
 

1 

Microclimate mapping using novel radiative transfer 
modelling 
 

Florian Zellweger1, Eric Sulmoni1, Johanna T. Malle1, Andri Baltensweiler1, Tobias Jonas2, 
Niklaus E Zimmermann1, Christian Ginzler1, Dirk Nikolaus Karger1, Pieter De Frenne3, David 5 
Frey1, Clare Webster1,2,4 
 

1Swiss Federal Research Institute WSL, Birmensdorf, Switzerland 

2WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, Switzerland 

3Forest and Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Ghent, 10 
Belgium 

4 Department of Geosciences, University of Oslo, Norway 

 

Correspondence to: Florian Zellweger (florian.zellweger@wsl.ch) 
 15 

 
  



 

2 

Abstract 

Climate data matching the scales at which organisms experience climatic conditions are often missing. Yet, such 

data on microclimatic conditions are required to better understand climate change impacts on biodiversity and 20 
ecosystem functioning. Here we combine a network of microclimate temperature measurements across different 

habitats and vertical heights with a novel radiative transfer model to map daily temperatures during the vegetation 

period at 10-meter spatial resolution across Switzerland. Our results reveal strong horizontal and vertical 

variability in microclimate temperature, particularly for maximum temperatures at 5 cm above the ground and 

within the topsoil. Compared to macroclimate conditions as measured by weather stations outside forests, diurnal 25 
air and topsoil temperature ranges inside forests were reduced by up to 3.0 and 7.8 °Celsius, respectively, while 

below trees outside forests, e.g. in hedges and below solitary trees, this buffering effect was 1.8 and 7.2 ° Celsius, 

respectively. We also found that in open grasslands, maximum temperatures at 5 cm above ground are on average 

3.4 ° Celsius warmer than that of macroclimate, suggesting that in such habitats heat exposure close to the ground 

is often underestimated when using macroclimatic data. Spatial interpolation was achieved by using a hybrid 30 
approach based on linear mixed effects models with input from detailed radiation estimates from radiative transfer 

models that account for topographic and vegetation shading, as well as other predictor variables related to the 

macroclimate, topography and vegetation height. After accounting for macroclimate effects, microclimate patterns 

were primarily driven by radiation, with particularly strong effects on maximum temperatures. Results from spatial 

block cross-validation revealed predictive accuracies as measured by root mean squared errors ranging from 1.18 35 
to 3.43 °Celsius, with minimum temperatures overall being predicted more accurately than maximum 

temperatures. The microclimate mapping methodology presented here enables a biologically relevant perspective 

when analysing climate-species interactions, which is expected to lead to a better understanding of biotic and 

ecosystem responses to climate and land use change. 
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1 Introduction 

Current understanding of climate and climate change impacts on biodiversity and ecosystem functioning are often 

based on macroclimate data available at spatial scales much coarser than the microclimatic conditions experienced 

by organisms (Bramer et al., 2018; Potter et al., 2013). Most of these macroclimate datasets are based on 

interpolations of standardised weather station data, typically using temperature measurements taken outside of 55 
forests and above grasslands at ~2 m above ground level. However, across landscapes, local topography and 

vegetation cover create heterogeneous microclimates through altering local radiation regimes, air mixing and 

evapotranspiration. Macroclimate data are therefore limited in representing near-surface microclimate conditions 

close to or in the ground and under vegetation canopies where most terrestrial organisms reside. Given the 

importance of microclimates for the physiology of organisms as well as for key ecosystem processes such as 60 
carbon, nutrient and water cycling, accurately predicting microclimates at high spatial and temporal resolutions is 

fundamental for understanding climate and climate-change impacts on biodiversity and ecosystem functioning 

(Jones, 2014; De Frenne et al., 2021).  

Variation in microclimate is driven by the topography, vegetation, soil, and the water balance, all of which 

modulate near-surface temperatures from the prevailing macro-scale meteorological conditions (Geiger et al., 65 
2009). Local controls on microclimates include the buffering of forest understories against macroclimate 

temperature extremes (De Frenne et al., 2019; Chen et al., 1999) and the high heterogeneity of surface 

microclimates in topographically complex environments, such as mountains (Scherrer and Körner, 2010). For 

example, maximum temperatures and temperature extremes can be reduced in areas shaded by topography and/or 

vegetation due to the reduction in incoming shortwave solar radiation, an effect that can be increased by 70 
evapotranspirative cooling if water availability is not limited (De Frenne et al., 2021). Minimum temperatures, on 

the other hand, are modulated by factors such as heat retention by vegetation canopies through reduced outgoing 

longwave radiation and reduced wind speeds, as well as cold air flow and pooling in topographic depressions, 

particularly during the night and calm atmospheric conditions (Dobrowski, 2011; Geiger et al., 2009).  

Fortunately, mapping of microclimates has recently been facilitated by advanced microclimate measuring and 75 
modelling techniques (Maclean et al., 2018; Zellweger et al., 2019a; Maclean et al., 2021) and the compilation of 

large databases of  in-situ microclimate measurements (Lembrechts et al., 2020). These new data streams and 

technologies are now being used to create large scale microclimate datasets and mapping products that will 

contribute to a better understanding of the climate-related distribution and functioning of organisms (Lembrechts 

et al., 2019b; Suggitt et al., 2018; Maclean and Early, 2023; Haesen et al., 2023a; Lembrechts et al., 2022).  80 

Mapping microclimate across landscapes has particularly been assisted by remote sensing technologies such as 

Light Detection and Ranging (LiDAR) and digital photogrammetry, which provide detailed information about the 

topography and vegetation structure that can be used as input variables to model near-surface temperatures (Jucker 

et al., 2018; Frey et al., 2016; Duffy et al., 2021; Greiser et al., 2018; Maclean et al., 2018). A key challenge in 

microclimate mapping is incorporating radiation transfer through vegetation canopies, which has often been 85 
crudely represented via the use of canopy cover and density proxies such as Leaf Area Index (LAI), canopy height 

and/or canopy cover. These proxies lack the directional component to radiation transfer and typically generalise 

the canopy away from individual tree-level structure, both of which impact the physiology of organisms. Using 
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these proxies can therefore lead to errors in estimates of canopy transmissivity in heterogeneous forest canopies 

(Musselman et al., 2013), thereby increasing uncertainties for analysing microclimate effects on plant species 

composition (Zellweger et al., 2019b). Newer mechanistic microclimate models are now able to account for 

radiative transfer through canopies, as well as attenuation of wind speed (Maclean and Klinges, 2021) and specific 

radiative transfer models based on remotely sensed 3D vegetation structure datasets accurately calculate canopy 95 
transmissivity maps at meter- and even submeter-scale resolution by directly accounting for detailed and realistic 

canopy structure in relation to the changing daily and seasonal solar position (Musselman et al., 2013; Bode et al., 

2014; Tymen et al., 2017; Webster et al., 2020; Kükenbrink et al., 2021; Webster et al., 2023). Together with the 

increasing availability of 3D vegetation structure datasets at the tree-level across large spatial extents these 

developments enable incorporating detailed radiative transfer variables in microclimate mapping approaches.  100 

A further limitation to current microclimate analysis and mapping is the lack of reliable in-situ microclimate 

measurements across a wide range of habitats. In places exposed to sunlight, for example, many commonly used 

microclimate temperature loggers - shielded or unshielded - record biased measurements due to radiative fluxes 

operating on the thermometer (Maclean et al., 2021). Fortunately, these biases can now be minimised by using 

ultra fine-wire thermocouples with a low thermal emissivity and highly reflective surface, recording accurate 105 
estimates of air temperatures even in places exposed to sunlight or close to the ground (Maclean et al., 2021). 

Deploying these measurement devices across multiple habitat types that span wide ranges of variation in vegetation 

structure and topography is thus required to arrive at a reliable reference dataset that is representative of the entire 

spectrum of microclimate conditions within environmentally heterogeneous regions. This would, for example, 

allow researchers to include the often ignored but specific thermal conditions beneath trees outside forests, e.g. in 110 
hedges providing important habitats and  increase habitat connectivity, in microclimate mapping products 

(Vanneste et al., 2020).  

Here we combine a state-of-the-art radiative transfer model with a comprehensive microclimate measurement 

network to infer and map daily microclimate temperatures at three vertical heights and 10 m spatial resolution 

across the whole of Switzerland. The resulting microclimate dataset is a major step forward towards taking a 115 
realistic organism's perspective when studying species-climate interactions and will be relevant to many fields of 

biological and environmental sciences, including fundamental and applied ecology, hydrology, agriculture and 

forestry (De Frenne et al., 2021; Bramer et al., 2018). 

2 Materials and Methods 

2.1 Study area 120 
This study was carried out in Switzerland, which covers 41,248 km2 of Central Europe. Mountains cover c. 70% 

of the country, lowlands the remaining 30%. One-third of the land is forested, with a larger proportion in the 

mountain areas. The forest composition consists of coniferous (42 %), mixed (34%) and deciduous (24%) forests 

(Brändli et al., 2020). 4% of the country (1,813 km2) are covered by trees outside of forests, e.g. trees found in 

hedges or solitary trees (Malkoç et al., 2021). 125 

2.2 Temperature measurements inside and outside forests 

We implemented a nationwide network of microclimate temperature sensors following a hierarchical stratified 

sampling design. First, we identified eight regions to represent the main macroclimate gradients in Switzerland 
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(Fig. 1). These regions align with the long-term Forest Ecosystem Research (LWF) network, covering gradients 

ranging from the lowlands with a temperate, relatively warm climate to higher and cooler elevations receiving 

more precipitation, to inner alpine regions with a continental climate and regions in the southern Alps with an 

insubric climate. In each region, we installed temperature sensors in several plots, covering the regional variation 140 
in forest structure and topography. Inside forests, we identified locations with low to high topographic slope angles 

and topographic positions, as well as locations with different slope orientations, i.e. from north to south facing 

slopes. In each of the forest locations, we sampled one plot with high and one plot with low canopy cover, as 

visually estimated in the field. All forest plots were at least 50 m away from the nearest forest edge. Outside forests 

we sampled grasslands with different slope orientations, as well as high and low relative topographic positions, 145 
i.e. ridges to valley bottoms. Finally, in each region we selected plots below trees outside forests. In hedge type 

habitats, i.e., linear accumulations of woody vegetation, we placed the loggers in the middle of each hedge. Below 

solitary trees we placed the loggers at half the distance between the tree trunk and outer crown projection line. Due 

to regional plot availability and suitability as determined by field visits, the number of final plots per region varied, 

ranging from 6 to 17 (median of 15) plots per region. The total number of plots was 107, with 62 plots in forests, 150 
22 below trees outside forests, and 23 in open grasslands. In the Pfynwald and southern Ticino only forest plots 

were sampled. Our sample plots represented the observed range of environmental conditions across the study area 

well, as indicated by a comparison between sampled and observed predictor variable space across the area used 

for making predictions (Appendix B, Table B1). 

In each plot, microclimate temperatures were measured at 1 m and 5 cm above the ground surface, as well as below 155 
the ground in the topsoil at 5 cm depth. These heights were chosen because we expect a large degree of vertical 

temperature variation between these heights, as indicated by common temperature profiles (De Frenne et al., 2021) 

and because these heights are representative of the strata in which many organisms reside (e.g. herbaceous plants, 

tree seedlings, ground arthropods, soil fungi and bacteria). We acknowledge that sampling entire vertical forest 

profiles reaching the top tree canopy would be desired from an ecological viewpoint, but we were not able to 160 
achieve this due to logistic reasons. Above ground air temperatures (both at 1 m and 5 cm) were recorded hourly 

using Lascar Electronics EL-USB-TC loggers with unshielded ultra-fine wire thermocouples (0.08 mm) taped to 

a 1 m tall fencing pole (Fig. 1d-e). For sampling at 5 cm below the ground we used standard Lascar EL-USB-1 

loggers placed into a buried small sealable plastic tube, also recording at an hourly resolution. Both the 

thermocouples and standard Lascar logger types have a measuring accuracy of 0.3 °C, as reported by Lascar 165 
Electronics. To check if the measurements of the unshielded thermocouples were affected by direct sunlight we 

performed an experimental sensitivity test, which revealed no significant effect of direct sunlight (Appendix A). 

The measurement period started on 8th of June 2021 and ended 31st of October 2022, with slightly varying starting 

dates per region as determined by the site visits to install all loggers. The sampling duration was thus long enough 

to include a wide range of weather conditions, from wet and cold to hot and dry periods.  All sites were revisited 170 
every two to three months for maintenance and to retrieve the data. Together with careful checks and corrections 

for obvious outliers and data artefacts introduced by device malfunction or disturbance by animals, this 

maintenance enabled us to build up a mostly seamless time series of hourly temperature data, with an overall loss 

of data of less than 5 %. Each site was georeferenced using a Trimble® GeoExplorer 6000 with an accuracy after 

post-processing of c. 1 m.  175 
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For the analysis presented here we pooled all data collected between June 2021 to October 2021 and April 2022 

to October 2022, broadly representing the vegetation periods observed across Switzerland.  We further excluded 

all temperature recordings that were made under snow cover, which mainly affected the 5 cm above ground and 5 

cm below ground measurements at high elevations. We did this because snow blankets introduce spatial and 

temporal variability of atmospheric decoupling in temperatures below or within a snow blanket, and this variability 185 
cannot accurately be modelled with our predictor variables.  

To build the final time series dataset for the spatial modelling we aggregated the hourly data to daily maximum 

(Tmax micro), mean (Tmean micro) and minimum (Tmin micro) temperature. Tmax micro was defined as the 24-hour 95th 

percentile and Tmin micro as the 5th percentile. Tmean micro is the arithmetic daily mean temperature (with n = 24). These 

three daily temperature statistics are the dependent variables for the models used to predict nationwide 190 
microclimate temperature maps as outlined below.  

To analyse the differences between the microclimate and macroclimate data, i.e. the microclimate variation not 

captured by macroclimate data, we computed the temperature offsets (De Frenne et al. 2021), as the macroclimate 

temperature minus the microclimate temperature (see section predictor variables for details). Temperature offsets 

were thus only used to quantify the observed difference between the micro- and macroclimate, while the spatial 195 
modelling was based on the actual microclimate temperatures measured. 

 

Figure 1. Sampling design for microclimate measuring network across Switzerland. a) distributions of the eight 

regions spanning a wide macroclimatic gradient across the country. In each region, sites were identified to 

represent regional variation in vegetation structure and topography (see text for details); b) and c) distribution of 200 
sites in the regions of Neunkirch and Beatenberg, respectively. d) installation of microclimate sensors, with an 

ultra-fine wire thermocouple measuring the temperature 5 cm above the ground as shown in e). 

2.3 Predictor variables 

The development of our predictor variable set was guided by the assumption that the variation of near surface 

microclimate temperatures as measured by our sensor network is strongly related to variation in macroclimate 205 
temperature, followed by effects of local-scale variation in topography, vegetation structure, and associated 

radiation regimes.  
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To derive the macroclimate we used interpolated daily maximum Tmax Macro, daily mean Tmean Macro and daily 

minimum Tmin Macro data from meteorological stations as provided by MeteoSwiss at a 1 km2 nationwide grid (Frei, 

2014). The underlying data for these macroclimate layers were collected at 131 weather stations at 2 m height 

above ground, in open localities outside forests across the country. For model fitting as well as for the final 215 
predictions we needed to downscale the 1 km2 macroclimate data to our 10 m target resolution, which was guided 

by the resolution of our other predictor variables, especially those describing the topography and vegetation height 

as described below. To this end we applied a lapse rate correction to the macroclimate layers, which is important 

in our mountainous study area, where the pronounced altitudinal gradients and related lapse rates cause large 

temperature differences within an original 1 km2 grid cell. Daily lapse rates were calculated for each Tmax macro, 220 
Tmean macro and Tmin macro separately, using a moving window regression based on the respective 1 km2 temperature 

grid cell and the corresponding 1 km2 MeteoSwiss reference DTM with a moving 3 x 3 window size. We thus 

estimated, for each window, how much the temperature changes as a function of the regional elevation gradient. 

The resulting regression estimate is the daily lapse rate 𝛤 in °C/m. Only grid cells with regression results with an 

R2 > 0.85 were considered to ensure a reliable lapse rate value. Remaining empty raster cells were filled in a second 225 
step with the average lapse rate within a moving window of 5x5 cells. Based on visual inspection of the resulting 

lapse rate maps, this combination of window sizes resulted in the best achievable estimation of locally prevailing 

lapse rate values. The result of this process was nationwide 1 km2 resolution auxiliary maps of daily lapse rates 

for each Tmax macro, Tmean macro and Tmin macro. The processing workflow is illustrated in Appendix F, Fig. F1. 

For the downscaling to the target resolution, the 1 km grids of both the lapse rate- and the 1 km2  MeteoSwiss Tmax 230 

macro, Tmean macro and Tmin macro rasters were first resampled to 10 m resolution with bilinear interpolation. Then, the 

10 m MeteoSwiss daily Tmax macro, Tmean macro and Tmin macro maps were corrected for sub-grid elevation variability 

using the 10 m lapse rate information as follows: 

 D𝑧 = 𝑧!"# 	−	𝑧#$%$&'()** (1) 

 

 𝑇+,-	+,/0&	/&0 = 𝑇+,-	+,/0&	&01 + D𝑧 ∗ 	G"+,-	+,/0& (2) 

 235 

 𝑇+$,2	+,/0&	/&0 = 𝑇+$,2	+,/0&	&01 + D𝑧 ∗ 	G"+$,2	+,/0& (3) 

 

 𝑇+)2	+,/0&	/&0 = 𝑇+)2	+,/0&	&01 + D𝑧 ∗ 	G"+)2	+,/0& (4) 

 

where 𝛥z is the difference between each 10 m grid cell of Swissalti3D DTM elevation zDTM (swisstopo, 2020) and 

the nearest 1km grid cell of the MeteoSwiss reference elevation for the temperature grids zMeteoSwiss. Tmax macro org, 
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Tmean macro org and Tmin macro org are the resampled 10 m MeteoSwiss temperature rasters and Γ the respective 240 
temperature lapse rates. The resulting lapse rate corrected daily macroclimate air-temperature maps at 10 m 

resolution, i.e. Tmax macro cor, Tmean macro cor and Tmin macro cor were used as predictor variables for the modelling and 

mapping of microclimate temperatures as measured within our network of microclimate temperature loggers (c.f. 

Section on Microclimate Modelling below).  

We also tested for effects of daily cloud cover, by incorporating actual macroclimate global radiation as derived 245 
from MeteoSwiss and found that daily cloud cover did not improve the predictive performance of our models, 

possibly because daily macroclimate temperatures already incorporate daily weather effects.  

2.3.1 Radiative transfer model: Shortwave transmissivity, sky-view fraction and subcanopy radiation 

Small-scale variability in radiation within forests was represented by accounting for explicit tree-level forest 

structure around each point. Variability in the diffuse shortwave and longwave radiation components were 250 
represented using the 180° sky-view fraction (Vf, also known as diffuse transmissivity). Variability in the direct 

shortwave component was accounted for by determining the proportion of the solar disc obscured by vegetation 

or topography (also known as time-varying direct-beam transmissivity, 𝜏dir), which varies both in space and in 

time as the solar position changes in the sky. Direct-beam transmissivity and sky-view fraction were both 

calculated using the model CanRad (Webster et al., 2023), which uses synthetic 180° hemispherical images to 255 
replicate the topography and vegetation as seen by the ground/plant surface (Fig. 2). The radiation transfer model 

simulations represent only leaf-on conditions, which implies - contrary to direct-beam transmissivity - that skyview 

fraction varies spatially but is temporally static.  To resolve the fine-scale temporal variability of direct-beam 

transmissivity we calculated it at 2-minute intervals and then averaged it to hourly time steps. CanRad was run at 

the point scale at 20 m intervals across the entire domain, totalling 87,795,419 points and 265,320 time steps across 260 
the annual solar cycle.  

At all points, terrain shading was included by using 5 m and 25 m DTMs (swisstopo, 2020). The 5 m DTM was 

included up to 300 m radius from each point to represent local terrain variability around each model point. The 

coarser 25 m DTM was used up to a 10 km radius from each point to calculate the topographic horizon line, 

accounting for terrain shading from nearby mountains. 265 

For the above radiative transfer modelling we used the module C2R (CanopyHeightModel2Radiation) within 

CanRad which achieves a realistic representation of the overhead canopy structure based on a canopy height model 

(CHM) to determine the geometric arrangement of vegetation surrounding a point with information on forest type 

and subsequent leaf area of individual tree crowns. The CHM was available at 1 m resolution based on lidar 

datasets ranging from 1-30 points/m2 acquired across Switzerland from 2012-2021, with one region (i.e. Pfynwald) 270 
having older data from 2003. The high spatial resolution of the CHM across the model domain ensured the effect 

of individual trees on ground-surface shading were explicitly incorporated. Forest type information was provided 

by the nationwide forest mix rate dataset from Waser et al. (2017) to discriminate between deciduous and 

evergreen forest types and the Swiss forest ecoregions dataset (FOEN, 2022) was used to distinguish between 

needleleaf or broadleaf forest types. For a more thorough description of the radiative transfer modelling, see 275 
(Webster et al., 2023).  
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Figure 2: Top: nationwide input datasets used in CanRad to calculate synthetic hemispherical images: elevation 

(left), canopy height (middle), forest type mix rate and locations of outputs shown in bottom panels (right). Bottom 280 
left: examples of hemispherical photographs and corresponding synthetic images at the same locations; a) below 

shrubs; b) deciduous broadleaf forest; c) northern alpine evergreen coniferous forest; d) southern alpine evergreen 

coniferous forest; in the synthetic images the yellow line corresponds to the solar track on June 22. Sky-view 

fraction is then calculated as the ratio based on a non-linear weighting of the blue + yellow area relative to the total 

area. Bottom right: Example of model estimates of skyview fraction (e) and average transmissivity for June (f) 285 
over a 4 km2 region in the central alps, as indicated by the black square in top right forest mix rate map. Aerial 

image (g) and canopy height (h) shown for context. Note: photographs in a-d have not been corrected for lens 

distortion compared to synthetic images which have an equiangular lens projection.  

The hourly estimates of direct-beam transmissivity were aggregated to daily values by averaging the values each 

day between the hours of 9AM and 4PM. The assumption here was that the daily maximum microclimate 290 
temperature is mostly dependent on solar radiation within this time interval. These daily aggregates were averaged 

to monthly averages thereafter and resampled from 20 m to 10 m resolution using bilinear interpolation. Finally, 

we multiplied these monthly average transmissivity values with monthly averages of daily clear sky direct 

shortwave irradiation as estimated by (Zimmermann and Roberts, 2001), yielding what hereafter is referred to as 
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direct radiation proxy. Note that this proxy represents both the spatial and the seasonal variation in subcanopy 295 
direct shortwave radiation.  

As an additional predictor variable, we also extracted vegetation height at 10 m resolution from the above-

mentioned CHM.  

2.3.2 Topographic position- and wetness index 

We used the swissalti3D DTM with a 10 m resolution to derive indices of topographic position (TPI) and wetness 300 
(TWI). TPI and TWI serve as indicators for cold air flow and pooling, as well as exposure to wind, thus affecting 

near surface temperatures (Ashcroft and Gollan, 2013; Daly et al., 2008). TPI, or relative elevation, is defined as 

the normalised difference between the elevation of a focal cell and the average elevation within a minimum radius 

(here zero) and a maximum radius (here 120 meters). TWI describes the lateral water flow and was calculated as 

follows: 305 

 𝑇𝑊𝐼	 = 	𝑙𝑛	
𝑎

𝑡𝑎𝑛	𝑏		 
(5) 

where a is the upslope catchment area and 𝑡𝑎𝑛 b is the local slope in radians (Freeman, 1991). 

2.3.3 Soil moisture and rain 

Soil moisture has been shown to affect near surface temperatures, for example by lowering the buffering magnitude 

of forest floor temperatures compared to outside forest temperature under dry conditions (von Arx et al., 2013). 

To account for potential effects of soil moisture and precipitation on our measured microclimate temperatures we 310 
calculated a predictor variable termed “rain sum”, using daily precipitation data from MeteoSwiss on a 1 km grid. 

To calculate this variable for each day (i.e. at a daily resolution) we summed up the precipitation over the preceding 

30 days, giving a linearly decreasing weight to values further in the past.  

Table 1. Predictor variables used for modelling, with the range of values representing the variable ranges across 
our microclimate sampling plots. 315 

Variable name Description Range 
(mean) 

Unit 

Macroclimate temperature Daily maximum near surface (2 m) lapse rate corrected air-
temperature (Tmax macro cor) as derived from MeteoSwiss 

-5.6 - 37.0 
(17.8) 

°C 

 Daily mean near surface (2 m) lapse rate corrected air-temperature 
(Tmean macro cor) as derived from MeteoSwiss 

-7.6 - 28.6 
(13.4) 

°C 

 Daily minimum near surface (2 m) lapse rate corrected air-
temperature (Tmin macro cor) as derived from MeteoSwiss 

-13.4 - 23.1 
(8.6) 

°C 

Direct radiation proxy Proxy for average daily direct clear sky shortwave irradiation on the 
ground and beneath vegetation canopies 

0 - 29410 
(8600) 

kJ/m2/day 

Skyview fraction Proportion of sky visible taking an upward perspective on the ground 
and beneath vegetation canopies 

2 - 98 (41.5) % 

Vegetation height Vegetation height derived from canopy height model 0 - 35.1 (13.3) m 
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Rain sum Weighted sum of daily precipitation amount over preceding 30 days 2.6 - 320.1 
(62.9) 

mm 

Topographic position Relative topographic position describing the plot elevation in 
relationship to the surround‐ ing elevations. Valley bottoms have low 
values; elevated locations, such as ridges, have high values 

-1.0 - 0.97 (-
0.04) 

Index 

Topographic wetness Topographic wetness index representing the lateral water flow 1.1 - 9.6 (3.2) Index 

Northness Cosine of topographic aspect. Northness is a continuous variable 
describing the topographic exposition ranging from completely north 
ex‐ posed to completely south exposed 

-1 - 1 (-0.1) Index 

Slope Topographic slope 0.3 - 41.7 
(17.9) 

Degrees 

2.4 Microclimate modelling 

We statistically related the plot-level measurements, i.e., the daily Tmax micro, Tmean micro and Tmin micro measurements 

at different vertical heights, to the predictor variables (Table 1), and used the resulting model equations to predict 

national maps of daily microclimate over the entire gridded domain. The sample sizes for the 1 m, 5 cm and the 320 
topsoil datasets were n =  33’390, n = 30’781 and n = 27’662, respectively. As mentioned above, please note that 

our dependent variables were the actual microclimate temperature measurements and not the temperature offsets. 

We tested three modelling approaches to analyse the predictive performance of our predictor variables. 

First, we fitted linear mixed effects models with our predictor variables as fixed effects and “region” as a random 

intercept term to account for the non‐independence among replicates from the same region, using restricted 325 
maximum likelihood in the lmer function from the lme4 package in R (Bates et al., 2015). All variables were 

standardised, i.e., rescaled to have a mean of zero and a standard deviation of one, to increase the interpretability 

of relative effect sizes among the predictor variables. For Tmax micro and Tmean micro we included the interaction term 

between the macroclimate temperature and the direct radiation proxy at ground level and below canopy, as it has 

been shown that the maximum temperature buffering capacity of tree canopies can increase with warmer 330 
temperatures (De Frenne et al., 2019). Tmin micro was modelled as a function of sky-view fraction instead of direct 

radiation, to account for the negative net longwave radiation during night as a presumed main driver of Tmin micro. 

The second approach was a random forest regression model, using the “randomForest” package in R (Liaw and 

Wiener, 2002). Two variables were randomly sampled as candidates at each split, with a total number of 500 trees 

following conventions. We used this machine learning algorithm because it automatically considers variable 335 
interactions and non-linear relationships between dependent and independent variables. These features may lead 

to increased predictive accuracy because such interactions and non-linear relationships may indeed be present in 

our data, as it has been shown that effects of vegetation structure and topography on near surface temperatures 

may be non-linear (Zellweger et al., 2019c).  

To further test for non-linear responses, we also used general additive mixed‐effects models (GAMMs) as our 340 
third modelling approach, applying the gamm function in the “mgcv” package in R (Wood, 2017). We again added 

“region” as a random term and used REML as the smoothing parameter estimation method for the model.  

To evaluate the predictive performance of our models we applied a spatial block cross validation approach and 

computed the R2 values and root mean squared errors (RMSE) (Roberts et al., 2017).  We therefore iteratively used 
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data from 7 out of the 8 regions for model fitting and predicted the data from the left-out 8th region to compare 

the predicted with the observed values.  

As indicated in the results section, we used the linear mixed effects models to produce daily microclimate maps 

across Switzerland at 10 m resolution covering the period between 1st of April and 31st of October, for all the 

years between 2012 to 2021. We calculated these maps for daily Tmax micro, Tmean micro and Tmin micro, each at 1 m and 350 
5 cm above ground, as well as in the topsoil 5 cm below ground. As noted, these data are representative for snow-

free conditions during the vegetation period and leaf-on conditions. The ten-year period has been chosen 

acknowledging that changes in tree cover and density do occur, where most of our LiDAR data used for the 

radiation modelling was acquired during the years 2012-2021. Because we have neither sampled microclimate 

data in urban areas nor settlements, nor in non-vegetated areas, such as scree or glacial habitats, we masked those 355 
areas out from our microclimate maps, using the land cover mapping product Vector25 (swisstopo, 2022). 

3 Results 

3.1 Temperature offsets in different habitats 

The temperature offsets describe the differences between the microclimate and macroclimate data and thus indicate 

microclimate variation not captured in macroclimate data. Our nationwide sampling in different habitats revealed 360 
strong horizontal and vertical variability in temperatures during the vegetation period, with a particularly high 

degree of variation in daily maximum near surface and topsoil temperature measured at 5 cm above ground (5th 

and 95th percentiles: -4.6 and 8.2 °C) and 5 cm below ground (5th and 95th percentiles: -10.3 and 2.2 °C), 

respectively (Fig. 3). Daily temperature extremes as measured by Tmax micro and Tmin micro were considerably reduced 

in the topsoil and in forests, as indicated by negative offset values for Tmax micro and positive offset values of Tmin 365 

micro. 

In forests, the daily Tmax micro were cooler than the daily Tmax macro outside forests, with mean offset values of -1.3 

and -1.1 °C for air temperature at 1 m and 5 cm above ground, respectively, and -5.2 °C in the topsoil (Appendix 

C, Table C1). Daily Tmin micro were generally warmer, with average offset values of 1.8, 1.7, and 2.6 °C at 1 m, 5 

cm above ground and in the topsoil, respectively. In forests, the resulting absolute difference between Tmax and 370 
Tmin offsets, i.e. the total temperature buffering effect, were thus 3.0, 2.9, and 7.8 °C, respectively.  

Below trees outside forests we also found reduced daily extreme temperatures as compared to Tmax macro, but the 

magnitude of the temperature buffering effect was lower than in forests. Daily Tmax micro were on average lower by 

-0.7, -0.2 and -4.9 °C at 1 m, 5 cm above ground and in the topsoil, respectively, while daily Tmin micro were on 

average higher by 1.1, 0.9 and 2.3 °C. The resulting total temperature buffering effect below trees outside forests 375 
was thus 1.8, 1.1, and 7.2 °C, respectively.  

Unlike in forests and trees outside forests, temperature offsets for maximum air temperatures at 5 cm in grasslands 

were found to be positive, i.e., 3.4 °C, indicating that near surface Tmax micro in open habitats are often 

underestimated when using macroclimate data. Moreover, topsoil Tmin micro in open grasslands were warmer than 

the macroclimate by 3.5 °C on average. Across all habitat types we found that the degree of variation in offset 380 
values, particularly Tmax micro offset values, was greater at 5 cm above ground than at 1 m or in the topsoil, 

suggesting a high spatial variability in near surface air temperatures across and within the different habitat types. 
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Figure 3. Offsets between macroclimate and in situ measured microclimate temperature during April to October 

per habitat type and overall data points. The offsets were calculated by subtracting the microclimate temperature 

from the lapse rate corrected macroclimate temperature (Tmacro - Tmicro). Negative offset values thus indicate cooler 390 
microclimates compared to the macroclimate, and vice-versa. 

3.2 Model performance 

The predictive performance of our models ranged between R2 values of 0.54 and 0.95, and root mean squared 

errors (RMSE) 1.2 and 3.4 °C (Table 2, Fig. 4). Microclimate temperatures at 1 m height were predicted with the 

highest accuracy, followed by temperatures at 5 cm and in the topsoil. Tmin micro at 5 cm and in the topsoil were 395 
predicted considerably more accurately than the respective Tmax micro values. We also found large ranges in 

predicted temperature offsets, with generally wider ranges for Tmax micro than for Tmin micro. The widest range of 

offsets were found for topsoil Tmax micro, followed by Tmax micro at 5 cm and 1 m. 

The observed patterns in model performance and predicted offset value ranges were broadly similar across the 

three tested modelling approaches but it is noteworthy that random forests as well as GAMMs predicted 400 
considerably larger offset ranges (Appendix D, Table D1). Yet, when evaluated based on block cross validation, 

linear mixed effects models had the highest overall predictive skill. We thus used the linear mixed effects models 

to evaluate individual predictor variable effects and to calculate the final microclimate maps. 

We also compared the predictive performance of our microclimate models against a model using macroclimate 

predictor variables only. This analysis confirmed the expectation that given the broad macroclimatic gradients in 405 
our study and the period analysed (i.e., April-October) most of the variance is explained by the macroclimate 

(Appendix E). 
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Figure 4. Predicted versus observed plots showing predictions from linear mixed effects models. The sample 410 
density is indicated by the color scale, with yellow showing highest sample densities; the red line represents the 

1:1 relationship. 

Table 2: Predictive performance of linear mixed effects models, quantified using block cross validation. We also 

report the predicted offset ranges, i.e., minimum to maximum, and mean in brackets, calculated as the difference 

between the predicted microclimate and the macroclimate.  415 

                     Temperature 1 m above ground Temperature 5 cm above ground Temperature in topsoil 5 cm below ground 

 R2 RMSE Predicted offset range  R2 RMSE Predicted offset range  R2 RMSE Predicted offset range  

Tmax micro 0.92 1.7 -3.0 - 1.4 (-0.6) 0.73 3.4 -5.6 - 7.0 (0.4) 0.54 3.1 -15.4 - 8.0 (-4.0) 

Tmean micro 0.95 1.2 -2.4 - 1.9 (-0.1) 0.9 1.6 -3.3 - 3.6 (-0.4) 0.75 2.0 -7.5 - 9.1 (-0.9) 

Tmin micro 0.92 1.5 -0.8 - 3.4 (1.5) 0.88 1.8 -1.3 - 4.3 (1.2) 0.78 1.9 -1.5 - 9.5 (2.9) 

 

3.3 Predictor variable effects 

In line with the expectation that microclimate patterns broadly follow macroclimate dynamics we found that 

macroclimate variables had the strongest effects on the microclimate, as indicated by the highest standardised 

variable estimates (Fig. 5). Yet, most of the predictor variables related to radiation, vegetation and topography 420 
significantly modulated the local variation of microclimate. 

We found that Tmean micro and Tmax micro were strongly related to direct radiation, with particularly large effects on 

Tmax micro at 5 cm above ground and in the topsoil 5 cm below ground. The interaction effects between the 
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macroclimate and direct radiation were relatively weak but significant. Specifically, the effect of direct radiation 425 
increased with increasing Tmax macro for Tmax micro at 1 m and 5 cm, but the opposite was true for Tmean micro. Skyview 

fraction strongly modulated Tmin micro, with negative effects on Tmin micro at 1 m and 5 cm, and positive effects on 

topsoil Tmin micro. Vegetation height had the largest effects on Tmax, cooling down Tmax micro as vegetation height 

increased across all three measurement heights. Higher water availability as estimated by the rain sum of the 

preceding thirty days generally had a small but significant cooling effect on microclimate temperatures at 1 m and 430 
5 cm, and a warming effect on topsoil temperatures. From all topography variables tested, topographic wetness 

and northness had the largest effects, predominantly cooling temperatures across all three heights at higher levels 

of topographic wetness and northness. In general, radiation and the vegetation height affected microclimate 

temperatures more strongly than variables related to water content and topography. 

 435 

Figure 5. Standardised model coefficient estimates from linear mixed effects models for daily microclimate 

temperatures at different vertical heights, i.e., at 1 m and 5 cm above ground and 5 cm below ground. The estimates 

on the x-axis indicate the standardised effect sizes and direction of each variable. Standard errors are indicated by 

error bars, however due to the large sample size the error bars are small and invisible. Small transparent dots 

indicate non-significant (p > 0.05) relationships. 440 

3.4 Microclimate maps 

Our microclimate maps show pronounced differences compared to currently available macroclimate layers (Fig. 

6). Spatial variation in microclimates is particularly evident between forest and non-forest areas, and microclimate 

effects of trees outside of forests, e.g., in hedges or similar linear tree habitats, become visible. The strongest 

vertical temperature differences emerge between topsoil and near surface air temperatures. All daily maps of Tmin 445 

micro, Tmean micro and Tmax micro, for all three vertical heights, have also been aggregated to monthly averages, which 
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are publicly available (see data access section). The broad coverage in our model calibration data in terms of 

environmental variation led to hardly any predictions outside the model calibration data (Appendix B, Table B1), 

minimising potential uncertainties related to extrapolation. 

 450 

 

Figure 6. Microclimate maps for Switzerland. a) nation-wide map of daily maximum microclimate temperature 

in summer. b) 4 x 4 km hillshaded sample region with forest cover shown in light green; the location of the region 

is indicated by a blue rectangle in a). Across the sample region we illustrate our microclimate maps in comparison 

with the macroclimate data, with the maps in c) representing the conditions on a frost day in spring, and the maps 455 
in d) showing the conditions on a warm summer day. e) shows a smaller area (coloured rectangles in c & d), 

illustrating the small-scale temperatures during a frost day in April 2021 and a warm summer day in July 2018. 

Source for macroclimate maps in c) and d): MeteoSwiss. 
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4 Discussion 

Our measured microclimate temperatures within an environmentally heterogeneous region revealed strong vertical 460 
and horizontal variation in near surface temperatures. This microclimate variation can be mapped with high 

accuracy at a national scale, thus overcoming a prevalent limitation of macroclimate temperature maps that do not 

represent small-scale temperature variation. For example, our microclimate mapping approach reveals the 

distribution of locations that experience substantially reduced daily temperature extremes, such as along forest 

density gradients. The temperature buffering effect was particularly pronounced for temperatures in the topsoil 5 465 
cm below ground and air temperatures 5 cm above ground, and less so for air temperatures 1 m above ground, a 

finding that aligns well with expected vertical temperature profiles in forests (De Frenne et al., 2021). The ability 

to map this temperature buffering effect along a vertical temperature gradient is expected to provide crucial 

information to better understand microclimate-species interactions and their implications for biodiversity and 

ecosystem functioning (De Frenne et al., 2021; Lembrechts et al., 2019a). 470 

Trees and shrubs have a strong impact on near surface and topsoil temperatures, mainly via their effects on the 

radiation regime but also via their effects on wind speed and evapotranspiration (Geiger et al., 2009). We found a 

particularly strong positive effect of direct shortwave radiation on microclimate Tmax at 5 cm above ground and in 

the topsoil, implying that incoming radiation is the main controlling variable of ground level microclimates once 

the macroclimate is accounted for. In line with the expectation that daily Tmin are higher under dense canopies 475 
because of longwave enhancement (Webster et al., 2016), we found a negative effect of sky view fraction on both 

above ground Tmin at both 5 cm and 1 m above ground. Topsoil Tmin however, was positively affected by sky-view 

fraction, potentially due to a higher degree of topsoil warming outside forests. These results imply that including 

high resolution 3D remote sensing data of forest structure and derived radiation estimates significantly increase 

our capability to describe microclimatic variation. 480 

Promising avenues for future microclimate modelling thus include the incorporation of temporarily dynamic data 

about forest cover and structure. Our detailed assessments of radiation effects on microclimatic variation relied on 

the application of a high-resolution radiative transfer model to estimate controls on radiation below the canopy, 

considering the position and crown architecture of each tree in the landscape (Webster et al., 2023). Integrating 

this model into our microclimate mapping approach constitutes an important novelty as it not only furthers more 485 
conventional approaches to estimate vegetation effects on radiation, e.g., via the use of light availability proxies 

such as canopy height, cover, or leaf area index (LAI), but also provides a pathway to quantify the effect of 

different natural and management related forest dynamics on near surface and topsoil temperatures. Such analyses 

now become feasible, as the canopy structure information input into the radiative transfer model can be 

manipulated to represent past or future forest structure where a subsequent model update would reveal the 490 
microclimatic impact quantitatively. Similar avenues are also provided by mechanistic microclimate models that 

incorporate physical processes more explicitly (e.g.,  Maclean and Klinges, 2021). These analyses are particularly 

relevant because it is increasingly evident that land use effects, e.g., from forest management practices, but also 

from increased forest disturbances (e.g., due to droughts, bark beetles, wind storms) can have strong immediate 

effects on microclimate temperatures (Senf and Seidl, 2021), invoking microclimate temperature changes that are 495 
ecologically more relevant for explaining biodiversity dynamics than macroclimate change (Zellweger et al., 2020; 

Christiansen et al., 2022). Such approaches thus allows for including both past as well as future woody vegetation 
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dynamics, into the microclimate modelling, thus addressing an important methodological gap in microclimate 

science (De Frenne et al., 2021). 

Another avenue for future microclimate modelling consists of comparing the relative strengths of statistical versus 

mechanistic models that are built based on physical processes. It would be interesting to incorporate the outputs 505 
of our radiative transfer model (e.g., sky view fraction and the proxy for direct radiation) into commonly used 

mechanistic models, e.g., NicheMapR (Kearney and Porter, 2017; Kearney et al., 2020) or microclimc (Maclean 

and Klinges, 2021), and assess how well each approach performs in predicting microclimate time series given the 

different emphases on statistical and physical depiction. Performing this analysis on a high temporal resolution 

(e.g., hourly) would simultaneously allow to assess how much the aggregation of our direct radiation proxy to 510 
daily vs. hourly values affects the added value of our detailed radiative transfer modelling. 

We further found that microclimate temperatures were considerably reduced at locations with increased 

topographical wetness and northness, with relatively large effects on Tmax. These effects are expected to be related 

to generally cooler conditions in north exposed places as well as in places with large lateral, topographically 

derived water flow, e.g., via higher soil water content and cold air flow. We further found that increases in rain 515 
sum, i.e., our variable indicative of soil moisture, resulted in lower Tmax at 5 cm above ground, confirming previous 

findings that soil moisture affects near surface microclimates (von Arx et al., 2013). However, our results also 

show that the overall effect of the rain sum on topsoil and near surface temperature was relatively weak. 

The primary output of this work are maps of daily microclimatic temperatures during the vegetation seasons of the 

years 2012 to 2021. These maps improve some key scale limitations inherent in currently available macroclimate 520 
datasets, i.e., they improve on spatial scale by modelling microclimates at 10 m resolution, while maintaining a 

daily temporal resolution, and they represent microclimates at three vertical heights - 1 m and 5 cm above ground, 

and 5 cm within the topsoil, thus also improving on vertical resolution. These improvements have a range of 

implications for future assessments of climate - species interactions, and our understanding of climate change 

impacts on biodiversity. Species temperature preferences, microclimate heterogeneity, and microclimate refugia, 525 
for example, can now be mapped in much greater detail, which is expected to improve the accuracy of analysis 

and forecasting of species distributions and range dynamics (Lembrechts et al., 2019b; Maclean and Early, 2023; 

Haesen et al., 2023b). The high resolution of our data also enables a more precise estimation of threshold dependent 

temperature variables, such as degree days or frost frequencies, which is expected to improve models and 

approaches that depend on such variables, e.g., models of population dynamics or site suitability assessments for 530 
regenerating target tree species. In sum, these maps enable a more realistic, organism-centred perspective when 

analysing climate-species interactions and are thus relevant to both fundamental and applied ecology, as well as 

agriculture and forestry in the face of climate change. 

Data and code availability 

The monthly aggregated microclimate maps, as well as the monthly transmissivity maps will be made publicly 535 
available on Envidat, a permanent data repository managed by WSL. The daily microclimate maps are freely 

available upon request. The radiation model CanRad is available on https://github.com/c-webster/CanRad.jl. 
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Appendices 

 

Appendix A 

Logger sensitivity analysis 750 
Ultra-fine wire thermocouples have been shown to accurately measure microclimate air temperatures and have 

outperformed shielded standard logger types in measuring air temperatures in locations exposed to direct sunlight 

or close to the ground, of which our sampling design contained many (Maclean et al., 2021). To test potential 

effects of direct solar radiation on the thermocouples measurements we performed a shielding experiment. This 

experiment consisted of a paired design, where we placed two shielded and two unshielded thermocouples in each 755 
of three representative environments for the field sampling (open, trees outside forest, and forest). The shields 

consisted of a lid of aluminium foil such that the thermocouple was just shaded but not isolated from wind 

(Appendix E, Fig. E1). The experiment was carried out during sunny conditions over three weeks in summer 2022. 

The analysis revealed overall RMSEs of 0.35 °C and 0.18 °C for daily maximum and mean temperatures between 

the shielded and unshielded thermocouples, both values being close to the measurement accuracy of 0.3° C. We 760 
also did not find a significant difference between the three environments tested. This sensitivity analysis confirmed 

previous findings (Maclean et al., 2021) and shows that the effect of direct solar radiation on the thermocouples is 

negligible in our study set-up.  
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Appendix B 770 

Table B1. Comparison of sampled predictor variable range and the observed predictor variable range across the 

entire area to which predictions were made. Sampled range describes the predictor variables extracted at sampling 

plot locations; predicted range are the 1st and 99th percentiles of a random subset (n = 10’000) of observed values 

across the predicted microclimate maps. Note that we did not include the macroclimate and rainsum variables in 

this table because they are dynamic variables with a daily resolution in our models, yet as our sampled regions 775 
cover the observed macroclimate temperature and rainfall patterns across Switzerland well, we are confident that 

the sampled range matches the predicted range. 

Variable name Sampled range (mean) Predicted range (mean) Unit 

Direct radiation proxy 0 – 29410 (8600) 0 – 29540 (18570) kJ/m2/day 

Skyview fraction 2 – 98 (41.5) 4 – 99 (62.7) % 

Vegetation height 0 – 35.1 (13.3) 0 – 37.5 (7.4) m 

Topographic position -1.0 – 0.97 (-0.04) -1.7 – 1.7 (0.0) Index 

Topographic wetness 1.1 – 9.6 (3.2) 0.5 – 10.5 (3.3) Index 

Northness -1 – 1 (-0.1) -1 – 1 (0.0) Index 

Slope 0.3 – 41.7 (17.9) 0.3 – 59.3 (20.8) Degrees 
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Appendix C 780 

Table C1. Descriptive statistics for temperature offsets (°C). The values indicate the range (and mean between 
brackets) calculated by deducting the microclimate temperature from the lapse rate corrected macroclimate 
temperature. Negative offset values thus indicate cooler microclimates compared to the macroclimate, and vice-
versa. All means were significantly (p < 0.01) different from zero. 

 Tmax 1m Tmax 5cm Tmax soil Tmean 1m Tmean 
5cm 

Tmean soil Tmin 1m Tmin 5cm Tmin soil 

Forest -14.0 – 11.4 
(-1.3) 

-14.7 – 26.2 
(-1.1) 

-16.5 – 8.7 
(-5.2) 

-6.5 – 6.4 (-
0.2) 

-7.1 – 5.1 (-
0.4) 

-10.4 – 7.4 
(-1.5) 

-6.0 – 10.9 
(1.8) 

-9.4 – 10.1 
(1.7)  

-5.7 – 11.6 
(2.6) 

Trees 
outside 
forests 

-13.9 – 6.7 (-
0.7) 

-11.7 – 27.8 
(-0.2) 

-15.5 – 6.9 
(-4.9) 

-7.5 – 6.3 (-
0.3) 

-7.9 – 16.0 
(-0.6) 

-11.6 – 7.6 
(-1.3) 

-5.4 – 7.1 
(1.1) 

-8.8 – 11.1 
(0.9) 

-6.4 – 11.1 
(2.3) 

Open -15.2 – 8.3 (-
0.1) 

-17.0 – 20.7 
(3.4) 

-18.3 – 17.8 
(-0.9) 

-8.6 – 5.3 (-
0.2) 

-12.2 – 6.8 
(-1.0) 

13.3 – 8.7 
(0.6) 

-6.1 – 7.1 
(1.0) 

-11.7 – 8.0 
(-0.5) 

-6.9 – 12.6 
(3.5) 

Overall -15.2 – 11.4 
(-0.9) 

-17.0 – 27.8 
(0.1)  

-18.3 – 17.8 
(-4.2) 

-8.6 – 6.4 (-
0.2) 

-12.2 – 16.0 
(-0.6) 

-13.3 – 8.7 
(-1.0) 

-6.1 – 10.9 
(1.5) 

-11.7 – 11.1 
(1.1) 

-6.9 – 12.6 
(2.7) 

 785 
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Appendix D 
 
Table D1. Predictive performance of microclimate models as quantified using block cross validation. We also 

report the predicted offset ranges (minimum to maximum, with mean in brackets), calculated as the difference 790 
between the predicted microclimate and the macroclimate.  

Model  Linear mixed effects model Random Forest GAMM   

  R2 RMSE Predicted 
offset range  

R2 RMSE Predicted 
offset range  

R2 RMSE Predicted 
offset range  

Temperature 1 m  
above ground 

Tmax micro 0.92 1.7 -3.0 – 1.4 (-0.6) 0.90 2.2 -14.1 – 15.2 (-
1.1) 

0.87 2.4 -4.7 – 10.3 (-
0.3) 

 Tmean micro 0.95 1.2 -2.4 – 1.9 (-0.1) 0.92 1.8 -12.3 – 12.2 (-
0.4) 

0.93 1.4 -3.0 – 3.9 
(0.6) 

 Tmin micro 0.92 1.5 -0.8 – 3.4 (1.5) 0.89 1.9 -8.5 – 13.2 
(1.2) 

0.88 1.8 -3.3 – 9.8 
(1.6) 

Temperature 5 
cm  
above ground 

Tmax micro 0.73 3.4 -5.6 – 7.0 (0.4) 0.72 3.6 -14.9 – 14.6 (-
0.1) 

0.53 5.2 -8.4 – 17.3 
(1.4) 

 Tmean micro 0.9 1.6 -3.3 – 3.6 (-0.4) 0.86 2.0 -13.9 – 12.5 (-
0.8) 

0.83 2.1 -8.3 – 7.5 (-
0.6) 

 Tmin micro 0.88 1.8 -1.3 – 4.3 (1.2) 0.81 2.4 -10.2 – 14.8 
(0.8) 

0.32 6.2 -5.1 – 16.4 
(0.5) 

Temperature 5 
cm  
below ground 

Tmax micro 0.54 3.1 -15.4 – 8.0 (-
4.0) 

0.63 2.9 -21.1 – 15.2 (-
4.4) 

0.26 5.1 -34.9 – 24.9 (-
3.3) 

 Tmean micro 0.75 2.0 -7.5 – 9.1 (-0.9) 0.74 2.2 -13.4 – 17.0 (-
1.2) 

0.55 2.9 -10.9 – 17.6 (-
0.5) 

 Tmin micro 0.78 1.9 -1.5 – 9.5 (2.9) 0.73 2.1 -9.5 – 16.7 
(2.5) 

0.56 2.8 -8.1 – 23.4 
(3.1) 
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Appendix E 
 795 
Table E1. Comparison of model performance based on block cross validation of microclimate models against 

macroclimate benchmark, i.e. a model using macroclimate as the only predictor variable for microclimate. We 

thus report the performance of the benchmark models (i.e. ‘Macro’) alongside the full microclimate models (i.e. 

‘Micro), using all predictor variables as explained in the main text. The numbers in brackets show the results from 

based on 5-fold cross validation. All results are based on linear mixed effects models.  800 

                     Temperature 1 m above ground Temperature 5 cm above ground Temperature in topsoil 5 cm below ground 

 
Macro Micro Macro Micro Macro Micro 

 
R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

Tmax micro 0.92 (0.94) 1.78 (1.55) 0.92 (0.95) 1.72 (1.36) 0.65 (0.69) 3.91 (3.64) 0.73 (0.79) 3.43 (3.02) 0.52 (0.57) 3.19 (3.02) 0.54 (0.67) 3.13 (2.63) 

Tmean micro 0.95 (0.95) 1.22 (1.13) 0.95 (0.96) 1.18 (1.05) 0.90 (0.91) 1.60 (1.52) 0.90 (0.92) 1.62 (1.40) 0.74 (0.78) 2.05 (1.90) 0.75 (0.81) 2.02 (1.73) 

Tmin micro 0.91 (0.92) 1.55 (1.44) 0.92 (0.93) 1.48 (1.32) 0.86 (0.87) 1.91 (1.84) 0.88 (0.90) 1.77 (1.62) 0.78 (0.83) 1.87 (1.65) 0.78 (0.84) 1.86 (1.59) 
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Appendix F 805 
 

 

Figure F1: Example of shielding experiment with aluminium foil to determine if the logger measurements were 

affected by direct sunlight on the thermocouple. The thermocouple on the right pole was placed such that it was 

shaded throughout the day. The actual experiment consisted of a paired design, where we placed two shielded and 810 
two unshielded thermocouples in each of three representative environments for the field sampling (open, trees 

outside forests, and forest).  

 

 

 815 
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Appendix F 

 

Figure F1: Flowchart describing the data processing and modelling pipeline. We used daily macroclimate rasters 

and a digital terrain model at 1 km resolutions to calculate daily lapse rate maps, which were resampled to 10 m 820 
resolution and used to apply a lapse rate correction to our macroclimate layers. Together with other predictor 

variables we used the lapse rate corrected macroclimate layers to predict our microclimate layers at different 

vertical heights. Please note that for illustration purposes all temperature maps show daily maximum temperatures 

prevailing on the 31st of July 2018. 


