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Abstract. Profound knowledge of soil moisture and its variability plays a crucial role in hydrological modeling to support

agricultural management, flood and drought monitoring and forecasting, and groundwater recharge estimation. Cosmic-ray

neutron sensing (CRNS) has been recognized as a promising tool for soil moisture monitoring due to its hectare-scale foot-

print and decimeter-scale measurement depth. Different approaches exist that could be the basis for incorporating CRNS data

into distributed hydrologic models, but largely still need to be implemented, thoroughly compared, and tested across different5

soil and vegetation types
:::
But

::::
since

::::::
CRNS

::::::::
provides

::
an

:::::::
integral

:::::::::::
measurement

::::
over

::::::
several

:::
soil

::::::::
horizons,

::
a

:::::
direct

::::::::::
comparison

::
of

:::::::
observed

::::
and

::::::::
simulated

::::
soil

:::::::
moisture

::::::::
products

::
is

:::
not

:::::::
possible. This study establishes a framework to accommodate neutron

count measurements and assess the accuracy of soil water content
:::::::
moisture

:
simulated by the mesoscale Hydrological Model

(mHM)
::
by

::::::::
generating

::::
and

:::::::::
comparing

::::::::
simulated

::::::
neutron

::::::
counts

::::
with

::::::::
observed

::::::
neutron

::::::::::::
measurements for the first time. It covers

CRNS observations across different vegetation types in Germany ranging from agricultural areas to forest. We include two
:::
We10

:::::::
included

::::
three

:
different approaches to estimate CRNS neutron counts in mHM based on

::
as

:
a
:::::::
function

::
of
:
the simulated soil mois-

ture : a method
::::::
profiles:

::::
two

:::::::
methods based on the Desilets equation and another one based on the

::::::
forward

::::::::
operator

::::::::
COSMIC

:
(Cosmic-ray Soil Moisture Interaction Code(COSMIC). Within the Desilets approach, we further test two different averaging

methods for the vertically layered soil moisture , namely
:
).

:::
For

:::
the

:::::::
Desilets

:::::::
method

:::
we

::::::
tested

:::
two

::::::::
different

:::::::::
approaches

:::
to

::::::
average

:::
the

:::::::
vertical

:::
soil

:::::::
moisture

:::::::
profiles:

::
a uniform vs.

:
a non-uniform weighting scheme depending on the CRNS penetrating15

depth. We use
:::::::::::
measurement

:::::
depth.

::::
The

:::::::
methods

:::::
were

:::::
tested

::
at

::::
two

::::::::::
agricultural

::::
sites,

::::
one

::::::
pasture

::::
site,

::::
and

:::
one

:::::
forest

::::
site

::
in

::::::::
Germany.

::
To

:::::::
explore

:::
the

:::::
prior

:::
and

::::::::
posterior

::::::::::
distributions

:::
of

:::
the

:::::
mHM

:::::::::
parameters

:::::
when

::::::::::
constrained

:::
by

::::::
CRNS

:::::::::::
observations,

::
we

::::
used

:
a Monte Carlo simulation method , specifically the

::::::
method

:::::
based

:::
on Latin hypercube sampling approach with a large

sample size (S = 100 000)to explore and constrain the (behavioral) mHM parameterizations against observed CRNS neutron

counts. Overall, the three methods perform
:
.
:::
We

:::::
found

::::
that

::
all

:::::
three

:::::::
methods

:::::::::
performed

:
well with Kling-Gupta efficiency >20
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0.8
::::::
> 0.75 and percent bias < 1

::::::
<±10% across the majority of investigated sites . We find that the

:::
and

:::
for

:::
the

::::
best

:::
1 %

:::
of

::::::::
parameter

::::
sets.

::::
The

:::::::::::
performance

::
of

:::
the

:::::::
neutron

:::::::
forward

::::::
models

::::::
varied

:::::::
slightly

:::::
across

::::::::
different

::::
land

:::::
cover

::::::
types.

:::
The

:
non-

uniform weighting scheme in the Desilets method and COSMIC method provides the most reliable performance, whereas

the more commonly used approach with uniformly weighted average soil moisture overestimates the observed CRNS neutron

counts. We then also demonstrate the usefulness of incorporating
::::::::
approach

::::::::
generally

::::::
showed

:::::
good

:::::::::::
performance,

::::::::::
particularly25

:
at
:::
the

::::::::::
agricultural

:::::
sites.

:::::
While

:::
the

::::::::
COSMIC

:::::::
method

::::::::
performed

:::::::
slightly

:::::
better

::
at

:::
the

:::::
forest

::::
site.

:::
The

:::::::
uniform

::::::::
approach

:::::::
showed

::::::
slightly

:::::
better

::::::
results

::
at

:::
the

::::::::
grassland

::::
site.

:::
We

::::
also

::::::::::::
demonstrated

:::
for

:::
the

:::
first

:::::
time

:::
that

:::
the

::::::::::::
incorporation

::
of

:
CRNS measure-

ments into mHM for the simulations of both
:::::
could

:::::::
improve

::::
both,

::::
the soil moisture and evapotranspiration and add a broader

discussion
::
the

::::::::::::::::
evapotranspiration

:::::::
products

:::
of

:::::
mHM.

:::::
This

:::::::
suggests

::::
that

::::::
CRNS

:
is
:::::::

capable
:::
of
:::::::::

improving
:::

the
::::::

model
:::::::::
parameter

::::
space

:::
in

::::::
general

::::
and

::::
adds

:
a
:::::::

broader
::::::::::
perspective

:
on the potential and guidelines of incorporating CRNS measurements in

::
of30

:::::
CRNS

::
to

:::::::
support large-scale hydrological and land surface models.

1 Introduction

Soil moisture is a key terrestrial climate variable because it controls the mass and energy exchange between the Earth’s sur-

face, the groundwater, the vegetation, and the atmosphere. Understanding soil moisture levels with changes in temperature is

crucial for enhancing the predictability of climate patterns on inter-seasonal and annual time scales, as highlighted in previ-35

ous studies (Santanello Jr et al., 2011; Seneviratne et al., 2006). Moreover, soil moisture variability also plays a significant

role in a wide range of applications, including flood forecasting, weather forecasting, climate modeling, agricultural manage-

ment, and groundwater recharge (Van Steenbergen and Willems, 2013; Albergel et al., 2010; Jablonowski, 2004; Wahbi et al.,

2018; Samaniego et al., 2019; Barbosa et al., 2021). In hydrological modeling, soil moisture is a key variable controlling the

partitioning of precipitation into evapotranspiration, infiltration, and runoff (Fuamba et al., 2019; Zhuo et al., 2020). Proper ini-40

tialization and modeling of soil moisture are crucial for predicting other hydrologic processes (e.g., runoff, evapotranspiration,

etc). Nevertheless, uncertainties in input data and model parameters, along with limitations in the representation of subsurface

processes, can impede the reliability of soil moisture estimation (Chen et al., 2011). Obtaining accurate soil moisture measure-

ments at a field scale is challenging due to current measurement limitations and subsurface complexity (Dong and Ochsner,

2018). Estimating average soil moisture at a mesoscale (≈ 1–100 km) is particularly difficult due to measurement technique45

limitations in terms of their "footprint" and measurement methods to bridge the scale gap between point-scale and areal average

measurements for hydrologic modeling (Chan et al., 2018).

One promising approach to infer soil moisture at a field scale is the cosmic-ray neutron sensing (CRNS) technique (Zreda et al., 2008; Desilets et al., 2010; Köhli et al., 2015; Schrön et al., 2017)

::::::::::::::::::::::::::::::::::::::::::::::::
(Zreda et al., 2008; Desilets et al., 2010; Zreda et al., 2012a).

::
It

:
is
:::::
based

:::
on

:
a
:::::::

neutron
:::::::
detector

::::
that

:::::
counts

:::
the

:::::::
average

:::::::
number

::
of

:::::::
neutrons

::
in
:::
the

:::
air

::::::
above

:::
the

::::::
ground

:::::
which

:::::::::
represents

:::
the

:::::::
average

::::::::
hydrogen

:::::::
content

::
in

:::
the

:::::::::::
environment.

::::
The

::::::
method

::::
has50

:::::::::::
demonstrated

:::::::
potential

:::
for

:::::::::
estimating

::::::
average

:::
soil

::::::::
moisture

::::
over

::::
areas

::
of

::::::
several

:::::::
hectares

::
in

::::
size

:::
and

::::
tens

::
of

:::::::::
decimeters

:::::::
in-depth

:::::::::::::::::::::::::::::::
(Köhli et al., 2015; Schrön et al., 2017)

:
.
::::::
CRNS

::::::
probes

:::
are

:::::::
typically

:::::::::
calibrated

::::::
locally

:::::
using

:::
soil

:::::::
samples

::::::
within

::::
their

:::::::
support

::::::
volume

:::::::::::::::::::::::::::::::::
(Franz et al., 2012b; Schrön et al., 2017)

:
.
::::::
CRNS

::::
data

:::
are

::::
used

:::
in

::::::
various

:::::::
studies,

::::::::
including

::::
land

:::::::
surface

:::::::::
modeling,
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::::::::
vegetation

:::::::::
dynamics,

:::::::::
catchment

:::::::::
hydrology,

:::
and

:::::::::
supporting

:::
the

:::::::::
agriculture

:::::
sector

::::
with

::::
soil

:::
and

::::::
climate

::::
data

::::::::::::::::
(Franz et al., 2020)

:
.
:::::::::
Moreover,

::::::
CRNS

::::::
derived

::::
soil

::::::::
moisture

:::
has

:::::
been

:::::::
valuable

:::
in

:::::
water

:::::::
balance

:::::::
studies,

:::::
aiding

:::
in

:::::::::
estimating

:::::::::
infiltration

::::
and55

:::::::::::::::
evapotranspiration

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Schreiner-McGraw et al., 2015; Foolad et al., 2017; Wang et al., 2018)

:
.

:::::
When

::
it

:::::
comes

:::
to

:::
the

::::::::::
comparison

::
of

::::::::
observed

::::::
CRNS

::::
soil

:::::::
moisture

:::::
with

:::
the

::::::
results

::::
from

::
a
:::::::::::
hydrological

::::::
model,

:
a
::::::

major

::::::::
challange

::
is

::
to

:::::
select

:::
the

::::
right

:::::::
vertical

:::::
scale.

::
A

:::::
CRNS

::::::::::::
measurement

::
is

::
an

:::::::
integral

:::::
value

::::
over

:
a
:::::::::::
measurement

:::::::
volume,

::::
and

:::
the

::::
depth

:::
of

:::
this

:::::::
volume

:::::::
depends

::
on

:::
the

::::
soil

:::::::
moisture

::::::
profile

::
in

:
a
:::::::::
non-linear

::::
way

::::::::::::::::
(Köhli et al., 2015).

::::::
While

:
it
::
is
::::
well

::::::::::
understood

::
in

:::::
which

:::::
depth

:::
the

::::::::
measured

:::::::
neutrons

:::::::
probed

:::
the

:::
soil,

::
it
::
is

:::
not

:::::::
directly

::::
clear

::::
how

::
to

:::::::
compare

:::
the

::::::
CRNS

::::
soil

:::::::
moisture

:::::::
product60

::::
with

::::::
several

:::
soil

:::::
layers

::
in

:
a
::::::
model.

::::::::::::::::::::::
Shuttleworth et al. (2013)

:::::
argued

:::
that

:::
the

:::::
direct

::::::::::
comparison

::
of

:::
the

:::
raw

:::::::
product

:
–
:::
the

:::::::
neutron

:::::
counts

::
–
:::::
would

:::
be

:::
the

::::::::
favorable

::::
way

::
to

:::::::
compare

::::::::::
simulations

::::
with

:::::::::::
observations

:::::::
instead.

:::
By

:::::::::
simulating

:::::::
neutrons

:::::::
directly,

::::
one

::::
could

:::::::
emulate

::::
the

::::::
neutron

::::::
counts

::::
per

:::
grid

::::
cell

:::::
based

:::
on

::
its

::::
soil

::::::::
moisture

::::::
profile

::
in

:::
the

::::::
model,

::::
and

::::
then

:::::::
compare

::::
the

:::::
result

::::::
directly

::::
with

:::
the

::::::::::::
corresponding

:::::::
neutron

:::::::::::
measurement.

:

:::
One

::::
way

::
to

::::::::
calculate

:::::::
neutrons

::::::
within

:::
the

:::::
model

::
is
::
to
::::
use

:::::::::
established

::::::::
empirical

:::::::::::
relationships

:::::::
between

:::::::
average

:::
soil

::::::::
moisture65

:::
and

::::::::
neutrons

:::::::::::::::::::::::::::::::::
(Desilets et al., 2010; Köhli et al., 2021).

::::::::
Another

::::
way

::
is

::
to
:::::::

employ
::::

the
::::::
neutron

::::::::
forward

:::::::
operator

:::::::::
COSMIC

::::::::::
(Cosmic-ray

::::
Soil

:::::::
Moisture

:::::::::
Interaction

::::::
Code)

::::::::
introduces

:::
by

:::::::::::::::::::::
(Shuttleworth et al., 2013)

:
.
:
It
::::::::
emulates

:::
the

:::::::
effective

::::::
vertical

:::::::
neutron

:::::::
transport

:::::::
through

:::
the

:::
soil

:::
and

:::::::
thereby

::::::
enables

::
a

::::::::::::
comprehensive

::::::::::::
representation

::
of

:::
the

:::::::
neutron

::::::::
generation

:::::::
process.

::::::::
Although

::::
this

:::::::
operator

:::
can

::::
only

:::
be

:
a
::::::::::::
simplification

::
of

:::
the

::::::
actual

:::::::
physical

::::::::
processes

::
as
::::::::

modeled
:::
by,

::::
e.g.,

:::::::::
URANOS

::::::::::::::::
(Köhli et al., 2023),

:::
its

:::::
higher

::::::::::
complexity

:::
still

::::::
comes

::::
with

:::::
higher

::::::::::::
computational

:::::::
demand

:::::::::
compared

::
to

:::
the

::::::::
mentioned

:::::::::
analytical

:::::::::::
relationships.70

Previous studies, such as Barbosa et al. (2021) and Brunetti et al. (2019), have recognized the importance of CRNS over

traditional invasive point-scale techniques and have utilized the HYDRUS-1D model to simulate soil moisture at the field scale.

HYDRUS-1D offers a valuable framework for modeling soil moisture dynamics and has been particularly addressing the sub-

surface processes. The
:::::
These studies incorporated a COSMIC operator to simulate neutron count rates of a CRNS measurement

(Shuttleworth et al., 2013)
::::::
neutron

:::::::
forward

:::::::
operator

:::::::::
COSMIC

::
to

:::::::
simulate

:::
the

:::::::
neutron

::::::
counts

:::::
based

:::
on

:::
soil

::::::::
moisture

::::::
profiles.75

They inversely calibrated soil hydraulic parameters by comparing observed and simulated neutron count rates, whereas be-

forehand this was limited to be done via comparison of depth-averaged soil moisture values (Rivera Villarreyes et al., 2014).

The potential utility of using CRNS data to calculate volumetric soil water content (SWC) and improve soil hydraulic pa-

rameters within land surface models has also been observed earlier, as highlighted by Rosolem et al. (2014). Furthermore,

depth-weighting schemes and hydrogen pools’ effects on measurement depth revealed valuable insights. Shallow wetting80

fronts in sandy soils significantly impact measurement depth Franz et al. (2012a). Baroni and Oswald (2015) assessed three

weighting techniques, resulting in depths varying from 23 to 28 cm, optimal estimates were achieved using vertically varying

weights and considering additional hydrogen pools. In Iwema et al. (2017), a Land Surface Model investigated the impact of

reducing scale mismatch between energy flux and soil moisture observations using CRNS data. Patil et al. (2021) employed a

distributed Land Surface Model, Data Assimilation Research Testbed (DART) with CRNS time series, and Ensemble Adjust-85

ment Kalman Filter to simulate water and energy balance. Both studies focused on analyzing land surface water and energy

balance, exploring data assimilation and calibration techniques.
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The Hydrologiska Bryans Vattenbalansavdelning (HBV) model, as studied by Dimitrova-Petrova et al. (2020), employed

CRNS data in a mixed-agricultural landscape to explore water balance on the land surface. While, Beck et al. (2021) used re-

mote sensing products and groundwater level measurements to temporally calibrate the HBV model, emphasizing the challenge90

of comparing satellite-derived soil moisture with point-scale in-situ measurements. Additionally, Baatz et al. (2017) was the

first study that utilized spatially distributed hydrological modeling, integrating CRNS data, FAO and BK50 soil maps, and other

soil data in the Community Land Model (CLM). They demonstrated that assimilating CRNS data improved catchment-scale

soil water content characterization by updating spatially distributed soil hydraulic parameters. Furthermore, Zhao et al. (2021)

assessed the significance of CRNS data in CLM version 3.5, conducting simulations based on 13 CRNS stations over 2017-95

2018. Despite employing a simplified Richards equation, limitations included the absence of lateral flows and groundwater

representation.

The mesoscale Hydrological Model (Samaniego et al., 2010b; Kumar et al., 2013b, mHM;) is known for its spatially dis-

tributed hydrologic predictions at a large scale incorporating scale-aware regionalized parameterization technique. Therefore,

by including a CRNS neutron count framework, the mHM model becomes a useful tool for improving simulated soil water100

content and furthering our understanding of the water cycle. This is made possible by the availability of observed CRNS

data, which opens up new opportunities for research into novel hypotheses, improving model performance, and developing

hydrological modeling methods.
::::
with

:::
the

:::::::::
multiscale

:::::::::
parameter

:::::::::::::
regionalization

::::::
(MPR)

::::::::::
technique.

:::
We

:::::
chose

::::
the

:::::
mHM

:::
in

:::
this

:::::
study

:::
for

::
its

:::::::
efficient

::::::::::::::
parameterization

::::::::
approach

::::
that

::::::
allows

:::
for

:
a
::::::::
seamless

:::::::::
prediction

::
of

:::::
water

:::::
fluxes

::
at
::::::::

different
::::::
spatial

:::::::::
resolutions

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Samaniego et al., 2017; Zink et al., 2017; Jing et al., 2018; Schweppe et al., 2022).

::::
This

::::::
feature

::::::
allows

:::
the

::::::
model105

::
to

::::
scale

::
its

::::::::::
applications

:::::
from

:
a
::::::
locally

::::::
relevant

:::::
scale

::
to

:::::::
regional

:::
and

:::::::::
continental

:::::
scales

:::::::::::::::::::::::::::::::::::::::::::::::::::
(Kumar et al., 2013b; Huang et al., 2017; Rakovec et al., 2019)

:
.
:::
One

:::
of

:::::::::
promising

:::::::::
application

::
of

::::::
mHM

::
is

:::
the

:::::::::
operational

:::::::
German

::::::::
Drought

:::::::
Monitor

:::::::
(GDM)

:::
that

::::::::
provides

::::
daily

:::::::
updates

:::
on

::
the

::::
soil

:::::::
moisture

::::::
related

:::::::
drought

:::::
status

:::::::::::::::::::::::::::::::::::::::::::::::::::
(Samaniego et al., 2013; Moravec et al., 2019; Pohl et al., 2023)

::::::::
.Previous

:::::::::
evaluation

::
of

::
the

::::::
GDM

:::
for

:::
soil

::::::::
moisture

:::::::
focuses

:::
on

::::::::
assessing

:::
the

::::
skill

::
of

::::
the

:::::
model

::
in
:::::::::::

reproducing
:::
SM

:::::::::
anomalies

::::::
based

::
on

:::::
point

:::::
scale

:::
soil

::::::::
moisture

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
observations(Zink et al., 2016, 2018; Rakovec et al., 2022; Scharnweber et al., 2020; Boeing et al., 2022)

:
.
:::::
Such110

:
a
:::::::::
evaluation

::
is

::::::
fraught

:::::
with

::::::::::
uncertainties

::::
due

::
to

:::::
scale

::::::::
mismatch

::::::::
between

::::::
limited

:::::
point

:::::
scale

::::::::::
observations

::::::
versus

:::::::::
grid-scale

:::::::
modeled

:::::::::
estimates.

::
In

::::::::
contrast,

::::::
CRNS

::::
has

::::
been

::::::::::
recognized

::
as

::
a
:::::::::

promising
::::

tool
:::

for
::::

soil
::::::::

moisture
::::::::::
monitoring

::::
due

::
to

:::
its

::::::::::
hectare-scale

::::::::
footprint

::::
and

:::::::::::::
decimeter-scale

:::::::::::
measurement

::::::
depth.

:::::::::
Therefore,

:::
by

::::::::
including

:
a
::::::

CRNS
:::::::

neutron
:::::
count

::::::::::
framework

:::::
within

:::
the

:::::
mHM

::
,
:
it
:::::
could

:::::
better

::::::
handle

:::
the

:::::
scale

::::::::
mismatch

:::::
issue

:::
and

::::::::
represent

:::
the

:::
soil

::::::::
moisture

:::::::::
dynamics.

:::
The

:::::::::::
wide-spread

:::::::::
availability

::
of

::::::::
observed

::::::
CRNS

::::
data

:::::
opens

:::
up

:::
new

::::::::::::
opportunities

::
to

:::::::
develop

:::
and

:::::::::
implement

:::::
novel

::::::::
methods

:::
and

::::::::::
hypotheses

::
to115

:::::::
improve

:::
soil

:::::::
moisture

::::::::::::
representation

::
in
::::::::::
hydrologic

::::::
models.

:

All the mentioned studies either compared the simulated and observed soil moisture products or incorporated the first

COSMIC version to compare neutron counts directly.As argued by Shuttleworth et al. (2013), the usage of neutron counts

is the favorable way to compare simulations with data, since the CRNS sensor intrinsically averages over soil moisture layers

while the measurement depthvaries with soil moisture and consequently over time. Hence, the direct usage of CRNS neutron120

counts avoids the question of which modeled SWC layer the observations should be compared to and at what time scales. The
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COSMIC method enables a comprehensive representation of the neutron generation process, which is computationally more

demanding than using an analytical formulation (e.g., Desilets et al., 2010; Köhli et al., 2021).

In this study, we established a framework to incorporate CRNS data into the mesoscale Hydrological Model (mHM) to com-

pare empirical and physics-based
::::::::::::::
forward-modeling

:
approaches for neutron count estimation to improve soil water content125

parameters in mHM across different vegetation types in Germany. To do this, we compared modelled with measured neutron

counts to infer soil hydraulic parameters
::::::
optimal

::::::
model

::::::::::
parameters,

::::
such

:::
as

:::
soil

::::::::
hydraulic

:::::::::::
conductivity. Here, we test three

approaches, (i) the direct calculation of neutrons from the equal-averaged SWC profiles based on Desilets et al. (2010), (ii)

the same with a weighted-average profile SWC
:::
soil

:::::::
moisture

:::::::
profiles based on Schrön et al. (2017), and (iii) the physics-based

model
:::::::
neutron

::::::
forward

:::::::
operator

:
COSMIC by Shuttleworth et al. (2013). We evaluate the simulation of neutron counts at scales130

of 1.2 km × 1.2 km, comparing the results to observed neutron counts from three different sites including agriculture, decidu-

ous forests, and grasslands. The goal of this study is to investigate the potential of using CRNS probes and measured neutron

counts to improve soil moisture predictions through simulations in mHM across different land covers and soil properties and

to evaluate the feasibility of incorporating neutron count measurements into the modeling scheme. We employ a (calibration)

framework by applying a Monte Carlo experiment to account for parameter uncertainties. We further cross-evaluate our sim-135

ulations and test the reliability of the CRNS incorporated soil-moisture scheme in mHM for simulating other variables by

utilising time series of observed evapotranspiration from an eddy covariance station available. Finally, we discuss and provide

guidelines (challenges and limitations) for incorporating CRNS measurements in a large-scale hydrologic model. In summary,

the present paper aims to answer the following research questions:

– What is the best approach to simulate CRNS neutron counts in a hydrological model considering the heterogeneity of140

vertical soil moisture profiles?

– What is the impact of model calibration with CRNS observations on simulated evapotranspiration at Hohes Holz?

– Is the mHM at approx. 1 km resolution capable of capturing the dynamics of hectare-scale CRNS measurements at

different landcover sites in a grid including 2 agriculture sites, 1 forest site, and 1 meadow site?

2 Materials and Methods145

2.1 Experimental Site Description

For this study, we select four sites with CRNS sensors, namely Grosses Bruch, Hohes Holz, Hordorf, and Cunnersdorf in

Northern Germany, as provided already within COSMOS EU (Bogena et al., 2022) with particularly long time series and with

different land cover, i.e., agriculture, forest, and meadow (see Tab. 1). The first three sites belong to the TERENO observatory

“Harz/Central Germany lowland” (Zacharias et al., 2011) while the fourth site is part of an agricultural research farm operated150

by the German Weather Service (DWD). The Grosses Bruch site is a meadow/grassland that is usually flooded naturally once

or twice a year. The meadows have sandy loam fluvisol-gleysol soil, which is 1.5 meters deep and partially covered with a
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layer of peat (Wollschläger et al., 2017). Meteorological conditions like soil moisture and temperature at various depths are

continuously monitored by a wireless soil moisture monitoring network (Schrön, 2017). Hohes Holz is a deciduous forest site

and the performance of the CRNS sensor there is highly dependent on dynamic effects such as tree canopy water or seasonal155

fluctuations in wet biomass. Water trapped in leaves and litter can present a particular challenge for CRNS measurements,

especially at forest stations (Bogena et al., 2013). Also, Bogena et al. (2022) indicated that the influence of seasonal changes

of biomass on the CRNS signal is much less important than the influence of changing soil moisture, even in Hohes Holz
:::::
Hohes

::::
Holz, as changes in soil moisture are the much larger source of variation represented by the CRNS measurements. The mean

annual air temperature for each site ranges from 10.0 to 10.9 ◦C and the average yearly precipitation ranges from 458 to 535160

mm.

Table 1. Geographical characteristics of study sites: Site Names, Geographic Coordinates, Climatic Data (Annual Precipitation in mm/year,

Annual Mean Temperature in ◦C), and the Periods Covered in Observed and Simulated Datasets.

Site Latitude Longitude Altitude Land Cover Precipitation Temperature Period

[◦N] [◦E] [m] [mm/year] [◦C]

Grosses Bruch 52.02 11.10 80 Pasture, grassland 458 10.1 24/06/2014–31/01/2021

Hohes Holz 52.09 11.22 217 Forest, hilltop 469 10.3 27/08/2014–31/01/2021

Hordorf 51.99 11.17 82 Cropland 463 10.3 29/09/2016–31/01/2021

Cunnersdorf 51.36 12.55 140 Cropland 535 10.9 23/06/2016–31/01/2021
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Figure 1. Study area map of Germany, highlighting the four test sites where observed neutron count rates from CRNS are utilized to evaluate

the performance of mHM. The figure utilizes OSM basemap layers from (© OpenStreetMap contributors 2021; distributed under the Open

Data Commons Open Database License (ODbL) v1.0) OpenStreetMap contributors (2020).

2.2 The mesoscale Hydrological Model (mHM)

mHM is a spatially distributed process-based hydrologic model ()
::::::
capable

::
of
:

representing processes such as canopy inter-

ception, snow accumulation and melting, soil moisture dynamics, infiltration and surface runoff, evaporation, underground

storage, and runoff generation, deep infiltration and baseflow, as well as runoff attenuation and flood routing (Samaniego et al.,165

2010a; Kumar et al., 2013a). The mHM model is flexible for hydrological simulations at different spatial scales due to its

novel Multi-scale Parameter Regionalization approach (MPR; Samaniego et al., 2010b); and has demonstrated applicability
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in diverse settings (Samaniego et al., 2010a; Kumar et al., 2013a; Rakovec et al., 2016a; Samaniego et al., 2017). The MPR’s

basic concept is to estimate parameters (e.g., porosity) based on soil properties (e.g., sand and clay content) using transfer

functions at a fine spatial resolution (e.g. 100 m) and upscaling them to modelling resolutions (e.g., 1 km). In MPR, transfer170

functions (e.g., pedo-transfer functions to estimate soil parameters) are combined with morphological inputs (e.g., soil tex-

ture properties) and thus lead to model hydrologic parameters (e.g., porosity or hydraulic conductivity of the soil) (Livneh

et al., 2015; Zacharias and Wessolek, 2007). In mHM, the soil moisture horizons/profile can be divided into several horizons,

all of which are sensitive to root water uptake and evapotranspiration processes. mHM simulates the daily dynamics of soil

moisture at different depths considering the incoming water (e.g., rainfall plus snow melt for the topmost layer and infiltration175

from above layers for other layers) and outgoing ET and ex-filtration fluxes. Further details on mHM code can be found at

https://mhm-ufz.organd underlying modelling concepts at Samaniego et al. (2010a); Kumar et al. (2013a).

2.3 Model Set-up

The latest version 5.12 of mHM is used in this study (see Samaniego et al., 2023, and https://github.com/mhm-ufz). The

model is executed over
:::
was

:::
set

::
up

:::
for

::
a
::::::
period

::
of

:
six years (2014–2020) with a daily time step, and the spatial resolution180

of the mHM grid cells is fixed atL1 and L2: 0.01562◦ x 0.01562◦ is eq.
::::
was

::::
fixed

:::
at:

::::::::::::::::::
0.01562◦ × 0.01562◦

:
(∼ 1.2 km ×

1.2 km using the WGS84 Coordinate Systems.
::::::::
coordinate

:::::::::
systems).

::
In

::::::
mHM,

:
Level 1 (L1) describes

::::::
denotes

:
the spatial

resolution , as
::
at which dominant hydrological processes are modelled and Level 2 (L2) describes

::::::
denotes the resolution of

the meteorological forcing data.
:::
The

:::::
finest

::::::::
resolved

:::::
spatial

:::::
level L0 : 0.001953125◦ × 0.001953125◦. Level 0 (L0) describes

:::::::::::::::::::::::::::
(0.001953125◦ × 0.001953125◦)

::::::
denotes

:
the subgrid variability of relevant basin characteristics, which includes information185

on the soil as well as land use, topography, and geology.

Figure 2 shows the flow diagram depicting the basic methodology of our study, which includes the calculation of CRNS

neutron count rates based on daily soil moisture values simulated with mHM. The model boundary conditions such as pre-

cipitation and temperature for the mHM model are acquired from the German Weather Service (DWD) station closest to the

test site. The potential evapotranspiration required by mHM is estimated using the Hargreaves-Samani method (Hargreaves190

and Samani, 1985). The model setup and parameterization for the soil moisture module use the scheme optimized by Boeing

et al. (2022). A raster dataset describing the distribution of the soils in the model area and a corresponding lookup table with

the attributes depth, soil texture (sand and clay fraction), and bulk density are required as soil input data and are derived from

national digital soil maps provided by the Federal Institute for Geosciences and Natural Resources (BGR, 2020). The data

set contains physical and chemical properties for soil at different layers and the available at a resolution of 1:250,000 (BUEK195

200; BGR, 2020). mHM uses three dominant land cover classes (forest, permeable, and impervious) that were retrieved by a

GLOBCOVER database ESA (2009). Furthermore, vegetation characteristics like Leaf Area Index (LAI) and fraction of roots

for different vegetation types are prescribed in the model. The mHM soil domain is divided into three horizons with depths of

0–5 cm, 5–25 cm, and 25–60 cm. The upper two model layers are parameterized using the topsoil layer properties while for

the lower model layer, the subsoil properties are used. More details on the underlying input data for mHM can be obtained200

from Boeing et al. (2022).
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In our study, we utilized three distinct modules of parameters: Snow, Soil Moisture, and Neutrons
::::
snow,

::::
soil

::::::::
moisture,

::::
and

:::::::
neutrons, with a total of 29

::
28

:
parameters employed for the Desilets method and 31

::
30

:
parameters for the COSMIC method.

The simulation of soil water content is processed through these three modules to estimate neutron counts. To comprehensively

cover the parameter set ranges, we employed 100 000 iterations. Finally, we selected the top 10 optimized parameter sets based205

on the objective function, KGEαβ , for further analysis and evaluation.

Figure 2. Flowchart depicting the methodology employed for calculating CRNS neutron counts through the utilization of the LHS technique

for parameterization in mHM. The computation of CRNS neutron count is carried out through three distinct approaches: NDes,U,NDes,W, and

NCOSMIC.
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2.4 Conversion of soil moisture to neutron count rate

In this study, we compare
:::::::
compared

:
observed neutron counts from CRNS data with simulated neutron counts estimated

from modeled soil moisture with the goal of optimizing the parameterization of soil water content from mHM shown in

Fig. 3. By coupling
:::::::::::
incorporating the approaches from Desilets et al. (2010) and Shuttleworth et al. (2013) each directly with210

the mHM model
::::::
directly

::::
into

:::
the

:::::
mHM

:
, we are able to account also for the uncertainty in the model predictions and test

their feasibility across four distinct sites. We analyzed the soil water content data at different soil layers (0–5 cm, 5-25 cm,

and 25-60 cm) in mHM, as utilized in the study by Boeing et al. (2022). The accuracy of numerical calculations (such as

Shuttleworth et al. (2013) set up) would benefit from higher resolved soil profiles, however, our experiments demonstrated that

varying soil depths from 3 to 6 layers did not have a substantial impact on the simulated neutron count results in mHM.
:::
We215

::::
used

:::::::::::
BGR (2020)

::::
which

::
is
::
a

:::::
global

::::::
dataset

::::
that

:
is
:::
not

:::::::
detailed

:::::::
enough

::
to

:::::
allow

::
for

:::::
finer

::::::
vertical

:::::::::
resolution. Our main objective

is to optimize the parameterization of soil hydraulic properties in mHM based on the comparison between measurement and

modelled neutron counts.

Figure 3. Daily time series of soil water content (cm3cm−3) at the Cunnersdorf site. The graph shows a comparison between the measured

SWC from CRNS data representing an integral over the first decimeters and the simulated data derived from the mHM for three distinct soil

depths, at 0–5 cm (green), 5–25 cm (purple), and 25–60 cm (brown).

2.4.1 Desilets based method

In the present study, we utilize the soil moisture information from the mHM model to convert it into neutron counts using the220

Desilets et al. (2010) empirical-based approach by calculating neutron counts from soil moisture, three constant parameters
:::::::::::::::::
Desilets et al. (2010)

. which is further improved by adding
:::
We

::::
also

:::::
added

:
lattice water and bulk density following the approaches by

::::::::::
information
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::::::::
following

:::
the

::::::::::
suggestions

::::
from

:
Dong et al. (2014) and Hawdon et al. (2014), respectively. Theoretically, the N0 parameter

::::
This

::::::::
empirical

::::::::
approach

:::::
makes

::::
use

::
of

:
a
::::
free

::::::
scaling

:::::::::
parameter

:::
N0, which represents the neutron count rate level of the

:
of

::
a

particular CRNS probe used for rather dry soil at the local conditions, should be
::::
under

::::
dry

:::
soil

::::::::::
conditions.

::::
This

:::::::::
parameter225

:
is
::::::::
typically site-specific but does not change over time, as noted by Franz et al. (2013) and Hawdon et al. (2014). In order to

obtain accurate measurements of soil moisture using CRNS data in the mHM model, N0 has to be estimated through calibration

and is crucial as it directly affects the accuracy of the mHM neutron counts results. This calibration parameter is specific to

each site environment and reference condition. This parameter primarily depends on site-specific environmental factors and

reference conditions. This coefficient is specific to
:
It
::
is
::::
also

:::::::
specific

::
to

:
the particular CRNS detector and may be impacted230

::::::::
influenced

:
by factors such as terrain (topography)but also

:
, local soil, vegetation characteristics, and additional hydrogen pools

(e.g., from organic material
:::::
matter) at each observation siteSchrön et al. (2021). Therefore, calibration

::
the

::::::::::::
determination of N0

is necessary for each CRNS data set at a site to ensure realistic model output. Neutrons are sensitive to all kinds of hydrogen in

the footprint, hence the variable θ denotes not only soil moisture, θsm, but is rather assumed to also include lattice water, θlw,

as well as water equivalent from soil organic carbon, θorg, and vegetation biomass, θbio ::
by

::::
local

::::
soil

::::::::
sampling

:::::::::
campaigns

::
is235

::::::::
necessary.

::::
Once

::::::::::
determined,

:
,
:::
the

:::::::::
parameter

:::
N0 :::::

should
:::
be

::::
kept

:::::::
constant

::
or

::::::::
carefully

::::::::
calibrated

::::::
within

:::::
limits

::
of

:::
not

:::::
more

::::
than

:::::
±5%.

::
As

::
a
:::::::
sensitive

:::::::::
parameter,

:::
N0:::::::

strongly
:::::::::
influences

:::
the

:::::::
accuracy

:::
of

::
the

::::::
mHM

:::
soil

::::::::
moisture

::::::
results.

Soil moisture for three vertical mHM soil layers is used to drive
::
as

:::::
input

:::
for

:
both the Desilets method and the COS-

MIC operator. To improve comparability between measurements and modeling techniques, Schrön et al. (2017) propose the

depth-weighted approach
::::::::
proposed

::
to

::::::
weight

:::
the

:::
soil

::::::::
moisture

:::::
values

::
of

:::::
each

::::
layer

:::
by

::::
their

:::::
depth. This approach incorporates240

the contributions of different soil layers by calculating
:::::
results

::
in
::

a
:
depth-weighted average SWC, θavg , resulting in a more

comprehensive representation of soil moisture dynamics. This gives CRNS neutron count rates, after being corrected for

incoming neutron flux, pressure, and air humidity variations, to be
:::
that

:::::
better

::::::::
represents

:::
the

::::::::
complex

::::::::
behaviour

::
of

::::::::
neutrons

::
to

:::::
probe

::
the

::::
soil.

:

NDes =N0,Des

(
a0

(θavg + θlw)/(ϱb/ϱw)+ a2
+ a1

)
(1)245

Among the four parameters, three of which are coefficients parameters ai ::::
a0...2 were determined empirically by (Desilets et al., 2010)

who
:::::::::::::::::
Desilets et al. (2010).

::::
The

::::::
authors

:
derived a0 = 0.0808, a1 = 0.372, and a2 = 0.115 , and are considered as constants for

values of
::
for θ > 0.02 gg−1. The fourth parameter, N0,Des is N0 when using the Desilet’s equation, and here is a free calibration

parameter. Whereas the parameter
::::
fixed

::::::
based

::
on

::::
field

:::::::::::::
measurements,

::::
with

:::
its

:::::
value

:::::
taken

::::
from

:::::::::::::::::
Bogena et al. (2021)

:
.
:::::
Since

:::::::
neutrons

:::
are

:::::::
sensitive

::
to

:::
all

::::
kinds

::
of

::::::::
hydrogen

::
in

:::
the

::::::::
footprint,

:::
the

:::::::
variable

:
θ
:::::::
denotes

:::
not

::::
only

:::
soil

::::::::
moisture,

::
it

:
is
:::::
rather

::::::::
assumed250

::
to

:::
also

:::::::
include

:::::
lattice

:::::
water,

::::
θlw,

::
as

::::
well

::
as

:::::
water

:::::::::
equivalent

::::
from

::::
soil

::::::
organic

::::::
carbon

::::
and

::::::::
vegetation

::::::::
biomass.

:::::
More

::::::::
precisely,

θlw is the grid average volumetric water content of the equivalent lattice water content of the CRNS area (cm3 cm−3), ϱb (g

cm−3) is the bulk density of the dry soil, usually determined from soil samples, and ϱw = 1 g cm−3 is the density of water.

Regarding the variables of Soil Organic Carbon (SOC) and biomass, it’s important to note that these variables are often not

readily available, especially when it comes to biomass data. To address this, the free parameter N0 is utilized to account for255
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these unknowns. For lattice water, we assume a linear relationship to clay content (Avery et al., 2016):

θlw = θlw0 ·C + θlw1 , (2)

C denotes the clay fraction in % (Greacen, 1981). The derived quantity lattice water, θlw, is regionalized based on C and

varies between 0.0 and 0.1 m3/m3. In order to obtain the average soil moisture for a layered soil moisture profile within mHM,

the following averaging equation is employed:260

θavg(w,θ) =

∑n
i=1wi θi∑n
i=1 wi

(3)

where the volumetric soil water content at a specific layer of mHM in a given profile is denoted by θi (m3 m−3). The total

number of layers in all soil sampling profiles is represented by the variable n, and the weight assigned to layer i is denoted by

wi. In the uniformly weighted approach, all weights equal one:

NDes,U =NDes(wi = 1) ∀ i . (4)265

In the weighted-averaging approach, the weights are determined based on Schrön et al. (2017):

NDes,W =NDes(θavg(w,θ)) , (5)

where wi =

zi,max∫
zi,min

e−2z/D dz ∝ e−2zi,min/D − e−2zi,max/D

and D = ϱ−1
b

(
p0 + p1

(
p2 + e−p3 r

) p4 + θ

p5 + θ

)
. (6)

Here, the integral goes through each horizon from zi,min to zi,max in 1 mm steps and sums up the weight over the whole layer.270

zi is the depth of the given soil moisture layer i, D is the average vertical footprint depth of the neutrons, pi are numerical

parameters presented in Schrön et al. (2017), and r (m) represents the distance from the sensor. It should be noted that the

equation for D is valid for ϱb > 1.0 g cm−3 and soil moisture contents above θ > 2 % Kasner et al. (2022)
:::::::::::::::::
(Kasner et al., 2022)

. In our model, we set r = 1 m which is sufficient to represent the average depth across the footprint radius within the model

grid. The soil moisture profile is converted to a single average neutron count per grid cell using Eqs. 1–5.275

2.4.2 Cosmic Ray Soil Moisture Interaction Code (COSMIC)

The Cosmic Ray Soil Moisture Interaction Code (COSMIC) is an analytical, physics-based model that is well-suited
::::::
neutron

::::::
forward

::::::::
operator

:::
that

::::
has

::::
been

:::::::::
developed

:
for data assimilation applications . It includes descriptions of the degradation of

:::::::::::::::::::::
(Shuttleworth et al., 2013).

::::
The

::::::
model

::::
aims

::
at

::::::::
mimicing

:::
the

:::::::
physical

:::::::::
processes

::
of

:::::::
neutron

:::::::
transport

::
in

:::
the

:::::::
vertical

:::::::::
dimension

::
of

:::
the

:::
soil

:::::
using

::
a
:::::::::
simplified

::::::::
analytical

::::::::::
formulation

:::
of

:::
the

::::
most

:::::::
relevant

:::::::::::
mechanisms

:::
and

:::::
their

:::::::
effective

::::::::::::::::
parameterizations.280

:::::::::::::::::::::
Shuttleworth et al. (2013)

:::::::
reported

:::
that

::::
this

::::
lack

:::
of

:::::::::
complexity

::::::
might

::::::::
introduce

:::::::::
systematic

::::::
errors

:::
for

::::::
typical

::::
soil

::::::::
moisture

::::::
profiles

:::
on

:::
the

:::::
order

::
of

::::
2 %

::::::::
compared

:::
to

::::::::::::
physics-based

::::::
models

::::::::::::::::::::
(e.g., Köhli et al., 2023).

:::::::::
However,

:::
the

:::::::::
simplified

::::::::
approach

:::::
allows

::
to

:::::::
estimate

:::::::
neutron

::::::
counts

::::
with

:
a
::::::::::::
computational

::::::::
efficiency

::::
that

::
is

::::::
several

:::::
orders

:::
of

::::::::
magnitude

::::::
faster.
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:::
The

:::::::::
COSMIC

:::::
model

::::::::
assumes

:
a
::::::::::
downwards

::::::::::
attenuation

::
of

:
incoming high-energy neutron flux

:::::::
neutrons

:
with soil depth,

the production of fast neutrons at each soil depth, and the scattering of resulting fast flux neutrons before reaching the soil285

surface
:
in

:::::
each

:::
soil

:::::
layer,

::::
and

::
an

::::::::
isotropic

::::::::
scattering

::
of

:::
the

::::::::
resulting

:::
fast

::::::::
neutrons

:::
that

::
is
::::::::
projected

::::::::
upwards. These processes

have a parametric dependence on soil chemistry and moisture content . The COSMIC method solves this inverse problem by

calculating neutron count rate based on soil water profiles, which could then be compared with observed neutrons without the

need to deal with dynamic sensing depths or weightings.

::::::
exhibit

:
a
:::::::::
parametric

::::::::::
dependency

:::
on

:::
soil

:::::::::
properties

::::
and

:::::
water

::::::
content

::::
and

::::
lead

::
to

:
a
::::::::
resulting

:::::::
neutron

:::::
count

:::::
value

::
for

:::::
each290

:::
grid

::::
cell

::
in

:::::
mHM.

:

NCOSMIC =N0,COSMIC

∑
Ahigh(z)Xeff(z)Afast(z) , (7)

where Ahigh(z) = e−Λhigh(z) ,

Afast(z) =
2

π

π/2∫
0

e−Λfast(z)(cosφ)−1 dφ,

Xeff(z) = αCOSMICXsoil +Xwater .295

In this model ,
:::
We

::::
used

::::
soil

:::::::
samples

::::
from

:::
the

:::::::::::::::
COSMOS-Europe

:::::
paper

::::::::::::::::::
(Bogena et al., 2022)

::
to

:::
run

:::
the

::::::::
COSMIC

::::::
model

::
in

::::
order

::
to

:::::::::
determine

::
the

::::::
scaling

:::::
factor

:::::::::
N0,COSMIC,

:::::::::
following

::
the

::::::::::
established

::::::::
strategies

::::::::::::::::::::::::::::::::::::::::::::::::::
(Shuttleworth et al., 2013; Patil et al., 2021; Baatz et al., 2014)

:
.
::
In

:::
Eq.

::
7,

:
Ahigh represents the high-energy neutron attenuation, Afast represents the fast neutron attenuation, and Xeff repre-

sents the production of fast neutrons from high-energy neutrons in the soil-water composite
:
at
::::
any

::::
level

::
in

:::
the

:::
soil. It takes into

account the different mechanisms in both, water and soil, where the soil is typically less effective in producing fast neutrons300

by a factor of αCOSMIC ≈ 0.24 (g cm3g−1), depending on bulk density.

Xsoil(z) = ∆zϱb , (8)

Xwater(z) = ∆zϱwater(θz + θlw) , (9)

The total attenuation lengths of high
:::::::
effective

::::::::::
attenuation

::
of

:::::::::::
high-energy and fast neutrons in the soil water

::::::::
soil-water

composite are described using physically motivated
::
by

:::::::::
physically

:::::::::
motivated

:::::::::
functional

:::::::::::
relationships

::::
with

::::::::
effective

:
length305

scales Li.

Λhigh(z) =
Xsoil(z)

L1
+

Xwater(z)

L2
, (10)

Λfast(z) =
Xsoil(z)

L3
+

Xwater(z)

L4
. (11)

The COSMIC function considers the attenuation of incoming high-energy neutrons (Ahigh) and their interaction with soil

to produce effective neutrons (Xeff) in addition to the attenuation of isotropically propagating fast neutrons. The parameter310

αCOSMIC represents the soil’s relative efficiency of forming fast neutrons, and length constants L1, L2, L3, and L4 (in g cm−2)

are related to local soil properties. COSMIC uses several time-invariant, site-independent, and site-specific parameters, includ-

ing L1 = 162.0 (g cm−2), L2 = 129.1 (g cm−2), and L4 = 3.16 (g cm−2), as reported by Shuttleworth et al. (2013), regardless
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of location. However, the L3 (g cm−2) parameter vary
:::::
varies

:
with soil bulk density ϱb which

::::
may change with depth. The

parameter L3 is correlated with the soil bulk density and according to the model code,
::
In

::::::
mHM,

:::
this

::
is
:::::::::
expressed

::
by

::
a

:::::
linear315

:::::::::
relationship

:::
of

::::::::::
regionalized

:::::::::
parameters

:
L30 and L31nomenclature are given as per the model code in mHM (). :

:

L3 = L30ϱb −L31. (12)

The regional
::::::
original formulation of the COSMIC method has been revised to include the θlw::::::

further
::::::::
extended

::
by

:::
the

::::::::
inclusion

::
of

::::::::
layer-wise

:
lattice water content as well.

Besides the addition of lattice water to the code, the original version of COSMIC has also
:::
and

::::
bulk

:::::::
density.

:::::::::::
Furthermore,320

::::::::
COSMIC

:::::
inside

:::::
mHM

:::
has

:
been numerically optimized to substantially increase the computational performance. This includes

the calculation of the geometric
:::::::
projected

:
integral (Eq. 7) based on lookup tables.

2.5 Constraining of model parameterization

In this study, we employ a model calibration technique to identify the most suitable parameter values for the mHM model.

Specifically, we utilize a total of 29
::
28

:
parameters for the Desilets based method and 31

::
30 parameters for the COSMIC325

method which includes hydrologic processes related to: snow, soil moisture, and neutron counts dynamics. The process of

model calibration involves modifying the parameter values of the model to achieve a satisfactory standard for an objective

function by comparing the predicted output with the observed data (James, 1982). We use the general concept of the KGE as

a weighted combination of the three components (bias, variability, and correlation terms) to evaluate our simulation (Gupta

et al., 2009). We excluded the correlation component from (Eq. ??)
::::::::::::::::
(Gupta et al., 2009)

:::::::
equation

:
as our simulation already330

exhibited satisfactory correlation due to strong seasonality, we opted not to consider it in our assessment (objective function),

as it accounted for 33% of the total weighting in the overall KGE score. Seasonality is an inherent characteristic in the northern

hemisphere where precipitation minus evaporation is mostly driven by evapotranspiration. Even if a random parameter is

selected correlation will always be higher because the meteorological forcing is the precipitation - evaporation is seasonal. This

modified KGEαβ (Eq. ??) only depends on variability (α) and bias (β) and variants of it have been used also in other studies335

(see, e.g., Martinez and Gupta, 2010; Mai, 2023). We utilize observed neutron count data from CRNS and estimated neutron

count data from the mHM model to calculate various metrics such as the
:::::::
modified Kling-Gupta efficiency coefficient (KGEαβ),

Nash-Sutcliffe efficiency (NSE)by Nash and Sutcliffe (1970), coefficient of determination (R2) by Kvålseth (1985),
:::
root

:::::
mean

:::::
square

:::::
error

::::::::
(RMSE), and percentage bias (PBIAS) by Gupta et al. (1999). The optimal PBIAS value is 0, with lower values

indicating more accurate model simulations. Positive values indicate underestimation by the model, while negative values340

indicate overestimation. This approach allows us to minimize uncertainty in the simulated neutron count data by comparing it

to observed data and determining the optimal parameter values for the mHM model. A summary of the individual parameters
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and their ranges can be found in Supplementary Table S1 and model performance measures are shown in Table 2.

KGE = 1−
√
(α− 1)2 +(β− 1)2 +(ρ− 1)2 ,

KGEαβ = 1−
√
(α− 1)2 +(β− 1)2 ,345

with Variability α = σsim/σobs ,

Bias β = µsim/µobs ,

Correlation ρ = ρ(sim,obs) ,

NSE = 1−
∑n

i=1(ysim,i − yobs,i)
2∑n

i=1((yobs,i − yobs,i)
2
,

R2 =

( ∑n
i=1(yobs,i − yobs,i)(ysim,i − ysim,i)∑n

i=1

√
(yobs,i − yobs,i)

2
√
(ysim,i − ysim,i)

2

)2

,350

PBIAS = 100[%](1−β) .

:::
S3.

Performance evaluations for the daily neutron counts simulation with observed CRNS dataset. Indices KGEαβ KGE NSE

R2 PBIASRange −∞ to 1 −∞ to 1 −∞ to 1 0 to 1 −∞ to ∞ Optimal Value 1 1 1 1 0 Satisfactory Value > 0.70 > 0.80 >

0.50 > 0.65 < ± 5355

3 Results

3.1
:::::::

Analysis
::
of

::::::::
posterior

::::::::::
parameters

::::::
across

:::
the

::::::
study

::::
sites

3.2 Constraining of the parameter distribution N0 / Sensitivity Analysis

The sensitivity and uncertainty analysis performed in this study use a Latin Hypercube Sampling (LHS) approach, resulting in

parameter distributions that large sample size was chosen to comprehensively explore the parameter sets and capture a wide360

range of possible parameter combinations in the prior range. The LHS approach creates a random value between the min and

max values of
:::::
Figure.

::
4

:::::
shows

:::
the

:::::::::
normalized

:::::
range

:::
of

:::::::
posterior

:::::::::
parameter

:::
sets

::
of

::::::
mHM,

::::::::
compared

::::::
across

:::
the

:::
four

:::::
study

:::::
sites:

::::::
Grosses

::::::
Bruch,

::::::
Hohes

::::
Holz

:
,
:::::::
Hordorf,

::::
and

::::::::::
Cunnersdorf

:
.
:::
Out

:::
of

::
30

::::::::::
parameters, the parameter set. Initial parameter ranges and

exploratory model runs are set based on literature values (Boeing et al., 2022; Kumar et al., 2013b). Supplementary Table S1

shows the values for the parameters in all 100 000 simulations and the selected 29 parameters for the Desilets method and365

31 parameters for the COSMIC method, which include snow, soil moisture, and neutrons modules as behavioral simulations,

with the posterior mean of the top 10 best parameters set. For further information and additional details about the calibrated

parameters for each site, refer to Supplementary TableS2. Among the calibrated parameters , the N0 parameters are different in

each method since this parameter does not exactly have the same physical meaning in the Desilets and the COSMIC methods.
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Fig
::::
most

::::::
relevant

::::::::::
parameters

:::
for

::::::::
root-zone

:::
soil

::::::::
moisture

::::::::
dynamics

:::
are

::::::::
presented

::::
(see

:::::
Table

:
2
:::
for

:::::::::
parameter

:::::::::
description

::::
and370

::::::
ranges).

::::
The

:::::
other

:::::::::
parameters

::::
are

::::::
shown

::
in

:::
the

::::::::::::
supplementary

::::::::
material.

::::::
Figure. 4 displays the x-axis in gray, representing

the original parameter range (600–1500) prior distribution for the Desilets method and (100–400)for COSMIC method.

Meanwhile, the colored sections in brown, green, and purple indicate the parameter values of the calibration from the posterior

distribution taken from the top-performing parameter sets for each study site. The most sensitive parameters during the

calibration period are N0,Des, N0,COSMIC, rootFractionCoefficient_pervious, and rootFractionCoefficient_forest of land cover375

classes are employed: class 1 = forest which consisted of permeable areas covered by coniferous, deciduous, and mixed forests;

class 2 = impervious cover with land uses like settlements, industrial parks, roads, airport runways, and railway tracks; and

class 3 = permeable cover covered by fallow lands, or those surfaces covered by crops, grass, and orchards. The calibration

process notably sharpens the Probability Density Function (PDF) of these significant parameters by eliminating some of the

uncertainty linked to the variance in the prior probability distributions.380

For agricultural sites such as Cunnersdorf and Hordorf, the N0,Des best estimate parameter results lie between 1000 and

1400 cph. Meanwhile, for Hohes Holz, the N0,Des parameter range lies between 800 and 1000 cph, the lowest value for the

calibration parameter N0,Des is found between 800 and 900 cph due to the highest wet above biomass in the forest area.

Similarly, for
:::::::
indicates

::::
that

:::
the

:::::::
selected

:::::::::
parameters

:::::::
showed

::
a

::::::::::::::
well-constrained

:::::::::
distribution

::::::
within

::::
their

:::::::
allowed

:::::
range

::::::
across

::
the

:::::
study

:::::
sites.

::::::
Among

:::::
them,

::
at

:::
the

:
Grosses Bruch sites, the lowest value for the calibration parameter N0,Des is found between385

800 and 900. The prior parameter distribution N0,Des 600 and 1500 cph is the same for all four experiments.

The estimated values of N0,Des and N0,COSMIC obtained in our study are close to the optimal values, indicating that the

model has the potential to generate accurate cosmic-ray soil moisture estimates even under dry conditions. In contrast, some

hydrological models, such as HBV and PREVAH (PREecipitation Runof EVApotranspiration Hydrological response unit

model; Viviroli et al. 2009), have demonstrated weaker performance in simulating soil moisture, particularly during dry conditions390

(Orth et al., 2015), with slightly better agreement with observations observed during wet conditions. Table ?? provides detailed

information on the mean and 95% confidence interval (CI) of the parameter values of the prior and posterior simulated results

of N0. One of the important addition of this work is incorporating the lattice water account and we used the regionalization

equation to calculate the lattice water which depends on the clay content with free parametersin Eqs. 2. The optimized

parameter of the mHM shows the variation of the θlw ranges between (0.02–0.04)cm3cm−3 for different sites (see Supporting395

Information Table S3). This behaviour and the way it was defined in Eq. 1 indicate that θlw likely represents not only soil lattice

water itself, but rather the total offset of all hydrogen pools in the vicinity of the sensor (see e.g., Schrön et al., 2017; Iwema et al., 2021)

.
:::
site

::
we

::::
find

:::
the

::::
most

:::::
stable

::::::::
parameter

::::::::::
distribution

::::
with

:::
low

:::::::::
variability

:::::
(small

::::
error

:::::
bars)

:::::
across

::::
most

:::
of

::
the

:::::::
inferred

::::::::::
parameters,

::::::::
including

::::::
vertical

::::
root

::::::::
fractions

::
of

:::::::
different

:::::::::
vegetation

:::::
types

:
(
:::::::::
rotfrcoffore

:
,
::::::::::
rotfrcofperv

:
).

::
A

::::::::
relatively

::::::
higher

:::::::::
variability

:::::
(large

::::
error

::::
bars)

:::
in

:::
the

:::::::
posterior

:::::::::
parameter

::::::::::
distributions

::
is
:::::::
noticed

:::
for

:::::
ptflw0

:
,
:::::
ptflw1

:::
and

:::::::
ptfhigdb

:
–
:::::

these
::::::::::
parameters

:::
are

::::::
related

::
to400

::
the

:::::::::
estimation

::
of
::::::
lattice

:::::
water

:::
and

::::
bulk

:::::::
density.

:::::::::::
Pedo-transfer

:::::::
function

::::::
(PTF)

::::::
related

:::::::::
parameters

:::
that

:::::::
control

:::
the

:::::::
saturated

::::
soil

::::
water

:::::::
content

:
(
::::::::::
ptflowconst,

:::::
ptflw1,

::::::
ptflw0)

::
at
:::
the

::::::
Hohes

::::
Holz

::
site

:::::::
showed

:::
the

:::::
lowest

:::::::::
variability,

::::::::
reflecting

::
a
::::::::
consistent

::::::::
behavior

::
for

::::::::
inferring

::::
these

:::::::::
parameters

::
at
::::
this

:::
site.

::::
The

:::
site

::
at

:::::::
Hordorf

:::::
shows

::::::::
moderate

:::::::::
variability

:::::
across

::::
most

::
of

:::
the

::::::::
analysed

:::::::::
parameters

::::::::
especially

:::
for

:::
the

::::::::::
orgmatperv,

::::::::
pfthighdb,

::::::
ptflw1,

:::::
ptflw0

:
.
::::::
Overall

::::::
across

::
all

:::
the

:::::
study

::::
sites,

:::
the

::::::::
posterior

:::::::::
distribution

::
of

:::::::::
parameter
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:::::::
ptflowdb

:::::::
exhibits

::::
high

:::::::::
variability,

::::::::
reflecting

:::
the

:::::::::
importance

::
of

::::::
further

:::::::::::
constraining

::
of

:::
this

:::::::::
parameter.

:::::
There

::
is

:
a
:::::::
varying

::::::
degree405

::
of

:::::::::
sensitivity

:::::
across

:::
the

::::::::::
parameters,

:::
but

:::::::
certain

:::::::::
parameters

::::::::::
consistently

:::::::::::
demonstrate

:::::::::
sensitivity

:::::
across

:::
the

::::
site

:
(
::::::::::
rotfrcoffore,

:::::::
ptflowdb,

:::::::::
ptfhigclay,

::::::::::
ptflowconst

:
).

::::
This

::::::
finding

:::::
aligns

::::
with

:::::::
previous

::::::
studies

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Cuntz et al., 2015; Koch et al., 2022; Demirci and Demirel, 2023)

:
,
:::::
which

::::
also

::::::::
identified

::::
these

::::::::::
parameters

::
as

:::::::
sensitive

::
in

:::::
mHM

::::::
across

::::::
various

:::::
study

::::::::
locations.

:

Figure 4. Probability Density Function (PDF)
:::
Bar

:::
plot

:::::::
showing

:::::::
posterior

:::::::::
distribution

:
of the mHM parameter N0 cphfor two different

approaches: (a) the Desilets method
::::
model

::::::::
parameters

:::::
across

::::
three

::::
land

::::
cover

::::
types, and (b) the COSMIC method

:::::::
calibrated

::::
using

:::::::::
cosmic-ray

:::::
neutron

::::::
sensing

::::
data.

:::::::
Parameter

:::::
values

::
are

:::::
scaled

:::::::
between

:
0
:::
and

::
1. The prior PDF of

::::::
whiskers

:::::::
represent the original sample, consisting

::::
upper

:::
and

::::
lower

:::::
limits of 100 000 data points, is represented by the grey color. The behavioral PDF

:::::::::
inter-quantile

:::::
range, obtained after applying

::::
while the objective function, is shown for weighted (brown), uniform (green), and COSMIC (purple). The black dashed line represents

:::
dots

:::::::
represent the one N0 cphvalue that best fits

:::::
median

:::::
values

::
of the data

::::::::
normalized

::::
range

:::
for

::::
each

:::::::
parameter.
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Table 2. The four most right columns are the posterior ones
::::::::
Description

:
of size 100 000

::
ten

::::::
selected

:::::::::
parameters and are the same for all sites.

The posterior distributions correspond to the distributions
:::
their

:::::
ranges in the behavioral sample obtained after the application of the objective

function
::::
mHM.The values correspond to the median (Q50) and the lower and upper bound of the 95% confidence interval (Q2.5 and Q97.5,

respectively).

Parameter
::
No CI

::::::::::
Parameter

:::::
Name Prior

:::::::::
Description Grosses Bruch

::::
Min Hohes Holz

::::
Max Hordorf Cunnersdorf

N0 (Des,U)::
β1

:
Q50 ::::::::::

rotfrcofperv
1050

:::
Root

:::::::
fraction

:::::::::
coefficient

:::::::
pervious

:

889
::::
0.001

:
882 1092 1255

::::
0.09

::
β2 Q2.5::::::::::

rotfrcoffore
623

:::
Root

:::::::
fraction

:::::::::
coefficient

:::::
forest

:

866
::
0.9

:
855 1069 1224

::::
0.999

::
β3 Q97.5 :::::::

ptflowdb
:

1477
::::
PTF

::::::::
saturated

::::::
water

::::::::
content:

::::::::::
coefficient

:::::
bulk

::::::
density

945
::::
-0.27

:
908 1126 1291

:::::
-0.25

::
β4 mean

:::::::::
ptflowconst

:

1050
:::
PTF

::::::::
saturated

:::::
water

:::::::
content:

:::::::
constant

899
::::
0.75 88310961257

:::
0.8

::
β5 sd

::::::::
ptfkssand

:

260
:::
PTF

::::::::
hydraulic

:::::::::::
conductivity:

::::
Sand

:

27
::::
0.006

:
2121 25

:::::
0.026

N0 (Des, W) ::
β6

:
Q50 :::::::

ptfhigdb
1050

:::::::::
Coefficient

::::
for

:::::
bulk

:::::::
density

:::
in
:::::::::::::

pedo-transfer

:::::::
function

::
for

:::::
soils

::::
with

::::
sand

::::::
content

::::::
higher

::::
than

:::::
66.5%

942
::::
-0.35

:
906 1158 1209

:::
-0.3

::
β7 Q2.5::::::::

ptfhigclay
:

623
::::::::
Coefficient

:::
for

::::
clay

::
in

:::::::::::
pedo-transfer

:::::::
function

:

876
::::::
-0.0012

:
871 1116 1168

:::::::
-0.0008

::
β8 Q97.5 :::::::::

orgmatperv
1477

::::::
Organic

::::::
matter

::::::
content

:::
for

:::::::
pervious

::::
zone

:

954
:
0
:

915 1176 1262
:
5

::
β9 mean

:::::
ptflw1

:

1050
:::
PTF

:::::
lattice

:::::
water

:

925
:
0
:

899 1152 1216
:::
0.2

:::
β10

:
sd

::::::
ptflw0

260
:::
PTF

:::::
lattice

:::::
water

:

34
:
0
:

16 21 34
::::
0.05

N0 (COSMIC) Q50 250 225234 287 316 Q2.5 108 202 216 265 281 Q97.5392 249 241 302 339 mean 250 226 232 285 312 sd 87 18 9 12 19
+

3.2 Time series analysis of simulated neutron counts

The study conducts simulations of neutron counts in mHM using soil moisture parameterizations, with results presented410

in Figs. 5–6 across different sites. The
:::
land

:::::
cover

:::::
sites.

:::
In

:::::
these

::::::
figures,

::::
the

::::
grey

::::
dots

::::::::
represent

:::
the

::::::
CRNS

::::
soil

::::::::
moisture

::::::::::::
measurements.

::::
The

:::
N0:::::::::

parameter
::::::
values,

:::::
taken

:::::
from

::::
field

::::::::::::
measurement,

:::
are

:::::::::::
documented

:::
for

::::
each

::::
site,

:::::::::
including

:::::::
Grosses

:::::
Bruch,

::::::
Hohes

:::::
Holz,

::::::::
Hordorf,

:::
and

::::::::::
Cunnerdorf

:
.
:::
We

:::::::
utilized

:::::::::::
measurement

::::
data

:::::
from

:::::::::
COSMOS

::::::
Europe

:::::::::::::::::
Bogena et al. (2022)

:
,

:::::
where

::::::
neutron

::::::
counts

::::
were

:::::::::
converted

::
to

:::
soil

::::::::
moisture,

:::::
θ(N),

:::::
using

:::
the

:::::::::::
methodology

::::
from

:::::::
Desilets

::
et

:::
al.

::::::
(2010).

:::
The

:
simulated

neutron counts were based on the simulated soil moisture content at the modeled soil horizons i.e., 0–5 cm, 5–25 cm, and415

25–60 cm. The results of the ensemble runs show that the precision is higher for the behavioral simulation ensembles 0.1 %
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(represented by dark gray shaded areas) than in the unconstrained simulated data 1 % (represented by light gray shaded areas).

We select the best 0.1 % with the highest KGE from 100 000 model runs, and the results are presented in Tab. 3.

The
:::::::
However,

::
a
:::::
larger

::::::::::
discrepancy

::::
was

:::::
noted

::
at

::::::
Hohes

::::
Holz

:
a
:::::
dense

:::::
forest

::::
site,

::::::
across

::
all

:::::
three

::::::::
methods.

::::
This

:::::::::
difference

::::
could

:::
be

:::::::::
attributed

::
to

:::
the

:::::
Leaf

:::::
Area

:::::
Index

::::::
(LAI),

:::::::
biomass

::::
and

:::::::::
vegetation

:::::::::
dynamics,

::::::
which

:::
are

::::
not

::::::::
currently

:::::::::
integrated420

:::
into

::::::
mHM.

::::::
Recent

::::::
efforts

:::
by

::::::::::::::::::
Bahrami et al. (2022)

:::
aim

::
to

:::::::
address

:::::::::
vegetation

::::::::
dynamics

::
in

::::::
mHM,

:::
but

::::
this

:::::::::
integration

::
is

::::
still

:::::::::
incomplete.

:::::::
Among

:::
the

::::::::
methods,

:::
the

:
NCOSMIC method performs best at the forest site (Hohes Holz), whereas at the agricul-

tural sites (Hordorf and Cunnerdorf
::::::::::
Cunnerdorf), the NDes,W method performs slightly better. Only for

::
In

:
the grassland site

(Grosses Bruch), the uniform method NDes,U slightly outperforms the other two methods i.e., NDes,W and NCOSMIC, while

overestimating the observations at all the other sites.
:
. In general, we observe good model performance for all methods indi-425

cated by a correlation coefficient greater than 0.80
::::::::::
Kling-Gupta

::::::::
efficiency

::::::
greater

::::
than

::::
0.75

:
and a percent bias (PBIAS) below

2
::
±

::
10 % across the majority of investigated sites and methods. These results suggest that the neutron-forward models match

the observed neutron counts well. However, the mean ensemble had difficulties reproducing the neutron counts for the Grosses

Bruch
:::::
Hohes

::::
Holz site in all three methods.

The incorporation of dynamic vegetation in models is important as it can impact the model parameter LAI, which in turn430

can affect root water uptake and soil water content. Currently, these factors are not considered in the models, leading to a

permanent and systematic shift in these variables each year (Zink et al., 2017; Massoud et al., 2019).

The results also highlight the uncertainties associated with model simulations and the sensitivity of the objective function.

We find that three
::
ten

:
soil moisture-related parameters, namely N0, rotfrcoffpre, and rotfrcofforest,

:::::::::
mentioned

::
in

:::::
Table

::
2, have

the most significant impact on the objective function KGEαβ , compared to the other parameters of mHM. The parameter435

N0 ::
lw directly affects the neutron count simulations, while the parameters rotfrcoffpre and rotfrcofforest

::::
other

::::::::::
parameters

correspond to the fractions of vegetation roots in different soil layers that directly affect the water availability related stress

for the estimation of actual evapotranspiration, and thereby the soil-water dynamics (Samaniego et al., 2010b; Kumar et al.,

2013b). The best parameter set values in mHM across all sites and methods are given in (Supporting Information Table S2
:::
S3).
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Figure 5. Simulated daily time series of black for NDes,W, red for NDes,U for the four sites. The black lines represent the median of the be-

havioural simulation ensembles that satisfy the objective function which is LHS10 ensemble members. The light grey shaded areas represent

the 95% CI of the simulation ensembles corresponding to different levels of constraining which is LHS1000 ensemble members, and the

observation is shown in grey points. Precipitation is shown in blue color on the top.
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Figure 6. Simulated daily time series of NCOSMIC for the four sites. The black lines represent the median of the behavioural simulation

ensembles that satisfy the objective function which is LHS10 ensemble members. The light grey shaded areas represent the 95% CI of the

simulation ensembles corresponding to different levels of constraining which is LHS1000 ensemble members, and the observation is shown

in grey points.

3.3 Model calibration statistics and evaluation440

In addition to KGEαβ , the four
::::
three

:
metrics KGE, NSE, R,

::::::
RMSE,

:
and PBIAS are used to evaluate further the mHM neutron

counts simulated with observed CRNS data. We employ LHS to generate a parameter sample of 100 000 for the three methods,

namely NDes,U, NDes,W and NCOSMIC, by uniformly distributing the ranges provided in the (supplementary Table S1
::
S2). The

top 10 parameter sets are found to perform satisfactorily with a KGE range of 0.80 to 0.93
::::
0.75

::
to

:::
0.9, as demonstrated in

Table 3. The calibrated parameter sets obtained from different objective functions are also evaluated and compared using445

various statistical indices, as shown in Figure 7, with most objective functions performing better than satisfactory based on

the criteria in Table 2. The results for the COSMIC method indicate that the main contribution to poorer results during the
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evaluation period was due to the variability term (α). The boxplot displayed in Figure 7 illustrates the threshold achieved by

the top 1000, 100, and 10 LHS members, along with the corresponding percentage of the best 10 LHS parameter sets that meet

the threshold, as specified in (see Tab. 2). Among the 31
:
.
::::::
Among

:::
the

:::
30 parameters selected to simulate neutron counts, this450

plot provides an overview of the distribution of results and their variability with respect to the threshold criteria.

Table 3. Performance metrics for model calibration (2014-2021) using various methods: Percent bias
:::::::::
Kling-Gupta

::::::::
Efficiency (PBIAS

::::
KGE),

coefficient of determination
:::

Root
:::::
Mean

:::::
Square

::::
Error

:
(R2

:::::
RMSE), Nash-Sutcliffe efficiency (NSE), and Kling-Gupta Efficiency

::::::::
percentage

:::
bias

:
(KGE

:::::
PBIAS) across different sites. Bold values indicate

:::
The

:::::::
observed

::::::
neutron

:::::
counts

:::::
were

:::::::
compared

::::
with

:
the best performance

measures
:::::::
simulated

::::::
neutron

:::::
counts

::::
from

::
the

:::::
mHM.

Sites Grosses Bruch Hohes Holz Hordorf Cunnersdorf

Methods: NDes,U NDes,W NCOSMIC NDes,U NDes,W NCOSMIC NDes,U NDes,W NCOSMIC NDes,U NDes,W NCOSMIC

mHM default run

KGE -0.74 -1.46 -5.52 0.33 0.26 0.44 0.73 0.81 -0.06 0.63 0.71 0.64

RMSE 133.78 175.1 309.8 89.61 108.15 139.5 27.46 36.31 223 80.41 90.18 85.5

PBIAS 23.3% 30.2% 46% -18.6% -22.6% -29.6% -3.5% -5.2% -35.2% -9.8% -11.6% -10%

mHM calibrated

KGE 0.85 0.83 0.78 0.77 0.75 0.79 0.87 0.86 0.84 0.81 0.90 0.85

RMSE 16.12 17.84 50.55 45.42 59.9 73.5 16.83 17.89 48 54 51.83 81

PBIAS 0% -0.7% -9% -8.7% -12% -15.4% -0.1% -0.6% -15.4% -6.2% -5.7% -9.9%
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Figure 7. Evaluation of model performance using boxplots constraining of 1000 to the best 10 parameters set at four different sites, using

three different methods, namely NDes,W in brown, NDes,U in green, and NCOSMIC in purple. The figure presents four subplots, where (a)

represents Alpha, (b) Beta, (c) KGEαβ , and (d) Kling-Gupta efficiency (KGE) and its components, i.e., the variability term (perfect value:

1), and bias term (perfect value: 1), respectively.

3.4 Comparing evapotranspiration at Hohes-Holz: eddy covariance observed data vs mHM simulation

The ensemble model of (10 members) simulations , is further examined with the
:::
are

::::::
further

:::::::
validated

::::
with

:
evapotranspiration

(ETa) to cross-evaluate and
:::
data

::
to

:
assess the model’s ability to represent other fluxes and states next

::
in

:::::::
addition to neutron

countsby using the
:
.
::::
This

::::::::
validation

::::
uses ETa observational data from eddy covariance measurements

:::::::
provided

::
by

:::
the

:
Integrated455
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Carbon Observation System (ICOS) at Hohes Holz Warm Winter (2022)
:::::::::::::::::
(Warm Winter, 2022). In terms of temporal dynamics,

the model is able
::::::
capable

:
to capture the observed ETa quite well at the study site, as shown in Figure 8. Panel (c) displays the

scatter plot incorporating linear regression models to quantify the relationships between observed and mHM-simulated ETa

during both the growing and non-growing seasons. This plot provides insights into the seasonal variations in the relationship

between observed and simulated ET
:::
ETa. It suggests that the model performs best during winter, while its performance during460

summer is comparatively weaker. The correlation coefficients (r
:
r

:
values) for each season are as follows: autumn [SON]

(r
:
r
:
= 0.79

::::
0.72), spring [MAM] (r

:
r
:
= 0.77

::::
0.75), summer [JJA] (r

:
r = 0.42

:::
0.35), and winter [DJF] (r

:
r
:
= 0.87

::::
0.85). It is

worth noting that winter shows the highest correlation between observed and simulated ET
:::
ETa, while summer exhibits the

lowest correlation. The most significant deviation in terms of RMSE is evident during the summer, when evapotranspiration

:::
ETa

:
is highest, while the smallest difference is in winter when evapotranspiration

:::
ETa

:
has less impact. The model slightly465

overestimates evapotranspiration
:::
ETa

:
in summer and spring, possibly because of the absence of a dynamic vegetation growth

module in the mHM, also discussed for evapotranspiration in
::
by

:
Zink et al. (2017). The temporal dynamics of the model-

simulated evapotranspiration are in good agreement with the observed data from the Hohes Holz forest eddy covariance site,

taken from Warm Winter (2022), as illustrated in Figure 8a. The daily
:::::
Daily

:
correlation between observed and simulated

evapotranspiration is observed high in the growing season at r = 0.84
::::::
r = 0.8, whereas the lowest correlation is found in the470

non-growing season at r = 0.65
:::::::
r = 0.53

:
in Figure 8c. The highest deviation in terms of RMSE is observed during summer

when the highest fluxes occur, and the lowest during winter, in which the contribution of ETa is lowest.

In Figure 8b, the prior and posterior parameter distributions of evapotranspiration for Hohes Holz are displayed. The prior

distribution represents the 100 000 parameters set utilized for the neutron counts simulation under Latin Hypercube Sampling

(LHS). The results demonstrate that the ensemble model of 10-member simulations (posterior) for neutron counts can also475

effectively capture evapotranspiration, exhibiting a root mean square error (RMSE) of 0.76 mmd−1 of the growing season and

0.25 mmd−1 for non-growing when compared to observed ICOS data and simulated mHM. When compared to the model

simulations with prior parameter sets, we notice a substantial improvement in ET simulations (mean RMSE of 0.86
::::
0.85

mmd−1 to 0.76 mmd−1). Furthermore, the RMSE range is also narrower for the posterior simulations compared to the prior

ones which further demonstrated the additional value of incorporating CRNS measurements in improving the consistency480

of both modeled soil moisture and evapotranspiration estimates. Nevertheless, the overall agreement between modeled and

observed ETa is reasonably good; and the analysis reveals further improvement of model performance in the growing season.
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Figure 8. (a) Time series
::::::::
Comparison

::
of

:::::
weekly

::::::::
observed

:
actual evapotranspiration (ETa

:::
grey

::::
dots) from

::
and

::::::::
simulated

::::::
actual

:::::::::::::
evapotranspiration

:::::
using

::
the

::::::
default mHM

::::::::
parameters

::
by

::::::::::::::::
Boeing et al. (2022) (black

::
red

::::
line), ICOS measurement

::
the

::::::::
calibrated

::::::::
simulation

(red
:::
blue

:::
dots), and the prior range of 100 000 realizations in (orange) color

:::
over

::
the

:::::
Hohes

::::
Holz

:::
site. (b) Boxplot of daily actual evapotranspi-

ration (ETa) differences between the growing and non-growing seasons, comparing two selected prior with 100 000 simulations, the values

represent the mean of the statistical metrics and posterior with 10 ensemble member distributions using the root mean square error (RMSE)

as the evaluation metric (µgm
3

). (c) scatterplots of modeled vs. observed ET on a daily basis from ICOS during the growing season from

March to August (green) and non-growing season from September to February (brown) at Hohes Holz eddy covariance station in a forest.
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4 Discussion

This study assessed the suitability of CRNS observations at four sites to enhance soil moisture representation in mHM. The

theoretical measurement depth for the cosmic-ray probe varies, ranging from ∼ 12 cm in wet soils to ∼ 76 cm in dry soils485

(Zreda et al. (2008, 2012a); Rosolem et al. (2014)).

To improve the soil moisture profile representation within mHM it is a major challenge to use a single vertically integrated

CRNS measurement. In order to have a fair comparison between the model and observed CRNS data, two conceptually different

approaches were integrated into mHM to calculate neutron counts from different SWC horizon depths i.e., an empirical method

based on Desilets et al. (2010), and a physics-based method
::::::
neutron

:::::::
forward

:::::::
operator

:
(COSMIC) based on Shuttleworth et al.490

(2013). Since the empirical method is described by an analytical expression, taking into account the uniform average of the soil

moisture layers, it is straightforward to implement and therefore most commonly used (Zreda et al., 2012b; Rivera Villarreyes

et al., 2011; Andreasen et al., 2017; Bogena et al., 2022). However, the method comes with the risk of missing a representation

of the vertical profile of soil properties and water content. Therefore, we extended this uniform-averaging scheme with a vertical

weighting scheme to mimic the sensitivity of the neutrons to the upper layers both weighted and non-weighted soil moisture495

approaches in the context of CRNS have been discussed (Rivera Villarreyes et al., 2014; Baroni and Oswald, 2015; Schreiner-

McGraw et al., 2016; Zreda, 2016; Schrön et al., 2017; Vather et al., 2019; Barbosa et al., 2021). The COSMIC operator also

accounts for the full soil moisture profile, but in a more physically behaved manner, following the track and attenuation of the

neutrons in and out of the soil column. The mHM model is now able to simulate neutrons directly with all three approaches.

The presented results confirmed general consistency with CRNS observations at four sites in Germany (Figs. 5 and 6).500

Agricultural land presents a valuable opportunity to examine the interaction between soil moisture dynamics, crop growth,

irrigation methods, and vegetation dynamics. Hordorf and Cunnerdorf are specific agricultural sites where seasonal changes

in aboveground biomass are expected to be larger due to crop growth and harvest compared to grassland and forest sites.

The study by Schrön et al. (2017) found that the revised weighting strategy for CRNS data improved the accuracy of soil

moisture predictions at agriculture sites, but there is still room for improvement in capturing local dynamics through revised505

parameters in the CRNS model. Our results
:::
also showed that at the agriculture site, the NDes,W :::::

NDes,U methods in mHM slightly

out-performed the other methods.

We also investigated Hohes Holz, a forest site, and observed an early simulation of approximately 28 days in the simulation

of neutron counts compared to the observations. The early simulation phase could be attributed to the limitation of mHM in

simulating the dynamics of detailed vegetation mechanisms Zink et al. (2017). One specific limitation is that the model does510

not fully account for the fact that trees at the site have access to deeper water sources, which can result in water stress being

experienced at later times. Still, we get very good results in terms of KGE, for instance, indicating that these issues are of

minor importance and that all three methods in mHM representation of the forest are already performing quite well. While

CRNS and TDR generally agree at this site, the discrepancy shown in our results could be attributed to issues related to process

representation in mHM Boeing et al. (2022). Simulation of neutron data within the mHM model and subsequently comparing515

it with observed counts can enhance the accuracy and precision of soil moisture measurements. Future research can focus on
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exploring the potential relationships between CRNS data and soil moisture anomalies, thus furthering our understanding of the

dynamics of drought and assisting in the development of efficient drought monitoring and mitigation strategies.

To cross-evaluate our results, we generated and filtered the 100 000 regionalized parameter sets based on observed neutron

counts for behavioral solutions. After selecting the most effective solutions, we conduct cross-validation by comparing the520

mHM simulations of evapotranspiration against observational data from eddy covariance measurements ICOS (Warm Winter,

2022; Pohl et al., 2023) at the Hohes Holz. Figure 8 shows the scatter including the seasonal correlation coefficient at the forest

site. The results indicate low correlations in summer, likely due to mHM’s limitations in capturing evapotranspiration values

with mHM’s static vegetation module. However, the model performs well in winter, with a high correlation between observed

and simulated values of evapotranspiration, the results confirm the findings from Zink et al. (2017), who used mHM to es-525

timate evapotranspiration, groundwater recharge, soil moisture, and runoff with 4 km spatial and daily temporal resolutions

(1951–2010). They utilized soil moisture observations from eddy covariance stations employing Time-Domain Reflectome-

ter (TDR) or Frequency-Domain Reflectometer (FDR) sensors. Due to disparities in spatial representativeness and sampling

depth, a direct comparison between observed and simulated soil moisture was not feasible, their findings revealed deviations

in evapotranspiration during spring and in cropland areas, while soil moisture estimations exhibited good agreement with530

observed dynamics. The study highlights the importance of considering seasonal variations when analyzing the results. Dis-

crepancies, such as low correlations in summer, indicate the need for improvements in capturing evapotranspiration dynamics

under varying environmental conditions. Refining vegetation dynamics representation could enhance the simulation of evap-

otranspiration processes. Additionally, the agreement between mHM and observed soil moisture dynamics suggests variable

model performance for different hydrological variables, emphasizing the need for a comprehensive assessment of its capabili-535

ties across various environmental conditions and spatiotemporal scales. The accuracy of modeled evapotranspiration is linked

to soil parameterization because soil water is the main source of evaporative water. During the growing season (summer), the

model exhibited the largest variability in modeled ETa (Figure 8c). This can be associated among other things with a lack

of a dynamic vegetation growth module in mHM, which may not capture the onset of the vegetation period adequately. This

variability could also be attributed to seasonal changes in vapor pressure difference (VPD) or more localized processes occur-540

ring at the forest site (e.g., under-story vegetation
::::::::
vegetation

:::::::::
dynamics), which are currently not considered in the model. The

comparison of observed neutron counts with simulated counts from mHM improved not only soil moisture estimation but also

evapotranspiration estimation in the model. This provides evidence that CRNS data has the potential to improve hydrological

process understanding as a whole.

The Grosses Bruch site stands out as a mesophilic grassland site with a nearby water channel, shallow ground water, reg-545

ular cattle grazing, and seasonal flooding (Hermanns et al., 2021). We find a large ensemble-related uncertainty at this site

for all three methods, while the uniformly weighted approach NDes,U shows a slightly better performance than the other two

methods NDes,W and NCOSMIC (see Table. 3). The behaviour may result in a missing representation of locally significant hydro-

logical components, such as dynamic biomass, snow, shallow ground water, or nearby surface ponding (Schrön et al., 2017).

Moreover, in the middle of September, many cows had been present at this site, which could have led to a non-negligible550

variation of the neutron signal and thus to a non-meaningful expression of correlation-related measures Schrön et al. (2017).
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Döpper et al. (2022) mentioned thigh
:::::::::::::::::
Döpper et al. (2022)

:::::::::
mentioned

::::
high impact of grazing on the plant traits and soil prop-

erties at this site. Additionally, the use of one grid cell measurements by mHM in our study may have limited the accuracy

of our results, as the depth of measurement may not be representative of the entire soil profile. Notably, neutron counts were

found to provide a more accurate representation of soil water content during June, July, August, and September, when levels555

tend to be lower. Further exploration of neutron counts may yield additional improvements to model performance.

Overall, the three methods (NDes,U, NDes,W, and NCOSMIC) in mHM were able to consistently simulate the neutron count

variability throughout the available data period
:
,
::::
with

:::
the

:::::::::
exception

::
of

:::
the

::::::
Hohes

:::::
Holz

:::
site. However, a broader confidence

interval is observed, indicating a greater range of variations, which implies a higher degree of uncertainty in the NCOSMIC.

The COSMIC approach explicitly accounts for water content snow
:
is

:::::
more

:::::::
complex

::::
than

:::
the

::::::::
Desilets

::::::::
approach

:::
and

::
as

:::::
such560

:::::::
depends

::
on

:::::
more

::::::
detailed

:::::::::
additional

::::::::::
information

:::::
about

::
the

::::
soil

::::::::
properties, vegetation interception, and root-zone soil processes

that may likely lead to a better representation of observed neutron count variation compared to Desilets that empirically

represent such processes
:::::::
layering,

:::
etc.

::
If
::::

the
:::::
model

:::::
input

::::
data

::
is

:::
not

::::::
known

::
in
:::::

such
:
a
::::::
detail,

:::
we

:::::
would

::::::
expect

:::
the

:::::::::
COSMIC

:::::
model

::
to

:::::::
provide

:::::
more

::::::::
uncertain

:::::::
results.

:::::::::
Moreover,

:::
all

::::
three

::::::::::
approaches

:::
are

::::::
rough

:::::::::::::
approximations

:::
of

:::
the

:::::
actual

::::::::
physical

::::::::
processes

::
of

:::::::
neutron

::::::::
transport

:::::
which

:::::
could

:::::::::
contribute

::
to

:::::::::
systematic

::::::
biases

::
of

:::::::
around

:::
2 %

:::::::::
compared

::
to

:::::
exact

::::::::::::
physics-based565

::::::
models

:::::::::::::::::::::
(Shuttleworth et al., 2013). The simulated time series tended to slightly underestimate the CRNS neutron count rate,

particularly during the dry season. This effect could be explained by the known limitations of the equations under very

dry conditions, while recent approaches exist (Köhli et al., 2021) that could lead to further improvement in future stud-

ies. Nevertheless, the results generally confirmed the
::::::
slightly

:
better performance of the

:::::::
weighted

:::::::::
approach NDes,Wthan

:
,

::::::::
compared

::
to

:::
the

:::::::
uniform

:
NDes,U, because of its more realistic representation of neutron propagation with depth. After opti-570

mizing the soil hydraulic properties based on CRNS data, the integrated signal was reproduced very well (Fig. 5). The better

performance of NCOSMIC and NDes,W over NDes,U demonstrates the benefits of explicitly resolving individual soil moisture

profiles, bulk densities, and lattice water, as opposed to a uniform average across the layers. This perception, however,

might depend on site-specific soil profile characteristics and be less prominent if profiles are largely uniform or incorrectly

resembled by the model structure. We also included offset hydrogen pools in the form of lattice water to the
:::::::
Previous

:::::::
studies,575

::::
such

::
as

:::::::::::::::::::
McJannet et al. (2014)

::
or

:::::::::::::::
Baatz et al. (2014),

:::::
have

:::::
noted

:::
low

:::::::::::
experimental

:::::::::::
performance

:::
for

:::
the

::::::::
Universal

::::::::::
Calibration

:::::::
Function

::::::
(UCF)

:::::::
method

::::::::
described

:::
by

::::::::::::::::
Franz et al. (2013).

:::::::::
However,

:::
we

:::::
have

:::::::
selected

:::
the

:::::::
Desilets

::::::::
method,

::::::
known

::
as

::::
the

N0 calibration function , which was important for more accurate soil moisture estimates, confirming initial suggestions by

Bogena et al. (2013). Moreover, a strong correlation between biomass and the N0 parameter was reported in several studies

(Franz et al., 2013; Hawdon et al., 2014; Baatz et al., 2014, 2015). In our study, we pass the N0 parameter as a calibration580

parameter set in
:::::::
method,

:::
and

:::
the

:::::::::
COSMIC

::::::
method

:::
for

:::::::
specific

:::::::
reasons.

::::
Both

::::::::
methods

::::::
require

::::::::::
information

::::
from

::::
soil

:::::::
profiles,

:::::
which

::
is

::::::
readily

::::::::
available

::
in

:::
the

::::::
mHM.

:::
In

:::::::
contrast,

:::
the

:::::::::
Universal

::::::::
Transport

::::::::
Solution

:::::
(UTS)

::::::::
function

::::::
couples

::::
soil

::::::::
moisture

::::
with

::
air

::::::::
humidity

::
in

::
a

:::::::::::
non-separable

:::::
way,

:::::
while

::
no

::::::::::
atmospheric

::::::::::
information

:::::
about

:::
air

::::::::
humidity

::
is

::::::::
available

::
in

:::
the

:::::::::
distributed

::::::::::
hydrological

::::::
model

:::::
mHM.

::::
The

:::::
same

:::::
holds

:::
for

::
the

:::::
UCF

::::::::
function,

:::::
which

::::::::::
additionally

:::::::
requires

::
a

::::::
number

::
of

::::::::::
parameters

::::::
related

::
to

::::::::
hydrogen

::::
pools

:::
not

::::::::::
represented

:::
by mHM. In using the CRNS soil moisture measurement the drier locations show larger de-585

viations than the wetter locations (Iwema et al., 2015). The possibility of using simulated high-resolution soil moisture profiles
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instead of a few measurements at different soil depths could further increase the accuracy of the model predictions (Brunetti

et al., 2019). One of the primary sources of uncertainty at the Grosses Bruch site is surface ponding and shallow groundwater,

as well as the loamy texture of the soil. Those factors contribute to the formation of permanent water ponds in the area and

may introduce uniform or even inverse soil moisture profiles which directly influence the neutron emissions, but cannot be590

captured by the mHM model. Another factor is the time-variable effect of crowding cows near the station, which may influence

the CRNS signal, but is challenging to correct in the CRNS measurement (Schrön et al., 2017). We incorporate the CRNS

parameter set in mHM, and some parameters related to soil moisture and neutron counts are effectively constrained based on

the objective function using KGEαβ . However, there is still room for improvement, particularly with regard to the coefficient

in root fractions distributed across soil layers.595

According to Beck et al. (2021), model calibration provides more overall benefits than data assimilation. Furthermore, model

calibration can be advantageous for regions with both sparse and dense rain gauge networks, whereas data assimilation is

more beneficial for regions with sparse rain gauge networks. In this paper, the Latin Hypercube Sampling (LHS) method

McKay and Conover (1979) is adopted to generate input variable samples, which is a stratified sampling method that reduces

the number of simulations required compared to the conventional Monte Carlo method Iman and Helton (1988). LHS divides600

the range of each input into N intervals and selects one representative value from each interval to ensure full coverage of the

input variables range and representation of all possible values in the simulation. Previous studies by Smith et al. (2019) and

Liu et al. (2022) address the challenges of using the original KGE in Markov chain Monte Carlo (MCMC) methods, offering

insights for accurate parameter estimation and posterior distribution exploration. To address this issue, it is recommended

to use adaptations to the LHS method instead of directly using the original KGE to improve the exploration of the posterior605

distributions. Our approach can estimate the posterior distributions of model parameters based on the objective function KGEαβ

by taking the variance and bias.

This paper provides a framework to incorporate CRNS data into the mHM to assess the accuracy of soil water content

on different land cover types, including agricultural land, deciduous forest, and grassland. The integration of methods from

Desilets et al. (2010) and Shuttleworth et al. (2013) in mHM , using climatic data and soil physical parameters, the parameterization610

of evapotranspiration is effectively improved (see
::
We

:::::::::
compared

::::
soil

:::::::
moisture

::::::
before

:::
and

:::::
after

:::::::::
calibrating

:::::::
neutron

::::::
counts

::
in

:::::
mHM

::
at

::::
four

::::
sites

::::::
shown

:::
in

:
(Fig. 9). Additionally, Supplementary Fig. S5 illustrates the improved representation of soil

moisture for Hohes Holz. This framework lies in its ability to utilize
:::
The

:::
left

::::::
panel

:::::
shows

:::
the

:::::::
mHM’s

:::::::
default

:::::::::
simulation

::::
using

:::
the

:::::::
default

::::::::
parameter

:::
set

:::::
from

::::::::::::::::
Boeing et al. (2022)

:
,
:::::::
whereas

:::
the

:::::
right

:::::
panel

:::::
shows

:::
the

:::::::::
calibrated

:::::::::
simulation

:::::
based

:::
on

:::::
NDes,U:::::::

method.
::::
The

::::::::
presented

::::::
depicts

:::
the

::::::
CRNS

:::
soil

::::::::
moisture

:::::::::::
measurements

:::::
(grey

:::::
dots)

:::::
versus

:::
the

:::
soil

::::::::
moisture

::::::
derived

:::::
from615

:::::
mHM

::
in

:::::::
different

::::::
depths

:::::::
(colors).

:::::
Table

:
4
::::::
shows

:::
the

::::::::::::
corresponding

::::::::::
performance

:::::::::
measures.

:
It
::
is

::::::::
important

::
to

:::::::::::
acknowledge

::::
that

::
the

:::::::::::
optimization

:::
on observed neutron counts data, allowing for a comprehensive assessment of the model’s performance and

enhancing its reliability in hydrological modeling
:::
not

::::
only

:::::::::
improved

:::
the

:::
soil

::::::::
moisture

::::::::::::
representation

::
in

::::::
mHM.

:::
At

:::
the

:::::
same

::::
time,

::
it

:::
also

:::::::::
improved

:::
the

::::::::
simulated

::::::::::::::::
evapotranspiration,

::
as

::::::
shown

::
in

:::
the

:::::::
example

::
of

::::::
Hohes

::::
Holz

::::::::
(compare

::::
Fig.

:::
8a).

::::
The

:::::
KGE

::::
value

::::::::
between

:::::::
modeled

::::
and

::::::::
measured

::::
ETa

:::
by

::::
eddy

:::::::::
covariance

:::::::::::
observations

::::::::
improved

:::::::::::
significantly

::::
from

:::::
0.74

::
to

:::::
0.83.

::::
This620

:::::::
provides

:::::::
evidence

::::
that

::::::
CRNS

:::
data

::::
has

:::
the

:::::::
potential

::
to

:::::::
improve

:::::::::::
hydrological

::::::
process

::::::::::::
understanding

::
as

::
a
:::::
whole.
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Figure 9. Comparison of weekly observed actual evapotranspiration
:::
soil

:::::
water

:::::::
content

:
(grey dots

::::
SWC) and simulated actual

evapotranspiration using
::::
time

::::
series

::::
from

:::::
(2015

:
-
:::::
2021)

:::::
across

::
all

:::::
sites.

:::
The

:::
left

::::
panel

::::::::
illustrates the default

:::::::
simulation

::::
from

:
mHM

::::
using

parameters by
:::
from

:
Boeing et al. (2022)(red line) and

:
,
::::
while

:
the

::::
right

::::
panel

::::::
presents

:::
the

:
calibrated simulation

::::
based

:::
on

::
the

:::::
NDes,U:::::::

method.

::::
Both

:::::
panels

::::::
compare

:::::::::::
CRNS-derived

:::
soil

:::::::
moisture

:::
data

:
(blue

:::
grey

:
dots) over

:::
with

::::::::
simulated

:::::
values

::::
from

:::::
mHM.

:::
The

::::
best

::
10

:::::::
calibrated

:::::
mean

::::
SWC

:::::
values

:::::
across

::::::
different

::::
soil

::::
layers

:::
are

:::::
shown,

::::
with

:
the Hohes Holz site

:::
total

::::::
average

:::
soil

:::::::
moisture

::::::::
represented

:::
by

::
the

:::
red

:::
line.
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Table 4.
:::::::::
Performance

::::::
metrics

:::::
(KGE,

::::::
RMSE,

:::
and

::::::
PBIAS)

::
for

::::
soil

::::::
moisture

:::::::::
simulations

:::::
across

::::
four

:::
sites

::::
from

:::::
(2014

:
-
:::::
2021)

::::::
between

:::::
θCRNS

:::::
against

::::::::
simulated

:::
data

::::
from

:::::
mHM

:
:
::::::
Grosses

::::::
Bruch,

:::::
Hohes

::::
Holz,

:::::::
Hordorf,

:::
and

::::::::::
Cunnersdorf.

:::
The

::::::
results

::
are

::::::::
compared

:::::::
between

::
the

::::::
default

::::
mHM

:::
run

:::
and

::::
three

::::::::
calibration

:::::::
methods

::::::
(NDes,U,

::::::
NDes,W,

:::
and

::::::::
NCOSMIC).

Sites Grosses Bruch Hohes Holz Hordorf Cunnersdorf

Methods: Default run NDes,U NDes,W NCOSMIC Default run NDes,U NDes,W NCOSMIC Default run NDes,U NDes,W NCOSMIC Default run NDes,U NDes,W NCOSMIC

KGE 0.53 0.66 0.74 0.65 -0.32 0.42 0.09 0.18 0.55 0.59 0.47 0.47 0.55 0.64 0.48 0.43

RMSE 0.11 0.06 0.05 0.08 0.23 0.1 0.23 0.14 0.07 0.07 0.1 0.1 0.09 0.08 0.09 0.11

PBIAS -44.3% 14.6% 11.5% 26.9% 131% 55% 90% 80.9% 22.4% 19% 33.8% 35% 37.6% 26.2% 39.4% 49.3%

5 Conclusion and future outlook

This study evaluates the potential of the mHM a large-scale hydrological model for simulating neutron counts
:::::::::
cosmic-ray

::::::
neutron

:::::::::::
observations

::
to
::::::::

improve
::::
soil

::::::::
moisture

:::
and

::::::
model

::::::::::
parameters

::
in

::::
the

:::::::::
mesoscale

:::::::::::
hydrological

:::::
model

::::::
mHM

:
at the

1.2 km×1.2 km scale across different land cover sites for the period 2014–2021. Two empirical and one physical model625

approaches are evaluated for deriving neutrons from the soil moisture profile. Neutron measurement data
::
For

::::
this,

:::
we

:::::::
derived

::
the

:::::::
neutron

::::::
counts

:::::
from

::::::::
simulated

::::
soil

::::::::
moisture

::::::
profiles

:::::::
directly

::
in
::::

the
:::::
model

:::::
using

:::::
three

::::::::
different

::::::::::
approaches:

:::
two

::::::
based

::
on

:::
an

::::::::
empirical

:::::::
function

::::
with

:::::::
uniform

::::
and

:::::::::::
non-uniform

::::::::
weighting

:::
of

:::
soil

::::::::
horizons,

::::
and

:::
one

:::::
more

::::::::
complex

::::::::
approach

:::::
based

::
on

:::
the

:::::::
neutron

:::::::
forward

:::::::
operator

:::::::::
COSMIC.

::::::
Then,

::::::::
observed

::::::
neutron

::::::
counts

:
from four sites in Germany are integrated, and

the influence on hydrological model parameters, as well as simulated soil moisture and evapotranspiration are analyzed. The630

parameter sample
::::
were

::::
used

::
to
::::::::
calibrate

:::
the

:::::
mHM

:::::::::
parameters.

::::::
Based

::
on

:::
the

:::::::
KGEαβ :::::::

between
::::::::
simulated

:::
and

::::::::
observed

::::::::
neutrons,

::
the

::::
best

::::
1 %

:::::::::
parameter

::::
sets

:::
out

:
of 100 000 realizations for neutron counts was taken, which are analyzed regarding their

uncertainty caused by the parameter estimation. The parameter sets are filtered based on the KGE of observed vs simulated

neutron counts. The best 1% member ensemble simulations are evaluated with neutron counts, evapotranspiration, and soil

moistureobservations
:::::
model

::::::::::
realizations

::::
were

::::
used

::
to
::::::::::
investigate

:::
the

:::::
impact

:::
on

:::
the

::::::::
posterior

::::::::
parameter

::::::::::
distribution

:::
and

:::
on

:::
the635

::::::::
simulated

::::::::
neutrons,

:::
soil

::::::::
moisture,

:::
and

::::::::::::::::
evapotranspiration.

The evaluation of neutron counts at four different sitesyields a KGE value of > 0.8
::::::
yielded

::::
KGE

::::::
values

::::::
> 0.75

::
at

:::
all

::::
four

::::
sites, indicating a satisfactory representation of the neutron observations. The

:::::
counts

::
in

:::
the

:::::
model

::::::::
compared

::
to
:::
the

:::::::::::
observations

::
for

::::
the

:::
best

:
1
:
% ensemble parameter set is found more representative of 100 000 realizations, suggesting a reliable model

performance
:::
sets. The performance of the neutron counting methods varies

:::::
varied

:
across different land cover types. The640

::::::::::
non-uniform

:
NDes,W method generally demonstrates

::::::
showed

:
good performance, particularly at the agricultural sites. While

the NCOSMIC method performs slightly better at forest site and the
::
the

:::::
forest

::::
site.

::::
The

:::::::
uniform

:
NDes,U method shows

::::::
showed

slightly better results at the grassland site.

However, there
:::::
There is still room for improvement in some areas. Specifically, working with grassland sites presented

challenges, particularly with the NCOSMIC :::
the

:::::
model

::::::::::::
representation

::
of

:::::::
complex

::::
sites,

::::
e.g.

::
to

:::::
better

::::::
address

:::
the

::::::
special

::::::::::
site-specific645

::::::::
conditions

:::
of

:::
the

:::::
forest

::
or

::::::::
grassland

::::
site,

::::::::
especially

:::::
when

:::::
using

:::
the

::::::::
COSMIC

:
method. On the one hand

:
, it is a physics-based

approach incorporating a comprehensive representation of the neutron counting process
::::::
method

:::
that

:::::
aims

::
at

:::::::::
mimicing

:::
the
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:::::::
physical

::::::::
processes

::
of

:::::::
neutron

:::::::
transport

::
in

:::
the

:::
soil

::
in
:::::::
detailed

::::
way, but on the other hand, it relies on the detailed representation

of the site characteristics in the hydrological model. This complexity could introduce additional uncertainties and limitations

in the model, potentially affecting its performance, especially when the
::::
actual

:
site is more complex than it has been modeled.650

The study suggests that the observed discrepancies between model and observations may be attributed to the representation

of dynamic biomass, snow, surface ponding, and shallow groundwater dynamics, which are present at the grassland site, for

instance. Addressing these features could further enhance the model’s accuracy.

The
::::::::
calibration

:::
on

:::::::
neutron

::::::
counts

::::
not

::::
only

::::::::
improved

:::
the

::::
soil

::::::::
moisture

:::::::::
estimation

:::
but

::::
also

:::::::::
improved

:::
the

:::::::::
simulation

:::
of

:::::::::::::::
evapotranspiration

::
at

:::
the

:::::
Hohes

::::
Holz

::::::
station.

:::
The

:
evaluation with evapotranspiration

:::
data

:
from eddy covariance at Hohes Holz655

stations indicates
::::::::::
observations

::::::::
indicated

::::
some

:
deficiencies in mHM to deal with forest systems, but also great potential for

CRNS measurements to improve the water partitioning
:
in
:::
the

::::::
model as a whole. Especially in

::
In the growing season (March-

August), deviations of the modeled and observed ETa indicate room for better representation of mixed soils and dynamic

vegetation modules at the local scale within mHM. The calibration on neutron counts not only improved the soil moisture

performance of the model but also helped to set the modeled evapotranspiration straight.660

In conclusion, the incorporation of neutron counts estimation into mHM by accounting for vertical soil moisture profiles

improves the model’s accuracy and provides a more realistic representation of soil moisture dynamics at all four study sites

and evapotranspiration at
::::
even

:::::::::::::::
evapotranspiration

::
at

:::
the Hohes Holz site. This research presents a direction for future studies

to explore. The next step in this research is to evaluate the ability of this CRNS module in mHM for estimating soil moisture

through
::::
Next

::::
steps

:::::
could

:::
be

:::
the

:::::::::
evaluation

::
of

::::::::
neutrons

:::
and

::::
soil

:::::::
moisture

::
in

::::::
mHM

::
by

:
a large-scale soil moisture monitoring665

initiative, e.g. by utilizing more stationary CRNS networks or the novel rail-based CRNS data from Altdorff et al. (2023)

. To optimize accuracy and understanding
::::::::::::::::::::::::::::::::::::::::::
(e.g., Heistermann et al., 2021; Bogena et al., 2022)

::
or

:::::::::
large-scale

:::::::
mobile

::::::
CRNS

:::::::::
campaigns

:::::::::::::::::::::::::::::::::::
(McJannet et al., 2017; Altdorff et al., 2023)

:
.
::
To

::::::
futher

::::::
increase

::::::::
accuracy

:::
and

::::::
general

::::::::::::
understanding

::
of

:::::::::::
hydrological

::::::::
processes, we recommend integrating both CRNS and satellite remote sensing data into mHM

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., based on recent insights from Schmidt et al., 2024; Zheng et al., 2024; Rakovec et al., 2016b)

. Improving the model predictions will contribute to reducing the uncertainties associated with drought and flood management670

strategies and informed agricultural decisions.

Code availability. Simulation data is attached as supplemental material. The mesoscale Hydrological Model mHM (version 5.12) is open-

source and can be freely accessed from GitLab: https://git.ufz.de/mhm/mhm/-/tree/v5.12.0?ref_type=tags.

Data availability. We kindly acknowledge the German Weather Service (DWD) for providing the meteorological datasets. The terrain eleva-

tion data was collected from USGS EROS Archive - Digital Elevation - Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010),675

available at https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-global-multi-resolution-terrain-elevation. Grid-

ded soil characteristics are based on the BUEK200 database obtained from the German Federal Institute for Geosciences and

Natural Resources (BGR, see online at https://geoportal.bgr.de/mapapps/resources/apps/geoportal/index.html?lang=en#/datasets/portal/

154997F4-3C14-4A53-B217-8A7C7509E05F). The geological dataset was downloaded from Institute for Biogeochemistry and Marine
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Chemistry, KlimaCampus, Universitt Hamburg (https://www.geo.uni-hamburg.de/en/geologie/forschung/aquatische-geochemie/glim.html).680

Leaf Area Index (LAI) dataset was downloaded from the Global Land Cover Facility (GLCF), available at http://iridl.ldeo.columbia.edu/

SOURCES/.UMD/.GLCF/.GIMMS/.NDVIg/.global/index.html. The land cover dataset was downloaded from the European Space Agency

(ESA), available at http://due.esrin.esa.int/page_globcover.php. The ET data were obtained from https://zenodo.org/record/7561854.
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