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Abstract. Firn density plays a crucial role in assessing the surface mass balance of the Antarctic ice sheet. However, our un-

derstanding of the spatial and temporal variations in firn density is limited due to i) spatial and temporal limitations of in situ

measurements, ii) potential modelling uncertainties, and iii) lack of firn density products driven by satellite remote sensing

data. To address this gap, this paper explores the potential of satellite microwave radiometer (SMISS) and scatterometer (AS-

CAT) observations for assessing spatial and temporal dynamics of dry firn density over the Antarctic ice sheet. Our analysis5

demonstrates a clear relation between density anomalies at a depth of 40 cm and fluctuations in satellite observations. How-

ever, a linear relationship with individual satellite observations is insufficient to explain the spatial and temporal variation of

snow density. Hence, we investigate the potential of a non-linear Random Forest (RF) machine learning approach trained on

radiometer and scatterometer data to derive the spatial and temporal variations in dry firn density. In the estimation process,

ten years of SSMIS observations (brightness temperature) and ASCAT observations (backscatter intensity) are used as input10

features to a random forest (RF) regressor. The regressor is first trained on time series of modelled density and satellite obser-

vations at randomly sampled pixels, and then applied to estimate densities in dry firn areas across Antarctica. The RF results

reveal a strong agreement between the spatial patterns estimated by the RF regressor and the modelled densities. The esti-

mated densities exhibit an error of ±10 kg m−3 in the interior of the ice sheet and ±35 kg m−3 towards the ocean. However,

the temporal patterns show some discrepancies, as the RF regressor tends to overestimate summer densities, except for high-15

elevation regions in East Antarctica and specific areas in West Antarctica. These errors may be attributed to underestimations

of short-term or seasonal variations in the modelled density and the limitation of RF in extrapolating values outside the training

data. Overall, our study presents a potential method for estimating unknown Antarctic firn densities using known densities and

satellite parameters.

1 Introduction20

The accelerated loss of mass from the Antarctic Ice Sheet, a trend anticipated to persist in the coming decades and centuries,

underscores Antarctica’s pivotal role as a major source of uncertainty in projecting future sea level rise (Pattyn and Morlighem,

2020). Recognising the critical contribution to sea level rise uncertainty highlights the urgency of comprehending Antarctica’s

surface mass balance (SMB). A typical method to estimate SMB of the Antarctic ice sheet is to convert satellite altimetry height
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measurements into SMB (Zwally et al., 2005; Kuipers Munneke et al., 2015; Schröder et al., 2019) with the help of firn (an25

intermediate state between snow and glacial ice; van den Broeke, 2008; Amory et al., 2024) density. In Antarctica, firn density

is highly variable in space and time due to the varying surface climate conditions (Craven and Allison, 1998; Li and Zwally,

2004; van den Broeke, 2008; Fujita et al., 2016). Therefore, it is necessary to continuously monitor firn density in Antarctica.

A variety of methods has been developed to assess firn density. In situ measurements from firn cores, snow pits and local

near-infrared pictures are precious for accurately understanding firn densities; however, these measurements are sparse in both30

space and time due to cost-efficiency considerations, making them insufficient for comprehensive monitoring requirements

(Macelloni et al., 2007; Picard et al., 2012; Champollion et al., 2013). In the absence of in situ data, firn densification models

(FDMs), such as the semi-empirical IMAU-FDM (Ligtenberg et al., 2011; Veldhuijsen et al., 2023) are commonly utilised

to estimate firn density and subsequent elevation changes (Schröder et al., 2019). Nonetheless, FDMs suffer from significant

uncertainties (Verjans et al., 2020). For instance, the relationship between wind velocity and density, as derived by Sugiyama35

et al. (2012) and van den Broeke et al. (1999) exhibits notable discrepancies, introducing uncertainties when parametrising

the effects of wind. Therefore, to obtain spatially and temporally continuous assessments of changes in firn densities, satellite

remote sensing serves as an important complementary method (Picard et al., 2007; Brucker et al., 2014; Meredith et al.,

2019). While numerous studies have investigated these assessments, they have identified intricate relationships between remote

sensing observations and firn density, making it challenging to generalise remote sensing models. Consequently, a satellite-40

based firn density product remains elusive.

Among satellite remote sensing techniques, radiometers are a primary tool used for studying firn properties, offering various

frequencies and polarisations that facilitate assessments of different firn properties at different depths (Picard et al., 2007, 2012;

Champollion et al., 2013; Brucker et al., 2014; Amory et al., 2024). Radiometers measure the thermal radiation emitted by the

ground surface and subsurface within the range of microwave penetration (Picard et al., 2007) and typically have a spatial45

resolution of ∼ 25 km. The observed parameter is referred to as brightness temperature (TB), which has been typically used

to derive Antarctic surface melting extent by detecting the sharp increase in emissivity and hence TB (Picard et al., 2007;

Tedesco, 2009; Nicolas et al., 2017; de Roda Husman et al., 2022). However, studies show that TB can also be used to assess

firn densities. For example, Champollion et al. (2013) used the temporal variation of polarisation ratio of TB at 19 GHz

and 37 GHz to evaluate the density changes of firn induced by hoar-crystal formation and disappearance at Dome C (75.06◦ S,50

123.21◦ E, indicated in Fig. 2a). Alternatively, Tran et al. (2008) classified seven firn facies over Antarctica using a combination

of TB , a specific ratio defined by TB at 23.8 GHz and 36.5 GHz, and information from Ku- and S-band altimeters acquired

in 2004. They attributed the different facies to varying surface roughness or firn grain size driven by differences in climate

parameters such as wind patterns, firn accumulation, and temperature, which are known to influence firn density (Lehning

et al., 2002; Champollion et al., 2013).55

Alternatively, active microwave observations, specifically radar scatterometer and synthetic aperture radar (SAR) with spa-

tial resolutions of ∼ 25 km and up to ∼ 5 m, respectively, have been used to assess firn properties. The backscatter intensity

(σ0) is a common parameter measured by both scatterometer and SAR. Numerous studies have been performed to link the

spatial or temporal variation of σ0 to variations of certain firn properties. Fraser et al. (2016) analysed the drivers of spatial
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variation of C-band scatterometer� 0 acquired between 2007 and 2012 in dry �rn zones of Antarctica. Their study concluded60

that (i) the seasonal variation of� 0 is primarily driven by precipitation and �rn temperature cycles, and (ii)� 0 exhibits a high

correlation with long-term precipitation, which also affects long-term densities. On the other hand, Rizzoli et al. (2017) ex-

ploited interferometric acquisitions of X-band SAR� 0 from TanDEM-X, using the combination of� 0 and a volume correlation

factor to classify Greenland into four �rn facies with an unsupervised machine learning method. The �rn facies classi�ed by

this study can be attributed to different melt extents.65

The aforementioned studies indicate the capability of various passive and active satellite observations, either individually

or in combination, to evaluate spatial and temporal patterns of �rn density. However, the precise mechanisms underlying the

impact of �rn density on satellite observations cannot always be fully understood (Champollion et al., 2013; Fraser et al., 2016;

Rizzoli et al., 2017). In addition, previous studies using satellite observations to assess �rn properties are either restricted to a

speci�c location where in situ measurements are available (Champollion et al., 2013) or to a speci�c time period (Tran et al.,70

2008). Generalisation of these aforementioned approaches to other areas or time periods therefore requires further assessment.

Hence, it is crucial to identify suitable combinations of satellite observations and data fusion methods that enable the assessment

of �rn density across extensive regions and multiple seasons.

Consequently, the objective of this study is to propose and assess a methodology to derive �rn density and its spatial and

temporal variations over the Antarctic ice sheet based on daily satellite observations. To achieve this, we conduct a three-fold75

experiment involving the comparison of time series data from Special Sensor Microwave Imager/Sounder (SSMIS) and Ad-

vanced Scatterometer (ASCAT) satellites with the output of a semi-empirical �rn densi�cation model (IMAU-FDM). In the

�rst experiment, we juxtapose the satellite time series with the output of IMAU-FDM to evaluate the potential of individual

satellite parameters in linearly explaining density variations. The second experiment involves clustering analysis on the com-

bined SSMIS and ASCAT satellite data to identify spatial and temporal patterns of satellite observations and compare them80

with IMAU-FDM density patterns. Finally, we assess the potential of a non-linear Random Forest (RF) machine learning ap-

proach (Breiman, 1996, 2001) trained on SSMIS and ASCAT data to derive spatial and temporal variations in dry �rn density.

More speci�cally, assuming �rn densities in certain regions are known, this experiment aims to estimate �rn densities of the

unknown regions in space and time using a combination of satellite observations. Due to the currently limited availability of

in situ density measurements, however, our study uses part of the modelled IMAU-FDM densities as “known” densities to85

train the RF regressor. Finally, we evaluate our RF predictions with external reference data, i.e. available in situ �rn density

measurements (Surface Mass Balance and Snow on Sea Ice Working Group; SUMup) and ERA5 climate parameters.

2 Data

In this study, we evaluate the potential of satellite microwave radiometer (SMISS) and scatterometer (ASCAT) observations

in assessing the spatial and temporal dynamics of dry �rn density across the Antarctic ice sheet. We focus on the grounded90

Antarctic ice sheet only, where wet �rn and melting that potentially affect the satellite microwave observations are less pro-

nounced (Lenaerts et al., 2016; Kingslake et al., 2017; Spergel et al., 2021; Li et al., 2021; de Roda Husman et al., 2022). To
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account for this, we mask out all satellite observations over the ice shelves using the grounding line de�ned by Depoorter et al.

(2013).

2.1 Radiometer data95

Time series of brightness temperature (TB ) from the Special Sensor Microwave Imager/Sounder (SSMIS) sensors are used in

this study as they are widely used to assess variations in �rn properties (Tedesco and Kim, 2006; Tran et al., 2008; Brucker et al.,

2010). The available measurement channels include vertically and horizontally polarised19 GHz, 37 GHz and91:655GHz,

and vertically polarised22 GHz (Kunkee et al., 2008). However, for the purposes of this study, our focus is solely on the

19 GHz and37 GHz channels, since the atmospheric in�uence is negligible at these frequencies (Picard et al., 2009; Brucker100

et al., 2011; Champollion et al., 2013). Theoretically, the penetration depths are1–7 m (at19 GHz) and0:1–2 m (at37 GHz)

in dry snow zones of Antarctica (Surdyk, 2002; Brucker et al., 2010). With the presence of liquid water, the imaginary part

of snow permittivity increases, thereforeTB increases (Tedesco, 2007). However, the actual penetration depths can still vary

per region (Picard et al., 2009). These characteristics ensure the possibility for SSMIS at19 GHz and37 GHz to monitor the

changes of �rn properties at a variety of depths. The daily polar-griddedTB data are acquired from the National Snow and Ice105

Data Center (NSIDC) with a spatial resolution of25 km for both the19 GHz and37 GHz channels (Meier et al., 2021). All

data are acquired by the F17 sensor as it provides continuous daily data acquisition in the period between Jan. 1, 2011 and Dec.

31, 2020.

2.2 Scatterometer data

Backscatter intensity (� 0) from synthetic aperture radar (SAR) was also previously used to assess density variations due to the110

melting–refreezing process of certain �rn types (Rizzoli et al., 2017) and to examine variations in �rn facies (Fahnestock et al.,

1993). In this study, we employ time series of backscatter intensity from the Advanced Scatterometer (ASCAT) satellite sensor

as an alternative to SAR� 0, primarily due to its high temporal resolution (daily) and its coverage over the entire Antarctica.

ASCAT is an operational C-band (5:255GHz) fan-beam scatterometer (Figa-Saldaña et al., 2002; Fraser et al., 2016) that has

been in operation on Metop satellites since 2006. It operates in V polarisation and covers multiple incidence angles. For dry115

�rn, penetration depth of C-band ASCAT is approximately20 m (Rignot, 2002). However, the top1 m is most exposed to

atmospheric drivers, which also affect the variability of C-band microwave (Fraser et al., 2016). The ASCAT products used in

this study are obtained from Brigham Young University (BYU) Microwave Earth Remote Sensing (MERS) laboratory (2010)

(Long et al., 1993; Early and Long, 2001; Lindsley and Long, 2010). The data are processed using the scatterometer image

reconstruction (SIR) algorithm, which enhances the spatial resolution of images from25 km to 4:45 km. The backscattering120

product adopted in our study is referred to as theA product in Long and Drinkwater (2000):

� 0(� ) = A + B (� � 40� ) (1)

whereA (in dB) is the originally measured� 0 normalised to40� , andB (in dB=� ) is a parameter describing the dependence

of the original� 0 on � . The processing of Long and Drinkwater (2000) accounts for the incidence angle dependence of the
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originally measured� 0, as the measurements are made over multiple incidence angles (between20� and55� ). In this study,125

we only use the isotropic, normalisedA parameter (hereafter� 0
A ) as it has been shown to better correlate with various climate

parameters as well as the long-term �rn density (Fraser et al., 2016). In addition, the presence of liquid water can reduce the

volume scattering and increase the microwave absorption (Stiles and Ulaby, 1980); this should be taken care of and will be

elaborated in Sect. 3. To ensure consistent analysis betweenTB and� 0
A , the BYU� 0

A products are interpolated to the same polar

grids as the SSMISTB products using bi-linear interpolation. The data acquisition time is the same as that of the radiometer130

data.

2.3 Densities from Firn Densi�cation Model

To understand the spatio-temporal variation in satellite data, we compare the SMISS and ASCAT satellite data to the output

of a semi-empirical �rn densi�cation model. Therefore, we use output from the latest version of the IMAU Firn Densi�cation

Model (IMAU-FDM v1.2A; Veldhuijsen et al., 2023). IMAU-FDM simulates the transient evolution of the Antarctic �rn135

column, and is forced at the upper boundary by outputs of the Regional Atmospheric Climate Model (RACMO2.3p2) at a

27 km horizontal resolution (van Wessem et al., 2018) and with a temporal resolution of 10 days. The model employs up to

300 layers in total of3 to 15 cm thickness, which represent the �rn properties in a Lagrangian way. The output is resampled

to a regular grid with layers of4 cm. The density of the freshly fallen snow is a function of instantaneous wind speed and

temperature in IMAU-FDM. Over time, the simulated �rn layers become denser due to dry-snow densi�cation and meltwater140

refreezing.

To estimate at which depth the �rn density has impact on satellite microwave, we perform a correlation estimation between

satellite observation time series and IMAU-FDM density at different depths, as elaborated in Section 3.1. The unrealistically

large values in IMAU-FDM densities (more than917kg m� 3) are treated as invalid. To facilitate comparison with the satellite

products, the �rn density data from IMAU-FDM are re-projected using bi-linear interpolation to the same polar grids as the145

satellite data, where valid data are restricted to pixels within the Antarctica coastline provided by Depoorter et al. (2013).

2.4 Reference in situ density measurements

Furthermore, we employ in situ density measurements obtained from the SUMup dataset (Koenig and Montgomery, 2018;

Montgomery et al., 2018) as a reference for spatial evaluation of the satellite data and the RF regressor. SUMup provides

information on start-point, end-point and mid-point of measurements. We use the mid-point here to de�ne the depth of the150

reference data. For each date of measurement at each location, if multiple measurements are available, only the density mea-

surements at the shallowest mid-point depths are used. Such depths are also restricted to< 1 m. The measurements within the

depth restriction were taken between Jan. 22, 1984 and Jan. 23, 2017, and consist of 67 valid points. The SUMup dataset does

not contain time series, but only single measurements on speci�c irregular dates throughout the time period between 1984 and

2017. Therefore, we use the SUMup dataset only for spatial evaluation of the potential uncertainties from both the IMAU-FDM155

densities and the densities estimated by the RF regressor.
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2.5 ERA5 climate parameters

As mentioned in Sect. 1, IMAU-FDM can introduce discrepancies due to simpli�ed parametrisation (Verjans et al., 2020),

which can be propagated in the estimation process with the RF regressor. Therefore, to interpret the difference between the

measured (SUMup or Leduc-Leballeur et al. (2017) data), modelled (IMAU-FDM) and estimated (RF) densities, it is important160

to understand the effects of climate conditions. Therefore, we use ERA5 wind speed estimated at midday (Copernicus Climate

Change Service, 2019) as an approximation of the daily wind conditions. By incorporating this information, we aim to better

understand the discrepancies between the observed and IMAU-FDM densities, as well as the source of discrepancies between

the IMAU-FDM densities and the densities estimated from satellite observations with the RF regressor. The ERA5 wind speed

data have a horizontal resolution of9 km. Similarly to the IMAU-FDM data, we interpolate these climate variables to the same165

polar grids as the SSMIS data using bi-linear interpolation to ensure consistency in the analysis.

3 Method

We assess the potential of SSMIS and ASCAT satellite observations to assess dry �rn density in a three-fold experiment. First,

we compare the satellite time series with the output of IMAU-FDM to evaluate the potential of individual satellite parameters

to linearly explain density variations (Sect. 3.1). Second, we perform a clustering analysis on the combined SSMIS and ASCAT170

observations to identify spatio-temporal patterns of satellite observations. These patterns are then compared with the density

patterns obtained from IMAU-FDM, and dry-snow zones are determined (Sect. 3.2). Finally, we quantify the potential of a

non-linear Random Forest (RF) machine learning approach trained on SSMIS and ASCAT observations to derive the spatial

and temporal variations in dry �rn density (Sect. 3.3). For clarity, the content of Sect. 3.2 and Sect. 3.3 are summarised and

visualised as a �owchart in Fig. 1.175

3.1 Calculation of correlation between satellite parameters and �rn density

To gain a general understanding of the spatial patterns of the satellite parameters and densities from IMAU-FDM, we calculate

and visualise the map ofTB and� 0
A and the IMAU-FDM �rn density at a selected depth averaged between Jan. 1 2011 and

Dec. 31 2020 (shown in Appendix A). Then, to observe the temporal correlation between the satellite parameters and the

IMAU-FDM densities, for each pixel, the correlation coef�cient between different satellite parameters and the �rn density180

over time is calculated and visualised. To ensure consistent temporal resolution for the analysis, the satellite parameters are

downsampled from daily resolution to 10-day resolution to match the temporal resolution of the IMAU-FDM densities. Since

the scattering properties of microwave are affected by �rn properties along the penetration depth (Ulaby et al., 1996; Bingham

and Drinkwater, 2000; Arndt and Haas, 2019; Cartwright et al., 2022), this analysis utilises densities from a range of depths,

including12 cm,40 cm,1 m, 2 m, 5 m and10 m. The density of each depth is de�ned not as the speci�c density at the single185

depth, but the average density from the surface to this depth. Finally, the density at the depth where the best overall correlation

between satellite observations and density time series is adopted for the RF experiment.
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Figure 1. Overview �owchart of the data and method used in this study. The clustering process usesTBanom and� 0
Aanom as input to derive

dry snow zones over the Antarctic ice sheet. Then, pixels clustered as dry snow are included to estimate �rn density with the RF regressor.

Parameters used as features of the RF regressor are further elaborated in Sect. 3.3. Among the derived parameters, Antarctica dry zones,

Dataset I and Dataset II are selected proportionally based on the number of pixels per cluster.
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3.2 Characterisation of �rn types using time series of microwave observations

In our study, the clustering of satellite observations is primarily carried out as a preparatory step aiming at ensuring that all

the representative regions, i.e. the regions with distinctive satellite data patterns, are correctly accounted for in the RF model190

training procedure in Sect. 3.3. Moreover, we aim to rule out pixels where melt events can be observed, as the melt-induced

liquid water and ice-lens formation complicates the satellite measurements (Stiles and Ulaby, 1980; Brucker et al., 2010; Trusel

et al., 2012), rendering density estimations invalid in such cases. This step facilitates a comprehensive understanding of the

spatio-temporal variations of �rn properties based on the available satellite observations. We expect that clustering the time

series of satellite observations will effectively differentiate pixels experiencing melting from those unaffected. By identifying195

and excluding melt-affected pixels, we can ensure the validity of density estimations using the RF regressor described in

Sect. 3.3. Additionally, to enhance the ability of the RF regressor to capture the characteristics of various dry snow types, we

choose training samples based on the identi�ed dry snow types. This approach enables the representation of diverse snow types

in the training dataset, improving the accuracy of the RF regressor in estimating density across different snow types.

To cluster and distinguish the different snow types, we propose to use the anomalies inTB and� 0
A described as follows. Since200

TB is strongly dependent on seasonal variations of �rn temperature, the average seasonal signal is removed in the clustering

process to obtain time series anomalies that re�ect the variations of temporary events such as melt–refreeze (Nicolas et al.,

2017) and density or grain size variations (Picard et al., 2012; Champollion et al., 2013). We also derive the� 0
A anomalies due

to the impact from temperature seasonal cycles (Fraser et al., 2016). The time series anomalies are calculated by taking the

ten-year average ofTB or � 0
A for each day in a year, de�ned asTB and� 0

A , and subtracting this averaged time series from205

the absolute observations for each year, leading toTBanom = TB � TB and� 0
Aanom = � 0

A � � 0
A . The time series anomalies of

TBanom and� 0
Aanom are then normalised and stacked for clustering.

The adopted clustering solution is a simple hierarchical algorithm (Ward, 1963) which uses the normalised and stacked

TBanom and � 0
Aanom time series as input. For pre-processing, we remove outliers in theTBanom and � 0

Aanom time series

per pixel by de�ning an interval of three standard deviations above and below average. Then, the temporal gaps are �lled210

with a linear interpolation. The application of the clustering algorithm is illustrated with an example (Fig. 2). The clustering

process starts from all clusters each containing one pixel, and the clusters are then hierarchically grouped together based on

the similarity of features, which refers to the euclidean distance between the normalised and stackedTBanom and� 0
Aanom

time series of different pixels in our study (however only� 0
Aanom from January 14, 2016 is used in Fig. 2 for illustration).

The grouping process is typically represented by a dendrogram, as in Fig. 2b. Finally, the number of clusters is determined215

empirically; different numbers of clusters result in different outcomes, as in Fig. 2c–e. For our study where the normalised

and stackedTBanom and� 0
Aanom time series between 2011 and 2020 are used, we select 7 clusters as the optimal number of

clusters. To provide a brief overview of the clustering result, we visualise the time series of the mean, 20th percentile, and 80th

percentile of different satellite parameters, together with an IMAU-FDM density for each cluster in Appendix B. This allows a

comparison of the changes in satellite parameters with density variations across the clusters and an assessment of the reliability220

of our study to distinguish melt zones from dry ones.
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Figure 2. An example of the principle of hierarchical clustering. (a) Map of� 0
Aanom acquired on January 14, 2016 following the melt

event detected by Nicolas et al. (2017), (b) dendrogram obtained from (a), with low-hierarchy nodes simpli�ed andn referring to number of

clusters, and (c)–(e) clustering results using different numbers of clusters. Several locations mentioned in this study are labelled in (a). The

coastline is from Depoorter et al. (2013).

3.3 Deriving �rn densities using satellite parameters and random forest regressor

Given the complex and often non-linear relationships between satellite observations and �rn density (Fraser et al., 2016), a

non-linear regression model based on machine learning is explored to relate the satellite time series to �rn density. The method

relies on a certain amount of known density measurements as the training dataset, and on the continuous satellite parameters225

as the trained features. We opt for a random forest regressor as machine learning model (RF regressor hereafter) due to the

simplicity and usability (Vafakhah et al., 2022; Viallon-Galinier et al., 2023).

Ideally, in situ measurements should be used as the training dataset. However, in situ measurements are often single measure-

ments that lack temporally continuous observations. As our goal is to relate the satellite time series to assess spatio-temporal

variations in �rn density, we adopt an alternative approach that uses the output of IMAU-FDM as training data instead of rely-230
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ing on in situ data. Although this approach has the disadvantage of training the RF regressor on a noisy IMAU-FDM dataset,

which may exhibit spatial and temporal differences compared to actual in situ densities (e.g., biases between the model and

in situ observations), we leverage the strengths of RF regression for pattern recognition in noisy datasets. The use of multiple

decision trees and random feature selection can reduce the variance of the model and reduce over�tting, resulting in better

generalisation performance on noisy data (Hastie et al., 2008). Therefore, we expect that the RF regressor generalises on the235

density estimations of IMAU-FDM, which is known to capture the spatial variation of in situ density measurements well and

the temporal variations reasonably well (Veldhuijsen et al., 2023).

The training, testing, and implementation of the RF regressor involve three main steps:

– Training and Hyperparameter Tuning: a subset of IMAU-FDM densities (Subset I) is used as the training dataset in a 5-

fold cross-validation procedure. Multiple models are evaluated, representing different combinations of hyperparameters240

de�ned for the RF regressor (see Table 1). The goal is to identify the con�guration that achieves the best cross-validation

score, indicating the optimal set of hyperparameters for the RF regressor.

– Testing and Model Evaluation: a different subset of temporally and spatially coregistered SSMIS and ASCAT measure-

ments for the given pixels (Subset II) is used as input to the RF regressor, which has been trained on Subset I. The

purpose of this step is to evaluate the performance of the model and assess the accuracy of the RF density estimations.245

Additionally, it helps to determine the importance of satellite parameters in the predictions of the regressor.

– Antarctica-wide Implementation: The satellite time series covering the entire study area are fed into the RF regressor,

which has been trained on Subset I. This step aims to estimate densities across the entire Antarctic dry-�rn region. The

output densities are then evaluated by comparing them to both the IMAU-FDM densities and the SUMup densities.

Both Subset I and Subset II consists of pixels randomly selected from the non-melting pixels clustered in Section 3.2. Subset250

I contains10 % of the non-melting pixels, and Subset II contains 100 pixels in total. The pixels from both subsets should not

overlap. The time series of each feature in each pixel cover the period between January 1 2011, and December 31 2020 with a

10-day resolution. To ensure consistent temporal resolution between the input features and the target IMAU-FDM densities, the

daily satellite parameters are also downsampled to the 10-day temporal resolution of the IMAU-FDM �rn density by selecting

the corresponding acquisition date, resulting in 366 samples in total for each feature in each pixel. Finally, Subset I consists of255

1,748 pixels multiplied by 366 samples (639,768 samples in total), Subset II consists of 100 pixels multiplied by 366 samples

(36,600 samples in total), and the Antarctica-wide dataset consists of 17,478 pixels multiplied by 366 samples (6,396,948

samples in total).

The RF regressor is implemented with the target variable, which is the IMAU-FDM density at the depth selected from the

correlation analysis, and input featuresX initially de�ned as follows:260

X = ( TB (19V ); TB (19H ); TB (37V ); TB (37H ); � 0
A (2)

Within X , we includeTB and� 0
A to account for variations in temperature, precipitation and other potential climate parameters

that show a potential strong seasonality (e.g., Fraser et al., 2016).
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Table 1.Hyperparameter range and optimal values used to specify the random forest (RF) model.

Hyperparameter Range Optimal value

Number of trees 50, 100, 200 100

Maximum depth of the tree 12, 15, 18 12

The minimum number of samples at a leaf node 1, 3, 5, 7 5

The minimum number of samples to split an internal node 2, 3, 4, 5 4

The number of features to consider when searching for the best split1, 3, 5 1

In the testing and evaluation step, we assess the performance of the optimal RF regressor. This is achieved by comparing

the RF and IMAU-FDM densities of Subset II using a scatterplot and standard evaluation metrics, i.e. the root mean square265

error (RMSE) and the correlation coef�cient between the RF densities and the IMAU-FDM densities. The importance of

satellite parameters in the RF regressor is computed by calculating the Gini importance and the permutation importance. Gini

importance in RF regression is a measure of feature importance based on the Gini gain, i.e. impurity reduction (Strobl et al.,

2007). For each feature used to split the data, the decrease in the Gini node impurity is recorded at each split, and the Gini

importance is calculated as the average of all decreases in the Gini impurity in the forest where this feature forms the split270

(Archer and Kimes, 2008).

In the Antarctic-wide implementation, the optimal RF regressor is implemented to predict the spatial and temporal variations

in �rn density. These predictions are then compared with IMAU-FDM and the SUMup densities. The spatial agreement is

assessed by comparing the temporal averages of the RF predictions, IMAU-FDM and SUMup by using the mean difference

and the RMSEs. The temporal agreement is assessed by the RMSE and the correlation coef�cient between the per-pixel time275

series of RF predictions and IMAU-FDM density. We also compare the spatial patterns of the RF-predicted densities with the

ERA5 wind velocity as it is a potential driver for spatial variation in �rn density, especially for the uncertainties of IMAU-

FDM. Finally, we illustrate this temporal agreement by showing time series over four pixels that show representative differences

between RF and IMAU-FDM densities (locations visualised in Fig. 4).

In addition, since satellite parameters may exhibit a certain level of correlation with densities in the long term (Fraser280

et al., 2016), we also conduct a linear regression (LR) process, which �ts a linear function betweenX and the target density.

The RMSE and correlation coef�cient between the LR-obtained density and IMAU-FDM density are also used to assess the

advantages and drawbacks of RF.

4 Results

4.1 Correlation between satellite parameters and �rn density285

The temporal correlation between satellite parameters and the average density from the upperx m depth (x refers to12 cm,

40 cm, 1 m, 2 m, 5 m and10 m, respectively) is calculated per pixel, and the spatial average of the correlation coef�cient
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Table 2.Average temporal correlation coef�cient between satellite parameters and IMAU-FDM density from different depths.

Depth TB (19V ) TB (19H ) TB (37V ) TB (37H ) � 0
A

12 cm 0.19 0.18 0.20 0.20 -0.05

40 cm 0.24 0.23 0.20 0.19 -0.06

1 m 0.23 0.20 0.12 0.12 -0.06

2 m 0.18 0.12 0.03 0.02 -0.06

5 m 0.08 0.02 -0.07 -0.08 -0.04

10 m 0.05 0.01 -0.07 -0.07 -0.03

is summarised in Table 2. The results show that on average, the maximum absolute correlation coef�cient can be obtained at

40 cm depth. The correlation between density andTB at 19 GHz frequency drastically decreases at5 m, and between density

andTB at 37 GHz frequency largely decreases at2 m, similar to the penetration ability from Surdyk (2002). The correlation290

between densities and� 0
A is constantly negative, and the absolute correlation coef�cient is constantly low; however, it also

demonstrates a slight decrease as the depth increases from2 m to 10 m, showing a certain degree of sensitivity. Despite the

low correlation, however, our study still includes� 0
A due to the long-term correlation derived by Fraser et al. (2016).

The lack of spatial and temporal consistency between satellite and density is illustrated in Fig. 3, which shows the pixel-wise

temporal correlation of each satellite parameter with the40 cm density in IMAU-FDM. All TB channels generally show a295

positive correlation with� 40cm in East Antarctica, but a negative correlation in parts of West Antarctica and many coastal

regions. The negative correlation in coastal regions can be attributed to melt, as shown in the masked out regions in Fig. 4 of

Picard et al. (2012). The correlation between� 40cm and� 0 is generally low, except for the region next to the Ross Ice Shelf

(location shown in Fig. 2a, where the correlation coef�cient can be up to 0.75.

Overall, this correlation analysis indicates that the relationship between satellite parameters and �rn density is complex,300

and simple linear relationships may not adequately describe the IMAU-FDM density based on different satellite parameters.

Therefore, non-linear approaches such as the RF regressor should be employed to assess the potential of relating the IMAU-

FDM �rn density to various satellite parameters (Vafakhah et al., 2022; Anilkumar et al., 2023).

4.2 Firn-type clusters

Figure 4 shows the map of clusters derived from time series of the combined satellite parameters, where each cluster represents305

a natural grouping of pixels with similar satellite time series behaviour. The map shows that four large clusters (referred to as

Firn 1–4) cover the dry �rn interior of Antarctica. Firn 1–3 in East-Antarctica and Firn 4 in West-Antarctica. Firn 5 is a cluster

in West Antarctica close to Ross Sea which corresponds to the region that showed a strong melt event in Jan. 2016 (Nicolas

et al., 2017) while Firn 6 and Firn 7 show small regions near the coastline in East- and West-Antarctica respectively that also

show clear melting signals (details shown in Appendix B).310

12



Figure 3. Map of temporal correlation calculated per pixel between40 cm IMAU-FDM density and (a) brightness temperature (TB ) from

19 GHz vertical polarisation, (b)TB from 19 GHz horizontal polarisation, (c)TB from 37 GHz vertical polarisation, (d)TB from 37 GHz

horizontal polarisation, and (e) backscatter intensity (� 0
A ). The coastline is from Depoorter et al. (2013).
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Figure 4. Clustering results from the combination of normalisedTB and� 0
A after removing the seasonal trend. Triangles show the locations

where temporal assessment per pixel is performed. The coastline is from Depoorter et al. (2013).

4.3 Assessment of RF densities at sample pixels

Figure 5a presents the results of the RF regressor for estimating �rn densities based on satellite parameters. It demonstrates

that the non-linear multivariate approach of the RF regressor captures the spatial variations in IMAU-FDM density, exhibit-

ing a linear relationship between IMAU-FDM and RF densities with a slope of 0.86. The RMSE is19:23 kg m� 3 and the

correlation coef�cient between the estimated and training densities is 0.67. Moreover, the RF regressor performs most ideally315

between approximately325kg m� 3 and375kg m� 3, whereas it fails to capture the large densities as no RF estimate exceeds

410 kg m� 3, which can partially be due to a well-known extrapolation problem intrinsic to the RF regression (Hengl et al.,

2018). The RF densities also exhibit an overestimation when the IMAU-FDM density is lower than325kg m� 3. The pixels

with large overall underestimation (in dark red) and overestimation (in dark blue) of RF is also visible in Fig. 5c. In general,

the large underestimation of RF occurs in the coastal regions of East Antarctica, where the winter wind velocity largely ex-320

ceeds the summer wind velocity (by approximately3 m s� 1). The large overestimation of RF occurs along the Transantarctic

Mountains, where the topography is more complex, introducing strong surface scattering instead of volume scattering. The

feature importance provided by Gini impurity index (Fig. 5b) shows the ranked importance of satellite parameters in the pre-

dictive performance of the model, indicating that the vertical polarisation ofTB is dominant in predicting� 40cm . The higher

importance of19GHz is also clearly visible in the temporal correlation coef�cients in Fig. 3. We attribute the high importance325

of � 0 to the fact that it can be in�uenced by other parameters that have an impact on dry-snow scattering properties, such as

wind and precipitation; the mechanism may not necessarily be linear, but rather complex (Fraser et al., 2016).
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Figure 5. (a) Density comparison between RF densities and IMAU-FDM densities at sample pixels referred to as Subset II, the colour of the

points showing the density distribution of points; the colour bar is in logarithmic scale, (b) RF feature importance of different input satellite

parameters, and (c) the temporally averaged difference between IMAU-FDM and RF densities at the pixels, visualised on top of the map of

the difference between the summer (vsmr ) and winter wind velocity (vwnt ) from ERA5. The coastline is from Depoorter et al. (2013).

4.4 Spatial assessment of RF densities

In Fig 6, the temporally averaged RF density estimates and their differences relative to IMAU-FDM densities at the40cm depth

and SUMup in situ densities are presented. The comparison in Fig. 6c shows that temporally averaged RF density estimations330

are in general larger than temporally averaged IMAU-FDM density in interior regions of Antarctica except for megadune

regions, whereas they are lower towards coastal regions. The RMSE between the IMAU-FDM and RF averages (referred to as

FDM-RF) is17:30kg m� 3 and the mean FDM-RF difference is� 0:40kg m� 3. An overestimation of RF is most pronounced

in West Antarctica close to Vinson Massif (location shown in Fig. 2a), which possibly corresponds to the overestimation in

Fig. 5a. Meanwhile, the comparison with the SUMup densities shows that RF and IMAU-FDM densities have comparable error335

patterns. The RMSE of FDM-SUMup is59:17 kg m� 3, and the mean of FDM-SUMup bias is23:92 kg m� 3; the RMSE of
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Figure 6. (a)–(c) Maps of (a) temporally averaged IMAU-FDM40cm densities, (b) temporally averaged RF densities, (c) difference between

averaged IMAU-FDM densities and RF densities (F DM � RF ). Difference between the modelled or estimated densities and the SUMup

densities are shown in scattered points in (a) and (b) as FDM-SUMup or RF-SUMup. (a) and (b) share the same colour bar, in which blue–red

shows the difference between the IMAU-FDM or RF densities and the SUMup densities (� 40cm � SUMup), and green–light blue shows

the IMAU-FDM or RF densities (� 40cm ). The coastline is from Depoorter et al. (2013). (d) shows the relationship between IMAU-FDM

or RF densities and SUMup densities. The sizes of the scattered points indicate the time difference between the SUMup measurements

and year 2020, and the colour shows the difference in depth between IMAU-FDM or RF measurements (both �xed at40 cm) and SUMup

measurements (d� � dSUMup ).
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