
Response	to	Referees	on	egusphere-2023-1556	
We	appreciate	the	reviews	and	comments	from	both	Referees.	Please	find	the	response	to	
Referee	2	on	pages	1-8,	and	the	response	to	Referee	3	on	pages	9-10.	
	
Response	to	Referee	1	on	egusphere-2023-1556	
	
First,	we	would	like	to	thank	the	Referee	for	reviewing	and	commenting	on	the	manuscript,	
which	will	improve	the	quality	of	the	manuscript.	Please	find	the	item-by-item	reply	below,	
with	the	original	comments	in	italics	and	the	responses	in	blue.	All	the	suggested	changes	are	
implemented	in	the	revised	manuscript.	
	
The	authors	provided	detailed	replies	to	my	comments,	thank	you.	The	manuscript	has	been	
significantly	modified,	and	most	contents	improved.	However,	some	of	the	issues	pointed	out	
in	the	previous	round	still	hold	after	the	modifications.	
	
The	main	concern	is	still	related	to	the	investigated	depth.	Although	it	has	been	increased	from	
the	former	4	cm,	12	cm	is	still	a	too	tiny	 layer	especially	at	C-	band	-	see	e.g.	Surdyk	2002	
(10.1016/S0034-4257(01)00308-X),	 Picard	 et	 al.	 2009	 (10.3189/002214309788816678),	
Champollion	 et	 al.	 2019	 (10.5194/tc-13-1215-2019),	 Brucker	 et	 al.,	 2009	
(10.3189/002214310792447806).	 I’m	 still	 convinced	 you	 should	 provide	 a	 physical	
explanation	supporting	this	choice.	
We	understand	the	concern	of	the	reviewer,	and	agree	that	indeed	the	penetration	depths	
can	exceed	1	m	for	19	GHz	and	for	C-band,	as	mentioned	by	e.g.	Surdyk	(2002)	and	Fraser	et	
al.	(2016).	Meanwhile,	such	ranges	of	penetration	depths	are	not	always	certain,	e.g.	in	Picard	
et	al.	(2009),	“the	deepest	penetrations	at	the	19V	channel	are	located	in	Marie	Byrd	Land	(4–
7	m)	and	on	the	East	Antarctic	divide	(4–6	m).	The	shallowest	penetrations	are	found	in	the	
wind-glazed	surface	regions	and	megadunes,	with	values	as	low	as	0.3	m.	Intermediate	values	
are	found	in	Wilkes	Land	between	the	coast	and	the	divide	(2.5–5	m).”	Furthermore,	according	
to	Arndt	and	Haas	(2019),	although	the	penetration	depth	of	C-band	exceeds	1	m,	“however,	
increased	backscatter	along	the	propagation	path	through	the	snow	at	any	depth	will	result	
in	 the	 observed	 overall	 backscatter	 increases,”	 and	 according	 to	 Cartwright	 et	 al.	 (2022),	
“azimuthal	anisotropy	arises	primarily	due	to	the	interaction	between	the	incident	microwave	
radiation	and	regularly	aligned	roughness	(on	the	Rayleigh	roughness	scale,	or	larger)	of	the	
surface	 and	 subsurfaces	 within	 the	 penetration	 depth	 (Ulaby	 et	 al.,	 1996;	 Bingham	 and	
Drinkwater,	2000;	Partington	and	Flach,	2003;	Yurchak,	2009;	Fraser	et	al.,	2016),”	therefore,	
the	shallower	depth	firn	properties	should	not	be	completely	negligible	to	long-wavelength	
microwave.	
	
With	 the	 aforementioned	 reference,	 we	 understand	 it	 is	 true	 that	 ASCAT	 in	 principle	 is	
sensitive	 to	 the	 scattering	 properties	 up	 to	 several	metres’	 depths,	 as	 that	 is	 indeed	 the	
estimated	penetration	of	 the	C-band	wavelength.	However,	 there	 is	no	evidence	 that	 the	
relationship	between	the	density	at	those	depths	and	the	C-band	radar	backscatter	is	a	strong	
one;	although	a	 few	modelling	efforts	have	been	carried	out	 in	 that	direction,	 there	 is	no	
literature	 showing	 that	 the	 physical	 modelling	 is	 mature	 for	 active	 microwave	 sensing.	
Therefore,	the	contribution	of	C-band	radars	to	the	retrieval	of	snow	properties	at	a	wide	
range	 of	 depths	 remains	 an	 interesting	 aspect	 to	 investigate,	 especially	 through	machine	
learning	techniques	which	are	more	data-driven,	including	assimilation	with	other	sensors.	



We	applied	the	approach	conducted	at	12	cm	also	to	the	snow	density	at	other	depths,	and	
added	 the	 figure	 to	 this	 document	 (Fig.	 R1).	 The	 figure	 shows	 that	 both	 the	 RMSE	 and	
correlation	coefficient	reduce	with	an	increasing	depth.	We	believe	that	this	is	due	to	the	fact	
that	 the	 firn	density	at	 larger	depths	 is	not	 largely	 influenced	by	surface	temperature	and	
precipitation,	which	have	a	larger	impact	on	temporal	variations	of	microwave	signals.		

	
Figure	1.	RMSE	(left)	and	correlation	coefficients	(right)	at	different	depths	(12	cm,	40	cm	

and	1	m,	respectively).		
	
Furthermore,	we	also	understand	the	concern	that	the	microwave	signals	can	be	affected	by	
layers	that	are	at	a	larger	depth	(i.e.	even	larger	than	1	m).	Therefore,	we	computed	the	mean	
temporal	 correlation	 coefficients	 between	 densities	 at	 different	 depths	 and	 satellite	
parameters,	summarised	in	Table	R1.	The	table	shows	that	within	our	available	dataset,	the	
correlation	between	all	satellite	parameters	and	densities	on	average	reaches	the	maximum	
at	40	cm	depth.	It	is	then	worth	noting	that	the	correlation	first	drastically	decreases	(by	40	%)	
between	40	cm	and	1	m	depths	for	37	GHz,	and	then	largely	decreases	(by	21	%)	between	1	
m	and	2	m	for	19	GHz.	Therefore,	we	have	adopted	the	density	 from	40	cm	depth	 in	 the	



revised	manuscript,	and	added	Table	R1	to	the	revised	manuscript.	It	is	important	to	note	that	
since	all	depths	within	the	penetration	depth	affect	the	scattering	properties,	the	“density	at	
depth…”	should	be	the	mean	density	of	the	upper	x	depths	(x	=	12	cm,	40	cm,	1m,	etc.).	

	
Table	R1.	Correlation	coefficients	between	IMAU-FDM	densities	at	different	depths	and	

satellite	parameters.	
	 TB(19V)	 TB(19H)	 TB(37V)	 TB(37H)	 sigma^0	

12	cm	 0.19	 0.18	 0.20	 0.20	 -0.05	
40	cm	 0.24	 0.23	 0.20	 0.19	 -0.06	
1	m	 0.23	 0.20	 0.12	 0.12	 -0.06	
2	m	 0.18	 0.12	 0.03	 0.02	 -0.06	
5	m	 0.08	 0.02	 -0.07	 -0.08	 -0.04	
10	m	 0.05	 0.01	 -0.07	 -0.07	 -0.03	

	
Also,	the	concern	about	redundant	information	in	coupling	microwave	observations	with	their	
combinations	 in	the	RF	retrieval,	according	to	 information	theory,	has	not	been	solved:	my	
point	 is	 confirmed	 by	 the	 predictor	 importance	 analysis	 in	 fig.6	 that	 clearly	 shows	 the	
dominant	role	of	direct	observations	and	the	minor	role	of	derived	indices.	
The	 original	 purpose	 of	 using	 the	 brightness	 temperature	 ratios	 was	 to	 reproduce	 the	
Champollion	et	al.	(2013)	study,	where	the	ratios	could	be	related	to	near-surface	hoar-crystal	
formation.	But	it	is	also	true	that	we	could	not	reproduce	the	method	in	our	study,	especially	
because	it	was	not	applicable	to	the	entire	Antarctic	ice	sheet.	Hence,	we	agree	to	remove	
the	derived	parameters.	The	revised	manuscript	is	now	based	on	the	new	setting.	
	
Another	concern	is	about	the	SSM/I	derived	indices	FR	and	PR:	beside	the	reason	for	using	the	
formulation	in	eq.	1	and	2	instead	of	the	other	ratio	generally	adopted	(e.g.	Kelly	et	al.,	2003;	
Tedesco	 et	 al.,	 2004,	 Chang	 et	 al.,	 1987;	 Chang	 et	 al.,	 1990;	 Santi	 et	 al.	 2012),	 the	 PR	
correlation	with	the	target	parameter	does	not	seem	exceptional	(especially	at	Ku	band)	and	
the	 reasons	 because	 it	 is	 sometimes	 positive	 and	 sometimes	 negative	 quite	 is	 difficult	 to	
explain	because	it	does	not	seem	related	to	environmental	factors	as	for	the	other	observables	
shown	in	the	figure.	
We	have	removed	the	ratios	in	the	revised	manuscript.	
	
I	believe	further	revision	should	be	done	to	clarify	the	compensation	for	observation	angle:	σ°	
is	universally	adopted	to	refer	to	backscattering,	which	is	derived	from	the	NRCS	that	already	
accounts	for	incident	angle.	Please	also	mention	backscattering	when	introducing	σ°	notation.	
It	 is	 true	 that	𝜎" 	already	 includes	 the	 normalisation	 by	 the	 area	 of	 the	 cell	 resolution.	
However,	this	extra	normalisation	done	in	the	BYU	product	also	accounts	for	the	differences	
in	the	physical	response	of	the	distributed	target	per	metre	square	which	is	a	function	of	the	
incidence	angle.	This	is	also	documented	in	the	methodology	paper	of	Long	and	Drinkwater	
(2000):”Because	scatterometers	make	measurements	over	a	range	of	incidence	angles,	the	
incidence	angle	dependence	of	𝜎"	must	be	accounted	for.”	To	avoid	confusion	while	being	
coherent	with	the	𝐴	parameter	as	defined	in	Long	and	Drinkwater	(2000)	and	used	by	Fraser	
et	al.	(2016),	we	have	changed	the	𝜎"	into	𝜎$"	in	the	revised	manuscript.	
	
Total	 data,	 training	and	 test	 datasets	 still	 need	 to	be	 clearly	quantified:	 I	 did	not	 find	 the	
numbers	as	declared	in	the	authors	replies	(possibly	my	fault?).	At	lines	264-269	it	is	stated	



that	Subset	 I	 contains	10%	of	 the	non-melting	pixels	 (how	many	 in	 total?)	and	Subset	 II	 is	
composed	of	100	pixels	(only?).	Nothing	is	declared	about	independence	of	the	two	datasets.	
These	numbers	seem	significantly	smaller	than	my	deductions	for	the	previous	round	and	this	
could	 lead	 to	 some	 over-dimensioning	 of	 RF	 parametrization	 shown	 in	 Table	 1	 (and	
consequent	 overfitting)	 Moreover	 they	 do	 not	 seem	 consistent	 with	 the	 amount	 of	 data	
arguable	 from	fig.	6	 left	and	even	 insufficient	 for	generating	 the	maps	 in	 figure	3	and	8.	 I	
suspect	some	misunderstanding.	
Regarding	this	problem,	we	agree	that	the	numbers	declared	in	the	previous	replies	have	not	
been	added	to	the	manuscript,	and	now	we	have	added	the	numbers	in	the	revised	version.	
We	would	like	to	clarify	that	each	pixel	we	use	consists	of	time	series	of	all	parameters,	i.e.	
366	density	estimations.	 Therefore,	 Subset	 I	 used	 for	hyperparameter	 tuning	and	 training	
consists	of	1748*366	samples	 (instead	of	1748	points),	 and	Subset	 II	used	 for	 testing	and	
importance	computation,	i.e.	Fig.	6	consists	of	100*366	samples	(instead	of	100	points).	We	
have	double-checked	that	Subset	I	and	Subset	II	do	not	have	overlapping	pixels.	Regarding	
the	amount	of	data	in	Fig.	6,	we	presented	the	testing	result	using	Subset	II,	which	consists	of	
100*366	samples.	This	is	because	the	entire	dry-snow	zones	in	Antarctica	according	to	our	
clustering	method	consists	of	17478	pixels,	and	subsequently	17478*366	samples,	which	is	
too	large	and	redundant	for	visualising	in	a	scatter	plot	such	as	Fig.	6.	However,	for	Fig.	7	and	
Fig.	8,	we	used	the	densities	of	the	17478*366	samples,	and	calculated	the	resulting	mean	
densities	and	errors.	The	amount	of	data	has	been	added	 to	 the	 revised	manuscript	 lines	
253—258.	
	
Table	I.	In	my	personal	experience,	increasing	the	number	of	trees	above	50	does	heavily	affect	
the	 computational	 cost	 without	 providing	 accuracy	 improvements.	 But	 this	 is	 just	 my	
experience,	 not	 absolute	 truth.	 In	 any	 case	 the	most	 important	 thing	 to	 assess	 is	 the	 RF	
dimensioning	in	terms	of	training	data	amount	(see	comment	above).	
Please	refer	to	the	comment	above.	We	believe	that	by	using	1764*366	samples	as	training	
data,	the	over	dimensioning	problem	should	be	resolved.	
	
Figure	1	 is	 useful	 addition,	 in	my	view	however,	 it	 is	 difficult	 to	understand	 in	 the	 current	
implementation:	I	would	suggest	revising	and	simplify.	
This	has	been	changed	in	the	revised	manuscript	(also	with	the	ratios	removed).	
	
Evaluating	quantitatively	the	results	in	figure2	with	respect	to	the	corresponding	figure	in	the	
former	manuscript	is	not	straightforward,	however	it	seems	that,	by	comparing	against	12	cm	
rather	than	4	cm,	some	small	improvements	are	obtained	at	Ku	and	Ka	band	while	the	C-	band	
does	not	show	appreciable	improvements.	This	could	go	in	the	right	direction	by	supporting	
the	 concern	 about	 the	 insufficient	 depth.	 As	 requested	 in	 the	 previous	 round,	 it	would	 be	
important	to	provide	overall	correlation	or	determination	coefficients	(at	least	for	each	cluster	
-	choice	is	up	to	you,	but	you	should	be	consistent	through	the	manuscript)	also	to	understand	
which	 is	 the	 contribution	 of	 RF	 with	 respect	 to	 the	 direct	 correlation	 between	 single	
observables	and	target	parameters.	The	physical	reasons	supporting	changes	from	positive	to	
negative	correlations	should	be	better	discussed	in	any	case.	
The	 correlation	 coefficients	 have	 been	 added	 to	 the	 revised	 manuscript.	 We	 have	 also	
attached	a	comparison	between	RF	and	a	simple	linear	regression	(Fig.	7	and	lines	353—355).	
	



Figure	 5	 seems	 a	 bit	 redundant	 and	 its	 informative	 content	 not	 exceptional	 since	 the	
behaviours	are	difficult	to	interpret;	moreover,	figure	6	points	out	the	minor	contribution	of	
these	parameters	in	the	retrieval.	
Figure	5	was	originally	provided	with	 the	purpose	of	demonstrating	how	complicated	 the	
relationship	between	satellite	parameters	and	densities	can	be	for	dry	snow,	and	that	our	
clustering	 method	 could	 distinguish	 melt	 moments	 and	 the	 spatial	 coverage	 of	 melts.	
However,	we	agree	 that	 the	 informative	content	 is	not	exceptional,	hence	will	move	 it	 to	
appendix	in	case	some	readers	may	be	curious	about	how	the	distinction	of	melt	regions	looks	
like.	We	also	agree	that	these	parameters	are	not	contributive	to	the	RF	approach,	hence	they	
will	be	removed	from	the	RF	sections.	
	
Figure	6	left.	The	scatterplot	seems	slightly	improved	wrt	the	former	result	at	4	cm,	however	I	
still	see	some	saturation	in	the	retrieved	density:	in	my	experience	this	could	depend	on	not	
proper	dimensioning/training	of	RF,	any	explanation?	Again,	how	many	data	in	the	scatterplot?	
The	requested	correlation	coefficient	is	not	provided	in	the	figure/caption.	
The	number	of	training	data	is	1748*366=639,768,	and	the	number	of	testing	data	visualised	
in	 the	 scatterplot	 is	 100*366	 =	 36,600.	 This	 information	 has	 been	 added	 to	 the	 revised	
manuscript.	
	
Regarding	the	saturation	in	the	retrieved	density,	we	noticed	that	not	only	does	RF	largely	
underestimate	the	density	higher	than	410	𝑘𝑔	𝑚),	 it	also	overestimates	the	density	 lower	
than	325	𝑘𝑔	𝑚).	Therefore,	we	presume	that	both	the	highest	and	the	 lowest	 IMAU-FDM	
densities	 are	 not	 properly	 accounted	 for,	 both	 due	 to	 uncertainties	 from	 the	 IMAU-FDM	
modelling	process	and	the	limitation	of	the	combination	of	satellite	parameters.	An	example	
is	shown	in	Fig.	R2	of	this	document.	The	scatterplot	in	the	upper	panel	is	calculated	as	the	
temporally	averaged	IMAU-FDM	density	subtracted	by	the	temporally	averaged	RF	density	at	
the	100	sample	pixels.	On	average,	the	largest	underestimation	for	RF	(exceeding	20	𝑘𝑔	𝑚))	
occurs	 in	 regions	where	 the	summer	wind	velocity	 is	more	 than	2.5	𝑚	𝑠+,	lower	 than	the	
winter	 wind	 velocity.	 This	 corresponds	 to	 part	 of	 our	 conclusion	 that	 IMAU-FDM	 shows	
pronounced	 different	 behaviours	 from	 the	 satellite	 time	 series	 when	 the	 seasonal	 wind	
velocity	difference	is	high,	hence	IMAU-FDM	may	not	adequately	capture	the	actual	physical	
meteorological	phenomena	that	affect	microwave	scattering	properties.	On	the	other	hand,	
RF	on	average	largely	overestimates	the	density	in	Transantarctic	Mountains,	potentially	due	
to	the	complex	terrain	that	affect	the	surface	scattering	of	the	microwave	(instead	of	volume	
scattering).	Finally,	an	overall	limitation	of	using	purely	satellite	data	time	series	is	that	they	
are	 largely	 dependent	 on	 surface	 and	 near-surface	 temperature.	 Our	 study	 is	 therefore	
coherent	with	the	Fraser	et	al.	(2016)	study,	who	could	establish	a	relationship	between	long-
term	 mean	 ASCAT	 backscatter	 and	 snow	 or	 climate	 properties	 for	 Antarctic	 dry	 snow,	
although	 our	 work	 focuses	 on	 establishing	 a	 relationship	 the	 other	 way	 around,	 i.e.	 re-
constructing	 firn	 density	 using	 a	 combination	 of	 satellite	 data.	 However,	 the	 seasonal	
correlation	is	compromised	both	in	the	Fraser	et	al.	(2016)	study	and	in	our	study.	



	
Figure	R2.	Temporal	mean	difference	between	the	IMAU-FDM	density	and	RF	density	at	the	

100	sample	pixels,	overlayed	on	the	seasonal	wind	velocity	difference	map	(upper);	
scatterplot	of	the	temporal	mean	difference	between	the	IMAU-FDM	density	and	RF	density	
at	the	100	sample	pixels	versus	the	seasonal	wind	velocity	at	the	sample	pixels	(middle);	and	
temporal	mean	difference	between	the	IMAU-FDM	density	and	RF	density	at	all	pixels	in	dry	
snow	zones	versus	seasonal	wind	velocity	difference,	coloured	by	the	density	distribution	of	

points	(lower).	
	
Figure	6	right.	 thanks	 for	 the	explanation	about	the	Breiman	vs.	Gini	predictor	 importance	
analysis,	however	showing	one	or	another	histogram	is	enough,	also	because	they	bring	some	
contradictory	results	that	are	difficult	to	justify,	up	to	you….	



We	have	removed	the	ratios	and	anomalies	and	kept	only	the	Gini	predictor.	
	
The	 comparison	 with	 the	 Dome-C	 data	 from	 Leduc	 is	 relevant	 as	 validation	 against	
independent	data.	However,	 the	data	 refer	 to	 the	 first	2/3	cm	depth	and	 the	RF	has	been	
trained	for	12	cm	depth….	Please	further	address.	
This	comparison	was	performed	between	the	first	2	cm	depth	of	field	measurements	and	the	
4	cm	depth	of	IMAU-FDM.	Then,	both	4	cm	and	12	cm	IMAU-FDM	densities	are	provided	to	
show	the	large	discrepancies	between	the	model	and	the	field	measurement.	Furthermore,	
the	Dome	C	data	from	Leduc-Leballeur	et	al.	was	used	also	to	analyse	the	potential	correlation	
between	near-surface	hoar-crystal	formation	and	disappearance	and	polarisation	ratios.	This	
is	not	applicable	in	our	study	anymore	hence	has	been	removed.	
	
Figure	8	and	discussion.	What	I	would	see	addressed	(see	my	comment	in	the	previous	round),	
is	the	comparison	between	the	R	coefficients	shown	here	and	those	of	single	observables	in	
figure	 3,	 with	 the	 aim	 of	 pointing	 out	 the	 improvement	 brought	 by	 RF	 with	 respect	 of	
attempting	the	direct	retrieval	from	single	observables,	that	in	some	cases	already	reach	very	
high	correlation.	
This	 has	 been	 added	 to	 the	 revised	 manuscript	 (Fig	 7).	 However,	 we	 also	 show	 that	 RF	
outperforms	the	simple	linear	regression	in	terms	of	RMSE,	which	is	an	important	indicator	
apart	from	the	correlation	coefficient.	
	
Figure	9	and	discussion.	The	rationale	of	showing	the	PR	at	Dome	C	after	showing	the	overall	
RF	performances	as	R	and	RMSE	maps	of	the	entire	Antarctica	is	unclear	to	me.	PR	is	just	one	
of	the	inputs	of	the	RF	algorithm	and	not	even	one	of	the	most	important.	
Originally,	we	referred	to	the	Champollion	et	al.	study	where	they	attributed	the	variation	in	
polarisation	ratios	to	the	hoar-crystal	disappearance,	which	is	characterised	by	an	increase	in	
near-surface	 density	 and	 a	 reduction	 in	 grain	 size.	 We	 understand	 this	 inclusion	 of	 the	
Champollion	et	al.	study	causes	confusion,	hence	removed	this	part	in	the	revised	manuscript.	
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Response	to	Referee	3	on	egusphere-2023-1556	
	
First,	we	would	like	to	thank	the	Referee	for	reviewing	and	commenting	on	the	manuscript,	
which	will	improve	the	quality	of	the	manuscript.	Please	find	the	item-by-item	reply	below,	
with	the	original	comments	in	italics	and	the	responses	in	blue.	All	the	suggested	changes	are	
implemented	in	the	revised	manuscript.	
	
This	paper	used	machine	learning	(ML)	and	satellite	microwave	data	to	examine	Antarctic	firn	
density.	The	authors	did	a	good	job	of	responding	to	all	comments	in	the	first	round	of	review.	
I	only	have	minor	comments.	
	
Across	the	document,	the	notation	for	figure	should	be	normalized	(Figure,	fig,	or	fig.).	Should	
be	Fig.	everywhere.	
We	have	corrected	the	manuscript	for	consistency.	However,	according	to	the	guidelines	of	
The	Cryosphere	(https://www.the-cryosphere.net/submission.html,	Figures	&	tables	section),	
we	did	not	change	everything:	
“The	 abbreviation	 ‘Fig.’	 should	 be	 used	 when	 it	 appears	 in	 running	 text	 and	 should	 be	
followed	by	a	number	unless	it	comes	at	the	beginning	of	a	sentence,	e.g.:	‘The	results	are	
depicted	in	Fig.	5.	Figure	9	reveals	that...’.”	
	
Line	74:	Remove	on.	“Antarctic	ice	sheet	based	on	on	daily”	
This	has	been	corrected	in	the	revised	manuscript.	
	
Line	155:	What	about	the	penetration	depth	of	C-band?	The	Sigma0	at	C-band	is	sensitive	to	
deeper	than	this.	
We	 conducted	 an	 experiment	 computing	 the	 temporal	 correlation	 between	 satellite	
observations	and	IMAU-FDM	densities	(Table	2	of	the	revised	manuscript),	and	determined	
that	the	optimal	depth	where	the	density	can	be	correlated	with	all	frequencies	should	be	40	
cm.	We	also	refer	to	the	Fraser	et	al.	(2016)	study	where	the	top	1	m	density	was	seen	as	the	
layer	most	sensitive	to	atmospheric	drivers	which	can	be	correlated	with	C-band	backscatter,	
despite	a	much	larger	penetration	depth	of	C-band	radar.	
	
Line	174:	replace	“parameterization”	to	“parametrization”	
This	has	been	corrected	(and	other	identical	errors)	in	the	revised	manuscript.	
	
Line	208:	Is	it	spatial	or	time	clustering?	Or	both?	You	talked	about	spatial	and	then…	
It	 is	a	clustering	of	time	series.	In	doing	this,	the	regions	which	experienced	intensive	melt	
and	subsequent	ice-layer	formation	can	be	distinguished.	To	avoid	confusion,	the	previous	
“spatial”	has	been	removed.	
	
Line	294:	 I	 suggest	 talking	about	biased	with	correlated	features	since	all	your	 feature	are	
highly	 correlated.	 In	 your	 case,	 all	 measurements	 at	 19	 (Tb,	 Pr,	 Fr,	 and	 anomalies)	 are	
correlated	with	each	other,	same	for	37.	This	will	affect	the	feature	importance.	I	would	just	
mention	how	it	would	affect	it.	
It	 is	true,	and	we	have	removed	the	radiometer-derived	ratios	and	anomalies	from	the	RF	
approach,	also	as	they	do	not	contribute	to	the	results.	
	



Figure	5:	Y	axis	are	never	the	same.	It’s	hard	to	distinguish	differences	between	each	cluster.	
It	 is	rather	difficult	to	completely	normalise	the	y-axes,	because	doing	this	would	make	all	
dry-snow	regions	appear	as	a	straight	line.	We	have	therefore	used	a	same	range	of	y-axis	for	
dry	regions,	and	another	range	of	y-axis	for	melt	regions.	Due	to	the	suggestion	of	Referee	2,	
we	have	moved	this	figure	to	Appendix	B.	
	
Line	358-359:	Again	correlation	between	derived	sat	(PR,	FR)	and	the	Tb	at	19,37	is	probably	
high.	 So	 the	 importance	 of	 Pr	 and	 Fr	 is	 reduced.	Most	 of	 the	 information	 contain	 in	 Pr	 is	
probably	also	in	the	Tb.	
They	have	been	removed	from	the	RF	approach.	
	
Figure	7:	the	caption	is	missing	a	parenthesis	at	the	end.	
This	has	been	corrected	in	the	revised	manuscript.	
	
Line	393:	Missing	a	come	between	high	and	close?	“the	RMSE	between	IMAU-FDM	and	RF	is	
high	close	to	Vinson	Massi”.	
This	has	been	corrected	in	the	revised	manuscript.	
	
Figure	10:	Can	you	change	the	bright	yellow	color?	The	label	is	unreadable.	
Since	the	comparison	of	density	variations	with	polarisation	ratios	is	not	valid	anymore,	this	
figure	has	been	removed	in	the	revised	manuscript.	
	
Line	413:	I	think	that	is	already	well	established	when	you	look	at	snow	density,	microwave	
data	and	 radiative	 transfer...	 (Brucker	et	al	2010,	2011	 .	Picard	et	al	2009,	2014).	 I	would	
reword…	
Agreed.	“Our	 findings	 reveal”	has	been	changed	 to	“out	study	 is	based	on”	 in	 the	 revised	
manuscript.	
	
Line	454:	Grain	size	also	influence	Tb.	Perhaps	some	words	on	how	it	affect	the	final	result?	
It	is	true	and	is	the	main	reason	why	we	assumed	that	a	non-linear	machine	learning	model	
could	account	for	the	effect	from	grain	size	and	other	drivers.	However,	due	to	the	lack	of	
information	on	grain	size,	we	cannot	arrive	at	a	better	(or	more	solid)	conclusion	regarding	
how	it	affects	the	final	result.	


