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Abstract. In a recent study, the springtime melt pond fraction has been suggested to be a predictor of subsequent September 10 

Arctic sea ice minimum extent anomalies. However, another study based on satellite data did not provide evidence for such a 

relationship. We explore this association in EC-Earth3, which includes an explicit treatment of melt ponds, for the present-

day climate. We find a statistically significant inverse relationship between September sea ice extent and mid-summer (June-

July) melt pond fraction on the seasonal scale. Our results support the satellite-based inferences that the mid-summer melt 

pond fraction highly correlates with the September ice extent. 15 

1 Introduction 

Melt ponds are pools of water formed at the sea ice surface when snow and ice melt. The typical albedo of well-developed 

melt ponds is about 0.13 versus 0.85 for cold snow over sea ice (see, e.g., Grenfell and Perovich, 2004). By reducing the 

surface albedo locally, melt ponds have thus a strong impact on the surface energy balance and, ultimately, on the sea ice 

mass balance. Melt pond formation can enhance sea ice melting and potentially lead to more ponds, creating a positive 20 

feedback loop (Taylor and Feltham, 2004; Schröder et al., 2014). Thus, despite the short duration of the melt pond season in 

the Arctic, which extends mainly from May through September, melt ponds potentially exert a key control on the seasonal 

retreat of the Arctic sea ice cover and on the spatial distribution of sea ice that remains at the summer minimum, in 

September. Accounting for their presence in numerical models is therefore of importance, especially in long-term Arctic 

climate projections. Currently, most global climate models account for melt ponds only implicitly, e.g., by tuning the sea ice 25 

albedo. To our knowledge, some models of this type that include melt ponds implicitly are CNRM-CM5 (Voldoire et al., 

2013), NorESM1-M (Sandø et al., 2014), and HadGEM-GC3 (Williams et al., 2018). 

Three studies have inspected the relationship between Arctic melt pond fraction and September sea ice minimum 

extent. First, Schröder et al. (2014) used a stand-alone sea ice model forced with atmospheric reanalysis data to conclude that 
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it is possible to predict the September ice extent using the May melt pond fraction as a predictor. Second, Liu et al. (2015) 30 

used independent observational data and came to different conclusions. They argued that a significant relationship between 

satellite-based melt pond fraction and September ice extent only emerges when the melt pond fraction is integrated from 

early May to late June, with a persistent strong relationship only occurring after integrating July. Liu et al. suggested no 

evidence of predictive skill stemming from May melt ponds only. A recent study (Feng et al., 2022) reaffirmed the satellite-

based assessment, showing that the integrated melt pond fraction exhibits the strongest correlation with satellite-derived 35 

September sea ice extent in June but not before that month. 

The objective of this paper is to shed light on the above conundrum with a fourth independent and complementary 

perspective. We investigate the possible statistical relationship between the spring-summer melt pond fraction area 

anomalies and the September Arctic sea ice extent using a global climate model, which includes an explicit melt ponds 

scheme, under the constant forcing of the fix-year 2000 CE that represents the present-day climate. The advantage of this 40 

approach is that global climate models permit interactions between the ocean-sea ice and atmosphere (the limitation of the 

Schröder et al. 2014 study) and allow examining the internal associations between melt pond area fraction and ice extent 

under constant forcing regardless of the changing mean state, thus excluding the role of confounding factors. In addition, the 

relatively long integration time of the model brings improved statistical robustness to this analysis. 

2 Methods 45 

We have implemented the topographic scheme of Flocco and Feltham (2007) and Flocco et al. (2010) in the PRIMAVERA 

(PRocess-based climate sIMulation: AdVances in high-resolution modeling and European climate Risk Assessments) 

[r4796, revision 5888] version of the third generation of the European Community Earth System Model (EC-Earth3) to study 

the Arctic melt pond evolution (Ponsoni et al., 2021; Döscher et al., 2022; Ortega et al., 2022). EC-Earth3 comprises the 

atmospheric model Integrated Forecasting System (IFS), development cycle 36r4, and the Nucleus for European Modelling 50 

of the Ocean (NEMO) modelling framework version 3.6, which includes the Louvain-la-Neuve Sea Ice Model 3 (LIM3) 

(Rousset et al., 2015; Tian et al., 2021). The albedo scheme in the ocean-covered grid cells of the model considers the 

contributions from the ocean, ice, snow, and melt ponds, weighted by their respective areas. The melt pond albedo varies 

with the pond depth. LIM3 sea ice model incorporates a discrete ice thickness distribution, here using five categories. The 

fraction f of the fluxes of melting snow and ice (at the surface) that enter the melt ponds varies with the ice concentration per 55 

ice category Ai as f(Ai) = 0.15 + 0.55Ai. Using a category-dependent scheme for distributing meltwater avoids prescribing 

unphysical fluxes, like meltwater on very thin ice. The model calculates the surface meltwater volume from the snow and ice 

thickness changes due to melting at each time step. The volume of meltwater in the ponds is redistributed among the ice 

categories according to Flocco and Feltham (2007). 

Our configuration of EC-Earth3 uses the ORCA1L75 grid, which is a tripolar grid with a nominal resolution of 1º 60 

and 75 vertical ocean levels. The global grid in the atmosphere is T255L91, which corresponds to a ~80 km horizontal 
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resolution with 91 vertical levels. Specific to the PRIMAVERA version, the simulation uses a simplified CMIP6 

stratospheric aerosol forcing from the Goddard Institute for Space Studies (GISS) volcanic dataset (Johansson et al., 2021). 

Spatio-temporal evolution of melt ponds is obtained from 105 years of a 200-year-long experiment (spin-up = 95 years) 

under a constant forcing (Fig. 1a). The IFS model (EC-Earth3) treats orbital forcing-related parameters as constants and the 65 

fix-year 2000 CE levels of greenhouse gas forcing for the present-day climate. We have omitted the first 95 years because of 

the strong model drift, leading to a statistically insignificant correlation between ice extent and melt pond fraction during this 

period. Within the limits of statistically significant correlations following the spin-up period, we assume that the model 

achieved stability despite persistent variability. An advantage of constant forcing simulations is that we exclude the 

possibility that time-varying greenhouse gas forcing drives both the melt pond area fraction and sea ice extent so that, if 70 

there is a melt pond fraction-ice extent relationship, it is more likely to be a causal than when derived from other types of 

greenhouse gas forcing scenarios. 

We use a consistent time series of September minimum ice extent for 42 years (1979 to 2020) from the Special 

Sensor Microwave/Imager (SSM/I) and several other passive microwave instruments to compare with model results 

(Cavalieri et al., 1996). To validate the modelled melt pond fraction, we utilise the monthly Moderate Resolution Imaging 75 

Spectroradiometer (MODIS) satellite data products provided by Lee et al. (2020) and Rösel et al. (2012). Rösel et al. (2012) 

generated the multi-annual melt pond fraction product for the entire Arctic from the Level-3 MODIS surface reflectance 

using an artificial neural network. Lee et al. (2020) applied a multi-layer neural network and multinomial logistic regression 

to retrieve pan-Arctic binary melt pond fraction from the normalized band difference of MODIS reflectance. 

[Figure 1 near here] 80 

3 Results and Discussion 

3.1 Model Evaluation 

The simulated and observed sea ice extents are expected to differ from each other in obvious ways since the observed one is 

under the influence of a transient forcing from 1979 to 2020, while the simulated one assumes a time-invariant forcing. 

Nevertheless, we can evaluate the model output with basic metrics, such as the integrated sea ice extent to obtain a general 85 

idea of the model's ability to reproduce the observed state. Table 1 shows the mean state and variability of the observed 

September sea ice extent from 1979 to 2020 and the modelled sea ice extent for the selected years of EC-Earth3 simulation. 

Although it is difficult to compare outputs generated from different forcings, it is clear from Table 1 that the modelled mean 

(N = 105) is 12% of the observed mean (N = 42) and the minimum-maximum range is overestimated. The variability in the 

model output (constant forcing) is 23% higher than the observed variability (transient state) (Table 1). It may be because of 90 

unexplained factors beyond this research. 

[Table 1 near here] 
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The model outputs exhibit a distinct relationship between the integrated melt pond area fraction (per unit sea ice 

area) and September total sea ice extent (Fig. 1b). In the current context, our model results produced statistically significant 

relationships (Fig. 1b, discussed in Sect. 3.2).  95 

Figure 1d shows the evaluation of modelled melt pond fraction against the observed melt pond fraction using data 

provided by Lee et al. (2020) and Rösel et al. (2012). Monthly melt pond fraction data by Lee et al. (2020) are from 2000 to 

2019 and that by Rösel et al. (2012) from 2000 to 2011. Because all melt pond fraction data are monthly, it is difficult to get 

the exact date of melt pond onset in the model output and observations. However, the timing of the melt pond development 

is broadly consistent between the model and observations. Except for July, the model slightly underestimates the pond 100 

fraction, with an overall good correlation (Pearson’s r) of 0.85 (Lee) and 0.96 (Rösel) with the modelled pond fraction (Fig. 

1d). The melt pond results of our EC-Earth3 simulation are consistent with the melt pond observations for the period from 

2000 to 2019 based on various satellite data products and model results based on the ocean-sea ice model (NEMO3.6-LIM3) 

(Sterlin et al., 2021). 

 105 

3.2. Relationship between Sea Ice Extent and Melt Pond Fraction 

In the model results and observations, melt ponds appear in the Arctic in May and mostly disappear in September, reaching 

their peak towards the end of July (Liu et al., 2015) (Fig. 2a). The simulated melt pond fraction reaches its maximum during 

July with a mean value above 0.33, closely matching the observed values (Figs. 2a and 1d). The statistical relationship 

between the modelled September ice extent and simulated melt pond fraction is weak in May because of the small melt pond 110 

fraction but gets stronger and more significant as mid-summer approaches (Fig. 2b). 

[Figure 2 near here] 

Figure 3 shows the spatial distribution of correlation between the simulated mean melt pond area fraction 

(integrated from May through July) and the corresponding September sea ice extent. The magenta line represents the 

modelled mean September sea ice extent. The geographical distribution of grid points where correlation is statistically 115 

significant varies between Schröder et al. (2014), Liu et al. (2015) and our study. Schröder et al. found strong correlations in 

the Baffin Bay, the Canada Basin, the Amerasian Basin, and the Eurasian Basin [see Fig. 2a by Schröder et al. (2014)]. Liu 

et al. reported statistically significant correlations in the region between the Canada Basin and the central Arctic Ocean [see 

Fig. 2b by Liu et al. (2015)]. Our study shows the strongest correlations in the Fram Basin and Nansen Basin regions of the 

central Arctic Ocean [Fig. 3b, d, and f]. Figure 3 shows an increasing and varying correlation, starting from May through 120 

July. This disparity is likely because of systematic errors (biases) and a varying temporal gap between different model 

outputs; Schröder et al. used daily model output, Liu et al. (2015) used 8-day interval melt pond fraction observations, and 

our study relies on the monthly output of EC-Earth3. Liu et al. (2015) reported that satellite observations exhibit a much 

higher percentage of May melt pond fraction than does the forced model output given by Schröder et al. (2014). 
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A significant statistical relationship exists between the anomalies of the simulated September ice extent and the 125 

modelled integrated (May through July) melt pond fraction with Pearson’s correlation coefficient r = −0.76 for the selected 

years of simulation (Fig. 1b). It is clear from Fig. 1c that the observed mid-summer pond fraction anomaly (percentage) has a 

significant inverse correlation (Lee: r = −0.60, p-value = 0.006; Rösel: r = −0.73, p-value = 0.007) with the SSM/I 

September ice extent anomaly (percentage). This satellite-based strong negative statistical relationship between mid-summer 

melt pond fraction and September ice extent agrees with conclusions by Liu et al. (2015) and our model results confirm these 130 

observed relationships. Changing the frequency of the model output from monthly to daily may further improve the 

computed correlation. 

[Figure 3 near here] 

The results share several of the conclusions of Schröder et al. (2014) who predicted a relationship between 

September sea ice extent and the May melt pond area fraction in a stand-alone sea ice model. However, the results from our 135 

coupled model show a weaker relationship than in their study and support the conclusions made by Liu et al. (2015), who 

stated that the September ice extent strongly correlates with the mid-summer melt pond fraction, whereas the correlation in 

May is not as strong as it is in mid-summer. 

4 Conclusions 

This paper explored the relationship of September sea ice extent in the Arctic with mid-summer melt pond area fraction, 140 

under the constant greenhouse gas forcing for the fix-year 2000 CE. Under the assumption that the model attained stability in 

the run (see Sect. 2 for details), we find a statistically significant inverse relationship between September sea ice extent and 

integrated (May through July) melt pond fraction on the seasonal scale. Our results support the satellite-based inferences 

made by Liu et al. (2015) and Feng et al. (2022) that the mid-summer (June-July) pond fraction highly correlates with the 

September sea ice extent suggesting limited predictability stemming from this variable at a 5-month lead time. 145 

The work presented here cross-verified the degree of predictive skill of a stand-alone sea ice model forced with 

atmospheric reanalysis data for predicting September sea ice extent from melt pond area fraction (Schröder et al., 2014). 

Based on our findings, it is worthwhile to deduce that the degree of predictive skill may increase if mid-summer replaces the 

early spring (May) melt pond fraction. 

Code Availability 150 

Selected codes may be available upon request. 
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Data Availability 

Model simulation data are available upon request. Melt pond observations data are available at https://www.cen.uni-

hamburg.de/ and http://www.cpom.ucl.ac.uk/melt_pond/. SSM/I sea ice extent data are available at 

https://doi.org/10.5067/8GQ8LZQVL0VL.  155 
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List of Figure Captions 

Figure 1: (a) Time series of September total sea ice extent and integrated (May through July) melt pond area fraction for a 

200-year simulation using EC-Earth3. The vertical black line in the center represents the 95th year of simulation which 260 

corresponds to the beginning of the period analyzed in this paper. (b) Scatterplot and regression values between de-trended 

ice extent anomaly and de-trended melt pond fraction anomaly for the model. (c) Scatterplot and regression values between 

the observed de-trended ice extent anomaly (SSM/I) and the observed de-trended pond fraction anomaly (Lee et al., 2020 [N 

= 19], and Rösel et al., 2012 [N = 12]), and (d) a comparison of the modelled and observed temporal evolutions of the melt 

pond fraction. 265 

 

Figure 2: (a) Time series of the modelled melt pond area fraction for May, June, July, and August. (b) Pearson’s r (with 

95% and 99% confidence intervals) between the de-trended time series of the simulated melt pond fraction (integration 

period from May to August) and modelled September sea ice extent (N = 105). 

 270 

Figure 3: (Left column: a, c, and e) Spatial distribution of mean melt pond area fraction (May through July) from a 105-year 

simulation conducted with EC-Earth3. (Right column: b, d, and f) Corresponding spatial distribution of correlation between 

melt pond fraction and de-trended September ice extent (Pearson’s r < 0) for the selected years of simulation (see Fig. 1a). 

The magenta line is the mean of modelled September sea ice extent. 

275 
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Table 1: Comparison of mean state and variability of SSM/I September sea ice extent (1979 to 2020) and September ice 

extent for the last 105 years of EC-Earth3 simulation. 

 

 

Metric 

SSM/I 

September sea ice extent 

 

(1979 to 2020) 

(106 km2) 

 

EC-Earth3 

September sea ice extent 

 

(105 years of simulation) 

(106 km2) 

Mean 5.09 4.47 

Minimum 3.57 1.93 

Maximum 6.73 7.25 

Standard deviation 0.82 1.06 
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 280 

 

Figure 1: (a) Time series of September total sea ice extent and integrated (May through July) melt pond area fraction for a 200-

year simulation using EC-Earth3. The vertical black line in the center represents the 95th year of simulation which corresponds to 

the beginning of the period analyzed in this paper. (b) Scatterplot and regression values between de-trended ice extent anomaly 

and de-trended melt pond fraction anomaly for the model. (c) Scatterplot and regression values between the observed de-trended 285 

ice extent anomaly (SSM/I) and the observed de-trended pond fraction anomaly (Lee et al., 2020 [N = 19], and Rösel et al., 2012 [N 

= 12]), and (d) a comparison of the modelled and observed temporal evolutions of the melt pond fraction. 
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 290 

 

Figure 2: (a) Time series of the modelled melt pond area fraction for May, June, July, and August. (b) Pearson’s r (with 95% and 

99% confidence intervals) between the de-trended time series of the simulated melt pond fraction (integration period from May to 

August) and modelled September sea ice extent (N = 105). 
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Figure 3: (Left column: a, c, and e) Spatial distribution of mean melt pond area fraction (May through July) from a 105-year 

simulation conducted with EC-Earth3. (Right column: b, d, and f) Corresponding spatial distribution of correlation between melt 

pond fraction and de-trended September ice extent (Pearson’s r < 0) for the selected years of simulation (see Fig. 1a). The magenta 300 
line is the mean of modelled September sea ice extent. 
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