
Authors’ response to Reviewers

We thank both Reviewers for the constructive comments and thoughtful suggestions. In the
following we provide a detailed response to each point of the Reviewers’ Comments, reporting
the related changes to the manuscript where applicable. Please refer to the attached “diff.pdf”
file for a complete list of all additions and minor changes to the manuscript.

The Reviewers’ comments are in bold text, while our replies are in plain text. Changes made to
the original version of the manuscript are in blue text.

Reply on RC1

Overwiew

This work investigates the control of avulsions in bifurcated channel systems; a main
channel splitting into 2 equal sub channels. Towards this end, the authors build a
mathematical/numerical model, extending the well known analysis presented by
Bolla Pittaluga et al. (2003) (BRT). The proposed model can track the evolution
of a perturbation at the branching point of the sub-channels. In the first place,
the model recovers the regimes identified in BRT. At low channel aspect ratios,
following a perturbation, the system recovers balanced flows in each of the sub-
channels. Beyond a critical aspect ratio Beta_c, however, the long term equilibrium
of the flow in the system is unbalanced. This work show that as the aspect ratio
is increased further, a second threshold Beta_TH is reached, here the sub channel,
with the least flow, exhibits a partial-avulsion—where the channel still carries flow
but ceases to transport sediment. Depending on the length of the sub channels,
as the aspect ratio is increased even further, a point is reached where full avulsion
occurs, i.e. the channel does not convey either water or sediment.

Comments

1. I think that the analysis in this paper is of sufficient interest to stand alone
but also feel that it would be significantly enhanced, if the authors can point
toward experimental or field evidence of the behaviors predicted by the math.
For example, referring to Figure (9), it appears, by my calculations, that full
avulsion would be reached in a system with channels of water depth of 2 m,
width 40 m, and length 1 km+. How common are such conditions in field
settings? (eg. Wax Lake in Louisiana)? Are records of permanently avulsed
channels seen in such systems? Are records of permanently avulsed channels
seen in field systems with shorter channel lengths and smaller aspect ratios?

We thank the Reviewer for the suggestions. Unfortunately, the available datasets are not
sufficient to allow a detailed verification of model results.

Data from physical models are scarce, and experiments were mainly focused on the analysis
of the effect of specific “forcing” factors. For example, the laboratory experiments by
Salter et al. (2019) were tailored to depositional environments and reproduced bifurcations
with prograding branches, while Szewczyk et al. (2020) analysed the influence on water
discharge partition of changing the bifurcation angle, for values of the aspect ratio β0 much
smaller than the no-transport threshold βNT . To the authors’ knowledge, the laboratory
experiments by Bertoldi and Tubino (2007) are the only ones that analyse how initially
balanced “free” bifurcations develop unbalanced configurations, possibly leading to partial
or full avulsion. Indeed, a specific analysis of their results seems to support our findings,
as shown in Figure AC1 where we report, for each experimental run, the computed values
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Figure AC1: Results from the analysis of experimental data by Bertoldi and Tubino (2007).
Consistently with our theory, experiments where full avulsions were observed (filled markers) fall
in the region β0 > βNT and L > LAV .

of β0/βNT and L/LAV . Consistently with our predictions, they reveal that full avulsions
(i.e. the complete closure of one of the branches) were observed in the three experimental
runs in which β0 was greater than (or closer to) βNT and the channel length L was longer
than the avulsion length LAV .

To include this analysis in the main paper, we added the following paragraph to Sect. 5
(lines 456-464 of the manuscript):

“A direct comparison between our model and experimental data is difficult, since available
data from physical models are scarce and often focused on the effect of external forcing
factors. For example, the laboratory experiments by Salter et al. (2019) were tailored to
depositional environments and reproduced bifurcations with prograding branches, while
Szewczyk et al. (2020) analysed the influence on the water discharge partition of changing
the bifurcation angle, for values of the aspect ratio β0 much smaller than the no-transport
threshold βNT . To the authors’ knowledge, the laboratory experiments by Bertoldi and
Tubino (2007) are the only ones that analysed how initially balanced “free” bifurcations
develop unbalanced equilibrium configurations, possibly leading to partial or full avulsion.
Considering this dataset, it is worth noting that the three experimental runs that resulted
in a full avulsion featured an aspect ratio close to or larger than the no-transport aspect
ratio βNT and a length of the branches larger than the avulsion threshold LAV , consistently
with our model predictions.”

Further support to our findings is also provided by the results of Ragno et al. (2022) who
analysed nearly 200 bifurcation-confluence units of sand-bed and gravel-bed rivers. They
found that field data show the existence of quasi-universal relations for the branches length
when scaled with bankfull variables of the main upstream channel (the mean depth or
width). The resulting average dimensionless length falls in the range L∗ = 200 − 300,

2



Figure AC2: Dependence of (a) the dimensionless avulsion length LAV /D0 and (b) the scaled
avulsion length LAV /LB on the Shields stress θ0, for different values of the aspect ratio β0,
as obtained from Eq. (29). Vertical dashed lines indicate the value of Shields stress for which
β0 = βNT , thus representing the boundary of the region of validity of the analytical model. The
dotted line indicates the upper bound for LAV , obtained by neglecting the β0-dependent term
∆ηBRT (C = 12, transport formula by Meyer-Peter and Müller, 1948). This figure has been
added to the main paper as the new Figure 10.

which can be interpreted as a preferential range of length values that allows river loops
to keep both branches active. The results reported in Figure AC2a suggest that these
values are typically lower than the predicted dimensionless avulsion length LAV /D0. We
note, however, that the application of our model to this data-set is not straightforward,
as the presence of the confluence may have an important influence on loop stability and
equilibrium configuration (Ragno et al., 2021). Therefore, a direct comparison with our
model’s results would require incorporating the effect of the confluence, and considering the
peculiar hydrodynamical and morphodynamical characteristics of individual field cases.

Regarding the estimate of the avulsion length proposed by the Reviewer based on Fig. 9
of our paper, we observe that the figure does not include conditions of full avulsion, which
would correspond to the intersection of the curves with the ∆Q = 1 line (incidentally, we
also note that we define the aspect ratio β0 as the half-width to depth ratio). To make
this point clearer, we hereby provide the mathematical procedure, based on the analytical
model described in Sect. 4 of our work, to compute the avulsion length LAV as a function of
the flow conditions in the upstream channel, namely the Shields stress θ0 and the channel
aspect ratio β0, provided the latter is larger than the no-transport aspect ratio βNT . The
following paragraphs have also been added in the revised version of the manuscript at the
end of Sect. 4.

“ The analytical model makes it possible to determine the marginal conditions for which one
of the bifurcates closes completely (full avulsion), and to compute the associated avulsion
length LAV . This is accomplished by setting Dc = 0 in Eq. (25a), and isolating the length
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as:

LAV =
D0

S0

1− ∆ηBRT

2
1− Sb/S0

. (26)

The resulting expression highlights the key ingredients that determine the avulsion length,
as all terms on the right-hand side of Eq. (26) bring a precise physical meaning. Specifically,
the first factor is the backwater length:

LB =
D0

S0
, (27)

which provides the length scale of LAV . Furthermore, the numerator of the second fac-
tor accounts for the aggradation experienced by the non-dominant branch until it stops
transporting sediment, while the denominator holds the contribution of the incision of the
dominant branch. The latter term can be determined from Eq. (25b), by setting ∆Q = 1
and using Eq. (24), in the form:
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This allows us to re-write Eq. (26) as

LAV
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2

(
θb
θ0

)3/2
, (29)

where θb can be calculated from mass conservation (23).”

Figure AC2 shows the dependence of the avulsion length LAV on the aspect ratio β0 and
on the Shields stress θ0 obtained from Eq. (29). This figure has also been added to the
main paper (as the new Figure 10), along with the following descriptive paragraph (lines
409-414):

“Results reported in Fig. 10a reveal that, for typical parameter values of gravel bed rivers,
the avulsion length is in the order of several hundred times the upstream flow depth.
Furthermore, its dimensionless value exhibits a decreasing trend with both the Shields
stress θ0 and the aspect ratio β0. The former inverse dependence is mainly driven by the
role of the channel slope S0, while the latter is due to the increase of the term ∆ηBRT with
β0. Interestingly, when we filter out the main effect of S0 by scaling the avulsion length
LAV with the backwater length LB, the dependence of the avulsion length on the Shields
stress is reversed, as shown by Fig. 10b.”

2. The addition of the analytical model (25) is a noteworthy and helpful. But so
that others can explore the model, I would suggest explicitly writing out the
transport models that are used in the last component. The authors could also
point towards what numerical method/tool they used to solve the system of
nonlinear equations.

Results reported in our paper have been obtained using the transport relationship of Meyer-
Peter and Müller (1948) and that of Parker (1978), as mentioned in Sect. 2. We made sure
to report the adopted transport model in all figure captions where necessary.
To solve the nonlinear algebraic system, we simply used the default solver of the Python
Scipy package. The solution seemed to always converge, so we do not expect this choice to
be critical.
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3. Line 302: It is not clear to me what is meant by Beta_NT is calculated ana-
lytically. Is this arrived at by using the basic BRT analysis?

The Reviewer is right. The βNT is calculated using the basic BRT analysis, as reported,
for example, at the beginning of Sect. 3 (lines 232-234). For the sake of clarity, we modified
line 302 as in the following:

“[. . . ] the threshold value βNT computed analytically by means of the BRT model (see
dotted lines in the figure). ”

4. With reference to Fig 5. Why is there such an abrupt change (almost like a
phase transition) at (or close to) Beta_NT. Is such a jump exhibited in the
analytical model in (25)?

The abrupt change pointed by the Reviewer emerges from the results of the numerical sim-
ulations while gradually increasing β0 from values smaller than the no-transport threshold
βNT to values larger than βNT , as described in the first part of Sect. 3. To make this point
clearer, we added a panel to Figure 6 showing the variation over time of the discharge
asymmetry ∆Q of numerical simulations in which β0 is larger than βNT . Contrary to
simulations in which β0 < βNT , their equilibrium value of ∆Q is considerably larger than
that foreseen by the BRT model. This difference in the long-term discharge asymmetry
corresponds to the discontinuity represented in Fig. 5 and pointed out by the Reviewer.

Physically speaking, this abrupt change corresponds to a sharp transition in the system
behaviour, as the non-dominant branch becomes unable to adapt its bedslope over time
when its transport capacity vanishes. In this case, the BRT model is no longer applicable,
as it assumes that both branches are morphodynamically active. This is why we developed
a new analytical model (described in Sect. 4) to predict the long-term equilibrium state
when β0 > βNT . Strictly speaking, the analytical model defined by Eq. (25) does not
contain in itself any abrupt change. However, its applicability is obviously limited to cases
where β0 > βNT .

Reply on RC2

The study effectively overcomes the limit of the original BRT (2003) model for river
bifurcation to account for the situation where one of the two branches reaches van-
ishing transport capacity. The finding of more asymmetrical flow distribution in
those configurations agrees with what is commonly found through numerical sim-
ulations (i.e. Kleinhans et al., 2008). The numerical scheme presented is robust,
however, it would be interesting to have some comments on how it responds to dif-
ferent kinds of perturbations (i.e. shape, position or magnitude) and, eventually, the
effect in terms of morphodynamic timescales. The analytical model to study those
conditions, even though strongly idealized, does its job in describing the configu-
ration where the non-dominant branch is not able to adjust its riverbed anymore.
It would be nice to see in future developments the inclusion of finer sediments to
apply those considerations in low-land bifurcations.

We thank the Reviewer for the insightful comments on our work. We agree with the Reviewer
that the transient behaviour of the bifurcation may depend on the magnitude and shape of
the initial perturbation. We did not perform a systematic analysis of the effect of the initial
perturbation, but we expect the long-term equilibrium of the bifurcation - which is the main
topic explored by our work - not to depend on it. As a matter of fact, the long-term discharge
asymmetry displayed by numerical simulations matches that foreseen by the analytical models.
In our work we focus on the behaviour of “free” bifurcations and we do not model the generative
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processes that lead to their formation. Therefore, we assumed the simplest, less disturbed initial
configuration, as needed to isolate the basic mechanisms. In this sense, our analysis is only telling
part of the story, in which the bifurcation is unforced and weakly perturbed.

It is worth recalling that several previous works examined the role of various forcing factors,
such as the curvature of the upstream channel (Kleinhans et al., 2008), branches progradation
(Salter et al., 2018), tides (Ragno et al., 2020) and slope advantage in the downstream branches
(Redolfi et al., 2019). Furthermore, Bertoldi et al. (2009) highlighted how cyclic discharge
variations or the complete abandonment of one branch can be the consequence of the migration
of bars in the upstream channel.

We thank the Reviewer for the suggestion regarding the inclusion of finer sediment. We also
believe that this would be an important future development. Therefore, we added the following
paragraph at the end of Section 5.

“The present formulation is valid under conditions where sediment is dominantly transported as
bedload. Although some promising approaches have been proposed (Iwantoro et al., 2021), a sys-
tematic understanding of the morphodynamics of channel bifurcations in suspension-dominated
channels is still lacking, thus preventing a reliable extension of our model. However, we can
expect that a similar scenario of transition to the avulsion condition also occurs for sand bed
channels where most sediments are transported in suspension. In this case the higher values of
the Shields stress are likely to be associated with an higher threshold βNT , so that larger values
of the aspect ratio may be needed to reach avulsion conditions.”
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