (𝑣%& 𝜂̂&⁄ )𝜂̂2! 

in Eqn. (C22) compared with the corresponding formulae in Eqns. (C12) or (C15) is small (being less than 0.5% of both 𝑣%2! 

and 𝜇̂().  The relationship (C23) that comes from equating 𝜙92!& and 𝜙9&2! has some similarities with both (C13) and (C16), 940 

with 𝑇9&𝜂̂2! appearing to be an additional term in one case and 𝑇92!𝜂̂& in the other case.   

It can be shown by coordinate transformation that each of (C21) – (C23) contains exactly the same information as (C14) – 

(C16).  This is, each of the equations (C21) – (C23) can be found by transforming the corresponding equation in (C14) – (C16) 

from (𝑆", 𝑇, 𝑃) coordinates into (𝑆", Θ, 𝑃)  coordinates.   
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Appendix D: Deducing the FTR from the differential of a thermodynamic potential and its definition in terms of 

enthalpy and entropy.   950 
 

The Fundamental Thermodynamic Relationship (FTR) can be deduced from knowledge of the total differential of the Gibbs 

function d𝑔 = 𝜇d𝑆" − 𝜂d𝑇 + 𝑣d𝑃 together the definition of the Gibbs function in terms of enthalpy and entropy, 𝑔 ≡ ℎ −

𝑇𝜂.  Here we demonstrate the corresponding result for 𝜙9(𝑆", Θ, 𝑃), namely that the FTR can be found from knowledge of the 

total differential of 𝜙9(𝑆", Θ, 𝑃) as well as its definition in terms of enthalpy and entropy.   955 

 We write the total differential of 𝜙9(𝑆", Θ, 𝑃) in the form of Eqn. (C17)  

d𝜙 = �𝜇̂ + 𝑇𝜂̂2! − ∫ 𝜂̂2!(𝑆", Θ
@)dΘ@

&
# � dS" + P𝑇𝜂̂& − 𝑐'

# − 𝜂̂RdΘ + 𝑣%(𝑆", Θ, 𝑃)d𝑃 (D1) 

and we use the definition of 𝜙9(𝑆", Θ, 𝑃) in the form Eqn. (14), repeated here,  

𝜙9(𝑆", Θ, 𝑃) 	= 	ℎ9(𝑆", Θ, 𝑃) 	−	∫ �𝑐'
# + 𝜂̂(𝑆", Θ@)�dΘ

@&
# , (D2) 

and we ask whether the FTR can be deduced from knowledge of Eqns. (D1) and (D2), in direct analogy to what is possible for 960 

the Gibbs function.   

 Because of the definition of Conservative Temperature, 𝑐'#Θ ≡ ℎ9(𝑆", Θ, 𝑃#), we know that 𝜂 = 𝜂̂(𝑆", Θ), ℎ9&(𝑆", Θ, 𝑃#) =

𝑐'# and ℎ92!(𝑆", Θ, 𝑃#) = 0.  Equating the three partial derivatives that appear in Eqn. (D1) with the corresponding expressions 

from differentiating Eqn. (D2) shows that ℎ92! = 𝜇 + 𝑇𝜂̂2!, ℎ9& = 𝑇𝜂̂& and ℎ9( = 𝑣, so that the expression, Eqn. (11), for the 

total derivative of enthalpy has been found.  Using d𝜂 = 𝜂̂2!d𝑆" + 𝜂̂&dΘ, the FTR, Eqn. (2), follows, and the analogy with 965 

the Gibbs function is complete.  

 

  



34 
 

Code availability  

Upon acceptance of this paper for publication, the 24 Gibbs SeaWater Oceanographic Toolbox (GSW) subroutines in Matlab 970 

that we have prepared will replace existing subroutines of the same name that are presently in the GSW code on the TEOS-10 

web site ( http://www.teos-10.org/software.htm ).   
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and tested the 24 new computer subroutines that were needed to implement the ideas of this paper in the GSW computer software 

of TEOS-10, RF ensured that the thermodynamic reasoning in the paper was precise, while FR performed the fit of entropy to 

Absolute Salinity and Conservative Temperature.  All authors contributed to writing the manuscript.  
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 1075 

Figure Captions 

Figure 1.  Panels (a) and (b) are contour plots of 𝑐'# ln(1 + 𝜃 𝑇#⁄ ) − 𝜂 and 𝑐'# ln(1 + Θ 𝑇#⁄ ) − 𝜂	respectively, while panels 

(c) and (d) show 𝑐'# ln(1 + 𝜃 𝑇#⁄ ) + 𝑎(𝑆" 𝑆7?⁄ ) ln(𝑆" 𝑆7?⁄ ) − 𝜂 and 𝑐'# ln(1 + Θ 𝑇#⁄ ) + 𝑎(𝑆" 𝑆7?⁄ ) ln(𝑆" 𝑆7?⁄ ) − 𝜂 

respectively.  All panels in this figure are in the units of entropy, namely	J	kg)4	K)4.   
 1080 

Figure 2.  (a) The error in the fit Eqn. (21) to entropy (in units of 10)O	J	kg)4	K)4).  (b) The error in evaluating potential 

temperature 𝜃 (in 𝜇𝐾) from Eqns. (21) and (22).   
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Table 1: Table of symbols.   

Quantity Symbol Units Comments 

Standard Ocean Reference 

Salinity  
 g kg–1 35.165 04 g kg–1, corresponding to the standard 

ocean Practical Salinity of 35.   

Absolute Pressure P Pa When Absolute Pressure is used it should always be 

in Pa, not in Mpa, nor in dbar.   

sea pressure.  Sea pressure 

is the pressure argument 

to all the GSW Toolbox 

functions.   

p dbar Equal to  and usually expressed in dbar not 

Pa.   

 

 

one standard atmosphere   Pa exactly 101 325 Pa  (= 10.1325 dbar)  

Absolute Salinity    g kg-1 Absolute Salinity is measured on the Millero et al. 

(2008) Reference-Salinity Scale.   

 

temperature  t ºC  

Absolute Temperature  T K  

temperature derivatives   T K When a quantity is differentiated with respect to in 

situ temperature, the symbol T is used in order to 

distinguish this variable from time.   

Celsius zero point    K  

potential temperature    ºC  

Conservative Temperature    ºC  

the “specific heat”, for use 

with Conservative 

Temperature  

 J kg–1 K–1   This 15-digit 
number is defined to be the exact value of .   

is the ratio of potential enthalpy  to . 

specific enthalpy h J kg–1   

specific potential enthalpy 

 

h0 J kg–1 specific enthalpy referenced to zero sea pressure,  
  

SOS

  P− P0

0P

dens
A AS S=

( ) ( )0/ K / K / C 273.15 / CT T t tº + ° = + °

0T 0 273.15 KT º

q

Q

0
pc

0 1 13991.867 957 119 63 J kg K .pc
- -º

0
pc0

pc
0h Q

  h = u + Pv .

[ ]( )0
A A r r, , , , 0 , 0h h S S t p p pq= = =

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed
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specific isobaric heat 

capacity 
 J kg–1 K–1    

specific internal energy u J kg–1  

specific Gibbs function 

(Gibbs energy)  

g J kg–1  

specific Helmholtz energy f J kg–1  

specific entropy  J kg–1 K–1  

density   kg m–3  

 

thermal expansion 

coefficient with respect to 

Conservative Temperature 

 

 K–1  

saline contraction 

coefficient at constant 

Conservative Temperature  

 

 kg g–1 

 

  

Note that the units for  in the GSW 

Oceanographic Toolbox are consistent with SA 

being in g kg-1.  

isothermal compressibility    Pa–1  

 

isentropic and isohaline 

compressibility  

  

 

Pa–1  

 

chemical potential of 

water in seawater 
 J g–1  

 

chemical potential of sea 

salt in seawater 
 J g–1  

 

relative chemical potential 

of (sea salt and water in) 

seawater 

 J g–1 

 
 

 

dissipation rate of kinetic 

energy per unit mass 

 

 J kg–1 s–1  

 = m2 s–3 

 

pc
A ,p S pc h T= ¶ ¶

h

r

Q

aQ

A A
1 1

, ,/ /S p S pv v r r- -¶ ¶Q = - ¶ ¶Q

b Q 1 1
A , A ,/ /p pv v S Sr r- -

Q Q- ¶ ¶ = + ¶ ¶

b Q

tk

k

Wµ

Sµ

µ
( ) S W

A ,t pg S µ µ¶ ¶ = -

e

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed
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adiabatic lapse rate   K Pa–1    

sound speed   m s–1  

specific volume   m3 kg–1   
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G

 c
v 1v r-=

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed
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Table 2. Expressions for various thermodynamic variables based on different thermodynamic potentials

 Expressions based on 
ℎg(𝑆", 𝜂, 𝑃) 

Expressions based on 
𝑔(𝑆", 𝑇, 𝑃) 

Expressions based on 
ℎ(𝑆", 𝑇, 𝑃) and 	𝜂(𝑆", 𝑇, 𝑃) 

Expressions based on 
ℎ9(𝑆", Θ, 𝑃) and 	𝜂̂(𝑆", Θ) 

𝑇 𝑇 = ℎi1 𝑇 𝑇 = ℎ$ 𝜂$⁄  
This is a necessary consistency condition 

between	ℎ(𝑆", 𝑇, 𝑃) and 	𝜂(𝑆", 𝑇, 𝑃). 

𝑇 = (𝑇# + 𝑡) = ℎ9& 𝜂̂&⁄  

𝜃 𝑇# + 𝜃 = ℎi1(𝑆", 𝜂, 𝑃#) 𝑔$(𝑆", 𝑇# + 𝜃, 𝑃#) = 𝑔$(𝑆", 𝑇, 𝑃) 
This is an implicit equation for 𝜃.  

𝜂(𝑆", 𝑇# + 𝜃, 𝑃#) = 𝜂(𝑆", 𝑇, 𝑃) 
This is an implicit equation for 𝜃. 

(𝑇# + 𝜃) = 𝑐'# 𝜂̂&⁄  

Θ Θ = ℎg(𝑆", 𝜂, 𝑃#) 𝑐'#;  Θ = 𝑔(𝑆", 𝑇# + 𝜃, 𝑃#) 𝑐'#⁄  
−	(𝑇# + 𝜃)𝑔$ (𝑆", 𝑇# + 𝜃, 𝑃#) 𝑐'#⁄  

Θ = ℎ(𝑆", 𝑇# + 𝜃, 𝑃#) 𝑐'#⁄  Θ;     Θ ≡ ℎ9(𝑆", Θ, 𝑃#) 𝑐'#;  

ℎ ℎg(𝑆", 𝜂, 𝑃) 𝑔 − 𝑇𝑔$ ℎ(𝑆", 𝑇, 𝑃) ℎ9(𝑆", Θ, 𝑃) 

𝑔 ℎg − 𝜂ℎi1 𝑔(𝑆", 𝑇, 𝑃) ℎ − 𝑇𝜂 ℎ9 − 𝜂̂ ℎ9& 𝜂̂&⁄  

𝜂 𝜂 −𝑔$ 𝜂(𝑆", 𝑇, 𝑃) 𝜂̂(𝑆", Θ) 

𝑣 ℎi( 𝑔( ℎ( − 𝑇𝜂( ℎ9( 

𝑢 ℎg − 𝑃ℎi( 𝑔 − 𝑇𝑔$ − 𝑃𝑔( ℎ − 𝑃ℎ( + 𝑇𝑃𝜂( ℎ9 − 𝑃ℎ9( 

𝜇 ℎi2! 𝑔2! ℎ2! − 𝑇𝜂2! ℎ92! − 𝜂̂2! ℎ9& 𝜂̂&⁄  

𝜇Q ℎg − 𝜂ℎi1 − 𝑆"ℎi2! 𝑔 − 𝑆"𝑔2! aℎ − 𝑆"ℎ2!b − 𝑇a𝜂 − 𝑆"𝜂2!b aℎ9 − 𝑆"ℎ92!b 
−aℎ9& 𝜂̂&⁄ ba𝜂̂ − 𝑆"𝜂̂2!b 

𝑓 ℎg − 𝜂ℎi1 − 𝑃ℎi( 𝑔 − 𝑃𝑔( (ℎ − 𝑇𝜂) − 𝑃(ℎ( − 𝑇𝜂() ℎ9 − 𝜂̂ ℎ9& 𝜂̂& − 𝑃ℎ9(⁄  

𝜅 −ℎi(( ℎi(⁄  −𝑔(( 𝑔(⁄ + (𝑔$(); (𝑔(𝑔$$)	⁄  −(ℎ((𝜂$ − ℎ$𝜂(( + 𝜂(;) (ℎ(𝜂$ − ℎ$𝜂()⁄  −ℎ9(( ℎ9(⁄  

Γ ℎi(1 −𝑔$( 𝑔$$⁄  −𝜂( 𝜂$⁄  ℎ9(& 𝜂̂&⁄  

𝛼& 𝑐'#ℎi(1
ℎi(ℎi1(𝑆", 𝜂, 𝑃#)

 −
𝑔($
𝑔(

𝑐'#

(𝑇# + 𝜃)𝑔$$
 −

𝜂(
(ℎ( − 𝑇𝜂()

𝑐'#

(𝑇# + 𝜃)𝜂$
 

ℎ9(& ℎ9(⁄  

𝛽& - 
0R)*!
0R)

 + 0R)+
0R)

0R*!(2!,1,(%)
0R+(2!,1,(%)

 Expression too large to fit here Expression too large to fit here −ℎ9(2! ℎ9(⁄  
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