
We thank the Reviewer for the constructive comments and sugges-
tions. In the following we provide a detailed response to each point. The
Reviewer’s comments are in blue text, while our replies are black.

This work investigates the control of avulsions in bifurcated channel
systems; a main channel splitting into 2 equal sub channels. Towards this
end, the authors build a mathematical/numerical model, extending the
well known analysis presented by Bolla Pittaluga et al. (2003) (BRT).
The proposed model can track the evolution of a perturbation at the
branching point of the sub-channels. In the first place, the model recovers
the regimes identified in BRT. At low channel aspect ratios, following a
perturbation, the system recovers balanced flows in each of the sub-
channels. Beyond a critical aspect ratio Beta_c, however, the long term
equilibrium of the flow in the system is unbalanced. This work show that
as the aspect ratio is increased further, a second threshold Beta_TH is
reached, here the sub channel, with the least flow, exhibits a partial-
avulsion—where the channel still carries flow but ceases to transport
sediment. Depending on the length of the sub channels, as the aspect
ratio is increased even further, a point is reached where full avulsion
occurs, i.e. the channel does not convey either water or sediment.

1. I think that the analysis in this paper is of sufficient interest to
stand alone but also feel that it would be significantly enhanced,
if the authors can point toward experimental or field evidence of
the behaviors predicted by the math. For example, referring to
Figure (9), it appears, by my calculations, that full avulsion would
be reached in a system with channels of water depth of 2 m, width
40 m, and length 1 km+. How common are such conditions in
field settings? (eg. Wax Lake in Louisiana)? Are records of per-
manently avulsed channels seen in such systems? Are records of
permanently avulsed channels seen in field systems with shorter
channel lengths and smaller aspect ratios?

We thank the Reviewer for the suggestions. Unfortunately, the
available datasets are not sufficient to allow a detailed verification
of model results.

Data from physical models are scarce, and experiments were mainly
focused on the analysis of the effect of specific “forcing” factors. For
example, the laboratory experiments by Salter et al. (2019) were
tailored to depositional environments and reproduced bifurcations
with prograding branches, while Szewczyk et al. (2020) analysed
the influence on water discharge partition of changing the bifur-
cation angle, for values of the aspect ratio β0 much smaller than
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Figure AC1: Results from the analysis of experimental data by Bertoldi
and Tubino (2007). Consistently with our theory, experiments where full
avulsions were observed (filled markers) fall in the region β0 > βNT and
L > LAV .

the no-transport threshold βNT . To the authors’ knowledge, the
laboratory experiments by Bertoldi and Tubino (2007) are the only
ones that analyse how initially balanced “free” bifurcations develop
unbalanced configurations, possibly leading to partial or full avul-
sion. Indeed, a specific analysis of their results seem to support
our findings, as shown in Figure AC1 where we report, for each ex-
perimental run, the computed values of β0/βNT and L/LAV . Con-
sistently with our predictions, they reveal that full avulsions (i.e.
the complete closure of one of the branches) were observed in the
three experimental runs in which β0 was greater than (or closer to)
βNT and the channel length L was longer than the avulsion length
LAV .

Further support to our findings is also provided by the results of
Ragno et al. (2022) who analysed nearly 200 bifurcation-confluence
units of sand-bed and gravel-bed rivers. They found that field data
show the existence of quasi-universal relations for the branches
length when scaled with bankfull variables of the main upstream
channel (the mean depth or width). The resulting average dimen-
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Figure AC2: Dependence of (a) the dimensionless avulsion length
LAV /D0 and (b) the scaled avulsion length LAV /LB on the Shields
stress θ0, as obtained from Equation (AC4). Vertical dashed lines in-
dicate the value of Shields stress for which β0 = βNT , thus representing
the boundary of the region of validity of the analytical model. The dot-
ted line indicates the upper bound for LAV , obtained by neglecting the
β-dependent term ∆ηBRT (C = 12, transport formula by Meyer-Peter
and Müller, 1948).

sionless length falls in the range L∗ = 200 − 300, which can be
interpreted as a preferential range of length values that allows river
loops to keep both branches active. The results reported in Fig-
ure AC2a suggest that these values are typically lower than the pre-
dicted dimensionless avulsion length LAV /D0. We note, however,
that the application of our model to this data-set is not straight-
forward, as the presence of the confluence may have an important
influence on loop stability and equilibrium configuration (Ragno
et al., 2021). Therefore, a direct comparison with our model’s
results would require incorporating the effect of the confluence,
and considering the peculiar hydrodynamical and morphodynami-
cal characteristics of individual field cases.

Regarding the estimate of the avulsion length proposed by the Re-
viewer based on Figure 9 of our paper, we observe that the figure
does not include conditions of full avulsion, which would corre-
spond to the intersection of the curves with the ∆Q = 1 line (in-
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cidentally, we also note that we define the aspect ratio β0 as the
half-width to depth ratio). To make this point clearer, we hereby
provide the mathematical procedure, based on the analytical model
described in Section 4 of our work, to compute the avulsion length
LAV as a function of the flow conditions in the upstream channel,
namely the Shields stress θ0 and the channel aspect ratio β0, pro-
vided the latter is larger than the no-transport aspect ratio βNT .
We’ll also add the following paragraphs in the revised version of
the manuscript.

The analytical model makes it possible to determine the marginal
conditions for which one of the bifurcates closes completely (full
avulsion), and to compute the associated avulsion length LAV .
This is accomplished by setting Dc = 0 in Equation (25a) of our
paper, and isolating the length as:

LAV =
D0

S0

1− ∆ηBRT

2
1− Sb/S0

. (AC1)

The resulting expression highlights the key ingredients that deter-
mine the avulsion length, as all terms on the right-hand side of
Equation (AC1) bring a precise physical meaning. Specifically, the
first factor is the backwater length:

LB =
D0

S0
, (AC2)

which provides the length scale of LAV . Furthermore, the numer-
ator of the second factor accounts for the aggradation experienced
by the non-dominant branch until it stops transporting sediment,
while the denominator holds the contribution of the incision of the
dominant branch. The latter term can be determined from Equa-
tion (25b), by setting ∆Q = 1 and using Equation (24), in the
form:
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S0
=
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. (AC3)

This allows us to re-write Equation (AC1) as

LAV

LB
=

1− ∆ηBRT

2

1− 1

2

(
θb
θ0

)3/2
, (AC4)

where θb can be calculated from mass conservation (Equation (23)
of our paper).
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Results reported in Figure AC2b reveal that the order of magnitude
of LAV is fixed by the backwater length. Moreover, as implied
by Equation (AC4), the ratio LAV /LB increases with increasing
Shields stress and decreases with increasing β0, due to the increase
of the term ∆ηBRT (see Figure 10 of our paper).

2. The addition of the analytical model (25) is a noteworthy and
helpful. But so that others can explore the model, I would suggest
explicitly writing out the transport models that are used in the last
component. The authors could also point towards what numerical
method/tool they used to solve the system of nonlinear equations.

Results reported in our paper have been obtained using the trans-
port relationship of Meyer-Peter and Müller (1948) and that of
Parker (1978), as mentioned in Section 2. The adopted trans-
port model is reported in the respective caption of each figure: we
will include any missing information in the revised version of the
manuscript.
To solve the nonlinear algebraic system, we simply use the default
solver of the Python Scipy package. The solution seems to always
converge, so we did not expect this choice to be critical.

3. Line 302: It is not clear to me what is meant by Beta_NT is
calculated analytically. Is this arrived at by using the basic BRT
analysis?

The Reviewer is right. The βNT is calculated using the basic BRT
analysis, as reported, for example, at the beginning of Section 3
(lines 231-232).

4. With reference to Fig 5. Why is there such an abrupt change
(almost like a phase transition) at (or close to) Beta_NT. Is such
a jump exhibited in the analytical model in (25)?

The abrupt change pointed by the Reviewer emerges from the re-
sults of the numerical simulations while gradually increasing β0
from values smaller than the no-transport threshold βNT to values
larger than βNT , as described in the first part of Section 3. Physi-
cally speaking, this abrupt change corresponds to a sharp transition
in the system behaviour, as the non-dominant branch becomes un-
able to adapt its bedslope over time when its transport capacity
vanishes. In this case, the BRT model is no longer applicable, as it
assumes that both branches are morphodynamically active. This is
why we developed a new analytical model (described in Section 4)
to predict the long-term equilibrium state when β0 > βNT . Strictly

5



speaking, the analytical model defined by Equation (25) does not
contain in itself any abrupt change. However, its applicability is
obviously limited to cases where β0 > βNT .
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