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Abstract. Firn density plays a crucial role in assessing the surface mass balance of the Antarctic ice sheet. However, our un-

derstanding of the spatial and temporal variations in firn density is limited due to i) spatial and temporal limitations of in situ

measurements, ii) potential modelling uncertainties, and iii) lack of firn density products driven by satellite remote sensing

data. To address this gap, this paper explores the potential of satellite microwave radiometer (SMISS) and scatterometer (AS-

CAT) observations for assessing spatial and temporal dynamics of dry firn density over the Antarctic ice sheet. Our analysis5

demonstrates a clear relation between density anomalies at a depth of 4 cm and fluctuations in satellite observations. How-

ever, a linear relationship with individual satellite observations is insufficient to explain the spatial and temporal variation of

snow density. Hence, we investigate the potential of a non-linear Random Forest (RF) machine learning approach trained on

radiometer and scatterometer data to derive the spatial and temporal variations in dry firn density. In the estimation process,

ten years of SSMIS observations (brightness temperature), ASCAT observations (backscatter intensity), and polarisation and10

frequency ratios derived from SSMIS observations are used as input features to a random forest (RF) regressor. The regressor

is first trained on time series of modelled density and satellite observations at randomly sampled pixels, and then applied to

estimate densities in dry firn areas across Antarctica. The RF results reveal a strong agreement between the spatial patterns

estimated by the RF regressor and the modelled densities. The estimated densities exhibit an error of ±10 kg m−3 in the

interior of the ice sheet and ±20 kg m−3 towards the ocean.However, the temporal patterns show some discrepancies, as the15

RF regressor tends to overestimate summer densities, except for high-elevation regions in East Antarctica and specific areas

in West Antarctica. These errors may be attributed to underestimations of short-term (or seasonal) variations in the modelled

density and the limitation of RF in extrapolating values outside the training data. Overall, our study presents a potential method

for estimating unknown Antarctic firn densities using known densities and satellite parameters.

1 Introduction20

Assessing firn properties of the Antarctic ice sheet is important for understanding the global climate system. For example,

firn density, one of the commonly assessed firn properties, plays a key role in understanding the surface mass balance of the

ice sheets (Kuipers Munneke et al., 2015) as it contributes to the interpretation of satellite altimetry measurements (Zwally

et al., 2005; Schröder et al., 2019). In Antarctica, firn density is highly variable in space and time due to the varying surface
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climate conditions (Craven and Allison, 1998; Li and Zwally, 2004; van den Broeke, 2008; Fujita et al., 2016). Therefore, it is25

necessary to continuously monitor firn density in Antarctica.

A variety of methods has been developed to assess firn density variations. In situ measurements from firn cores, snow pits

and local near-infrared pictures are precious for accurately understanding firn densities (Macelloni et al., 2007; Picard et al.,

2012; Champollion et al., 2013). However, these measurements are sparse in both space and time due to cost-efficiency consid-

erations, making them insufficient for comprehensive monitoring requirements. In the absence of in situ data, firn densification30

models (FDMs), such as the semi-empirical IMAU-FDM (Ligtenberg et al., 2011; Veldhuijsen et al., 2023) are commonly

utilised to estimate firn density and subsequent elevation changes (Schröder et al., 2019). Nonetheless, FDMs suffer from sig-

nificant uncertainties (Verjans et al., 2020). For instance, the relationship between wind velocity and density, as derived by

Sugiyama et al. (2012) and van den Broeke et al. (1999) exhibits notable discrepancies, introducing uncertainties when param-

eterising the effects of wind. Therefore, to obtain spatially and temporally continuous assessments of changes in firn densities,35

satellite remote sensing serves as an important complementary method (Picard et al., 2007; Brucker et al., 2014; Meredith

et al., 2019). While numerous studies have investigated these assessments, they have identified intricate relationships between

remote sensing observations and firn density, making it challenging to generalise remote sensing models. Consequently, a

satellite-based firn density product remains elusive.

Among satellite remote sensing techniques, radiometers are a primary tool used for studying firn properties, offering various40

frequencies and polarisations that facilitate assessments of different firn properties at different depths (Picard et al., 2007, 2012;

Champollion et al., 2013; Brucker et al., 2014). Radiometers measure the thermal radiation emitted by the ground surface and

subsurface within the range of microwave penetration (Picard et al., 2007). The observed parameter is referred to as brightness

temperature (TB), which has been typically used to derive Antarctic surface melting extent by detecting the sharp increase in

emissivity and hence TB (Picard et al., 2007; Tedesco, 2009; Nicolas et al., 2017; de Roda Husman et al., 2022). However,45

studies show that TB can also be used to assess firn densities. For example, Champollion et al. (2013) used the temporal

variation of polarisation ratio (horizontal/vertical) of TB at 19 GHz and 37 GHz to evaluate the density changes of firn induced

by hoar-crystal formation and disappearance. Alternatively, Tran et al. (2008) classified seven firn facies over Antarctica using

a combination of TB , a specific ratio defined by TB at 23.8 GHz and 36.5 GHz, and Ku- and S-band altimeters. They attributed

the different facies to varying surface roughness or firn grain size driven by differences in climate parameters such as wind50

patterns, firn accumulation, and temperature, which are known to influence firn density (Lehning et al., 2002; Champollion

et al., 2013).

Alternatively, active microwave observations, specifically radar scatterometer and synthetic aperture radar (SAR), have been

used to assess firn properties. The backscatter intensity (σ0) is a common parameter measured by both scatterometer and SAR.

Numerous studies have been performed to link the spatial or temporal variation of σ0 to variations of certain firn properties.55

Fraser et al. (2016) analysed the drivers of spatial variation of σ0 using C-band scatterometer in dry firn zones of Antarctica.

Their study concluded that (i) the seasonal variation of σ0 is primarily driven by precipitation and firn temperature, and (ii)

σ0 exhibits a high correlation with long-term precipitation, whereas densities do not play a dominant role. On the other hand,

Rizzoli et al. (2017) exploited interferometric acquisitions of X-band SAR σ0 from TanDEM-X, using the combination of
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σ0 and a volume correlation factor to classify Greenland into four firn facies. The firn facies classified by this study can be60

attributed to different melt extents.

The aforementioned studies highlight the capability of various passive and active satellite observations, either individually

or in combination, to evaluate spatial and temporal patterns of firn density. However, the precise mechanisms underlying the

interaction between firn densities and satellite observations cannot always be fully understood (Champollion et al., 2013; Fraser

et al., 2016; Rizzoli et al., 2017). In addition, previous studies using satellite observations to assess firn properties are either65

restricted to a specific location where in situ measurements are available (Champollion et al., 2013) or to a specific time period.

Generalisation of these techniques to other areas or time periods therefore requires further assessment (Tran et al., 2008;

Fraser et al., 2016; Nicolas et al., 2017; Rizzoli et al., 2017). Hence, it is crucial to identify suitable combinations of satellite

observables and data fusion methods that enable the assessment of firn density across extensive regions and multiple seasons,

eliminating the necessity for frequent local calibration.70

Consequently, the objective of this paper is to assess the feasibility of combining radiometer and scatterometer remote

sensing data to assess Antarctica-wide dry firn density. To achieve this, we conduct a three-fold experiment involving the

comparison of time series data from Special Sensor Microwave Imager/Sounder (SSMIS) and Advanced Scatterometer (AS-

CAT) satellites with in situ firn density measurements (SUMup) and the output of a semi-empirical firn densification model

(IMAU-FDM). In the first experiment, we juxtapose the satellite time series with the output of IMAU-FDM to evaluate the75

potential of individual satellite parameters in linearly explaining density variations. The second experiment involves clustering

analysis on the combined SSMIS and ASCAT satellite data to identify spatial and temporal patterns of satellite observations

and compare them with IMAU-FDM patterns. Finally, we assess the potential of a non-linear Random Forest (RF) machine

learning approach (Breiman, 1996, 2001) trained on SSMIS and ASCAT data to derive spatial and temporal variations in dry

firn density.80

2 Data

In this study, we evaluate the potential of satellite microwave radiometer (SMISS) and scatterometer (ASCAT) observations

in assessing the spatial and temporal dynamics of dry firn density across the Antarctic ice sheet. We focus on the grounded

Antarctic ice sheet only, where wet firn and melting that potentially affect the satellite microwave observations are less pro-

nounced (Lenaerts et al., 2016; Kingslake et al., 2017; Spergel et al., 2021; Li et al., 2021; de Roda Husman et al., 2022). To85

account for this, we mask out all satellite observations over the ice shelves using the grounding line defined by Depoorter et al.

(2013).

2.1 Radiometer data

Time series of brightness temperature (TB) from the Special Sensor Microwave Imager/Sounder (SSMIS) sensors are used in

this study as they are widely used to assess variations in firn properties (Tedesco and Kim, 2006; Tran et al., 2008; Brucker et al.,90

2010). The available measurement channels include vertically and horizontally polarised 19 GHz, 37 GHz and 91.655 GHz,
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and vertically polarised 22 GHz (Kunkee et al., 2008). However, for the purposes of this study, our focus is solely on the

19 GHz and 37 GHz channels, since the atmospheric influence is negligible at these frequencies (Picard et al., 2009; Brucker

et al., 2011; Champollion et al., 2013). Theoretically, the penetration depths are 1–7 m (at 19 GHz) and 0.1–2 m (at 37 GHz) in

Antarctica (Surdyk, 2002; Brucker et al., 2010). These characteristics ensure the possibility for SSMIS at 19 GHz and 37 GHz95

to monitor the changes of firn properties. The daily polar-gridded TB data are acquired from the National firn and Ice Data

Center (NSIDC) with a spatial resolution of 25 km for both the 19 GHz and 37 GHz channels (Meier et al., 2021). All data

are acquired by the F17 sensor as it provides continuous daily data acquisition in the period between Jan. 1, 2011 and Dec. 31,

2020.

Besides the 19 GHz and 37 GHz TB time series, we also derive the polarisation ratio and gradient ratio as they have been100

found to be associated with firn properties (Tran et al., 2008; Champollion et al., 2013). The polarisation ratio PR(f) and

gradient ratio FR(p) are defined as

PR(f) =
TB(f,V)
TB(f,H)

(1)

FR(p) =
TB(19 GHz,p)
TB(37 GHz,p)

(2)105

where f corresponds to the 19 GHz or 37 GHz frequencies, respectively, and p corresponds to the different horizontal (H) an

vertical (V) polarisations, respectively. It is important to note that we define PR(f) inversely to Champollion et al. (2013),

who took the ratio of H over V. Therefore, in regions with possible hoar crystals which correspond to a low density, our PR(f)

is expected to decrease instead of increase.

2.2 Scatterometer data110

Backscatter intensity (σ0) from synthetic aperture radar (SAR) was also previously used to assess density variations due to

the melting–refreezing process of certain firn types (Rizzoli et al., 2017) and to examine variations in firn facies (Fahnestock

et al., 1993). In this study, we employ time series of σ0 from the Advanced Scatterometer (ASCAT) satellite sensor as an

alternative to SAR σ0, primarily due to its high temporal resolution (daily) and its coverage over the entire Antarctica. ASCAT

is an operational C-band (5.255 GHz) fan-beam scatterometer (Figa-Saldaña et al., 2002; Fraser et al., 2016) that has been115

in operation on Metop satellites since 2006. It operates in V polarization and covers multiple incidence angles. For dry firn,

penetration depth of C-band ASCAT is approximately 20 m (Rignot, 2002; Fraser et al., 2016). The ASCAT products used in

this study are obtained from Brigham Young University (BYU) Microwave Earth Remote Sensing (MERS) laboratory (2010)

(Long et al., 1993; Early and Long, 2001; Lindsley and Long, 2010). The data are processed using the scatterometer image

reconstruction (SIR) algorithm, which enhances the spatial resolution of images from 25 km to 4.45 km. The processing of the120

products accounts for the incidence angle dependence of σ0, as the measurements are made over multiple incidence angles.

The σ0 is approximated as a linear function of incidence angle θ in ◦ (Long and Drinkwater, 2000):

σ0(θ) =A+B(θ− 40◦) (3)
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whereA (in dB) is the σ0 normalised to 40◦, andB (in dB/◦) is a parameter describing the dependence of σ0 on θ. In this study,

we only use the isotropic, normalised A parameter (hereafter σ0) as it has been shown to better correlate with various climate125

parameters (Fraser et al., 2016). To ensure consistent analysis between TB and σ0, the BYU σ0 products are interpolated to the

same polar grids as the SSMIS TB products. The data acquisition time is the same as that of the radiometer data.

2.3 Densities from Firn Densification Model

To understand the spatio-temporal variation in satellite data, we compare the SMISS and ASCAT satellite data to the output of a

semi-empirical firn densification model. Therefore, we use output from the latest version of the IMAU Firn Densification Model130

(IMAU-FDM v1.2A; Veldhuijsen et al. (2023)). IMAU-FDM simulates the transient evolution of the Antarctic firn column,

and is forced at the upper boundary by outputs of the regional atmospheric climate model RACMO2.3p2 (van Wessem et al.,

2018). The density of the freshly fallen snow is a function of instantaneous wind speed and temperature in IMAU-FDM. Over

time, the simulated firn layers become denser due to dry-snow densification and meltwater refreezing.

For the comparison with satellite observations, we focus on the density of the top 4 cm (ρ4cm) and the top 1 m (ρ1m) from135

the model output. We also use ρ4cm for density estimation using the random forest (RF) regressor. The choice of the 4 cm

depth is based on the fact that many in situ measurements used for evaluating the density estimations have been acquired at

approximately this depth. The selection of the 1 m depth serves as a compromise between the expected penetration depths at

19 GHz and 37 GHz.

The unrealistically large values in ρ4cm (more than 1000 kg m−3) are treated as invalid. The firn data from the model are140

provided at a temporal resolution of 10 days and have a spatial resolution of 27 km. To facilitate comparison with the satellite

products, the firn data are reprojected to the same polar grids as the satellite data.

2.4 Reference in situ density measurements

Furthermore, we employ in situ density measurements obtained from the Surface Mass Balance and Snow on Sea Ice Working

Group (SUMup) dataset (Koenig and Montgomery, 2018; Montgomery et al., 2018) as a reference for spatial evaluation of145

the satellite data and the RF regressor. For each date of measurement at each location, density measurements at the smallest

mid-point depths are used. Such depths are also restricted to < 1 m. The measurements within the depth restriction were taken

between Jan. 22, 1984 and Jan. 23, 2017, and consist of 124 points. The SUMup dataset does not contain time series, but

only single measurements on specific dates. Therefore, we use the SUMup dataset only for spatial evaluation of the potential

uncertainties from both the IMAU-FDM densities and the densities estimated by the RF regressor.150

In addition to the spatial evaluation, a temporal comparison between the IMAU-FDM densities and in situ densities can be

performed at Dome C using the dataset from Leduc-Leballeur et al. (2017) available at Leduc-Leballeur et al. (2021). The

measurements were taken between Oct. 7, 2014 and Jun. 1, 2015 at the depth of 0− 2 cm. The discrete measurements are

interpolated to create a continuous time series for visual analysis.
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2.5 ERA5 climate parameters155

To assess the difference between the measured, modelled and estimated densities, it is important to understand the effects of

climate conditions. Therefore, we use ERA5 wind speed and surface temperature estimated at midday (Copernicus Climate

Change Service, 2019) as an approximation of the daily weather conditions. By incorporating this information, we aim to better

interpret the discrepancies between the observed and modeled densities, as well as the discrepancies between the modeled

densities and the densities estimated from satellite observations.The ERA5 wind speed and surface temperature data have a160

horizontal resolution of 9 km. Similarly to the IMAU-FDM data, we interpolate these climate variables to the same polar grids

as the SSMIS data to ensure consistency in the analysis.

3 Method

We asses the potential of SSMIS and ASCAT satellite observations to assess dry firn density in a three-fold experiment. First,

we compare the satellite time series with the output of IMAU-FDM to evaluate the potential of individual satellite parameters to165

linearly explain density variations (Section 3.1). Second, we perform clustering analysis on the combined SSMIS and ASCAT

observations to identify spatio-temporal patterns of satellite observations. These patterns are then compared with the patterns

obtained from IMAU-FDM, and dry-snow zones are determined (Section 3.2). Finally, we quantify the potential of a non-linear

Random Forest (RF) machine learning approach trained on SSMIS and ASCAT observations to derive the spatial and temporal

variations in dry firn density (Section 3.3).170

3.1 Calculation of correlation between satellite parameters and firn density

To gain a general understanding of the spatial patterns of the satellite parameters and densities from IMAU-FDM, we calculate

and visualise the map of TB , σ0, PR(f), FR(p) and 4 cm and 1 m firn densities (ρ4cm and ρ1m) averaged between Jan. 1 2011

and Dec. 31 2020. Then, to observe the temporal correlation between the satellite parameters and the IMAU-FDM densities,

for each pixel, the correlation coefficient between different satellite parameters and the firn density (at 4 cm for simplification)175

over time is calculated and visualised. To ensure consistent temporal resolution for the analysis, the satellite parameters are

downsampled from daily resolution to 10-day resolution to match the temporal resolution of the IMAU-FDM densities.

3.2 Characterisation of firn types using time series of microwave observations

Spatial clustering of satellite observations (e.g. TB and σ0) and products derived from satellite observations (e.g. ratio of TB

used by Tran et al. (2008) and volume decorrelation used by Rizzoli et al. (2017)) is typically performed to characterise firn180

facies for further interpretation of spatio-temporal variations of firn properties, when in situ measurements are not sufficient

to perform a supervised classification (Tran et al., 2008; Rizzoli et al., 2017). In our study, the spatial clustering of satellite

observations is primarily carried out as a preparatory step aiming at ensuring that all the representative regions, i.e. the regions

with distinctive satellite data patterns, are correctly accounted for into the model training procedure. By performing spatial
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clustering, we aim to capture the diversity of satellite data patterns and incorporate them into the subsequent analysis. This step185

facilitates a comprehensive understanding of the spatio-temporal variations of firn properties based on the available satellite

observations. To estimate the density between Jan. 1 2011 and Dec. 31 2020 using the RF regressor, pixels with melt events

should be ruled out, as meltwater contents largely affect TB and σ0 (Fahnestock et al., 1993; Brucker et al., 2010), rendering

density estimations invalid in such cases. We anticipate that clustering the time series of satellite observations will effectively

distinguish melting pixels from those that do not experience melt. By identifying and excluding melt-affected pixels, we can190

ensure the validity of density estimations using the RF regressor. Furthermore, to ensure that the RF regressor captures the

characteristics of different dry snow types, we select training samples based on the identified dry snow types. This approach

allows for the representation of various snow types within the training dataset, enhancing the ability of the RF regressor to

estimate density accurately across different snow types.

Since TB is strongly dependent on seasonal variations of firn temperature, the average seasonal signal is removed in the195

clustering process to obtain time series anomalies that reflect the variations of other properties. In addition, although σ0 may

not have such large dependence on firn temperature as TB , we use its time series anomalies to maintain consistency with TB .

The time series anomalies are calculated by taking the ten-year average of TB or σ0 for each day in a year, defined as TB and

σ0, and subtracting this averaged time series from the absolute observations for each year, leading to TBanom = TB −TB and

σ0
anom = σB −σ0.The time series anomalies of TBanom and σ0

anom are then normalised and stacked for clustering.200

The adopted clustering solution is a simple hierarchical algorithm (Ward, 1963) which uses the TBanom and σ0anom time

series as input. For pre-processing, we remove outliers in the time series per pixel by defining an interval of three standard

deviations above and below average. Then, the temporal gaps are filled with a linear interpolation. The clustering algorithm

requires the number of clusters as input, which should be based on a selected threshold of the ‘distance’ between pixels. The

distance is calculated as the variance between the parameters of different pixels. The threshold can be determined based on a205

dendrogram where each branch of the clustering algorithm represents pixels that have the smallest distance between each other.

The number of clusters is then defined based on the criteria that ensures a sufficient number of clusters and sufficient spacing

between the higher and lower hierarchies. After visual inspection of the dendrogram and experiment with 5, 6, and 7 clusters,

we select 7 clusters as the optimal clustering for the active and passive microwave satellite time series of the Antarctic ice sheet.

Following the clustering process, we visualise the mean, 20th percentile, and 80th percentile of different satellite parameters,210

together with the IMAU-FDM density for each cluster. This allows a comparison of the changes in satellite observations with

density variations across the clusters.

3.3 Deriving firn densities using satellite parameters and random forest regressor

Given the complex and often non-linear relationships between satellite observations and firn density (Fraser et al., 2016), a

non-linear regression model based on machine learning is explored to relate the satellite time series to firn density. The method215

relies on a certain amount of known density measurements as the training dataset, and on the continuous satellite parameters as

the trained features. We opt for a random forest regressor as machine learning model (RF regressor hereafter), as it can avoid
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overfitting or underfitting by hyperparameter tuning, and can facilitate the interpretation of results by providing the importance

of features.

Ideally, in situ measurements should be used as the training dataset. However, in situ measurements are often single measure-220

ments that lack temporally continuous observations. As our goal is to relate the satellite time series to assess spatio-temporal

variations in firn density, we adopt an alternative approach that uses the output of IMAU-FDM as training data instead of relying

on in situ data. Although this approach has the disadvantage of training the RF regressor on a noisy IMAU-FDM dataset, which

may exhibit spatial and temporal differences compared to actual in situ densities (e.g., biases between the model and in situ

observations), we leverage the strengths of random forest regression for pattern recognition in noisy datasets. The use of multi-225

ple decision trees and random feature selection can reduce the variance of the model and prevent overfitting, resulting in better

generalisation performance on noisy data. Additionally, the ability to estimate feature importance allows for identification of

relevant features, which can further improve performance on noisy data. Therefore, we expect that the RF regressor generalises

on the density estimations of IMAU-FDM, which is known to capture the spatial variation of in situ density measurements well

and the temporal variations reasonably well (Veldhuijsen et al., 2023).230

The training, testing, and implementation of the RF regressor involve three main steps:

– Training and Hyperparameter Tuning: a subset of IMAU-FDM densities (Subset I) is used as the training dataset in a 5-

fold cross-validation procedure. Multiple models are evaluated, representing different combinations of hyperparameters

defined for the RF regressor (see Table 1). The goal is to identify the configuration that achieves the best cross-validation

score, indicating the optimal set of hyperparameters for the RF regressor.235

– Testing and Model Evaluation: a different subset of IMAU-FDM densities (Subset II) is used as input to the RF regressor,

which has been trained on Subset I. The purpose of this step is to evaluate the performance of the model and assess the

accuracy of the RF density estimations. Additionally, it helps to determine the importance of satellite parameters in the

predictions of the regressor.

– Antarctica-wide Implementation: The satellite time series covering the entire study area are fed into the RF regressor,240

which has been trained on Subset I. This step aims to estimate densities across the entire Antarctic dry-firn region. The

output densities are then evaluated by comparing them to both the IMAU-FDM densities and the SUMup densities.

Both Subset I and Subset II consist of 100 randomly selected pixels from the non-melting pixels clustered in Section 3.2.

These pixels are chosen from the period between January 1, 2011, and December 31, 2020, resulting in 3,653 samples in total

for each pixel. The number of pixels selected from each cluster is proportional to the number of pixels in that cluster, ensuring245

representation from all clusters.
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Table 1. Hyperparameter range and optimal values used to specify the random forest (RF) model. None indicates that the maximum tree

depth is not restricted (i.e. all leaves at a node contain fewer samples than the minimum number of samples defined). All indicates that all

features are considered when searching for the best split.

Parameter Hyperparameter range Optimal hyperparame-

ter value

Number of trees 90, 100, 110 90

Maximum depth of the tree None, 6, 7, 8, 9 9

The minimum number of samples at a leaf node 1, 3, 5, 7, 9 5

The number of features to consider when searching for the best split 3, 4, 5, 6, 7, All 3

The RF regressor is implemented with the target variable ρ4cm and input features X defined as follows:

X = (TB(19V ), TB(19H), TB(37V ), TB(37H), σ0,

TBanom(19V ), TBanom(19H), TBanom(37V ), TBanom(37H), σ0
anom,

PR(19GHz), PR(37GHz), FR(V ), FR(H))

(4)

Within X , we include TB and σ0 to account for variations in temperature, precipitation and other potential climate parameters

that show a potential strong seasonality (e.g., Fraser et al., 2016), whereas the anomalies in TB , σ0, PR and FR are included250

to account for temporal and spatial variations relative to the seasonal cycle. Moreover, we exclude melting pixels from the

RF regressor as melt potentially disturbs the satellite parameters. To ensure consistent temporal resolution between the input

features and the target IMAU-FDM densities, the daily satellite parameters are also downsampled to the 10-day temporal

resolution of the IMAU-FDM firn density by selecting the corresponding acquisition date.

In the testing and evaluation step, we assess the performance of the optimal RF regressor. This is achieved by comparing the255

RF and IMAU-FDM densities of Subset II using scatterplots and standard evaluation metrics, i.e. the root mean square error

(RMSE) between the RF densities and the IMAU-FDM densities. The importance of satellite parameters in the RF regressor is

computed by calculating the Gini importance. Gini importance in RF regression is a measure of feature importance based on

the Gini impurity index. It measures how much each feature contributes to the reduction in variance of the model when that

feature is used for splitting the data. Features with higher Gini importance are considered more important for the predictive260

performance of the model (Archer and Kimes, 2008).

Finally, in the Antarctic-wide implementation, the optimal RF regressor is implemented to predict the spatial and temporal

variations in firn density. These predictions are then compared with IMAU-FDM and the SUMup densities. The spatial agree-

ment is assessed by comparing the temporal averages of the RF predictions, IMAU-FDM and SUMup by means of the RMSE.

The temporal agreement is assessed by the RMSE between the per-pixel time series of RF predictions and IMAU-FDM pre-265

dictions and the coefficient of determination (R2) of their linear fit. We also compare the spatial patterns of the RF-predicted

densities with the ERA5 climate parameters of surface temperature and wind velocity as these are potential drivers for spa-
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tial variation in firn density. Finally, we illustrate this temporal agreement by showing time series over eight random pixels

and Dome C (E in Fig. 3), where extensive studies have been performed (Champollion et al., 2013; Brucker et al., 2014;

Leduc-Leballeur et al., 2017).270

4 Results

4.1 Correlation between satellite parameters and firn density

Figure 1 displays the averaged maps of satellite parameters, ρ4cm and ρ1m. The figure shows that, although all satellite param-

eters reflect some of the spatial patterns of firn density, none of the parameters shows a spatially consistent relation with ρ4cm.

For example, in high-elevation regions of East Antarctica, firn densities, PR(f), and FR(p) show similar or reversed broad-275

scale spatial patterns. However, these patterns are not consistently observed in most coastal regions, along the Transantarctic

Mountains, and in cluster Firn 5 (Figure 3), where a significant melt event in 2016 affected the satellite observations (Nicolas

et al., 2017).

The lack of spatial and temporal consistency between satellite and density is also illustrated in Fig. 2, which shows the pixel-

wise temporal correlation of each satellite parameter with the 4 cm density in IMAU-FDM. All TB channels generally show280

a positive correlation with ρ4cm in East Antarctica, but a negative correlation in West Antarctica and many coastal regions.

Vertical polarisation TB shows higher correlations compared to horizontal polarisation. Contrary to the findings of Champollion

et al. (2013), PR(f) does not show a consistently positive correlation with ρ4cm, especially at the location of Dome C, where

the correlation coefficient between ρ4cm and PR(19GHz) is -0.25, and between ρ4cm and PR(37GHz) is -0.29. Most pixels

show a negative correlation between ρ4cm and FR(p), except for coastal regions that show positive correlation. Finally, the285

correlation between ρ4cm and σ0 is generally low, except for the Firn 5 region, where the correlation coefficient is up to 0.5.

Overall, this correlation analysis indicates that the relationship between satellite parameters and firn density is complex,

and simple linear relationships cannot adequately describe the IMAU-FDM density based on different satellite parameters.

Therefore, non-linear approaches such as the RF regressor should be employed to assess the potential of relating the IMAU-

FDM firn density to various satellite parameters.290

4.2 Firn-type clusters

Figure 3 shows the map of clusters derived from time series of the combined satellite parameters, where each cluster represents

a natural grouping of pixels with similar satellite time series behaviour. The map shows that four large clusters (referred to as

Firn 1–4) cover the dry firn interior of Antarctica. Firn 1–3 in East-Antarctica and Firn 4 in West-Antarctica. Firn 5 is a cluster

in West Antarctica close to Ross Sea which corresponds to the region that showed a strong melt event in Jan. 2016 (Nicolas295

et al., 2017) while Firn 6 and Firn 7 show small regions near the coastline in East- and West-Antarctica respectively that also

show clear melting signals.
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Figure 1. Temporally averaged map of (a) brightness temperature (TB) from 19 GHz vertical polarisation, (b) TB from 19 GHz horizontal

polarisation, (c) polarisation ratio from 19 GHz (PR(19 GHz)), (d) TB from 37 GHz vertical polarisation, (e) TB from 37 GHz horizontal

polarisation, (f) polarisation ratio from 37 GHz (PR(37GHz)), (g) frequency ratio from vertical polarisation (FR(V )), (h) frequency ratio

from vertical polarisation (FR(H)), (i) backscatter intensity (σ0), (j) 4 cm IMAU-FDM density (ρ4cm) and (k) 1 m IMAU-FDM density

(ρ1m). The coastline is from Depoorter et al. (2013).
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Figure 2. Map of temporal correlation calculated per pixel between 4 cm IMAU-FDM density and (a) brightness temperature (TB) from

19 GHz vertical polarisation, (b) TB from 19 GHz horizontal polarisation, (c) polarisation ratio from 19 GHz (PR(19GHz)), (d) TB from

37 GHz vertical polarisation, (e) TB from 37 GHz horizontal polarisation, (f) polarisation ratio from 37 GHz (PR(37GHz)), (g) frequency

ratio from vertical polarisation (FR(V )), (h) frequency ratio from vertical polarisation (FR(H)), and (i) backscatter intensity (σ0). The

coastline is from Depoorter et al. (2013).
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Figure 3. Clustering results from the combination of normalised TB and σ0 after removing the seasonal trend. Triangles show the locations

where temporal assessment per pixel is performed. The coastline is from Depoorter et al. (2013).

Figure 4 presents the time series of the mean and 20th–80th percentiles of each parameter for each cluster, (a)–(g) corre-

sponding to clusters 1–7, respectively. Clusters Firn 1–4 exhibit small and short-term variations in TBanom and σ0anom, with

fluctuations of approximately ±5 K and ±0.5 dB, respectively, while their PR(f) and FR(p) time series undergo regular and300

similar seasonal cycles. The differences between these clusters mainly arise from deviations in TBanom and, to a lesser ex-

tent, σ0anom. On the contrary, clusters Firn 5–7 all show large and abrupt variations in TBanom and σ0
anom, mainly as a result

of melt events (e.g., Nicolas et al., 2017) that drastically change absorption, emission and scattering of microwave radiation

and thus the TBanom and σ0
anom. The effects of these melt events are also evident in the time series of PR(f), FR(p), and the

IMAU-FDM densities, as the abrupt changes in firn density are associated with the occurrence of melt events. For example,305

this can be clearly seen in the time series of cluster Firn 5, where the melt event of 2016 shows a prolonged effect on the

σ0
anom time series due to the formation of a sub-surface refrozen high-density layer in IMAU-FDM. The high-density layer is

detected by the scatterometer with stronger snow penetrating capability. In IMAU-FDM, this high density layer appears both

in ρ4cm where it disappears after a year (and a new high density layer forms in 2017) and in ρ1m where the increase in den-

sity is apparent throughout multiple years. The comparison of all clusters highlights the dominant influence of melt events on310

TBanom and σ0
anom in the wet-firn pixels, whereas the dry-firn pixels exhibit a more pronounced seasonal variation in satellite

parameters. It is important to note that the wet firn clusters are not used in the following RF steps due to the complex impact

of the melt–refreeze cycle on satellite observations.
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Figure 4. Time series of mean (curves) and 20th–80th percentiles (shaded areas) of the clustering results in Fig. 3, (a)–(g) corresponding to

Snow facies 1–7. The visualised satellite observations are: time series anomalies of brightness temperature (TB) from 19 GHz and 37 GHz,

both horizontal and vertical polarisation (TBanom(19V ), TBanom(19H), TBanom(37V ) and TBanom(37H), respectively), polarisation ratio

from 19 GHz (PR(19GHz)) and 37 GHz (PR(37GHz)), frequency ratio from vertical polarisation (FR(V )) and horizontal polarisation

(FR(H)), time series anomalies of backscatter intensity (σ0
anom), and IMAU-FDM density at 4 cm (ρ4cm) and at 1 m (ρ1m) depths. The

colours of the curves correspond to the legends in (g).

4.3 Assessment of RF densities at sample pixels

Figure 5a presents the results of the RF regressor for estimating firn densities based on satellite parameters. It demonstrates315

that the non-linear multivariate approach of the RF regressor captures the spatial variations in IMAU-FDM density, exhibiting

a linear relationship between predictors and the predicted variable with a slope of 0.54. The RMSE is 18.89 kg m−3 and R2

is 0.49. Moreover, the RF regressor performs most ideally between approximately 330 kg m−3 and 360 kg m−3, whereas it

fails to capture the large densities as no RF estimate exceeds 410 kg m−3, which can be due to a well-known extrapolation

problem intrinsic to the RF regression (Hengl et al., 2018). The feature importance provided by Gini impurity index (Fig. 5b)320

shows the ranked importance of satellite parameters in the predictive performance of the model, indicating that the raw TB and

σ0 observations are more important than the PR and FR ratios or the anomalies in predicting the ρ4cm. The dominance of TB

is understandable as both TB and ρ4cm are dependent on firn temperature. This correlation is also clearly visible in Fig. 2. We

attribute the high importance of σ0 to the fact that it can be influenced by other parameters that have an impact on dry-snow
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Figure 5. (a) Density comparison between RF densities and IMAU-FDM densities at sample pixels referred to as Subset I, the colour of

the points showing the spatial density of points nearby; the colour bar is in logarithmic scale, and (b) feature importance of different input

satellite parameters.

scattering properties, such as wind and precipitation; the mechanism may not necessarily be linear, but rather complex (Fraser325

et al., 2016). Among the derived satellite observations (PR(f) and FR(p)), FR(V ) has the highest importance. The TB time

series anomalies overall show little importance, which can also be observed in Fig. 4, where the TB time series anomalies are

mainly high-frequency signals that do not correspond to changes in densities in dry-firn regions.

4.4 Spatial assessment of RF densities

In Figure 6, the temporally averaged RF density estimates and their differences relative to IMAU-FDM densities at the 4330

cm depth and SUMup in situ densities are presented. The comparison in Fig. 6c shows that temporally averaged RF density

estimations are in general larger than temporally averaged IMAU-FDM density in interior regions of Antarctica except for

megadune regions, whereas they are lower towards coastal regions. The RMSE between the IMAU-FDM and RF averages

(referred to as FDM-RF) is 17.61 kg m−3 and the mean FDM-RF difference is 3.19 kg m−3. Meanwhile, the comparison with

the SUMup densities shows that RF and IMAU-FDM densities have comparable error patterns. The RMSE of FDM-SUMup is335

57.96 kg m−3, and the mean of FDM-SUMup bias is 20.32 kg m−3; the RMSE of RF-SUMup is 64.43 kg m−3, and the mean

of RF-SUMup is 26.17 kg m−3. This shows a general overestimation and a large bias of both IMAU-FDM and the RF models

when validated with the SUMup measurements. In Fig. 6d, it can be observed that neither IMAU-FDM nor RF manages to

follow the large SUMup dynamics. This difference between models and in situ measurements can be attributed to the temporal

discrepancies between the measurements and the IMAU-FDM and satellite observations, and the IMAU-FDM model errors or340

uncertainties that can also be learned by the RF regressor.

Aided by Figure 7, we then analyse the temporal distribution of the offsets between the IMAU-FDM densities and the

RF densities in more depth. Figure 7a generally shows low RMSE between IMAU-FDM and RF densities in high-elevation
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Figure 6. (a)–(c) Map of (a) temporally averaged IMAU-FDM 4 cm densities, (b) temporally averaged RF densities, (c) difference between

averaged IMAU-FDM densities and RF densities (FDM −RF ). Difference between the modelled or estimated densities and the SUMup

densities are shown in scattered points in (a) and (b) as FDM-SUMup or RF-SUMup. (a) and (b) share the same colour bar, in which

blue–red shows the difference between the IMAU-FDM or RF densities and the SUMup densities (ρ4cm−SUMup), and green–blue shows

the IMAU-FDM or RF densities (ρ4cm). The coastline is from Depoorter et al. (2013). (d) shows the relationship between IMAU-FDM or

RF densities and SUMup densities. The sizes of the scattered points indicate the time difference between the SUMup measurements and

year 2020, and the colour bars show the difference in depth between IMAU-FDM or RF measurements (both fixed at 4 cm) and SUMup

measurements (dFDM − dSUMup and dRF − dSUMup, respectively).
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Figure 7. Map of (a) root mean square error (RMSE) between IMAU-FDM 4 cm densities and RF densities, (b) coefficient of determination

(R2) of the linear fit between IMAU-FDM 4 cm densities and RF densities, (c) the difference between the summer (Tsmr) and winter

temperature (Twnt) and (d) the difference between the summer (vsmr) and winter wind velocity (vwnt) from ERA5. The coastline is from

Depoorter et al. (2013).

regions of East Antarctica and part of West Antarctica. The errors increase towards the coastal regions. The low R2 values in

Fig. 6b indicate a low temporal agreement between IMAU-FDM and RF densities. High R2 values can mainly be observed in345

high-elevation regions of East Antarctica (except for megadune regions) and a part of West Antarctic Peninsula. The temporal

mismatch and low R2 between IMAU-FDM and RF may be in part due to the modelling errors of IMAU-FDM. The density

changes that are not modelled by the IMAU-FDM, but affect the satellite observations, are expected to degrade the quality of

the RF regressor. The satellite data might be affected by other climate parameters that are not included in the IMAU-FDM

model. By assessing the temporal agreement (mainly R2) with ERA5 parameters (Fig. 7c and d), we can learn that a high350

temporal correspondence is spatially correlated with both a high surface temperature difference (> 10K) between Antarctic

summer (Oct.–Mar.) and winter (Apr.–Sept.), as well as a small wind velocity difference (>−1.5 m s−1) between Antarctic

summer and winter.
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4.5 Temporal assessment of RF densities at random pixels

Figure 8. Comparison between time series of IMAU-FDM densities (in blue) and RF densities (in orange) at 9 randomly selected sample

points. Panels (a)–(i) correspond to A–I labelled in Fig.3. The RMSE and R2 between the IMAU-FDM densities and the RF densities are

shown above each figure.

In Figure 8, individual pixels from different clusters are inspected to understand the temporal differences between IMAU-355

FDM and RF densities. Pixels A–C are selected from cluster Firn 1, pixels D–F belong to Firn 2 (with E referring to Dome C),

pixels G and H are from Firn 3, and pixel I is from Firn 4. From the time series, it is apparent that the RF density estimates

generally exhibit a stronger and more consistent seasonal cycle compared to the IMAU-FDM densities, which display a less

consistent seasonal pattern with stronger inter-annual variations. This discrepancy explains the relatively low R2 values, as

only the pixels with similar seasonal cycles (e.g., panel I) exhibit a higher correlation between the two datasets.360

In Figure 9, a comparison is made between the IMAU-FDM and in situ density measurements at Dome C (pixel E). The

PR time series at both frequencies are also provided for comparison, as an increase in PR is theoretically correlated with

the formation and removal of the hoar layer, which is characterised by an increased density and a decrease in grain size.The

comparison reveals that as the in situ densities vary between approximately 140 kg m−3 and approximately 325 kg m−3,

the PR values from both frequencies quasi-concurrently vary by approximately 0.04. However, the concurrent IMAU-FDM365

18

https://doi.org/10.5194/egusphere-2023-1556
Preprint. Discussion started: 24 July 2023
c© Author(s) 2023. CC BY 4.0 License.



densities oscillate between 327 kg m−3 and 329 kg m−3, failing to capture the variation in the hoar layer observed in the

in situ densities and the PR time series. This discrepancy between the IMAU-FDM densities and satellite observations can

undermine the importance of the PR time series in the RF estimation and subsequently affect the temporal performance of the

RF regressor.

Figure 9. PR(f) (in blue, left axis) with IMAU-FDM densities (in orange, middle axis) and densities from Leduc-Leballeur et al. (2021)

(in yellow, right axis).

5 Discussion370

In this study, we developed a novel approach to estimate Antarctic firn densities using satellite radiometer and scatterometer

observations using a RF regressor and IMAU-FDM density outputs as reference data. Our findings reveal the complexity

of the relationship between satellite parameters and firn density, as well as the limitations of linear models in capturing this

relationship. The lack of a consistent linear relationship was evident in both the analysis of different satellite time series clusters

and the examination of the individual satellite parameters.375

To address the non-linear and complex nature of the relationship between satellite parameters and firn density, we employed

a random forest (RF) regressor model. This model allowed us to incorporate multiple input parameters and handle non-linear

relationships effectively. The implementation of the RF regressor successfully reproduced the spatial pattern of the IMAU-

FDM density, achieving a low root mean square error (RMSE) of 18.89 kg m−3. This highlights the potential of using satellite
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parameters to create a map of long-term mean densities, going beyond the simple reconstruction based on climate drivers as380

demonstrated by Fraser et al. (2016).

However, it is important to note some limitations and discrepancies in the RF density map. We observed a slight overes-

timation of densities in the interior of the Antarctic ice sheet, coupled with an underestimation towards the coastal regions,

when compared to the IMAU-FDM densities. This discrepancy may arise from the inability of the RF regressor to extrapolate

beyond the training data, leading to the restricted density range in the RF density map (maximum density of ≤ 410 kg m−3).385

Furthermore, when comparing the RF and IMAU-FDM densities with the in situ SUMup measurements, we found compara-

ble errors. Similar errors were reported by Keenan et al. (2021), who attributed them to local meteorological phenomena not

captured by climate models and possible measurement uncertainties. These factors, which are not explicitly accounted for in

the IMAU-FDM model or the RF regressor trained on that dataset, may contribute to the discrepancies observed.

While the RF regressor successfully captures the spatial variability of the long-term mean density, it falls short in accurately390

predicting the temporal variation in IMAU-FDM, particularly in coastal regions. The temporal discrepancies between the

RF regressor and IMAU-FDM can be attributed to the differences in seasonal patterns and the presence of complex climate

conditions near the ice shelves. Coastal regions, characterised by low temperature differences between summer and winter,

and large negative differences in wind velocity, exhibit larger temporal discrepancies. These findings suggest that IMAU-FDM

may not capture the seasonal cycle of fresh snow density in these regions with high wind speeds during winter and a relatively395

small seasonal temperature cycle. The simplicity of how the density of freshly fallen snow is calculated within IMAU-FDM,

assuming linear dependencies with wind speed and surface temperature (Veldhuijsen et al., 2023), fails to account for the

intricate processes involving crystal size, shape, and riming, which are influenced by temperature and wind speed conditions

(Judson and Doesken, 2000). The dependence of fresh snow density on wind speed may differ under various temperature

conditions, which contributes to the discrepancies observed.400

In summary, the RF regressor trained using IMAU-FDM and satellite parameters demonstrates promising results in capturing

the spatial pattern of firn density. However, it may not fully capture the temporal fluctuations of IMAU-FDM, primarily due

to the dominant influence of surface temperature (represented by TB) in the RF estimation. The effects of precipitation (e.g.,

represented by changes in σ0 Fraser et al., 2016), and wind velocity (e.g., respresented by PR(f) Champollion et al., 2013)

are therefore potentially compromised in the RF model. Additionally, the discrepancy between the meteorological forcing in405

the IMAU-FDM model and the actual meteorological phenomena can also play a role. The meteorological phenomena can

affect the satellite parameters, which in turn influence the RF results, but may not be reflected in the IMAU-FDM output.

Our approach of training the RF regressor on IMAU-FDM, which may exhibit spatial and temporal differences compared to

actual in situ densities, can therefore be considered a major shortcoming. This limitation should be taken into consideration

when interpreting the RF density estimations. Future research could benefit from incorporating more in situ measurements410

for training the RF regressor, which would improve the accuracy of the temporal density estimates. Additionally, exploring

alternative machine learning algorithms or ensemble approaches may further enhance the performance of density estimation

and capture the complex relationships between satellite observations and firn density.
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Despite the limitations and discrepancies observed, the RF density map generated in this study can serve as an important

intermediate step in translating satellite data into density estimations. It provides valuable insights into the discrepancy between415

firn models and satellite observations, shedding light on the complexities of the relationship between satellite parameters and

firn density. The RF regressor captures the long-term mean density pattern, offering a useful tool for investigating spatial

variations in firn density across Antarctica. However, it is essential to exercise caution when interpreting the temporal variations,

particularly in coastal regions with complex climate conditions.

Further improvements can be made to enhance the accuracy of the RF regressor in capturing the temporal variations of firn420

density. This could involve refining the training data and incorporating additional meteorological parameters that influence the

satellite observations. By better accounting for the effects of precipitation and wind velocity on the satellite parameters, the

RF regressor could potentially capture a more accurate representation of the temporal dynamics of firn density. Furthermore,

advancements in the parameterisation of fresh snow density within firn models, considering the complex processes driven by

temperature and wind speed conditions, could help bridge the gap between model predictions and satellite observations.425

6 Conclusions

In conclusion, this study demonstrates the potential of using multiple satellite observations to estimate Antarctic firn densities,

with the IMAU-FDM densities serving as a reference. Our findings highlight several key points. Firstly, while satellite obser-

vations exhibit spatial correlations with firn densities, a consistent linear relationship cannot be established. The correlations

between ρ4cm and satellite parameters, particularly TB and FR(p), indicate their potential influence on firn density variations.430

Secondly, the impact of firn melt and refreeze on satellite observations is significant. Temporal anomalies in satellite param-

eters can be adopted to differentiate between wet and dry firn regions. Clustering of satellite observation time series helps to

identify melt extents and assess the temporal correlation with densities at the cluster level. Notably, the scattering impact of

refrozen melt layers is reflected in prolonged elevated σ0 anomalies. However, in dry snow clusters, the correlation between

densities and satellite observations is not evident.435

Based on these complexities, a non-linear model, such as the random forest (RF) regressor, is necessary to capture the re-

lationship between firn densities and satellite observations. Our implementation of the RF regressor successfully reproduces

the spatial pattern of firn densities, exhibiting good agreement with IMAU-FDM and even outperforming it in certain locations

when compared with SUMup density measurements. However, the temporal simulation of densities by the RF regressor is

compromised. Individual pixel analyses reveal that the RF densities tend to overestimate densities in summer when they are in440

phase with IMAU-FDM densities. In coastal regions, where satellite signals with strong variability dominate, the RF densities

are not directly comparable to IMAU-FDM densities. These temporal discrepancies can be attributed to the simplifications

in the IMAU-FDM model, particularly in capturing wind and temperature dependencies that strongly influence satellite ob-

servations. Furthermore, limitations of the RF regressor, including the inability to extrapolate from the training dataset and

its strong dependency on brightness temperatures, result in a limited range of density estimation and primarily reflect surface445

temperatures.
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