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Abstract. Profound knowledge of soil moisture and its variability plays a crucial role in hydrological modeling to support

agricultural management, flood and drought monitoring and forecasting, and groundwater recharge estimation. Cosmic-ray

neutron sensing (CRNS) has been recognized as a promising tool for soil moisture monitoring due to its hectare-scale footprint

and decimeter-scale measurement depth. But since CRNS provides an integral measurement over several soil horizons, a direct

comparison of observed and simulated soil moisture products is not possible. This study establishes a framework to assess the5

accuracy of soil moisture simulated by the mesoscale Hydrological Model (mHM) by generating and comparing simulated

neutron counts with observed neutron measurements for the first time. We included three different approaches to estimate

CRNS neutron counts in mHM as a function of the simulated soil moisture profiles: two methods based on the Desilets equation

and one based on the forward operator COSMIC (Cosmic-ray Soil Moisture Interaction Code). For the Desilets method we

tested two different approaches to average the vertical soil moisture profiles: a uniform vs. a non-uniform weighting scheme10

depending on the CRNS measurement depth. The methods were tested at two agricultural sites, one pasture site, and one

forest site in Germany. To explore the prior and posterior distributions of the mHM parameters when constrained by CRNS

observations, we used a Monte Carlo method based on Latin hypercube sampling with a large sample size (S = 100 000).

We found that all three methods performed well with Kling-Gupta efficiency > 0.75 and percent bias <±10% across the

majority of investigated sites and for the best 1 % of parameter sets. The performance of the neutron forward models varied15

slightly across different land cover types. The non-uniform approach generally showed good performance, particularly at the

agricultural sites. While the COSMIC method performed slightly better at the forest site. The uniform approach showed slightly

better results at the grassland site. We also demonstrated for the first time that the incorporation of CRNS measurements into

mHM could improve both, the soil moisture and the evapotranspiration products of mHM. This suggests that CRNS is capable
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of improving the model parameter space in general and adds a broader perspective on the potential of CRNS to support large-20

scale hydrological and land surface models.

1 Introduction

Soil moisture is a key terrestrial climate variable because it controls the mass and energy exchange between the Earth’s sur-

face, the groundwater, the vegetation, and the atmosphere. Understanding soil moisture levels with changes in temperature is

crucial for enhancing the predictability of climate patterns on inter-seasonal and annual time scales, as highlighted in previ-25

ous studies (Santanello Jr et al., 2011; Seneviratne et al., 2006). Moreover, soil moisture variability also plays a significant

role in a wide range of applications, including flood forecasting, weather forecasting, climate modeling, agricultural manage-

ment, and groundwater recharge (Van Steenbergen and Willems, 2013; Albergel et al., 2010; Jablonowski, 2004; Wahbi et al.,

2018; Samaniego et al., 2019; Barbosa et al., 2021). In hydrological modeling, soil moisture is a key variable controlling the

partitioning of precipitation into evapotranspiration, infiltration, and runoff (Fuamba et al., 2019; Zhuo et al., 2020). Proper ini-30

tialization and modeling of soil moisture are crucial for predicting other hydrologic processes (e.g., runoff, evapotranspiration,

etc). Nevertheless, uncertainties in input data and model parameters, along with limitations in the representation of subsurface

processes, can impede the reliability of soil moisture estimation (Chen et al., 2011). Obtaining accurate soil moisture measure-

ments at a field scale is challenging due to current measurement limitations and subsurface complexity (Dong and Ochsner,

2018). Estimating average soil moisture at a mesoscale (≈ 1–100 km) is particularly difficult due to measurement technique35

limitations in terms of their "footprint" and measurement methods to bridge the scale gap between point-scale and areal average

measurements for hydrologic modeling (Chan et al., 2018).

One promising approach to infer soil moisture at a field scale is the cosmic-ray neutron sensing (CRNS) technique (Zreda

et al., 2008; Desilets et al., 2010; Zreda et al., 2012a). It is based on a neutron detector that counts the average number

of neutrons in the air above the ground which represents the average hydrogen content in the environment. The method has40

demonstrated potential for estimating average soil moisture over areas of several hectares in size and tens of decimeters in-depth

(Köhli et al., 2015; Schrön et al., 2017). CRNS probes are typically calibrated locally using soil samples within their support

volume (Franz et al., 2012; Schrön et al., 2017). CRNS data are used in various studies, including land surface modeling,

vegetation dynamics, catchment hydrology, and supporting the agriculture sector with soil and climate data (Franz et al.,

2020). Moreover, CRNS derived soil moisture has been valuable in water balance studies, aiding in estimating infiltration and45

evapotranspiration (Schreiner-McGraw et al., 2015; Foolad et al., 2017; Wang et al., 2018).

When it comes to the comparison of observed CRNS soil moisture with the results from a hydrological model, a major

challange is to select the right vertical scale. A CRNS measurement is an integral value over a measurement volume, and the

depth of this volume depends on the soil moisture profile in a non-linear way (Köhli et al., 2015). While it is well understood

in which depth the measured neutrons probed the soil, it is not directly clear how to compare the CRNS soil moisture product50

with several soil layers in a model. Shuttleworth et al. (2013) argued that the direct comparison of the raw product – the neutron

counts – would be the favorable way to compare simulations with observations instead. By simulating neutrons directly, one
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could emulate the neutron counts per grid cell based on its soil moisture profile in the model, and then compare the result

directly with the corresponding neutron measurement.

One way to calculate neutrons within the model is to use established empirical relationships between average soil moisture55

and neutrons (Desilets et al., 2010; Köhli et al., 2021). Another way is to employ the neutron forward operator COSMIC

(Cosmic-ray Soil Moisture Interaction Code) introduces by (Shuttleworth et al., 2013). It emulates the effective vertical neutron

transport through the soil and thereby enables a comprehensive representation of the neutron generation process. Although this

operator can only be a simplification of the actual physical processes as modeled by, e.g., URANOS (Köhli et al., 2023), its

higher complexity still comes with higher computational demand compared to the mentioned analytical relationships.60

Previous studies, such as Barbosa et al. (2021) and Brunetti et al. (2019), have recognized the importance of CRNS over

traditional invasive point-scale techniques and have utilized the HYDRUS-1D model to simulate soil moisture at the field

scale. HYDRUS-1D offers a valuable framework for modeling soil moisture dynamics and has been particularly addressing

the subsurface processes. These studies incorporated a neutron forward operator COSMIC to simulate the neutron counts

based on soil moisture profiles. They inversely calibrated soil hydraulic parameters by comparing observed and simulated65

neutron count rates, whereas beforehand this was limited to be done via comparison of depth-averaged soil moisture values

(Rivera Villarreyes et al., 2014). The potential utility of using CRNS data to calculate volumetric soil water content (SWC)

and improve soil hydraulic parameters within land surface models has also been observed earlier, as highlighted by Rosolem

et al. (2014). In Iwema et al. (2017), a Land Surface Model investigated the impact of reducing scale mismatch between energy

flux and soil moisture observations using CRNS data. Patil et al. (2021) employed a distributed Land Surface Model, Data70

Assimilation Research Testbed (DART) with CRNS time series, and Ensemble Adjustment Kalman Filter to simulate water

and energy balance. Both studies focused on analyzing land surface water and energy balance, exploring data assimilation and

calibration techniques.

The Hydrologiska Bryans Vattenbalansavdelning (HBV) model, as studied by Dimitrova-Petrova et al. (2020), employed

CRNS data in a mixed-agricultural landscape to explore water balance on the land surface. While, Beck et al. (2021) used re-75

mote sensing products and groundwater level measurements to temporally calibrate the HBV model, emphasizing the challenge

of comparing satellite-derived soil moisture with point-scale in-situ measurements. Additionally, Baatz et al. (2017) was the

first study that utilized spatially distributed hydrological modeling, integrating CRNS data, FAO and BK50 soil maps, and other

soil data in the Community Land Model (CLM). They demonstrated that assimilating CRNS data improved catchment-scale

soil water content characterization by updating spatially distributed soil hydraulic parameters. Furthermore, Zhao et al. (2021)80

assessed the significance of CRNS data in CLM version 3.5, conducting simulations based on 13 CRNS stations over 2017-

2018. Despite employing a simplified Richards equation, limitations included the absence of lateral flows and groundwater

representation.

The mesoscale Hydrological Model (Samaniego et al., 2010b; Kumar et al., 2013b, mHM;) is known for its spatially dis-

tributed hydrologic predictions at a large scale incorporating with the multiscale parameter regionalization (MPR) technique.85

We chose the mHM in this study for its efficient parameterization approach that allows for a seamless prediction of water fluxes

at different spatial resolutions (Samaniego et al., 2017; Zink et al., 2017; Jing et al., 2018; Schweppe et al., 2022). This feature
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allows the model to scale its applications from a locally relevant scale to regional and continental scales (Kumar et al., 2013b;

Huang et al., 2017; Rakovec et al., 2019). One of promising application of mHM is the operational German Drought Monitor

(GDM) that provides daily updates on the soil moisture related drought status (Samaniego et al., 2013; Moravec et al., 2019;90

Pohl et al., 2023).Previous evaluation of the GDM for soil moisture focuses on assessing the skill of the model in reproducing

SM anomalies based on point scale soil moisture observations(Zink et al., 2016, 2018; Rakovec et al., 2022; Scharnweber et al.,

2020; Boeing et al., 2022). Such a evaluation is fraught with uncertainties due to scale mismatch between limited point scale

observations versus grid-scale modeled estimates. In contrast, CRNS has been recognized as a promising tool for soil moisture

monitoring due to its hectare-scale footprint and decimeter-scale measurement depth. Therefore, by including a CRNS neutron95

count framework within the mHM , it could better handle the scale mismatch issue and represent the soil moisture dynamics.

The wide-spread availability of observed CRNS data opens up new opportunities to develop and implement novel methods and

hypotheses to improve soil moisture representation in hydrologic models.

In this study, we established a framework to incorporate CRNS data into the mesoscale Hydrological Model (mHM) to

compare empirical and forward-modeling approaches for neutron count estimation to improve soil water content parameters100

in mHM across different vegetation types in Germany. To do this, we compared modelled with measured neutron counts to

infer optimal model parameters, such as soil hydraulic conductivity. Here, we test three approaches, (i) the direct calculation

of neutrons from the equal-averaged SWC profiles based on Desilets et al. (2010), (ii) the same with weighted-average soil

moisture profiles based on Schrön et al. (2017), and (iii) the neutron forward operator COSMIC by Shuttleworth et al. (2013).

We evaluate the simulation of neutron counts at scales of 1.2 km × 1.2 km, comparing the results to observed neutron counts105

from three different sites including agriculture, deciduous forests, and grasslands. The goal of this study is to investigate the

potential of using CRNS probes and measured neutron counts to improve soil moisture predictions through simulations in mHM

across different land covers and soil properties and to evaluate the feasibility of incorporating neutron count measurements into

the modeling scheme. We employ a (calibration) framework by applying a Monte Carlo experiment to account for parameter

uncertainties. We further cross-evaluate our simulations and test the reliability of the CRNS incorporated soil-moisture scheme110

in mHM for simulating other variables by utilising time series of observed evapotranspiration from an eddy covariance station

available. Finally, we discuss and provide guidelines (challenges and limitations) for incorporating CRNS measurements in a

large-scale hydrologic model. In summary, the present paper aims to answer the following research questions:

– What is the best approach to simulate CRNS neutron counts in a hydrological model considering the heterogeneity of

vertical soil moisture profiles?115

– What is the impact of model calibration with CRNS observations on simulated evapotranspiration at Hohes Holz?

– Is the mHM at approx. 1 km resolution capable of capturing the dynamics of hectare-scale CRNS measurements at

different landcover sites in a grid including 2 agriculture sites, 1 forest site, and 1 meadow site?
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2 Materials and methods

2.1 Experimental site description120

For this study, we select four sites with CRNS sensors, namely Grosses Bruch, Hohes Holz, Hordorf, and Cunnersdorf in

Northern Germany, as provided already within COSMOS EU (Bogena et al., 2022) with particularly long time series and with

different land cover, i.e., agriculture, forest, and meadow (see Tab. 1). The first three sites belong to the TERENO observatory

“Harz/Central Germany lowland” (Zacharias et al., 2011) while the fourth site is part of an agricultural research farm operated

by the German Weather Service (DWD). The Grosses Bruch site is a meadow/grassland that is usually flooded naturally once125

or twice a year. The meadows have sandy loam fluvisol-gleysol soil, which is 1.5 meters deep and partially covered with a

layer of peat (Wollschläger et al., 2017). Meteorological conditions like soil moisture and temperature at various depths are

continuously monitored by a wireless soil moisture monitoring network (Schrön, 2017). Hohes Holz is a deciduous forest site

and the performance of the CRNS sensor there is highly dependent on dynamic effects such as tree canopy water or seasonal

fluctuations in wet biomass. Water trapped in leaves and litter can present a particular challenge for CRNS measurements,130

especially at forest stations (Bogena et al., 2013). Also, Bogena et al. (2022) indicated that the influence of seasonal changes

of biomass on the CRNS signal is much less important than the influence of changing soil moisture, even in Hohes Holz, as

changes in soil moisture are the much larger source of variation represented by the CRNS measurements. The mean annual air

temperature for each site ranges from 10.0 to 10.9 ◦C and the average yearly precipitation ranges from 458 to 535 mm.

Table 1. Geographical characteristics of study sites: Site Names, Geographic Coordinates, Climatic Data (Annual Precipitation in mm/year,

Annual Mean Temperature in ◦C), and the Periods Covered in Observed and Simulated Datasets.

Site Latitude Longitude Altitude Land Cover Precipitation Temperature Period

[◦N] [◦E] [m] [mm/year] [◦C]

Grosses Bruch 52.02 11.10 80 Pasture, grassland 458 10.1 24/06/2014–31/01/2021

Hohes Holz 52.09 11.22 217 Forest, hilltop 469 10.3 27/08/2014–31/01/2021

Hordorf 51.99 11.17 82 Cropland 463 10.3 29/09/2016–31/01/2021

Cunnersdorf 51.36 12.55 140 Cropland 535 10.9 23/06/2016–31/01/2021
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Figure 1. Study area map of Germany, highlighting the four test sites where observed neutron count rates from CRNS are utilized to evaluate

the performance of mHM. The figure utilizes OSM basemap layers from (© OpenStreetMap contributors 2021; distributed under the Open

Data Commons Open Database License (ODbL) v1.0) OpenStreetMap contributors (2020).

2.2 The mesoscale hydrological model (mHM)135

mHM is a spatially distributed process-based hydrologic model capable of representing processes such as canopy interception,

snow accumulation and melting, soil moisture dynamics, infiltration and surface runoff, evaporation, underground storage, and

runoff generation, deep infiltration and baseflow, as well as runoff attenuation and flood routing (Samaniego et al., 2010a;

Kumar et al., 2013a). The mHM is flexible for hydrological simulations at different spatial scales due to its novel Multi-scale

Parameter Regionalization approach (MPR; Samaniego et al., 2010b); and has demonstrated applicability in diverse settings140
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(Samaniego et al., 2010a; Kumar et al., 2013a; Rakovec et al., 2016a; Samaniego et al., 2017). The MPR’s basic concept is

to estimate parameters (e.g., porosity) based on soil properties (e.g., sand and clay content) using transfer functions at a fine

spatial resolution (e.g. 100 m) and upscaling them to modelling resolutions (e.g., 1 km). In MPR, transfer functions (e.g., pedo-

transfer functions to estimate soil parameters) are combined with morphological inputs (e.g., soil texture properties) and thus

lead to model hydrologic parameters (e.g., porosity or hydraulic conductivity of the soil) (Livneh et al., 2015; Zacharias and145

Wessolek, 2007). In mHM, the soil moisture horizons/profile can be divided into several horizons, all of which are sensitive

to root water uptake and evapotranspiration processes. mHM simulates the daily dynamics of soil moisture at different depths

considering the incoming water (e.g., rainfall plus snow melt for the topmost layer and infiltration from above layers for other

layers) and outgoing ET and ex-filtration fluxes. Further details on mHM code can be found at https://mhm-ufz.org.

2.3 Model set-up150

The latest version 5.12 of mHM is used in this study (see Samaniego et al., 2023, and https://github.com/mhm-ufz). The

model was set up for a period of six years (2014–2020) with a daily time step, and the spatial resolution of the mHM grid

cells was fixed at: 0.01562◦ × 0.01562◦ (∼ 1.2 km × 1.2 km using the WGS84 coordinate systems). In mHM, Level 1 (L1)

denotes the spatial resolution at which dominant hydrological processes are modelled and Level 2 (L2) denotes the resolution

of the meteorological forcing data. The finest resolved spatial level L0 (0.001953125◦ × 0.001953125◦) denotes the subgrid155

variability of relevant basin characteristics, which includes information on the soil as well as land use, topography, and geology.

Figure 2 shows the flow diagram depicting the basic methodology of our study, which includes the calculation of CRNS neu-

tron count rates based on daily soil moisture values simulated with mHM. The model boundary conditions such as precipitation

and temperature for the mHM are acquired from the German Weather Service (DWD) station closest to the test site. The poten-

tial evapotranspiration required by mHM is estimated using the Hargreaves-Samani method (Hargreaves and Samani, 1985).160

The model setup and parameterization for the soil moisture module use the scheme optimized by Boeing et al. (2022). A raster

dataset describing the distribution of the soils in the model area and a corresponding lookup table with the attributes depth,

soil texture (sand and clay fraction), and bulk density are required as soil input data and are derived from national digital soil

maps provided by the Federal Institute for Geosciences and Natural Resources (BGR, 2020). The data set contains physical and

chemical properties for soil at different layers and the available at a resolution of 1:250,000 (BUEK 200; BGR, 2020). mHM165

uses three dominant land cover classes (forest, permeable, and impervious) that were retrieved by a GLOBCOVER database

ESA (2009). Furthermore, vegetation characteristics like Leaf Area Index (LAI) and fraction of roots for different vegetation

types are prescribed in the model. The mHM soil domain is divided into three horizons with depths of 0–5 cm, 5–25 cm, and

25–60 cm. The upper two model layers are parameterized using the topsoil layer properties while for the lower model layer,

the subsoil properties are used. More details on the underlying input data for mHM can be obtained from Boeing et al. (2022).170

In our study, we utilized three distinct modules of parameters: snow, soil moisture, and neutrons, with a total of 28 parame-

ters employed for the Desilets method and 30 parameters for the COSMIC method. The simulation of soil water content is

processed through these three modules to estimate neutron counts. To comprehensively cover the parameter set ranges, we em-
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ployed 100 000 iterations. Finally, we selected the top 10 optimized parameter sets based on the objective function, KGEαβ ,

for further analysis and evaluation.175

Figure 2. Flowchart depicting the methodology employed for calculating CRNS neutron counts through the utilization of the LHS technique

for parameterization in mHM. The computation of CRNS neutron count is carried out through three distinct approaches: NDes,U,NDes,W, and

NCOSMIC.

2.4 Conversion of soil moisture to neutron count rate

In this study, we compared observed neutron counts from CRNS data with simulated neutron counts estimated from modeled

soil moisture with the goal of optimizing the parameterization of soil water content from mHM shown in Fig. 3. By incorporat-
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ing the approaches from Desilets et al. (2010) and Shuttleworth et al. (2013) directly into the mHM , we are able to account also

for the uncertainty in the model predictions and test their feasibility across four distinct sites. We analyzed the soil water con-180

tent data at different soil layers (0–5 cm, 5-25 cm, and 25-60 cm) in mHM, as utilized in the study by Boeing et al. (2022). The

accuracy of numerical calculations would benefit from higher resolved soil profiles, however, our experiments demonstrated

that varying soil depths from 3 to 6 layers did not have a substantial impact on the simulated neutron count results in mHM. We

used BGR (2020) which is a global dataset that is not detailed enough to allow for finer vertical resolution. Our main objective

is to optimize the parameterization of soil hydraulic properties in mHM based on the comparison between measurement and185

modelled neutron counts.

Figure 3. Daily time series of soil water content (cm3cm−3) at the Cunnersdorf site. The graph shows a comparison between the measured

SWC from CRNS data representing an integral over the first decimeters and the simulated data derived from the mHM for three distinct soil

depths, at 0–5 cm (green), 5–25 cm (purple), and 25–60 cm (brown).

2.4.1 Desilets based method

In the present study, we utilize the soil moisture information from the mHM to convert it into neutron counts using the

empirical-based approach by Desilets et al. (2010). We also added lattice water and bulk density information following the

suggestions from Dong et al. (2014) and Hawdon et al. (2014), respectively. This empirical approach makes use of a free scal-190

ing parameter N0, which represents the neutron count rate of a particular CRNS probe under dry soil conditions. This parameter

is typically site-specific but does not change over time, as noted by Franz et al. (2013) and Hawdon et al. (2014). It is also

specific to the particular CRNS detector and may be influenced by factors such as terrain (topography), local soil, vegetation

characteristics, and additional hydrogen pools (e.g., from organic matter) at each observation site. Therefore, the determination

of N0 by local soil sampling campaigns is necessary. Once determined, , the parameter N0 should be kept constant or carefully195
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calibrated within limits of not more than ±5%. As a sensitive parameter, N0 strongly influences the accuracy of the mHM soil

moisture results.

Soil moisture for three vertical mHM soil layers is used as input for both the Desilets method and the COSMIC operator.

To improve comparability between measurements and modeling techniques, Schrön et al. (2017) proposed to weight the soil

moisture values of each layer by their depth. This approach results in a depth-weighted average SWC, θavg that better represents200

the complex behaviour of neutrons to probe the soil.

NDes =N0,Des

(
a0

(θavg + θlw)/(ϱb/ϱw)+ a2
+ a1

)
(1)

Among the four parameters, a0...2 were determined empirically by Desilets et al. (2010). The authors derived a0 = 0.0808,

a1 = 0.372, and a2 = 0.115 for θ > 0.02 g g−1. The fourth parameter, N0,Des is fixed based on field measurements, with its

value taken from Bogena et al. (2021). Since neutrons are sensitive to all kinds of hydrogen in the footprint, the variable θ205

denotes not only soil moisture, it is rather assumed to also include lattice water, θlw, as well as water equivalent from soil

organic carbon and vegetation biomass. More precisely, θlw is the grid average volumetric water content of the equivalent

lattice water content of the CRNS area (cm3 cm−3), ϱb (g cm−3) is the bulk density of the dry soil, usually determined from

soil samples, and ϱw = 1 g cm−3 is the density of water. Regarding the variables of Soil Organic Carbon (SOC) and biomass,

it’s important to note that these variables are often not readily available, especially when it comes to biomass data. For lattice210

water, we assume a linear relationship to clay content (Avery et al., 2016):

θlw = θlw0 ·C + θlw1 , (2)

C denotes the clay fraction in % (Greacen, 1981). The derived quantity lattice water, θlw, is regionalized based on C and

varies between 0.0 and 0.1 m3 m−3. In order to obtain the average soil moisture for a layered soil moisture profile within

mHM, the following averaging equation is employed:215

θavg(w,θ) =

∑n
i=1wi θi∑n
i=1 wi

(3)

where the volumetric soil water content at a specific layer of mHM in a given profile is denoted by θi (m3 m−3). The total

number of layers in all soil sampling profiles is represented by the variable n, and the weight assigned to layer i is denoted by

wi. In the uniformly weighted approach, all weights equal one:

NDes,U =NDes(wi = 1) ∀ i . (4)220

In the weighted-averaging approach, the weights are determined based on Schrön et al. (2017):

NDes,W =NDes(θavg(w,θ)) , (5)

where wi =

zi,max∫
zi,min

e−2z/D dz ∝ e−2zi,min/D − e−2zi,max/D

and D = ϱ−1
b

(
p0 + p1

(
p2 + e−p3 r

) p4 + θ

p5 + θ

)
. (6)
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Here, the integral goes through each horizon from zi,min to zi,max in 1 m m steps and sums up the weight over the whole layer.225

zi is the depth of the given soil moisture layer i, D is the average vertical footprint depth of the neutrons, pi are numerical

parameters presented in Schrön et al. (2017), and r (m) represents the distance from the sensor. It should be noted that the

equation for D is valid for ϱb > 1.0 g cm−3 and soil moisture contents above θ > 2 % (Kasner et al., 2022). In our model,

we set r = 1 m which is sufficient to represent the average depth across the footprint radius within the model grid. The soil

moisture profile is converted to a single average neutron count per grid cell using (Eqs. 1–5).230

2.4.2 Cosmic Ray Soil Moisture Interaction Code (COSMIC)

The Cosmic Ray Soil Moisture Interaction Code (COSMIC) is an neutron forward operator that has been developed for data

assimilation applications (Shuttleworth et al., 2013). The model aims at mimicing the physical processes of neutron transport in

the vertical dimension of the soil using a simplified analytical formulation of the most relevant mechanisms and their effective

parameterizations. Shuttleworth et al. (2013) reported that this lack of complexity might introduce systematic errors for typical235

soil moisture profiles on the order of 2 % compared to physics-based models (e.g., Köhli et al., 2023). However, the simplified

approach allows to estimate neutron counts with a computational efficiency that is several orders of magnitude faster.

The COSMIC model assumes a downwards attenuation of incoming high-energy neutrons with soil depth, the production

of fast neutrons in each soil layer, and an isotropic scattering of the resulting fast neutrons that is projected upwards. These

processes exhibit a parametric dependency on soil properties and water content and lead to a resulting neutron count value for240

each grid cell in mHM.

NCOSMIC =N0,COSMIC

∑
Ahigh(z)Xeff(z)Afast(z) , (7)

where Ahigh(z) = e−Λhigh(z) ,

Afast(z) =
2

π

π/2∫
0

e−Λfast(z)(cosφ)−1 dφ,

Xeff(z) = αCOSMICXsoil +Xwater .245

We used soil samples from the COSMOS-Europe paper (Bogena et al., 2022) to run the COSMIC model in order to determine

the scaling factor N0,COSMIC, following the established strategies (Shuttleworth et al., 2013; Patil et al., 2021; Baatz et al., 2014).

In Eq. 7, Ahigh represents the high-energy neutron attenuation, Afast represents the fast neutron attenuation, and Xeff represents

the production of fast neutrons from high-energy neutrons at any level in the soil. It takes into account the different mechanisms

in both, water and soil, where the soil is typically less effective in producing fast neutrons by a factor of αCOSMIC ≈ 0.24250

(g cm3g−1), depending on bulk density.

Xsoil(z) = ∆zϱb , (8)

Xwater(z) = ∆zϱwater(θz + θlw) , (9)
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The effective attenuation of high-energy and fast neutrons in the soil-water composite are described by physically motivated

functional relationships with effective length scales Li.255

Λhigh(z) =
Xsoil(z)

L1
+

Xwater(z)

L2
, (10)

Λfast(z) =
Xsoil(z)

L3
+

Xwater(z)

L4
. (11)

The length constants L1, L2, L3, and L4 (in g cm−2) are related to local soil properties. COSMIC uses several time-invariant,

site-independent, and site-specific parameters, including L1 = 162.0 (g cm−2), L2 = 129.1 (g cm−2), and L4 = 3.16 (g cm−2),

as reported by Shuttleworth et al. (2013), regardless of location. However, the L3 (g cm−2) parameter varies with soil bulk260

density ϱb which may change with depth. In mHM, this is expressed by a linear relationship of regionalized parameters L30

and L31:

L3 = L30ϱb −L31. (12)

The original formulation of the COSMIC method has been further extended by the inclusion of layer-wise lattice water content

and bulk density. Furthermore, COSMIC inside mHM has been numerically optimized to substantially increase the computa-265

tional performance. This includes the calculation of the projected integral (Eq. 7) based on lookup tables.

2.5 Constraining of model parameterization

In this study, we employ a model calibration technique to identify the most suitable parameter values for the mHM . Specifically,

we utilize a total of 28 parameters for the Desilets based method and 30 parameters for the COSMIC method which includes

hydrologic processes related to: snow, soil moisture, and neutron counts dynamics. The process of model calibration involves270

modifying the parameter values of the model to achieve a satisfactory standard for an objective function by comparing the

predicted output with the observed data (James, 1982). We use the general concept of the KGE as a weighted combination

of the three components (bias, variability, and correlation terms) to evaluate our simulation (Gupta et al., 2009). We excluded

the correlation component from (Gupta et al., 2009) equation as our simulation already exhibited satisfactory correlation due

to strong seasonality, we opted not to consider it in our assessment (objective function), as it accounted for 33% of the total275

weighting in the overall KGE score. Seasonality is an inherent characteristic in the northern hemisphere where precipitation

minus evaporation is mostly driven by evapotranspiration. Even if a random parameter is selected correlation will always be

higher because the meteorological forcing is the precipitation - evaporation is seasonal. This modified KGEαβ only depends

on variability (α) and bias (β) and variants of it have been used also in other studies (see, e.g., Martinez and Gupta, 2010; Mai,

2023). We utilize observed neutron count data from CRNS and estimated neutron count data from the mHM to calculate various280

metrics such as the modified Kling-Gupta efficiency coefficient (KGEαβ), root mean square error (RMSE), and percentage bias

(PBIAS) by Gupta et al. (1999). The optimal PBIAS value is 0, with lower values indicating more accurate model simulations.

Positive values indicate underestimation by the model, while negative values indicate overestimation. This approach allows

us to minimize uncertainty in the simulated neutron count data by comparing it to observed data and determining the optimal
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parameter values for the mHM . A summary of the individual parameters and their ranges can be found in Supplementary Table285

S3.

3 Results

3.1 Analysis of posterior parameters across the study sites

Figure 4 shows the normalized range of posterior parameter sets of mHM, compared across the four study sites: Grosses

Bruch, Hohes Holz, Hordorf, and Cunnersdorf. Out of 30 parameters, the 10 most relevant parameters for root-zone soil290

moisture dynamics are presented (see Table 2 for parameter description and ranges). The other parameters are shown in the

supplementary material. Figure 4 indicates that the selected parameters showed a well-constrained distribution within their

allowed range across the study sites. Among them, at the Grosses Bruch site we find the most stable parameter distribution with

low variability (small error bars) across most of the inferred parameters, including vertical root fractions of different vegetation

types (rotfrcoffore, rotfrcofperv). A relatively higher variability (large error bars) in the posterior parameter distributions is295

noticed for ptflw0, ptflw1 and ptfhigdb – these parameters are related to the estimation of lattice water and bulk density. Pedo-

transfer function (PTF) related parameters that control the saturated soil water content (ptflowconst, ptflw1, ptflw0) at the Hohes

Holz site showed the lowest variability, reflecting a consistent behavior for inferring these parameters at this site. The site at

Hordorf shows moderate variability across most of the analysed parameters especially for the orgmatperv, pfthighdb, ptflw1,

ptflw0. Overall across all the study sites, the posterior distribution of parameter ptflowdb exhibits high variability, reflecting the300

importance of further constraining of this parameter. There is a varying degree of sensitivity across the parameters, but certain

parameters consistently demonstrate sensitivity across the site (rotfrcoffore, ptflowdb, ptfhigclay, ptflowconst). This finding

aligns with previous studies (Cuntz et al., 2015; Koch et al., 2022; Demirci and Demirel, 2023), which also identified these

parameters as sensitive in mHM across various study locations.
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Figure 4. Bar plot showing posterior distribution of model parameters across three land cover types, calibrated using cosmic-ray neutron

sensing data. Parameter values are scaled between 0 and 1. The whiskers represent the upper and lower limits of the inter-quantile range,

while the dots represent the median values of the normalized range for each parameter.

Table 2. Description of ten selected parameters and their ranges in mHM.

Parameter No Parameter Name Description Min Max

β1 rotfrcofperv Root fraction coefficient pervious 0.001 0.09

β2 rotfrcoffore Root fraction coefficient forest 0.9 0.999

β3 ptflowdb PTF saturated water content: coefficient bulk density -0.27 -0.25

β4 ptflowconst PTF saturated water content: constant 0.75 0.8

β5 ptfkssand PTF hydraulic conductivity: Sand 0.006 0.026

β6 ptfhigdb Coefficient for bulk density in pedo-transfer function for

soils with sand content higher than 66.5%

-0.35 -0.3

β7 ptfhigclay Coefficient for clay in pedo-transfer function -0.0012 -0.0008

β8 orgmatperv Organic matter content for pervious zone 0 5

β9 ptflw1 PTF lattice water 0 0.2

β10 ptflw0 PTF lattice water 0 0.05
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3.2 Time series analysis of simulated neutron counts305

The study conducts simulations of neutron counts in mHM using soil moisture parameterizations, with results presented in

Figs. 5 and 6 across different land cover sites. In these figures, the grey dots represent the CRNS soil moisture measurements.

The N0 parameter values, taken from field measurement, are documented for each site, including Grosses Bruch, Hohes Holz,

Hordorf, and Cunnerdorf. We utilized measurement data from COSMOS Europe Bogena et al. (2022), where neutron counts

were converted to soil moisture, θ(N), using the methodology from Desilets et al. (2010). The simulated neutron counts were310

based on the simulated soil moisture content at the modeled soil horizons i.e., 0–5 cm, 5–25 cm, and 25–60 cm. The results of

the ensemble runs show that the precision is higher for the behavioral simulation ensembles 0.1 % (represented by dark gray

shaded areas) than in the unconstrained simulated data 1 % (represented by light gray shaded areas). We select the best 0.1 %

with the highest KGE from 100 000 model runs, and the results are presented in Tab. 3. However, a larger discrepancy was

noted at Hohes Holz a dense forest site, across all three methods. This difference could be attributed to the Leaf Area Index315

(LAI), biomass and vegetation dynamics, which are not currently integrated into mHM. Recent efforts by Bahrami et al. (2022)

aim to address vegetation dynamics in mHM, but this integration is still incomplete. Among the methods, the NCOSMIC method

performs best at the forest site (Hohes Holz), whereas at the agricultural sites (Hordorf and Cunnerdorf ), the NDes,W method

performs slightly better. In the grassland site (Grosses Bruch), the uniform method NDes,U slightly outperforms the other two

methods i.e., NDes,W and NCOSMIC. In general, we observe good model performance for all methods indicated by a Kling-Gupta320

efficiency greater than 0.75 and a percent bias (PBIAS) below ± 10 % across the majority of investigated sites and methods.

These results suggest that the neutron-forward models match the observed neutron counts well. However, the mean ensemble

had difficulties reproducing the neutron counts for the Hohes Holz site in all three methods.

The incorporation of dynamic vegetation in models is important as it can impact the model parameter LAI, which in turn

can affect root water uptake and soil water content. Currently, these factors are not considered in the models, leading to a325

permanent and systematic shift in these variables each year (Zink et al., 2017; Massoud et al., 2019).

The results also highlight the uncertainties associated with model simulations and the sensitivity of the objective function.

We find that ten soil moisture-related parameters, mentioned in Table 2, have the most significant impact on the objective

function KGEαβ , compared to the other parameters of mHM. The parameter lw directly affects the neutron count simulations,

while the other parameters correspond to the fractions of vegetation roots in different soil layers that directly affect the water330

availability related stress for the estimation of actual evapotranspiration, and thereby the soil-water dynamics (Samaniego et al.,

2010b; Kumar et al., 2013b). The best parameter set values in mHM across all sites and methods are provided (See Table S3

in the Supplement).
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Figure 5. Simulated daily time series of black for NDes,W, red for NDes,U for the four sites. The black lines represent the median of the be-

havioural simulation ensembles that satisfy the objective function which is LHS10 ensemble members. The light grey shaded areas represent

the 95% CI of the simulation ensembles corresponding to different levels of constraining which is LHS1000 ensemble members, and the

observation is shown in grey points. Precipitation is shown in blue color on the top.
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Figure 6. Simulated daily time series of NCOSMIC for the four sites. The black lines represent the median of the behavioural simulation

ensembles that satisfy the objective function which is LHS10 ensemble members. The light grey shaded areas represent the 95% CI of the

simulation ensembles corresponding to different levels of constraining which is LHS1000 ensemble members, and the observation is shown

in grey points.

3.3 Model calibration statistics and evaluation

In addition to KGEαβ , the three metrics KGE, RMSE, and PBIAS are used to evaluate further the mHM neutron counts335

simulated with observed CRNS data. We employ LHS to generate a parameter sample of 100 000 for the three methods,

namely NDes,U, NDes,W and NCOSMIC, by uniformly distributing the ranges provided in the (Supplement Table S2). The top 10

parameter sets are found to perform satisfactorily with a KGE range of 0.75 to 0.9, as demonstrated in Table 3. The calibrated

parameter sets obtained from different objective functions are also evaluated and compared using various statistical indices, as

shown in Fig. 7. The results for the COSMIC method indicate that the main contribution to poorer results during the evaluation340

period was due to the variability term (α). The boxplot displayed in Fig. 7 illustrates the threshold achieved by the top 1000,
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100, and 10 LHS members, along with the corresponding percentage of the best 10 LHS parameter sets that meet the threshold.

Among the 30 parameters selected to simulate neutron counts, this plot provides an overview of the distribution of results and

their variability with respect to the threshold criteria.

Table 3. Performance metrics for model calibration (2014-2021) using various methods: Kling-Gupta Efficiency (KGE), Root Mean Square

Error (RMSE), and percentage bias (PBIAS) across different sites. The observed neutron counts were compared with the simulated neutron

counts from the mHM.

Sites Grosses Bruch Hohes Holz Hordorf Cunnersdorf

Methods: NDes,U NDes,W NCOSMIC NDes,U NDes,W NCOSMIC NDes,U NDes,W NCOSMIC NDes,U NDes,W NCOSMIC

mHM default run

KGE -0.74 -1.46 -5.52 0.33 0.26 0.44 0.73 0.81 -0.06 0.63 0.71 0.64

RMSE 133.78 175.1 309.8 89.61 108.15 139.5 27.46 36.31 223 80.41 90.18 85.5

PBIAS 23.3% 30.2% 46% -18.6% -22.6% -29.6% -3.5% -5.2% -35.2% -9.8% -11.6% -10%

mHM calibrated

KGE 0.85 0.83 0.78 0.77 0.75 0.79 0.87 0.86 0.84 0.81 0.90 0.85

RMSE 16.12 17.84 50.55 45.42 59.9 73.5 16.83 17.89 48 54 51.83 81

PBIAS 0% -0.7% -9% -8.7% -12% -15.4% -0.1% -0.6% -15.4% -6.2% -5.7% -9.9%
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Figure 7. Evaluation of model performance using boxplots constraining of 1000 to the best 10 parameters set at four different sites, using

three different methods, namely NDes,W in brown, NDes,U in green, and NCOSMIC in purple. The figure presents four subplots, where (a)

represents Alpha, (b) Beta, (c) KGEαβ , and (d) Kling-Gupta efficiency (KGE) and its components, i.e., the variability term (perfect value:

1), and bias term (perfect value: 1), respectively.

3.4 Comparing evapotranspiration at Hohes-Holz: eddy covariance observed data vs mHM simulation345

The ensemble model of (10 members) simulations are further validated with evapotranspiration (ETa) data to assess the model’s

ability to represent other fluxes and states in addition to neutron counts. This validation uses ETa observational data from eddy

covariance measurements provided by the Integrated Carbon Observation System (ICOS) at Hohes Holz (Warm Winter, 2022).
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In terms of temporal dynamics, the model is capable to capture the observed ETa quite well at the study site, as shown in

Fig. 8. Panel (c) displays the scatter plot incorporating linear regression models to quantify the relationships between observed350

and mHM-simulated ETa during both the growing and non-growing seasons. This plot provides insights into the seasonal

variations in the relationship between observed and simulated ETa. It suggests that the model performs best during winter,

while its performance during summer is comparatively weaker. The correlation coefficients (r values) for each season are as

follows: autumn [SON] (r = 0.72), spring [MAM] (r = 0.75), summer [JJA] (r = 0.35), and winter [DJF] (r = 0.85). It is

worth noting that winter shows the highest correlation between observed and simulated ETa, while summer exhibits the lowest355

correlation. The most significant deviation in terms of RMSE is evident during the summer, when ETa is highest, while the

smallest difference is in winter when ETa has less impact. The model slightly overestimates ETa in summer and spring, possibly

because of the absence of a dynamic vegetation growth module in the mHM, also discussed for evapotranspiration by Zink et al.

(2017). The temporal dynamics of the model-simulated evapotranspiration are in good agreement with the observed data from

the Hohes Holz forest eddy covariance site, taken from Warm Winter (2022), as illustrated in Fig.8a. Daily correlation between360

observed and simulated evapotranspiration is observed high in the growing season at r = 0.8, whereas the lowest correlation

is found in the non-growing season at r = 0.53 in Fig.8c. The highest deviation in terms of RMSE is observed during summer

when the highest fluxes occur, and the lowest during winter, in which the contribution of ETa is lowest.

In Fig. 8b, the prior and posterior parameter distributions of evapotranspiration for Hohes Holz are displayed. The prior

distribution represents the 100 000 parameters set utilized for the neutron counts simulation under Latin Hypercube Sampling365

(LHS). The results demonstrate that the ensemble model of 10-member simulations (posterior) for neutron counts can also

effectively capture evapotranspiration, exhibiting a root mean square error (RMSE) of 0.76 m m d−1 of the growing season

and 0.25 m m d−1 for non-growing when compared to observed ICOS data and simulated mHM. When compared to the model

simulations with prior parameter sets, we notice a substantial improvement in ET simulations (mean RMSE of 0.85 m m d−1

to 0.76 m m d−1). Furthermore, the RMSE range is also narrower for the posterior simulations compared to the prior ones370

which further demonstrated the additional value of incorporating CRNS measurements in improving the consistency of both

modeled soil moisture and evapotranspiration estimates. Nevertheless, the overall agreement between modeled and observed

ETa is reasonably good; and the analysis reveals further improvement of model performance in the growing season.
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Figure 8. (a) Comparison of weekly observed actual evapotranspiration (grey dots) and simulated actual evapotranspiration using the default

mHM parameters by Boeing et al. (2022) (red line), the calibrated simulation (blue dots), and the prior range of 100 000 realizations in

(orange) color over the Hohes Holz site. (b) Boxplot of daily actual evapotranspiration (ETa) differences between the growing and non-

growing seasons, comparing two selected prior with 100 000 simulations, the values represent the mean of the statistical metrics and posterior

with 10 ensemble member distributions using the root mean square error (RMSE) as the evaluation metric (m m d−1). (c) Scatterplots of

modeled vs. observed ETa on a daily basis from ICOS during the growing season from March to August (green) and non-growing season

from September to February (brown) at Hohes Holz eddy covariance station in a forest.
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4 Discussion

This study assessed the suitability of CRNS observations at four sites to enhance soil moisture representation in mHM. The375

theoretical measurement depth for the cosmic-ray probe varies, ranging from ∼ 12 cm in wet soils to ∼ 76 cm in dry soils

(Zreda et al. (2008, 2012a); Rosolem et al. (2014)).

To improve the soil moisture profile representation within mHM it is a major challenge to use a single vertically integrated

CRNS measurement. In order to have a fair comparison between the model and observed CRNS data, two conceptually dif-

ferent approaches were integrated into mHM to calculate neutron counts from different SWC horizon depths i.e., an empirical380

method based on Desilets et al. (2010), and neutron forward operator (COSMIC) based on Shuttleworth et al. (2013). Since the

empirical method is described by an analytical expression, taking into account the uniform average of the soil moisture layers,

it is straightforward to implement and therefore most commonly used (Zreda et al., 2012b; Rivera Villarreyes et al., 2011; An-

dreasen et al., 2017; Bogena et al., 2022). However, the method comes with the risk of missing a representation of the vertical

profile of soil properties and water content. Therefore, we extended this uniform-averaging scheme with a vertical weighting385

scheme to mimic the sensitivity of the neutrons to the upper layers both weighted and non-weighted soil moisture approaches

in the context of CRNS have been discussed (Rivera Villarreyes et al., 2014; Baroni and Oswald, 2015; Schreiner-McGraw

et al., 2016; Zreda, 2016; Schrön et al., 2017; Vather et al., 2019; Barbosa et al., 2021). The COSMIC operator also accounts

for the full soil moisture profile, following the track and attenuation of the neutrons in and out of the soil column. The mHM

is now able to simulate neutrons directly with all three approaches. The presented results confirmed general consistency with390

CRNS observations at four sites in Germany (Figs. 5 and 6).

Agricultural land presents a valuable opportunity to examine the interaction between soil moisture dynamics, crop growth,

irrigation methods, and vegetation dynamics. Hordorf and Cunnerdorf are specific agricultural sites where seasonal changes

in aboveground biomass are expected to be larger due to crop growth and harvest compared to grassland and forest sites. The

study by Schrön et al. (2017) found that the revised weighting strategy for CRNS data improved the accuracy of soil moisture395

predictions at agriculture sites, but there is still room for improvement in capturing local dynamics through revised parameters

in the CRNS model. Our results also showed that at the agriculture site, the NDes,U methods in mHM slightly out-performed

the other methods.

We also investigated Hohes Holz, a forest site, and observed an early simulation of approximately 28 days in the simulation

of neutron counts compared to the observations. The early simulation phase could be attributed to the limitation of mHM400

in simulating the dynamics of detailed vegetation mechanisms Zink et al. (2017). While CRNS and TDR generally agree at

this site, the discrepancy shown in our results could be attributed to issues related to process representation in mHM Boeing

et al. (2022). Simulation of neutron data within the mHM and subsequently comparing it with observed counts can enhance

the accuracy and precision of soil moisture measurements. Future research can focus on exploring the potential relationships

between CRNS data and soil moisture anomalies, thus furthering our understanding of the dynamics of drought and assisting405

in the development of efficient drought monitoring and mitigation strategies.
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To cross-evaluate our results, we generated and filtered the 100 000 regionalized parameter sets based on observed neutron

counts for behavioral solutions. After selecting the most effective solutions, we conduct cross-validation by comparing the

mHM simulations of evapotranspiration against observational data from eddy covariance measurements ICOS (Warm Winter,

2022; Pohl et al., 2023) at the Hohes Holz. Figure 8 shows the scatter including the seasonal correlation coefficient at the forest410

site. The results indicate low correlations in summer, likely due to mHM’s limitations in capturing evapotranspiration values

with mHM’s static vegetation module. However, the model performs well in winter, with a high correlation between observed

and simulated values of evapotranspiration, the results confirm the findings from Zink et al. (2017), who used mHM to es-

timate evapotranspiration, groundwater recharge, soil moisture, and runoff with 4 km spatial and daily temporal resolutions

(1951–2010). They utilized soil moisture observations from eddy covariance stations employing Time-Domain Reflectome-415

ter (TDR) or Frequency-Domain Reflectometer (FDR) sensors. Due to disparities in spatial representativeness and sampling

depth, a direct comparison between observed and simulated soil moisture was not feasible, their findings revealed deviations

in evapotranspiration during spring and in cropland areas, while soil moisture estimations exhibited good agreement with

observed dynamics. The study highlights the importance of considering seasonal variations when analyzing the results. Dis-

crepancies, such as low correlations in summer, indicate the need for improvements in capturing evapotranspiration dynamics420

under varying environmental conditions. Refining vegetation dynamics representation could enhance the simulation of evap-

otranspiration processes. Additionally, the agreement between mHM and observed soil moisture dynamics suggests variable

model performance for different hydrological variables, emphasizing the need for a comprehensive assessment of its capabili-

ties across various environmental conditions and spatiotemporal scales. The accuracy of modeled evapotranspiration is linked

to soil parameterization because soil water is the main source of evaporative water. During the growing season (summer), the425

model exhibited the largest variability in modeled ETa (see Fig. 8c). This can be associated among other things with a lack of

a dynamic vegetation growth module in mHM, which may not capture the onset of the vegetation period adequately. This vari-

ability could also be attributed to seasonal changes in vapor pressure difference (VPD) or more localized processes occurring

at the forest site (e.g., vegetation dynamics), which are currently not considered in the model.

The Grosses Bruch site stands out as a mesophilic grassland site with a nearby water channel, shallow ground water, regular430

cattle grazing, and seasonal flooding (Hermanns et al., 2021). We find the uniformly weighted approach NDes,U shows a slightly

better performance than the other two methods NDes,W and NCOSMIC (see Table 3). The behaviour may result in a missing

representation of locally significant hydrological components, such as dynamic biomass, snow, shallow ground water, or nearby

surface ponding (Schrön et al., 2017). Döpper et al. (2022) mentioned high impact of grazing on the plant traits and soil

properties at this site. Additionally, the use of one grid cell measurements by mHM in our study may have limited the accuracy435

of our results, as the depth of measurement may not be representative of the entire soil profile. Notably, neutron counts were

found to provide a more accurate representation of soil water content during June, July, August, and September, when levels

tend to be lower. Further exploration of neutron counts may yield additional improvements to model performance.

Overall, the three methods (NDes,U, NDes,W, and NCOSMIC) in mHM were able to consistently simulate the neutron count

variability throughout the available data period, with the exception of the Hohes Holz site. However, a broader confidence440

interval is observed, indicating a greater range of variations, which implies a higher degree of uncertainty in the NCOSMIC. The
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COSMIC approach is more complex than the Desilets approach and as such depends on more detailed additional information

about the soil properties, vegetation interception, layering, etc. If the model input data is not known in such a detail, we would

expect the COSMIC model to provide more uncertain results. Moreover, all three approaches are rough approximations of the

actual physical processes of neutron transport which could contribute to systematic biases of around 2 % compared to exact445

physics-based models (Shuttleworth et al., 2013). The simulated time series tended to slightly underestimate the CRNS neutron

count rate, particularly during the dry season. This effect could be explained by the known limitations of the equations under

very dry conditions, while recent approaches exist (Köhli et al., 2021) that could lead to further improvement in future studies.

Nevertheless, the results generally confirmed the slightly better performance of the weighted approach NDes,W, compared to

the uniform NDes,U, because of its more realistic representation of neutron propagation with depth. After optimizing the soil450

hydraulic properties based on CRNS data, the integrated signal was reproduced very well (Fig. 5). Previous studies, such as

McJannet et al. (2014) or Baatz et al. (2014), have noted low experimental performance for the Universal Calibration Function

(UCF) method described by Franz et al. (2013). However, we have selected the Desilets method, known as the N0 method, and

the COSMIC method for specific reasons. Both methods require information from soil profiles, which is readily available in the

mHM. In contrast, the Universal Transport Solution (UTS) function couples soil moisture with air humidity in a non-separable455

way, while no atmospheric information about air humidity is available in the distributed hydrological model mHM. The same

holds for the UCF function, which additionally requires a number of parameters related to hydrogen pools not represented

by mHM. In using the CRNS soil moisture measurement the drier locations show larger deviations than the wetter locations

(Iwema et al., 2015). The possibility of using simulated high-resolution soil moisture profiles instead of a few measurements

at different soil depths could further increase the accuracy of the model predictions (Brunetti et al., 2019).460

Previous studies by Smith et al. (2019) and Liu et al. (2022) address the challenges of using the original KGE in Markov

chain Monte Carlo (MCMC) methods, offering insights for accurate parameter estimation and posterior distribution explo-

ration. To address this issue, it is recommended to use adaptations to the LHS method instead of directly using the original

KGE to improve the exploration of the posterior distributions. Our approach can estimate the posterior distributions of model

parameters based on the objective function KGEαβ by taking the variance and bias. We compared soil moisture before and465

after calibrating neutron counts in mHM at four sites shown in (Fig. 9). The left panel shows the mHM default simulation

using the default parameter set from Boeing et al. (2022), whereas the right panel shows the calibrated simulation based on

NDes,U method. The presented depicts the CRNS soil moisture measurements (grey dots) versus the soil moisture derived from

mHM in different depths (colors). Table 4 shows the corresponding performance measures. It is important to acknowledge that

the optimization on observed neutron counts not only improved the soil moisture representation in mHM. At the same time, it470

also improved the simulated evapotranspiration, as shown in the example of Hohes Holz (compare Fig. 8a). The KGE value

between modeled and measured ETa by eddy covariance observations improved significantly from 0.74 to 0.83. This provides

evidence that CRNS data has the potential to improve hydrological process understanding as a whole.
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Figure 9. Comparison of soil water content (SWC) time series from (2015–2021) across all sites. The left panel illustrates the default

simulation from mHM using parameters from Boeing et al. (2022), while the right panel presents the calibrated simulation based on the

NDes,U method. Both panels compare CRNS-derived soil moisture data (grey dots) with simulated values from mHM. The best 10 calibrated

mean SWC values across different soil layers are shown, with the total average soil moisture represented by the red line.

Table 4. Performance metrics (KGE, RMSE, and PBIAS) for soil moisture simulations across four sites from (2014–2021) between θCRNS

against simulated data from mHM : Grosses Bruch, Hohes Holz, Hordorf, and Cunnersdorf. The results are compared between the default

mHM run and three calibration methods (NDes,U, NDes,W, and NCOSMIC).

Sites Grosses Bruch Hohes Holz Hordorf Cunnersdorf

Methods: Default run NDes,U NDes,W NCOSMIC Default run NDes,U NDes,W NCOSMIC Default run NDes,U NDes,W NCOSMIC Default run NDes,U NDes,W NCOSMIC

KGE 0.53 0.66 0.74 0.65 -0.32 0.42 0.09 0.18 0.55 0.59 0.47 0.47 0.55 0.64 0.48 0.43

RMSE 0.11 0.06 0.05 0.08 0.23 0.1 0.23 0.14 0.07 0.07 0.1 0.1 0.09 0.08 0.09 0.11

PBIAS -44.3% 14.6% 11.5% 26.9% 131% 55% 90% 80.9% 22.4% 19% 33.8% 35% 37.6% 26.2% 39.4% 49.3%
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5 Conclusion and future outlook

This study evaluates the potential of cosmic-ray neutron observations to improve soil moisture and model parameters in the475

mesoscale hydrological model mHM at the 1.2 km×1.2 km scale across different land cover sites for the period 2014–2021. For

this, we derived the neutron counts from simulated soil moisture profiles directly in the model using three different approaches:

two based on an empirical function with uniform and non-uniform weighting of soil horizons, and one more complex approach

based on the neutron forward operator COSMIC. Then, observed neutron counts from four sites in Germany were used to

calibrate the mHM parameters. Based on the KGEαβ between simulated and observed neutrons, the best 1 % parameter sets out480

of 100 000 model realizations were used to investigate the impact on the posterior parameter distribution and on the simulated

neutrons, soil moisture, and evapotranspiration.

The evaluation of neutron counts yielded KGE values > 0.75 at all four sites, indicating a satisfactory representation of the

neutron counts in the model compared to the observations for the best 1 % ensemble parameter sets. The performance of the

neutron counting methods varied across different land cover types. The non-uniform NDes,W method generally showed good485

performance, particularly at the agricultural sites. While the NCOSMIC method performs slightly better at the forest site. The

uniform NDes,U method showed slightly better results at the grassland site.

There is still room for improvement in the model representation of complex sites, e.g. to better address the special site-

specific conditions of the forest or grassland site, especially when using the COSMIC method. On the one hand, it is a method

that aims at mimicing the physical processes of neutron transport in the soil in detailed way, but on the other hand, it relies490

on the detailed representation of the site characteristics in the hydrological model. This complexity could introduce additional

uncertainties and limitations in the model, potentially affecting its performance, especially when the actual site is more complex

than it has been modeled. The study suggests that the observed discrepancies between model and observations may be attributed

to the representation of dynamic biomass, snow, surface ponding, and shallow groundwater dynamics, which are present at the

grassland site, for instance. Addressing these features could further enhance the model’s accuracy.495

The calibration on neutron counts not only improved the soil moisture estimation but also improved the simulation of

evapotranspiration at the Hohes Holz station. The evaluation with evapotranspiration data from eddy covariance observations

indicated some deficiencies in mHM to deal with forest systems, but also great potential for CRNS measurements to improve

the water partitioning in the model as a whole. In the growing season (March–August), deviations of the modeled and observed

ETa indicate room for better representation of mixed soils and dynamic vegetation modules at the local scale within mHM.500

In conclusion, the incorporation of neutron counts estimation into mHM by accounting for vertical soil moisture profiles

improves the model’s accuracy and provides a more realistic representation of soil moisture dynamics at all four study sites

and even evapotranspiration at the Hohes Holz site. This research presents a direction for future studies to explore. Next

steps could be the evaluation of neutrons and soil moisture in mHM by a large-scale soil moisture monitoring initiative, e.g.

by utilizing more stationary CRNS networks (e.g., Heistermann et al., 2021; Bogena et al., 2022) or large-scale mobile CRNS505

campaigns (McJannet et al., 2017; Altdorff et al., 2023). To futher increase accuracy and general understanding of hydrological

processes, we recommend integrating both CRNS and satellite remote sensing data into mHM (e.g., based on recent insights

26



from Schmidt et al., 2024; Zheng et al., 2024; Rakovec et al., 2016b). Improving the model predictions will contribute to

reducing the uncertainties associated with drought and flood management strategies and informed agricultural decisions.

Code availability. Simulation data is attached as supplemental material. The mesoscale Hydrological Model mHM (version 5.12) is open-510
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