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Abstract. Profound knowledge of soil moisture and its variability plays a crucial role in hydrological modeling to support

agricultural management, flood and drought monitoring and forecasting, and groundwater recharge estimation. Cosmic-ray

neutron sensing (CRNS) have
:::
has been recognized as a promising tool for soil moisture monitoring due to their

::
its hectare-scale

footprint and decimeter-scale measurement depth. Different approaches exists
::::
exist that could be the basis for incorporating

CRNS data into distributed hydrologic models, but largely still need to be implemented, thoroughly compared, and tested5

across different soil and vegetation types. This study establishes a framework to accommodate neutron count measurements

and assess the accuracy of soil water content simulated by the mesoscale Hydrological Model (mHM) for the first time. It

covers CRNS observations across different vegetation types in Germany ranging from agricultural areas to forest. We include

two different approaches to estimate CRNS neutron counts in mHM based on the simulated soil moisture: a method based

on the Desilets equation and another one based on the Cosmic-ray Soil Moisture Interaction Code (COSMIC). Within the10

Desilets approach, we further test two different averaging methods for the vertically layered soil moisture, namely uniform vs.

non-uniform weighting scheme depending on the CRNS penetrating depth. A Monte Carlos simulation with
::
We

::::
use

:
a
::::::
Monte

::::
Carlo

:::::::::
simulation

:::::::
method,

::::::::::
specifically

:::
the Latin hypercube sampling approach (with N

:::
with

::
a

::::
large

::::::
sample

::::
size

::
(S = 100 000) is

employed to explore and constrain the (behavioral) mHM parameterizations against observed CRNS neutron counts. Overall,

the three methods perform well with Kling-Gupta efficiency > 0.8 and percent bias < 1% across the majority of investigated15

sites. We find that the non-uniform weighting scheme in the Desilets method provide
:::
and

:::::::::
COSMIC

::::::
method

:::::::
provides

:
the most

reliable performance, whereas the more commonly used approach with uniformly weighted average soil moisture overestimates

the observed CRNS neutron counts. We then also demonstrate the usefulness of incorporating CRNS measurements into mHM

for the simulations of both soil moisture and evapotranspiration and add a broader discussion on the potential and guidelines

of incorporating CRNS measurements in large-scale hydrological and land surface models.20
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1 Introduction

Soil moisture is a key terrestrial climate variable because it controls the mass and energy exchange between the Earth’s sur-

face, the groundwater, the vegetation, and the atmosphere. Understanding soil moisture levels with changes in temperature is

crucial for enhancing the predictability of climate patterns on inter-seasonal and annual time scales, as highlighted in previ-

ous studies (Santanello Jr et al., 2011; Seneviratne et al., 2006). Moreover, soil moisture variability also plays a significant25

role in a wide range of applications, including flood forecasting, weather forecasting, climate modeling, agricultural manage-

ment, and groundwater recharge (Van Steenbergen and Willems, 2013; Albergel et al., 2010; Jablonowski, 2004; Wahbi et al.,

2018; Samaniego et al., 2019; Barbosa et al., 2021). In hydrological modeling, soil moisture is a key variable controlling the

partitioning of precipitation into evapotranspiration, infiltration, and runoff (Fuamba et al., 2019; Zhuo et al., 2020). Proper ini-

tialization and modeling of soil moisture are crucial for predicting other hydrologic processes (e.g., runoff, evapotranspiration,30

etc). However
::::::::::
Nevertheless, uncertainties in input data and model parameters, and

:::::
along

::::
with limitations in the representation

of subsurface processes, can impede the reliability of soil moisture estimation (Chen et al., 2011).

Obtaining accurate soil moisture measurements at a field scale is challenging due to the limitations of current measurement

methods and the complexity of subsurface processes
::::::
current

:::::::::::
measurement

:::::::::
limitations

::::
and

:::::::::
subsurface

::::::::::
complexity (Dong and

Ochsner, 2018). Estimating the average soil moisture at a mesoscale (≈ 1–100 km) is particularly difficult because of the35

limitations of current measurement techniques
:::
due

::
to

:::::::::::
measurement

:::::::::
technique

:::::::::
limitations in terms of their measurement area

or “footprint”
::::::::
"footprint"

:
and measurement methods bridging

::
to

::::::
bridge the scale gap between point-scale measurements and

the areal average required
:::
and

::::
areal

:::::::
average

::::::::::::
measurements

:
for hydrologic modeling are needed (Chan et al., 2018). One of

the promising approaches
::::::::
promising

::::::::
approach

:
to infer soil moisture at a field scale is based on the recent development of

a
::
the

:
cosmic-ray neutron sensing (CRNS) technique (Zreda et al., 2008; Desilets et al., 2010; Köhli et al., 2015; Schrön40

et al., 2017). The CRNS method utilizes naturally occurring neutrons on the Earth’s surface produced by cosmic rays to derive

near-surface soil moisture. The rate of neutron moderation in soil, and emitted neutron density above ground, is affected by soil

moisture levels: dry soils emit more neutrons while wet soils moderate neutrons more strongly and emit less. This change in

neutron emission can be detected with a neutron detector (Zreda et al., 2012b; Köhli et al., 2021). A cosmic-ray soil moisture

probe is usually calibrated locally using soil samples from its support volume (Franz et al., 2012b; Schrön et al., 2017). CRNS45

has demonstrated a high potential for estimating average soil moisture over areas of several hectares in size and tens of

decimeters in-depth (Köhli et al., 2015; Schrön et al., 2017). CRNS data are used in various studies like land surface modeling,

understanding vegetation dynamics, catchment hydrology, and supporting the agriculture sector with information on soil types

and climates (Franz et al., 2020). Soil moisture measured by CRNS has also been used in water balance studies and has been

helpful in estimating infiltration and evapotranspiration (Schreiner-McGraw et al., 2015; Foolad et al., 2017; Wang et al., 2018)50

.

Previous studies, such as Barbosa et al. (2021) and Brunetti et al. (2019)have ,
::::
have

::::::::::
recognized

:::
the

::::::::::
importance

::
of

::::::
CRNS

:::
over

:::::::::
traditional

:::::::
invasive

:::::::::
point-scale

:::::::::
techniques

::::
and

::::
have utilized the HYDRUS-1D model to simulate soil moisture at the field

scale, incorporating the so-called
:
.
::::::::::::
HYDRUS-1D

:::::
offers

::
a

:::::::
valuable

:::::::::
framework

:::
for

::::::::
modeling

::::
soil

::::::::
moisture

::::::::
dynamics

:::
and

::::
has
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::::
been

:::::::::
particularly

::::::::::
addressing

::
the

:::::::::
subsurface

:::::::::
processes.

::::
The

::::::
studies

::::::::::
incorporated

::
a COSMIC operator to simulate neutron count55

rates of a CRNS measurement (Shuttleworth et al., 2013). They compared neutron count rates observed with simulated data

to calibrate
:::::::
inversely

::::::::
calibrated

:
soil hydraulic parameters inversely

::
by

:::::::::
comparing

::::::::
observed

:::
and

::::::::
simulated

:::::::
neutron

:::::
count

::::
rates,

whereas beforehand this was limited to be done via comparison of depth-averaged soil moisture values (Rivera Villarreyes

et al., 2014). The potential utility of using CRNS data to calculate volumetric soil water content (SWC) and improve soil

hydraulic parameters within land surface models has also been observed earlier, as highlighted by Rosolem et al. (2014).60

Then Iwema et al. (2017)used
:::::::::::
Furthermore,

::::::::::::::
depth-weighting

:::::::
schemes

::::
and

::::::::
hydrogen

::::::
pools’

::::::
effects

:::
on

:::::::::::
measurement

::::::
depth

:::::::
revealed

:::::::
valuable

:::::::
insights.

:::::::
Shallow

:::::::
wetting

:::::
fronts

::
in

:::::
sandy

::::
soils

:::::::::::
significantly

::::::
impact

:::::::::::
measurement

:::::
depth

::::::::::::::::
Franz et al. (2012a)

:
.

::::::::::::::::::::::
Baroni and Oswald (2015)

:::::::
assessed

::::
three

::::::::
weighting

::::::::::
techniques,

:::::::
resulting

::
in

::::::
depths

::::::
varying

::::
from

:::
23

::
to

::
28

:::
cm,

:::::::
optimal

::::::::
estimates

::::
were

:::::::
achieved

:::::
using

::::::::
vertically

:::::::
varying

::::::
weights

::::
and

:::::::::
considering

:::::::::
additional

::::::::
hydrogen

:::::
pools.

::
In

::::::::::::::::
Iwema et al. (2017)

:
, a Land Sur-

face Model to investigate
::::::::::
investigated the impact of reducing the scale mismatch between surface energy flux and soil moisture65

observations of CRNS measurement data, using point-scale soil moisture data from soil layers up to 30 cm depth and simulated

data from 2012–2015. Recently, Patil et al. (2021) used
::::
using

::::::
CRNS

::::
data.

:::::::::::::::
Patil et al. (2021)

::::::::
employed a distributed Land Sur-

face Model, Data Assimilation Research Testbed (DART) together with a
:::
with

:
CRNS time series, and Ensemble Adjustment

Kalman Filter to simulate the water and energy balanceof the land surface. Both of the latter studies analyzed the .
:::::
Both

::::::
studies

::::::
focused

:::
on

::::::::
analyzing

:::::
land

::::::
surface

:
water and energy balanceof the land surface and the effects of various ,

:::::::::
exploring data70

assimilation and calibration techniques.

Furthermore, the conceptual rainfall-runoff model
:::
The

:
Hydrologiska Bryans Vattenbalansavdelning (HBV) was used to

study various aspects of water balance and modelcalibration. For instance, Dimitrova-Petrova et al. (2020)
:::::
model,

::
as

:::::::
studied

::
by

::::::::::::::::::::::::::
Dimitrova-Petrova et al. (2020),

:
employed CRNS data in a mixed-agricultural landscape to investigate the

::::::
explore water

balance on the land surface, while Beck et al. (2021) evaluated
:
.
::::::
While,

:::::::::::::::
Beck et al. (2021)

::::
used

:
remote sensing products and75

groundwater level measurements to temporally calibrate a HBV model. Both studies highlighted
:::
the

::::
HBV

::::::
model,

:::::::::::
emphasizing

the challenge of comparing satellite-derived soil moisture with point-scale in-situ measurements.
:::::::::::
Additionally, Baatz et al.

(2017) was the first study that utilized spatially distributed hydrological modelingto update soil moisture states across a

catchment using CRNS information, the FAO soil map, the
:
,
:::::::::
integrating

::::::
CRNS

:::::
data,

::::
FAO

::::
and

:
BK50 soil map

:::::
maps, and

other soil data as input information in their
:
in
::::

the Community Land Model (CLM). They found that assimilating data of80

a CRNS network improved the characterization of SWC on the catchment scale
:::::::::::
demonstrated

::::
that

::::::::::
assimilating

::::::
CRNS

::::
data

::::::::
improved

:::::::::::::
catchment-scale

::::
soil

:::::
water

::::::
content

::::::::::::::
characterization by updating spatially distributed soil hydraulic parametersof a

land surface model. Furthermore, Zhao et al. (2021) employed CLM version 3.5 to assess
:::::::
assessed the significance of CRNS

data in a land surface model. They conducted
::::
CLM

::::::
version

::::
3.5,

:::::::::
conducting

:
simulations based on data from 13 CRNS stations

over a two-year period (2017-2018) and employed
:
.
::::::
Despite

::::::::::
employing a simplified Richards equationfor water movement85

calculations. However, the model’s limitations include
:
,
:::::::::
limitations

::::::::
included

:
the absence of lateral flows and groundwater

representation.

Eventually, the
::::
The mesoscale Hydrological Model (Samaniego et al., 2010b; Kumar et al., 2013b, mHM;) is known for its

spatially distributed hydrologic predictions at a large scale incorporating scale-aware regionalized parameterization technique.
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Therefore, by including a CRNS neutron count framework, the mHM model becomes a useful tool for improving simulated soil90

water content and furthering our understanding of the water cycle. This is made possible by the availability of observed CRNS

data, which opens up new opportunities for research into novel hypotheses, improving model performance, and developing

hydrological modeling methods. All the mentioned studies either compared the simulated and observed soil moisture products

or incorporated the first COSMIC version to compare neutron counts directly. As argued by Shuttleworth et al. (2013), the

usage of neutron counts is the favorable way to compare simulations with data, since the CRNS sensor intrinsically averages95

over soil moisture layers while the measurement depth varies with soil moisture and consequently over time. Hence, the direct

usage of CRNS neutron counts avoids the question of which modeled SWC layer the observations should be compared to

and at what time scales. The COSMIC method is complex because its approach enables a more
::::::
enables

::
a
:
comprehensive

representation of the neutron counting
::::::::
generation

:
process, which is computationally more demanding than using the analytical

Desilets equation (Desilets et al., 2010).
::
an

:::::::::
analytical

::::::::::
formulation

::::::::::::::::::::::::::::::::::::
(e.g., Desilets et al., 2010; Köhli et al., 2021)

:
.100

In this study, we incorporate the prediction of neutron counts directly within mHM .
:::::::::
established

:
a
:::::::::
framework

::
to

::::::::::
incorporate

:::::
CRNS

::::
data

::::
into

:::
the

:::::::::
mesoscale

:::::::::::
Hydrological

::::::
Model

::::::
(mHM)

:::
to

:::::::
compare

::::::::
empirical

::::
and

:::::::::::
physics-based

::::::::::
approaches

:::
for

:::::::
neutron

::::
count

:::::::::
estimation

::
to
::::::::

improve
:::
soil

:::::
water

:::::::
content

:::::::::
parameters

::
in

:::::
mHM

::::::
across

:::::::
different

:::::::::
vegetation

:::::
types

::
in

:::::::::
Germany.

::
To

:::
do

::::
this,

::
we

:::::::::
compared

::::::::
modelled

::::
with

::::::::
measured

:::::::
neutron

::::::
counts

::
to

:::::
infer

:::
soil

::::::::
hydraulic

::::::::::
parameters.

:
Here, we test three approaches, (i)

the direct calculation of neutrons from the equal-averaged SWC profiles based on Desilets et al. (2010), (ii) the same with105

a weighted-average profile SWC based on Schrön et al. (2017), and (iii) the physics-based model COSMIC by Shuttleworth

et al. (2013). We evaluate the simulation of neutron counts at scales of 1.2× 1.2 km 2
::
1.2

:::
km

::
×

:::
1.2

:::
km, comparing the results

to observed neutron counts from three different sites including agriculture, deciduous forests, and grasslands. The goal of this

study is to investigate the potential of using CRNS probes and measured neutron counts to improve soil moisture predictions

through simulations in mHM across different land covers and soil properties and to evaluate the feasibility of incorporating110

neutron count measurements into the modeling scheme. We employ a (calibration) framework by applying a Monte Carlo

experiment to account for parameter uncertainties. We further cross-evaluate our simulations and test the reliability of the

CRNS incorporated soil-moisture scheme in mHM for simulating other variables by utilising time-series
::::
time

:::::
series

:
of ob-

served evapotranspiration from an eddy covariance station available. Finally, we discuss and provide guidelines (challenges

and limitations) for incorporating CRNS measurements in a large-scale hydrologic model.115

In summary, the present paper aims to answer the following research questions:

– What is the best approach to simulate CRNS neutron counts in a hydrological model considering the heterogeneity of

vertical soil moisture profiles?

– What is the impact of model calibration with CRNS observations on simulated soil moisture and evapotranspiration

:::::::::::::::
evapotranspiration

::
at

:::::
Hohes

:::::
Holz?120

– Is the mHM at approx. 1 km resolution capable of capturing the dynamics of hectare-scale CRNS measurements at

different landcover sites
:
in

::
a

:::
grid

::::::::
including

::
2
:::::::::
agriculture

:::::
sites,

:
1
:::::
forest

::::
site,

:::
and

::
1
:::::::
meadow

:::
site?
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2 Materials and Methods

2.1 Experimental Site Description

For this study, we select four sites with CRNS sensors, namely Grosses Bruch, Hohes Holz, Hordorf, and Cunnersdorf in125

Northern Germany, as provided already within COSMOS EU (Bogena et al., 2022) with particularly long time series and

homogeneous land cover
:::
with

::::::::
different

::::
land

:::::
cover,

:::
i.e.,

::::::::::
agriculture,

:::::
forest,

::::
and

:::::::
meadow (see Tab. 1). The first three sites belong

to the TERENO observatory “Harz/Central Germany lowland” (Zacharias et al., 2011) while the fourth site is part of an

agricultural research farm operated by the German Weather Service (DWD). The Grosses Bruch site is a meadow/grassland

that is usually flooded naturally once or twice a yearand is thus prone to producing methane fluxes. The meadows have sandy130

loam fluvisol-gleysol soil, which is 1.5 meters deep and partially covered with a layer of peat (Wollschläger et al., 2017).

Meteorological conditions like soil moisture and temperature at various depths are continuously monitored by a wireless soil

moisture monitoring network (Schrön, 2017). Hohes Holz is a deciduous forest site and the performance of the CRNS sensor

there is highly dependent on dynamic effects such as tree canopy water or seasonal fluctuations in wet biomass. Water trapped

in leaves and litter can present a particular challenge for CRNS measurements, especially at forest stations (Bogena et al.,135

2013).
::::
Also,

:::::::::::::::::
Bogena et al. (2022)

::::::::
indicated

:::
that

:::
the

::::::::
influence

::
of

:::::::
seasonal

:::::::
changes

::
of

:::::::
biomass

:::
on

:::
the

:::::
CRNS

::::::
signal

:
is
:::::
much

::::
less

::::::::
important

::::
than

:::
the

::::::::
influence

::
of

::::::::
changing

::::
soil

::::::::
moisture,

::::
even

::
in

::::::
Hohes

:::::
Holz,

::
as

:::::::
changes

::
in

::::
soil

:::::::
moisture

:::
are

:::
the

:::::
much

::::::
larger

:::::
source

::
of

::::::::
variation

::::::::::
represented

::
by

:::
the

::::::
CRNS

:::::::::::::
measurements. The mean annual air temperature for each sites

::
site

:
ranges from

10.0 to 10.9 ◦C and the average yearly precipitation ranges from 458 to 535 mm.

Table 1. Geographical characteristics of study sites:
::::

Site
::::::
Names,

::::::::
Geographic

::::::::::
Coordinates,

:::::::
Climatic

::::
Data

::::::
(Annual

::::::::::
Precipitation

:
in
::::::::

mm/year,

:::::
Annual

:::::
Mean

:::::::::
Temperature

::
in
:

◦
::

C),
:::
and

::
the

::::::
Periods

:::::::
Covered

::
in

:::::::
Observed

:::
and

::::::::
Simulated

::::::
Datasets.

Site Latitude Longitude Altitude Land Cover Precipitation Temperature Period

[◦N] [◦E] [m] [mm/year] [◦C]

Grosses Bruch 52.02 11.10 80 Pasture, grassland 458 10.1 24/06/2014–31/01/2021

Hohes Holz 52.09 11.22 217 Forest, hilltop 469 10.3 27/08/2014–31/01/2021

Hordorf 51.99 11.17 82 Cropland 463 10.3 29/09/2016–31/01/2021

Cunnersdorf 51.36 12.55 140 Cropland 535 10.9 23/06/2016–31/01/2021
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Figure 1. Study area map of Germany, highlighting the four test sites where observed neutron count rates from CRNS are utilized to evaluate

the performance of mHM. The figure utilizes OSM basemap layers from (© OpenStreetMap contributors 2021; distributed under the Open

Data Commons Open Database License (ODbL) v1.0) OpenStreetMap contributors (2020).

2.2 The mesoscale Hydrological Model (mHM)140

mHM is a spatially distributed process-based hydrologic model (www.ufz.de/mhm) representing processes such as canopy

interception, snow accumulation and melting, soil moisture dynamics, infiltration and surface runoff, evaporation, underground

storage, and runoff generation, deep infiltration and baseflow, as well as runoff attenuation and flood routing (Samaniego et al.,

2010a; Kumar et al., 2013a). The mHM model is flexible for hydrological simulations at different spatial scales due to its

novel Multi-scale Parameter Regionalization approach (MPR; Samaniego et al., 2010b); and has demonstrated applicability in145

6
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diverse settings (Samaniego et al., 2010a; Kumar et al., 2013a; Rakovec et al., 2016; Samaniego et al., 2017). The MPR’s basic

concept is to estimate parameters (e.g., porosity) based on soil properties (e.g., sand and clay content) using transfer functions at

a fine spatial resolution (e.g. 100 m) and upscaling them to modelling resolutions (e.g., 1 km). In MPR, transfer functions (e.g.,

pedo-transfer functions to estimate soil parameters) are combined with morphological inputs (e.g., soil texture properties) and

thus lead to model hydrologic parameters (e.g., porosity or hydraulic conductivity of the soil) (Livneh et al., 2015; Zacharias150

and Wessolek, 2007). In mHM, the soil moisture horizons/profile can be divided into several horizons, all of which are sensitive

to root water uptake and evapotranspiration processes. mHM simulates the daily dynamics of soil moisture at different depths

considering the incoming water (e.g., rainfall plus snow melt for the topmost layer and infiltration from above layers for

other layers) and outgoing ET and ex-filtration fluxes. Further details on mHM code can be found at https://mhm-ufz.org

https://mhm-ufz.org and underlying modelling concepts at Samaniego et al. (2010a); Kumar et al. (2013a).155

2.3 Model Set-up

The latest version 5.12 of mHM is used in this study (see Samaniego et al., 2023, and https://github.com/mhm-ufz). The

model is executed over six years (2014–2020) with a daily time step, and the spatial resolution of the mHM grid cells is

fixed at 0.015625◦ (approx.
:::
L1

:::
and

::::
L2:

::::::::
0.01562◦

:
x
::::::::
0.01562◦

::
is
:::::
eq.∼ 1.2 km 2)

:::
km

::
×

:::
1.2

:::
km

:
using the WGS84 Coordinate

Systems.
::::
Level

::
1
::::
(L1)

::::::::
describes

:::
the

::::::
spatial

:::::::::
resolution,

:::
as

:::::
which

::::::::
dominant

:::::::::::
hydrological

::::::::
processes

:::
are

::::::::
modelled

::::
and

:::::
Level

::
2160

::::
(L2)

::::::::
describes

:::
the

::::::::
resolution

:::
of

:::
the

::::::::::::
meteorological

:::::::
forcing

::::
data.

:::
L0:

:::::::::::::
0.001953125◦

:
×
:::::::::::::
0.001953125◦.

:::::
Level

:
0
:::::

(L0)
::::::::
describes

::
the

:::::::
subgrid

:::::::::
variability

::
of

:::::::
relevant

::::
basin

:::::::::::::
characteristics,

:::::
which

:::::::
includes

::::::::::
information

:::
on

:::
the

:::
soil

::
as

::::
well

::
as

::::
land

::::
use,

::::::::::
topography,

:::
and

:::::::
geology.

:

:::::
Figure

::
2
:::::
shows

::::
the

::::
flow

:::::::
diagram

::::::::
depicting

:::
the

:::::
basic

:::::::::::
methodology

::
of

::::
our

:::::
study,

::::::
which

:::::::
includes

:::
the

::::::::::
calculation

::
of CRNS

neutron count rates are calculated based on daily soil moisture values simulated with mHM. The model boundary conditions165

such as precipitation and temperature for the mHM model are acquired from the German Weather Service (DWD) station

closest to the test site. The potential evapotranspiration required by mHM is estimated using the Hargreaves-Samani method

(Hargreaves and Samani, 1985). The model setup and parameterization for the soil moisture module use the scheme optimized

by Boeing et al. (2022). A raster dataset describing the distribution of the soils in the model area and a corresponding lookup

table with the attributes depth, soil texture (sand and clay fraction), and bulk density are required as soil input data and are170

derived from national digital soil maps provided by the Federal Institute for Geosciences and Natural Resources (BGR, 2020).

The data set contains physical and chemical properties for soil at different layers and the available at a resolution of 1:250,000

(BUEK 200; BGR, 2020). mHM uses three dominant land cover classes (forest, permeable, and impervious) that were retrieved

by a GLOBCOVER database ESA (2009). Furthermore, vegetation characteristics like Leaf Area Index (LAI) and fraction of

roots for different vegetation types are prescribed in the model. The mHM soil domain is divided into three horizons with175

depths of 0–5 cm, 5–25 cm, and 25–60 cm. The upper two model layers are parameterized using the topsoil layer properties

while for the lower model layer, the subsoil properties are used. More details on the underlying input data for mHM can be

obtained from Boeing et al. (2022). Figure 2 shows the flow diagram depicting the basic methodology of the entire study.

::
In

:::
our

:::::
study,

:::
we

::::::
utilized

:::::
three

::::::
distinct

:::::::
modules

::
of

::::::::::
parameters:

:::::
Snow,

::::
Soil

::::::::
Moisture,

:::
and

:::::::::
Neutrons,

::::
with

:
a
::::
total

::
of

:::
29

:::::::::
parameters

7
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::::::::
employed

:::
for

::
the

:::::::
Desilets

:::::::
method

:::
and

::
31

:::::::::
parameters

:::
for

:::
the

::::::::
COSMIC

:::::::
method.

:::
The

:::::::::
simulation

::
of

::::
soil

::::
water

:::::::
content

:
is
:::::::::
processed180

::::::
through

:::::
these

:::::
three

:::::::
modules

::
to
::::::::

estimate
:::::::
neutron

::::::
counts.

:::
To

::::::::::::::
comprehensively

:::::
cover

:::
the

:::::::::
parameter

:::
set

::::::
ranges,

:::
we

:::::::::
employed

::::::
100 000

:::::::::
iterations.

:::::::
Finally,

:::
we

:::::::
selected

:::
the

:::
top

:::
10

:::::::::
optimized

:::::::::
parameter

:::
sets

::::::
based

::
on

::::
the

::::::::
objective

:::::::
function,

:::::::::
KGEαβ ,

:::
for

:::::
further

:::::::
analysis

::::
and

:::::::::
evaluation.

:

Figure 2. Flowchart depicting the methodology employed for calculating CRNS neutron counts through the utilization of the LHS

technique for parameterization in mHM. The computation of CRNS neutron count is carried out through three distinct approaches:

N(Des,Uni):::::
NDes,U,N(Des,W):::::

NDes,W, and N(COSMIC)::::::
NCOSMIC.
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2.4 Conversion of soil moisture to neutron count rate

In this study, we compare observed neutron counts from CRNS data with simulated neutron counts estimated from modeled185

soil moisture with the goal of optimizing the parameterization of soil water content from mHM shown in Fig. 3. By coupling

the approaches from Desilets et al. (2010) and Shuttleworth et al. (2013) each directly with the mHM model, we are able

to account also for the uncertainty in the model predictions and test their feasibility across four distinct sites. We analyzed

the soil water content data at different soil layers (0–5 cm, 5-25 cm, and 25-60 cm) simulated by mHM. We compared these

simulated values with the measured soil water content obtained through CRNS. Simulations from mHM revealed that the190

sensitivity to the highest soil water content was observed at 5 cm depth and decreased with increased depth, also indicating

that SWC is high responsiveness to precipitation.
:
in

::::::
mHM,

::
as

:::::::
utilized

::
in

:::
the

:::::
study

:::
by

::::::::::::::::
Boeing et al. (2022)

:
.
::::
The

:::::::
accuracy

:::
of

::::::::
numerical

::::::::::
calculations

:::::
(such

:::
as

:::::::::::::::::::::
Shuttleworth et al. (2013)

::
set

::::
up)

:::::
would

::::::
benefit

:::::
from

::::::
higher

:::::::
resolved

::::
soil

:::::::
profiles,

::::::::
however,

:::
our

::::::::::
experiments

:::::::::::
demonstrated

::::
that

:::::::
varying

:::
soil

::::::
depths

:::::
from

:
3
::
to

::
6
:::::
layers

:::
did

::::
not

::::
have

:
a
::::::::::

substantial
::::::
impact

::
on

:::
the

:::::::::
simulated

::::::
neutron

:::::
count

::::::
results

::
in

::::::
mHM.

::::
Our

:::::
main

:::::::
objective

::
is
:::

to
:::::::
optimize

:::
the

::::::::::::::
parameterization

:::
of

:::
soil

::::::::
hydraulic

:::::::::
properties

::
in

::::::
mHM195

:::::
based

::
on

:::
the

::::::::::
comparison

:::::::
between

:::::::::::
measurement

::::
and

:::::::
modelled

:::::::
neutron

::::::
counts.

:

Figure 3. Daily time series of soil water content (cm3cm−3) at the Cunnersdorf site. The graph shows a comparison between the measured

SWC from CRNS data representing an integral over the first decimeters and the simulated data derived from the mHM for three distinct soil

depths, at 0–5 cm (green), 5–25 cm (purple), and 25–60 cm (brown).

2.4.1 Desilets based method

In the present study, we utilize the soil moisture information from the mHM model to convert it into neutron counts using the

Desilets et al. (2010) empirical-based approach by calculating neutron counts from soil moisture, three constant parametersi.

9



e., a0, a1, a2, and N0, .
:
which is further improved by adding lattice water and bulk density following the approaches by200

Dong et al. (2014) and Hawdon et al. (2014), respectively. Theoretically, the N0 parameter, which represents the neutron count

rate level of the particular CRNS probe used for rather dry soil at the local conditions, should be site-specific but does not

change over time, as noted by Franz et al. (2013) and Hawdon et al. (2014). In order to obtain accurate measurements of soil

moisture using CRNS data in the mHM model, N0 has to be estimated through calibration and is crucial as it directly affects

the accuracy of the mHM neutron counts results. This time-constant calibration parameter is specific to each site environment205

and reference condition. This parameter primarily depends on site-specific environmental factors and reference conditions.

This coefficient is specific to the particular CRNS detector and may be impacted by factors such as soil chemistry, vegetation

cover, heterogeneity, and altitude
::::::
terrain

:::::::::::
(topography)

:::
but

::::
also

::::
local

::::
soil,

:::::::::
vegetation

::::::::::::
characteristics,

::::
and

:::::::::
additional

::::::::
hydrogen

::::
pools

:::::
(e.g.,

::::
from

:::::::
organic

::::::::
material) at each observation site Schrön et al. (2021). Therefore, calibration of N0 is necessary for

each CRNS data set at a site to ensure realistic model output.
:::::::
Neutrons

:::
are

::::::::
sensitive

::
to

::
all

:::::
kinds

::
of
:::::::::

hydrogen
::
in

:::
the

::::::::
footprint,210

:::::
hence

:::
the

:::::::
variable

:
θ
:::::::

denotes
:::
not

:::::
only

:::
soil

::::::::
moisture,

:::::
θsm,

:::
but

::
is

:::::
rather

::::::::
assumed

::
to

::::
also

::::::
include

::::::
lattice

:::::
water,

::::
θlw,

::
as

::::
well

:::
as

::::
water

:::::::::
equivalent

:::::
from

:::
soil

::::::
organic

:::::::
carbon,

::::
θorg,

::::
and

::::::::
vegetation

::::::::
biomass,

::::
θbio.

:

Soil moisture for three vertical mHM soil layers is used to drive both the Desilets method and the COSMIC operator. To

improve comparability between measurements and modeling techniques, Schrön et al. (2017) propose the depth-weighted

approach. This approach incorporates the contributions of different soil layers by calculating depth-weighted average SWC,215

θavg , resulting in a more comprehensive representation of soil moisture dynamics. This gives CRNS neutron count rates, after

being corrected for incoming neutron flux, pressure, and air humidity variations, to be

NDes =N0,Des

(
a0

(θavg + θlw)/(ϱb/ϱw)+ a2
+ a1

)
(1)

Among the four parameters, three of which are coefficients (
:::::::::
parameters

::
ai::::

were
::::::::::
determined

:::::::::
empirically

:::
by

::::::::::::::::::
(Desilets et al., 2010)

:::
who

:::::::
derived a0 = 0.0808, a1 = 0.372, and a2 = 0.115) derived from neutron particle physics modeling (Zreda et al., 2008; Desilets et al., 2010)220

, and are considered as constants
:::
for

:::::
values

:::
of

:
θ
::
>
::::
0.02

:::::
gg−1. The fourth parameter, N0,Des is N0 when using the Desilet’s

equation, and here is a free calibration parameter. Whereas the parameter θlw is the grid average volumetric water content of

the equivalent lattice water content of the CRNS area (cm3 cm−3), ϱb (g cm−3) is the bulk density of the dry soil, usually deter-

mined from soil samples, and ϱw = 1 g cm−3 is the density of water. Organic water equivalent (from
::::::::
Regarding

:::
the

::::::::
variables

::
of

:::
Soil

:::::::
Organic

:::::::
Carbon

:
(SOC) and biomasswater equivalent, ,

:::
it’s

:::::::::
important

::
to

::::
note

:::
that

:
these variables are frequently unknown,225

especially biomass
::::
often

:::
not

::::::
readily

::::::::
available,

:::::::::
especially

:::::
when

:
it
::::::
comes

::
to

:::::::
biomass

:::
data. To address this, the free parameter N0

is utilized to account for these unknowns. For lattice water, we assume a linear relationship to clay content (Avery et al., 2016):

θlw = θlw0 ·CCC
:
+ θlw1 , (2)

CC
:
C

:
denotes the clay fraction in %

:::::::::::::
(Greacen, 1981). The derived quantity lattice water, θlw, is regionalized based on CC

::
C and varies between 0.0 and 0.1 m3/m3. In order to obtain the average soil moisture for a layered soil moisture profile within230

mHM, the following averaging equation is employed:
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θavg(w,θ) =

∑n
i=1wi θi∑n
i=1 wi

(3)

where the volumetric soil water content at a specific layer of mHM in a given profile is denoted by θi (m3 m−3). The total

number of layers in all soil sampling profiles is represented by the variable n, and the weight assigned to layer i is denoted by

wi. In the uniformly weighted approach, all weights equal one:235

NDes,U =NDes(wi = 1) ∀ i . (4)

In the weighted-averaging approach, the weights are determined based on Schrön et al. (2017):

NDes,W =NDes(wi = wθavg
:::

(ziw,θ
:::

)) , (5)

where w(z)i =

zi,max∫
zi,min
:::

e−2z/D−2z/D
:::::

,dz ∝ e−2zi,min/D − e−2zi,max/D
::::::::::::::::::::::::

and
::

D = ϱ−1
b

(
p0 + p1

(
p2 + e−p3 r

) p4 + θ

p5 + θ

)
. (6)240

Here,
::
the

:::::::
integral

:::::
goes

::::::
through

:::::
each

:::::::
horizon

::::
from

:::::
zi,min::

to
:::::
zi,max:::

in
:
1
::::
mm

:::::
steps

:::
and

:::::
sums

:::
up

:::
the

::::::
weight

::::
over

:::
the

::::::
whole

::::
layer.

:
zi is the depth of the given soil moisture layer i, D is the average vertical footprint depth of the neutrons, pi are

numerical parameters presented in Schrön et al. (2017), and r (m) represents the distance from the sensor. It should be noted

that the equation for D seems to be valid only if bulk density does not get too small and SWC is not too high
::
D

::
is

:::::
valid

::
for

::::::::::::::
ϱb > 1.0 g cm−3

::::
and

:::
soil

::::::::
moisture

:::::::
contents

:::::
above

::
θ
::
>

::
2

::
%

:
Kasner et al. (2022). In our model, we set r = 1 m which is245

sufficient to represent the average depth across the footprint radius within the model grid. The soil moisture profile is converted

to a single average neutron count per grid cell using Eqs. 1–5.

2.4.2 Cosmic Ray Soil Moisture Interaction Code (COSMIC)

The Cosmic Ray Soil Moisture Interaction Code (COSMIC) is an analytical, physics-based model that is well-suited for data

assimilation applications. It includes descriptions of the degradation of incoming high-energy neutron flux with soil depth,250

the production of fast neutrons at each soil depth, and the scattering of resulting fast flux neutrons before reaching the soil

surface. These processes have a parametric dependence on soil chemistry and moisture content. The COSMIC method solves

this inverse problem by calculating neutrons
::::::
neutron

:::::
count

:::
rate

:
based on soil water profiles, which could then be compared

with observed neutrons without the need to deal with dynamic sensing depths or weightings.
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NCOSMIC =N0,COSMIC

∑
Ahigh(z)Xeff(z)Afast(z) , (7)255

where Ahigh(z) = e−Λhigh(z) ,

Afast(z) =
2

π

π/2∫
0

e−Λfast(z)(cosφ)−1 dφ,

Xeff(z) = αCOSMICXsoil +Xwater .

In this model, Ahigh represents the high-energy neutron attenuation, Afast represents the fast neutron attenuation, and Xeff

represents the production of fast neutrons from high-energy neutrons in the soil-water composite. It takes into account the260

different mechanisms in both, water and soil, where
::
the

:
soil is typically less effective in producing fast neutrons by a factor of

αCOSMIC ≈ 0.24 (g cm3g−1), depending on bulk density.

Xsoil(z) = ∆zϱbulkb , (8)

Xwater(z) = ∆zϱwater(θz + θlw) , (9)

The total attenuation lengths of high and fast neutrons in the soil-water
:::
soil

:::::
water

:
composite are described using physically265

motivated length scales Li.

Λhigh(z) =
Xsoil(z)

L1
+

Xwater(z)

L2
, (10)

Λfast(z) =
Xsoil(z)

L3
+

Xwater(z)

L4
. (11)

The COSMIC function considers the attenuation of incoming high-energy neutrons (Ahigh) and their interaction with soil

to produce effective neutrons (Xeff) in addition to the attenuation of isotropically propagating fast neutrons. The parame-270

ter αCOSMIC represents the soil’s relative efficiency of forming fast neutrons, and length constants L1, L2, L3, and L4 (in

gcm−2
::::::
g cm−2) are related to local soil properties. COSMIC uses several time-invariant, site-independent, and site-specific

parameters, including L1 = 162.0 (g cm−2), L2 = 129.1 (g cm−2), and L4 = 3.16 (g cm−2), as reported by Shuttleworth et al.

(2013), regardless of location. However, the L3 parameters (g cm−2) and αCOSMIC (g cm3g−1)
::::::::
parameter

:
vary with soil bulk

density ϱb which change with depth. According
:::
The

::::::::
parameter

:::
L3::

is
::::::::
correlated

::::
with

:::
the

::::
soil

::::
bulk

::::::
density

:::
and

:::::::::
according to the275

model code
:
, L30 and L31 nomenclature are given as per the model code in mHM (https://github.com/mhm-ufz).

L3 = L30ϱb −L31. (12)

where θlw0, θlw1 are the parameters of the lattice water and the equation of L3 was taken from the dissertation of Schrön (2017)

. The regional formulation of the COSMIC method has been revised to include the θlw lattice water content as well.

Besides the addition of lattice water to the code, the original version of COSMIC has also been numerically optimized to280

substantially increase the computational performance. This includes the calculation of the geometric integral (Eq. 7) based on

lookup tables.
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2.5 Constraining of model parameterization

In this study, we utilize
::::::
employ

:
a model calibration technique to identify the most suitable parameter values for the mHM

model.
::::::::::
Specifically,

:::
we

::::::
utilize

:
a
:::::

total
::
of

:::
29

:::::::::
parameters

:::
for

:::
the

:::::::
Desilets

::::::
based

::::::
method

::::
and

:::
31

:::::::::
parameters

:::
for

:::
the

:::::::::
COSMIC285

::::::
method

::::::
which

:::::::
includes

:::::::::
hydrologic

:::::::::
processes

::::::
related

:::
to:

:::::
snow,

:::
soil

:::::::::
moisture,

:::
and

:::::::
neutron

::::::
counts

:::::::::
dynamics.

:
The process of

model calibration involves modifying the parameter values of the model to achieve a satisfactory standard for an objective

function by comparing the predicted output with the observed data (James, 1982). In this study, we
::
We

:
use the general

concept of the Kling-Gupta efficiency KGE for designing the objective function, which is widely employed in hydrological

modeling to assess the efficiency of a model (Gupta et al., 2009). However, we modify the KGE
::
as

:
a
::::::::
weighted

:::::::::::
combination290

::
of

:::
the

::::
three

::::::::::
components

:::::
(bias,

:::::::::
variability,

::::
and

:::::::::
correlation

::::::
terms)

::
to

:::::::
evaluate

:::
our

:::::::::
simulation

::::::::::::::::
(Gupta et al., 2009)

:
.
:::
We

::::::::
excluded

::
the

::::::::::
correlation

:::::::::
component

:::::
from

:
(Eq. 13) by removing the correlation coefficient ρ, as it is just a measure of the temporal

signature and is largely dominated by seasonality alone.
:
as

::::
our

:::::::::
simulation

:::::::
already

::::::::
exhibited

::::::::::
satisfactory

:::::::::
correlation

:::
due

:::
to

:::::
strong

::::::::::
seasonality,

:::
we

:::::
opted

:::
not

:::
to

:::::::
consider

::
it
::
in

::::
our

:::::::::
assessment

:::::::::
(objective

::::::::
function),

:::
as

::
it

::::::::
accounted

::::
for

::::
33%

::
of

:::
the

:::::
total

::::::::
weighting

::
in

:::
the

::::::
overall

:::::
KGE

:::::
score.

::::::::::
Seasonality

::
is
:::
an

:::::::
inherent

:::::::::::
characteristic

::
in

:::
the

::::::::
northern

::::::::::
hemisphere

:::::
where

:::::::::::
precipitation295

:::::
minus

::::::::::
evaporation

::
is

::::::
mostly

:::::
driven

:::
by

::::::::::::::::
evapotranspiration.

:::::
Even

:
if
::

a
:::::::
random

::::::::
parameter

::
is

:::::::
selected

:::::::::
correlation

::::
will

::::::
always

:::
be

:::::
higher

:::::::
because

:::
the

:::::::::::::
meteorological

::::::
forcing

::
is

:::
the

:::::::::::
precipitation

:
-
::::::::::
evaporation

::
is

::::::::
seasonal. This modified KGEαβ (Eq. 14) only

depends on variability (α) and bias (β) and variants of it have been used also in other studies (see, e.g., Martinez and Gupta,

2010; Mai, 2023). We utilize observed neutron count data from CRNS and estimated neutron count data from the mHM model

to calculate various metrics such as the Kling-Gupta efficiency coefficient (KGEαβ), Nash-Sutcliffe efficiency (NSE) by Nash300

and Sutcliffe (1970), coefficient of determination (R2
::
R2) by Kvålseth (1985), and percentage bias (PBIAS) by Gupta et al.

(1999). The optimal PBIAS value is 0, with lower values indicating more accurate model simulations. Positive values indicate

underestimation by the model, while negative values indicate overestimation. This approach allows us to minimize uncertainty

in the simulated neutron count data by comparing it to observed data and determining the optimal parameter values for the

mHM model. A summary of the individual parameters and their ranges can be found in Table
::::::::::::
Supplementary

:::::
Table

:::
S1

::::
and305
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:::::
model

::::::::::::
performance

::::::::
measures

::
are

::::::
shown

::
in

:::::
Table 2.

KGE = 1−
√
(α− 1)2 +(β− 1)2 +(ρ− 1)2 , (13)

KGEαβ = 1−
√
(α− 1)2 +(β− 1)2 , (14)

with Variability α= σsim/σobs , (15)

Bias β = µsim/µobs , (16)310

Correlation ρ= ρ(sim,obs) ,

NSE = 1−
∑n

i=1(ysim,i − yobs,i)
2∑n

i=1((yobs,i − yobs,i)
2
, (17)

R2 =

( ∑n
i=1(yobs,i − yobs,i)(ysim,i − ysim,i)∑n

i=1

√
(yobs,i − yobs,i)

2
√
(ysim,i − ysim,i)

2

)2

, (18)

PBIAS = 100[%](1−β) . (19)

Table 2. Performance evaluations for the daily neutron counts simulation with observed CRNS dataset.

Indices KGEαβ KGE NSE R2 PBIAS

Range −∞ to 1 −∞ to 1 −∞ to 1 0 to 1 −∞ to ∞
Optimal Value 1 1 1 1 0

Satisfactory Value > 0.70 > 0.80 > 0.50 > 0.65 < ± 5

3 Results315

3.1 Constraining of the parameter distribution N0
::
N0:/ Sensitivity Analysis

The sensitivity and uncertainty analysis performed in this study use a Latin Hypercube Sampling (LHS) approach, resulting

in parameter distributions that almost cover the entire prior defined hypercube of the individual parameters.
::::
large

::::::
sample

::::
size

:::
was

::::::
chosen

::
to

::::::::::::::
comprehensively

:::::::
explore

:::
the

::::::::
parameter

::::
sets

:::
and

::::::
capture

::
a

::::
wide

:::::
range

::
of

:::::::
possible

:::::::::
parameter

:::::::::::
combinations

::
in

:::
the

::::
prior

:::::
range.

:
The LHS approach creates a random value between the min and max values of the parameter set. Initial parameter320

ranges and exploratory model runs are set based on literature values (Boeing et al., 2022; Kumar et al., 2013b). Supplementary

Table S1 shows the values for the parameters in all 10
:::
100 000 simulations and the selected

::
29

:::::::::
parameters

:::
for

::::
the

:::::::
Desilets

::::::
method

:::
and

:
31

::::::::
parameters

:::
for

:::
the

:::::::::
COSMIC

:::::::
method,

:::::
which

:::::::
include

:::::
snow,

:::
soil

::::::::
moisture,

::::
and

:::::::
neutrons

::::::::
modules

::
as behavioral

simulations, with the posterior mean of the top 10 best parameters set.
::
For

::::::
further

::::::::::
information

::::
and

::::::::
additional

::::::
details

:::::
about

:::
the

::::::::
calibrated

:::::::::
parameters

:::
for

::::
each

::::
site,

::::
refer

::
to

:::::::::::::
Supplementary

:::::
Table

:::
S2. Among the calibrated parameters, the N0 parameters are325

different in each method since this parameter has not exactly
::::
does

:::
not

::::::
exactly

:::::
have the same physical meaning in the Desilets

and the COSMOS models
::::::::
COSMIC

:::::::
methods.

In
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Fig. 4 the x-axis in each graph is fixed to the prior range of each individual parameter to facilitate the comparison of

sensitive parameters. Most of the high-sensitive parameters show more peaked densities in a narrower range of parameter330

values, reflecting the significance of variations in model parameter values
:::::::
displays

:::
the

:::::
x-axis

::
in

:::::
gray,

::::::::::
representing

:::
the

:::::::
original

::::::::
parameter

:::::
range

::::::::::
(600–1500)

::::
prior

::::::::::
distribution

:::
for

:::
the

:::::::
Desilets

:::::::
method

:::
and

:::::::::
(100–400)

:::
for

::::::::
COSMIC

::::::::
method.

::::::::::
Meanwhile,

:::
the

::::::
colored

:::::::
sections

::
in

:::::::
brown,

:::::
green,

::::
and

:::::
purple

:::::::
indicate

:::
the

:::::::::
parameter

::::::
values

::
of

:::
the

:::::::::
calibration

:::::
from

:::
the

::::::::
posterior

::::::::::
distribution

::::
taken

:::::
from

:::
the

:::::::::::::
top-performing

:::::::::
parameter

:::
sets

:::
for

:::::
each

:::::
study

:::
site. The most sensitive parameters during the calibration pe-

riod are N0,Des, N0,COSMIC, rootFractionCoefficient_pervious, and rootFractionCoefficient_forest of land cover classes are em-335

ployed: class 1 = forest which consisted of permeable areas covered by coniferous, deciduous, and mixed forests; class 2 =

impervious cover with land uses like settlements, industrial parks, roads, airport runways, and railway tracks; and class 3 =

permeable cover covered by fallow lands, or those surfaces covered by crops, grass, and orchards. The calibration process

notably sharpenes
:::::::
sharpens the Probability Density Function (PDF) of these significant parameters by eliminating some of the

uncertainty linked to the variance in the prior probability distributions.340

The uniform prior distribution range for N0,Des lies between 600 and 1500 cph, and N0,COSMIC lies between 100 and 400 cph.

For agricultural sites such as Cunnersdorf and Hordorf, the N0,Des best estimate parameter results lie between 1000 and

1400 cph. Meanwhile, for Hohes Holz, the N0,Des parameter range lies between 800 and 1000 cph, the lowest value for the

calibration parameter N0,Des is found between 800 and 900 cph due to the highest wet above biomass in the forest area. Sim-

ilarly, for Grosses Bruch sites, the lowest value for the calibration parameter N0,Des is found between 800 and 900. The prior345

parameter distribution N0,Des 600 and 1500 cph is the same for all four experiments.

The estimated values of N0,Des and N0,COSMIC obtained in our study are close to the optimal values, indicating that the

model has the potential to generate accurate cosmic-ray soil moisture estimates even under dry conditions. But since at least

COSMIC is physically based, a loss of the physical meaning of the parameters in question would be very critical.
:
In

::::::::
contrast,

::::
some

:::::::::::
hydrological

:::::::
models,

::::
such

:::
as

:::::
HBV

:::
and

:::::::::
PREVAH

:::::::::::::
(PREecipitation

::::::
Runof

:::::::::::::::::
EVApotranspiration

:::::::::::
Hydrological

::::::::
response350

:::
unit

::::::
model;

::::::::::::::::
Viviroli et al. 2009

:
),
::::
have

::::::::::::
demonstrated

::::::
weaker

:::::::::::
performance

::
in

:::::::::
simulating

::::
soil

::::::::
moisture,

::::::::::
particularly

:::::
during

::::
dry

::::::::
conditions

:::::::::::::::
(Orth et al., 2015)

:
,
::::
with

:::::::
slightly

:::::
better

:::::::::
agreement

::::
with

:::::::::::
observations

:::::::
observed

::::::
during

::::
wet

:::::::::
conditions.

:
Table 3 pro-

vides detailed information on the mean and 95% confidence interval (CI) of the parameter values of the prior and posterior

simulated results of N0. One of the important addition of this work is incorporating the lattice water account and we used the

regionalization equation to calculate the lattice water which depends on the clay content with free parameters in Eqs. 2. The355

optimized parameter of the mHM shows the variation of the θlw ranges between (0.02–0.04) cm3cm−3 for different sites (see

Supporting Information Table S3). This behaviour and the way it was defined in Eq. 1 indicate that θlw likely represents not

only soil lattice water itself, but rather the total offset of all hydrogen pools in the vicinity of the sensor (see e.g., Schrön et al.,

2017; Iwema et al., 2021).
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Figure 4. Probability Density Function (PDF) of the mHM parameter N0 [
::
cph] for two different approaches: (a) the Desilets method,

and (b) the COSMIC method. The prior PDF of the original sample, consisting of 100 000 data points, is represented by the grey color.

The behavioral PDF, obtained after applying the objective function, is shown for weighted (orange
:::::
brown), uniform (green), and COSMIC

(purple). The black dashed line represents the one N0 [
::
cph] value that best fits the data.
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Table 3. The four most right columns are the posterior ones of size 100 000 and are the same for all sites. The posterior distributions

correspond to the distributions in the behavioral sample obtained after the application of the objective function. The values correspond to the

median (Q50) and the lower and upper bound of the 95% confidence interval (Q2.5 and Q97.5, respectively).

Parameter CI Prior Grosses Bruch
:::::::
Grosses

::::::
Bruch Hohes Holz

:::::
Hohes

:::::
Holz Hordorf

:::::::
Hordorf Cunnersdorf

::::::::::
Cunnersdorf

N0(Des,uniform):::::::
N0 (Des,U) Q50 1050 889 882 1092 1255

Q2.5 623 866 855 1069 1224

Q97.5 1477 945 908 1126 1291

mean 1050 899 883 1096 1257

sd 260 27 21 21 25

N0(Des, weighted) ::::::::
N0 (Des, W) Q50 1050 942 906 1158 1209

Q2.5 623 876 871 1116 1168

Q97.5 1477 954 915 1176 1262

mean 1050 925 899 1152 1216

sd 260 34 16 21 34

N0(COSMIC) :::::::::
N0 (COSMIC): Q50 250 225 234 287 316

Q2.5 108 202 216 265 281

Q97.5 392 249 241 302 339

mean 250 226 232 285 312

sd 87 18 9 12 19

:
+

3.2 Time series analysis of simulated neutron counts360

The study conducts simulations of neutron counts in mHM using soil moisture parameterizations, with results presented in

Figs. 5–6 across different sites. The simulated neutron counts were based on the simulated soil moisture content at the modeled

soil horizons i.e., 0–5 cm, 5–25 cm, and 25–60 cm. The results of the ensemble runs show that the precision is higher for the

behavioral simulation ensembles
::::
0.1 %

:
(represented by dark gray shaded areas) than in the unconstrained simulated data

:::
1 %

(represented by light gray shaded areas). We select the best 1
::
0.1 % with the highest KGE from 100 000 model runs, and the365

results are presented in Tab. 4. Furthermore, the behavioral simulation ensembles captured more variations in the COSMIC

method compared to the Desilets method after the application of the objective function (i.e., KGEαβ).

The NCOSMIC method performs best at the forest site (Hohes Holz), whereas at the agricultural sites (Hordorf and Cunner-

dorf), the NDes,W method performs slightly better. Only for the grassland site (Grosses Bruch), the uniform method NDes,U

slightly outperforms the other two methods i.e., NDes,W and NCOSMIC, while overestimating the observations at all the other370

sites. The better performance of NCOSMIC and NDes,W over NDes,U demonstrates the benefits of explicitly resolving individual

soil moisture profiles, bulk densities, and lattice water, as opposed to a uniform average across the layers. This perception,

however, might depend on site-specific soil profile characteristics and be less prominent if profiles are largely uniform or
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incorrectly resembled by the model structure. In general, we observe good model performance for all methods indicated by

a correlation coefficient greater than 0.80 and a percent bias (PBIAS) below 2 % across the majority of investigated sites and375

methods.

These results suggest that the neutron-forward models match the observed neutron counts well. However, the mean ensemble

had difficulties reproducing the neutron counts for the Grosses Bruch site in all three methods. One of the primary sources of

uncertainty at the Grosses Bruch site is surface ponding and shallow groundwater, as well as the loamy texture of the soil.

Those factors contribute to the formation of permanent water ponds in the area and may introduce uniform or even inverse soil380

moisture profiles which directly influence the neutron emissions, but cannot be captured by the mHM model. Another factor is

the time-variable effect of crowding cows near the station, which may influence the CRNS signal, but is challenging to correct

in the CRNS measurement (Schrön et al., 2017).

We incorporate the CRNS parameter set in mHM, and some parameters related to soil moisture and neutron counts are

effectively constrained based on the objective function using KGEαβ . However, there is still room for improvement, particularly385

with regard to the coefficient in root fractions distributed across soil layers. The incorporation of dynamic vegetation in models

is important as it can impact the model parameter LAI, which in turn can affect root water uptake and soil water content.

Currently, these factors are not considered in the models, leading to a permanent and systematic shift in these variables each

year
::::::::::::::::::::::::::::::::
(Zink et al., 2017; Massoud et al., 2019).

The results also highlight the uncertainties associated with model simulations and the sensitivity of the objective function.390

We find that three soil moisture-related parameters, namely N0, rotfrcoffpre, and rotfrcofforest, have the most significant impact

on the objective function KGEαβ , compared to the other parameters of mHM. The parameter N0 directly affects the neutron

count simulations, while the parameters rotfrcoffpre and rotfrcofforest correspond to the fractions of vegetation roots in different

soil layers that directly affect the water availability related stress for the estimation of actual evapotranspiration, and thereby

the soil-water dynamics (Samaniego et al., 2010b; Kumar et al., 2013b). The best parameter set values in mHM across all sites395

and methods are given in (Supporting Information Table S2).

18



Figure 5. Simulated daily time series of black for N(Des,W):::::
NDes,W, red for Nsim(Des,Uni) :::::

NDes,U:
for the four sites. The black lines represent

the median of the behavioural simulation ensembles that satisfy the objective function which is LHS10 ensemble members. The light grey

shaded areas represent the 95% CI of the simulation ensembles corresponding to different levels of constraining which is LHS1000 ensemble

members, and the observation is shown in grey points. Precipitation is shown in blue color on the top.
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Figure 6. Simulated daily time series of N(COSMIC) :::::::
NCOSMIC for the four sites. The black lines represent the median of the behavioural

simulation ensembles that satisfy the objective function which is LHS10 ensemble members. The light grey shaded areas represent the 95%

CI of the simulation ensembles corresponding to different levels of constraining which is LHS1000 ensemble members, and the observation

is shown in grey points.

3.3 Model calibration statistics and evaluation

In addition to KGEαβ , the four metrics KGE, NSE, R, and PBIAS are used to evaluate further the mHM neutron counts

simulated with observed CRNS data. We employ LHS to generate a parameter sample of 100 000 for the three methods,

namely NDes,U, NDes,W and NCOSMIC, by uniformly distributing the ranges provided in the (supplementary Table S1). The top400

10 parameter sets are found to perform satisfactorily with a KGE range of 0.80 to 0.93, as demonstrated in Table 4. The
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calibrated parameter sets obtained from different objective functions are also evaluated and compared using various statistical

indices, as shown in Figure 7, with most objective functions performing better than satisfactory based on the criteria in Table 2.

The results for the COSMIC method indicate that the main contribution to poorer results during the evaluation period was due

to the variability term (α). The boxplot displayed in Figure 7 illustrates the threshold achieved by the top 1000, 100, and 10405

LHS members, along with the corresponding percentage of the best 10 LHS parameter sets that meet the threshold, as specified

in (see Tab. 2). Among the 31 parameters selected to simulate neutron counts, this plot provides an overview of the distribution

of results and their variability with respect to the threshold criteria.

Table 4. Model Performance
:::::
metrics

:::
for

:::::
model

::::::::
calibration

::::::::::
(2014-2021) using

:::::
various

:::::::
methods: Percent bias (Pbias

::::::
PBIAS), coefficient of

determination (R2
::
R2 ), Nash-Sutcliffe efficiency (NSE), and Kling-Gupta Efficiency (KGE) for

:::::
across

::::::
different

:::::
sites.

::::
Bold

:::::
values

::::::
indicate

the calibration for the period from 2014-2021
:::
best

:::::::::
performance

:::::::
measures.

Sites Grosses Bruch Hohes Holz Hordorf Cunnersdorf

Methods: NDes,U NDes,W NCOSMIC NDes,U NDes,W NCOSMIC NDes,U NDes,W NCOSMIC NDes,U NDes,W NCOSMIC

KGEαβ 0.97 0.96 0.93 0.96 0.99 0.99 0.99 0.99 0.98 0.93 0.99 0.99

KGE 0.85 0.83 0.81 0.81 0.80 0.85 0.87 0.87 0.86 0.88 0.93 0.90

NSE 0.69 0.60 0.29 0.54 0.60 0.70 0.75 0.75 0.73 0.57 0.85 0.79

R2 0.73 0.69 0.66 0.66 0.65 0.73 0.76 0.76 0.75 0.86 0.86 0.81

R 0.85 0.83 0.81 0.81 0.80 0.85 0.87 0.87 0.86 0.93 0.93 0.90

PBIAS 0.7% −1.3% −3.3% 2.0% 0.3% 0.4% 0.1% 0.1% 0.3% 6.0% 0.7% 0.5%

21



Figure 7. Evaluation of model performance using boxplots constraining of 1000 to the best 10 parameters set at four different sites, using

three different methods, namely N(Des,W) :::::
NDes,W in red

:::::
brown, N(Des,Uni) ::::

NDes,U:in golden
::::
green, and N(COSMIC) ::::::

NCOSMIC:in purple. The figure

presents four subplots, where (a) represents Alpha, (b) Beta, (c) KGEαβ
::::::
KGEαβ , and (d) Kling-Gupta efficiency (KGE) and its components,

i.e., the variability term (perfect value: 1), and bias term (perfect value: 1), respectively.

3.4 Evapotranspiration evaluation
::::::::::
Comparing

:::::::::::::::::
evapotranspiration at

:::::::::::
Hohes-Holz: eddy covariance stations

:::::::
observed

data against
::
vs mHM simulation410

The ensemble model of (10 members) simulations, is further examined with the evapotranspiration (ETa) to cross-evaluate

and assess the model’s ability to represent other fluxes and states next to neutron counts by using the ETa observational data
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from eddy covariance measurements Integrated Carbon Observation System (ICOS) at Hohes Holz Warm Winter (2022). In

terms of temporal dynamics, the model is able to capture the observed ETa quite well at the study site, as shown in Figure 8.

Panel (c) displays the scatter plot that reveals no systematic over or underestimation of the observed actual evapotranspiration415

. The
:::::::::::
incorporating

:::::
linear

::::::::
regression

:::::::
models

::
to

:::::::
quantify

:::
the

:::::::::::
relationships

:::::::
between

::::::::
observed

:::
and

::::::::::::::
mHM-simulated

::::
ETa

::::::
during

::::
both

::
the

::::::::
growing

:::
and

:::::::::::
non-growing

:::::::
seasons.

::::
This

:::
plot

::::::::
provides

:::::::
insights

:::
into

:::
the

:::::::
seasonal

:::::::::
variations

::
in

:::
the

::::::::::
relationship

:::::::
between

:::::::
observed

::::
and

::::::::
simulated

::::
ET.

::
It

:::::::
suggests

::::
that

:::
the

::::::
model

::::::::
performs

::::
best

::::::
during

::::::
winter,

:::::
while

:::
its

:::::::::::
performance

::::::
during

:::::::
summer

:
is
::::::::::::

comparatively
:::::::

weaker.
::::

The
::::::::::
correlation

::::::::::
coefficients

::
(r

::::::
values)

:::
for

:::::
each

::::::
season

:::
are

::
as

::::::::
follows:

::::::
autumn

:
[
::::
SON]

:
(r
::

=
::::::

0.79),

:::::
spring

:
[
:::::
MAM]

:
(r

::
=
:::::
0.77),

::::::::
summer [

:::
JJA]

::
(r

:
=
::::::

0.42),
:::
and

::::::
winter

:
[
:::
DJF]

::
(r

::
=

:::::
0.87).

::
It

::
is

:::::
worth

::::::
noting

::::
that

::::::
winter

::::::
shows

:::
the420

::::::
highest

:::::::::
correlation

:::::::
between

::::::::
observed

::::
and

::::::::
simulated

::::
ET,

:::::
while

:::::::
summer

:::::::
exhibits

:::
the

::::::
lowest

:::::::::
correlation.

::::
The

:::::
most

:::::::::
significant

:::::::
deviation

::
in
:::::
terms

:::
of

:::::
RMSE

::
is
:::::::
evident

:::::
during

:::
the

::::::::
summer,

:::::
when

:::::::::::::::
evapotranspiration

::
is

::::::
highest,

:::::
while

:::
the

:::::::
smallest

:::::::::
difference

::
is

::
in

:::::
winter

:::::
when

:::::::::::::::
evapotranspiration

:::
has

::::
less

::::::
impact.

::::
The

:::::
model

:::::::
slightly

:::::::::::
overestimates

:::::::::::::::
evapotranspiration

::
in
:::::::
summer

::::
and

::::::
spring,

:::::::
possibly

:::::::
because

::
of

:::
the

::::::
absence

:::
of

:
a
:::::::
dynamic

:::::::::
vegetation

::::::
growth

:::::::
module

::
in

:::
the

::::::
mHM,

:::
also

:::::::::
discussed

::
for

::::::::::::::::
evapotranspiration

::
in

::::::::::::::
Zink et al. (2017).

::::
The

:
temporal dynamics of the model-simulated evapotranspiration are in good agreement with the observed425

data from the Hohes Holz forest eddy covariance site, taken from Warm Winter (2022), as illustrated in Figure 8a. The daily

correlation between observed and simulated evapotranspiration is observed high in the growing season at r = 0.84, whereas

the lowest correlation is found in the non-growing season at r = 0.65 in Figure 8c. The highest deviation in terms of RMSE

is observed during summer when the highest fluxes occur, and the lowest during winter, in which the contribution of ETa is

lowest.430

In Figure 8b, the prior and posterior parameter distributions of evapotranspiration for Hohes Holz are displayed. The prior

distribution represents the 10
:::
100 000 parameters set utilized for the neutron counts simulation under Latin Hypercube Sampling

(LHS). The results demonstrate that the ensemble model of 10-member simulations (posterior) for neutron counts can also

effectively capture evapotranspiration, exhibiting a root mean square error (RMSE) of 0.76 mmd−1 of the growing season and

0.25 mmd−1 for non-growing when compared to observed ICOS data and simulated mHM. When compared to the model435

simulations with a-priori
::::
prior parameter sets, we notice a substantial improvement in ET simulations (mean RMSE of 0.86

mmd−1 to 0.76 mmd−1). Furthermore, the RMSE range is also narrower for the posterior simulations compared to the prior

ones which further demonstrated the additional value of incorporating CRNS measurements in improving the consistency of

both modeled soil moisture and evapotranspiration estimates.

The modeled evapotranspiration is highly dependent on soil parameterization because soil water is the main source of440

evaporative water. During the growing season (summer), the model exhibited the largest variability in modeled ETa (Figure 8c).

This can be associated among other things with a lack of a dynamic vegetation growth module in mHM, which may not capture

the onset of the vegetation period adequately. This variability could also be attributed to seasonal changes in vapor pressure

difference (VPD) or more localized processes occurring at the forest site (e.g., under-story vegetation), which are currently not

considered in the model. Nevertheless, the overall agreement between modeled and observed ETa is reasonably good; and the445

analysis reveals further improvement of model performance in the growing season.
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Figure 8. (a) Time series of actual evapotranspiration (ETa) from mHM (black), ICOS measurement (red), and the prior range of 100 000

realizations in (orange) color. (b) Boxplot of daily actual evapotranspiration (ETa) differences between the growing and non-growing seasons,

comparing two selected prior with 10
:::
100 000 simulations, the values represent the mean of the statistical metrics and posterior with 10

ensemble member distributions using the root mean square error (RMSE) as the evaluation metric (µgm
3

). (c) scatterplots of modeled vs.

observed ET on a daily basis from ICOS during the growing season from March to August (green) and non-growing season from September

to February (brown) at Hohes Holz eddy covariance station in a forest.

4 Discussion

This study assessed the suitability of CRNS observations at four sites to enhance soil moisture representation in mHM. The

model’s depth-dependent simulations allow the estimation of neutron penetration depths, which are typically 5–60 cm and

more sensitive to shallow soil moisture Köhli et al. (2015). Our findings contribute to leveraging CRNS data for improved450
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hydrological modeling.
:::
The

:::::::::
theoretical

:::::::::::
measurement

:::::
depth

:::
for

:::
the

:::::::::
cosmic-ray

:::::
probe

::::::
varies,

::::::
ranging

:::::
from

::
∼

::
12

:::
cm

::
in

::::
wet

::::
soils

::
to

::
∼

::
76

:::
cm

::
in

:::
dry

::::
soils

:::::::::::::::::::::::::::::::::::::::::
(Zreda et al. (2008, 2012a); Rosolem et al. (2014)

:
).

To improve the soil moisture profile representation within mHM it is a major challenge to use a single vertically integrated

CRNS measurement. In order to have a fair comparison between the model and observed CRNS data, two conceptually dif-

ferent approaches were integrated into mHM to calculate neutron counts from different SWC horizon depths i.e., an empirical455

method based on Desilets et al. (2010), and a physics-based method (COSMIC) based on Shuttleworth et al. (2013). Since the

empirical method is described by an analytical expression, taking into account the uniform average of the soil moisture layers,

it is straightforward to implement and therefore most commonly used (Zreda et al., 2012b; Rivera Villarreyes et al., 2011; An-

dreasen et al., 2017; Bogena et al., 2022). However, the method comes with the risk of missing
:
a
:
representation of the vertical

profile of soil properties and water content. Therefore, we extended this uniform-averaging scheme by
::::
with a vertical weighting460

scheme to mimic the sensitivity of the neutrons to the upper layers
:::
both

::::::::
weighted

:::
and

::::::::::::
non-weighted

:::
soil

:::::::
moisture

::::::::::
approaches

::
in

::
the

:::::::
context

::
of

:::::
CRNS

::::
have

:::::
been

::::::::
discussed

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Rivera Villarreyes et al., 2014; Baroni and Oswald, 2015; Schreiner-McGraw et al., 2016; Zreda, 2016; Schrön et al., 2017; Vather et al., 2019; Barbosa et al., 2021)

. The COSMIC operator also accounts for the full soil moisture profile, but in a more physically behaved manner, following

the track and attenuation of the neutrons in and out of the soil column. The mHM model is now able to simulate neutrons

directly with all three approaches. The presented results confirmed general consistency with CRNS observations at four sites465

in Germany (Figs. 5 and 6).

Agricultural land presents a valuable opportunity to examine the interaction between soil moisture dynamics, crop growth,

irrigation methods, and vegetation dynamics. Hordorf and Cunnerdorf
:::::::::
Cunnerdorf are specific agricultural sites where seasonal

changes in aboveground biomass are expected to be larger due to crop growth and harvest compared to grassland and forest

sites. The study by Schrön et al. (2017) found that the revised weighting strategy for CRNS data improved the accuracy of soil470

moisture predictions at agriculture sites, but there is still room for improvement in capturing local dynamics through revised

parameters in the CRNS model. Our results showed that at the agriculture site, the N0,Des,W :::::
NDes,W:

methods in mHM slightly

out-performed the other methods.

We also investigated Hohes Holz, a forest site, and observed an early simulation of approximately 28 days in the simulation of

neutron counts compared to the observations. The early simulation phase could be attributed to the limitation of mHM in simu-475

lating the dynamics of detailed vegetation mechanisms Zink et al. (2017). One specific limitation is that the model does not fully

account for the fact that trees at the site have access to deeper water sources, which can result in water stress being experienced

at later times. Still, we get very good results in terms of KGE, for instance, indicating that these issues are of minor importance

and that all three methods in mHM representation of the forest are already performing quite well. Also, the CRNS method may

be influenced by temporal biomass variation in the forest (Baatz et al., 2015), but many recent studies have confirmed the good480

performance of CRNS in forests compared to below-ground soil moisture profiles, indicating that the dynamic vegetation effect

is just a minor observational issue (Bogena et al., 2013; Andreasen et al., 2017; Schrön et al., 2017; Boeing et al., 2022; Bogena et al., 2022)

. It is worth noting that most of the studies on drought analysis look at the anomaly of soil moisture, while our study tries to

assess the absolute soil water quantity and the properties that can determine the soil water content. While CRNS and TDR gen-

erally agree at this site, the discrepancy shown in our results could be attributed to issues related to process representation in485
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mHM Boeing et al. (2022). Incorporating CRNS data into soil moisture analysis
:::::::::
Simulation

::
of

:::::::
neutron

::::
data

:::::
within

:::
the

::::::
mHM

:::::
model

::::
and

:::::::::::
subsequently

:::::::::
comparing

::
it

::::
with

::::::::
observed

::::::
counts

:
can enhance the accuracy and precision of absolute soil mois-

ture measurements. Future research can focus on exploring the potential relationships between CRNS data and soil moisture

anomalies, thus furthering our understanding of the dynamics of drought and assisting in the development of efficient drought

monitoring and mitigation strategies.490

To cross-evaluate our results, the
::
we

:::::::::
generated

::::
and

::::::
filtered

:::
the

:::::::
100 000

:::::::::::
regionalized

:::::::::
parameter

::::
sets

:::::
based

:::
on

::::::::
observed

::::::
neutron

::::::
counts

:::
for

::::::::
behavioral

:::::::::
solutions.

::::
After

::::::::
selecting

:::
the

::::
most

:::::::
effective

:::::::::
solutions,

::
we

:::::::
conduct

:::::::::::::
cross-validation

:::
by

:::::::::
comparing

::
the

:
mHM simulations of evaporation are tested

::::::::::::::
evapotranspiration

:
against observational data from eddy covariance measure-

ments ICOS (Warm Winter, 2022; Pohl et al., 2023) at the Hohes Holz. Figure 8 shows the scatter including the seasonal

correlation coefficient at the forest site. The results indicate low correlations in summer, likely due to mHM’s limitations495

in capturing evapotranspiration values with mHM’s static vegetation module. However, the model performs well in winter,

with a high correlation between observed and simulated values of evapotranspiration, the results confirm the findings from

Zink et al. (2017), who used mHM to estimate evapotranspiration, groundwater recharge, soil moisture, and runoff with 4 km

spatial and daily temporal resolutions (1951–2010). They found deviations in modeled versus observed evapotranspiration,

particularly in
::::::
utilized

:::
soil

:::::::
moisture

:::::::::::
observations

::::
from

::::
eddy

:::::::::
covariance

:::::::
stations

:::::::::
employing

:::::::::::
Time-Domain

::::::::::::
Reflectometer

::::::
(TDR)500

::
or

::::::::::::::::
Frequency-Domain

::::::::::::
Reflectometer

::::::
(FDR)

:::::::
sensors.

:::::
Due

::
to

:::::::::
disparities

::
in
:::::::

spatial
:::::::::::::::
representativeness

::::
and

::::::::
sampling

::::::
depth,

:
a
:::::
direct

::::::::::
comparison

::::::::
between

::::::::
observed

:::
and

:::::::::
simulated

::::
soil

::::::::
moisture

:::
was

::::
not

:::::::
feasible,

:::::
their

:::::::
findings

:::::::
revealed

:::::::::
deviations

:::
in

:::::::::::::::
evapotranspiration

:::::
during

:
spring and in cropland areas, however,

::::
while

:
soil moisture estimations were in

::::::::
exhibited good agree-

ment with observed dynamics. The study highlights the importance of considering seasonal variations when analyzing the

results. Discrepancies, such as low correlations in summer, indicate the need for improvements in capturing evapotranspiration505

dynamics under varying environmental conditions. Refining vegetation dynamics representation could enhance the simulation

of evapotranspiration processes. Additionally, the agreement between mHM and observed soil moisture dynamics suggests

variable model performance for different hydrological variables, emphasizing the need for a comprehensive assessment of its

capabilities across various environmental conditions and spatiotemporal scales.

It is worth highlighting here that the incorporation of neutron data into mHM not only improved the
:::
The

:::::::
accuracy

::
of

::::::::
modeled510

:::::::::::::::
evapotranspiration

::
is

:::::
linked

:::
to

:::
soil

::::::::::::::
parameterization

:::::::
because

::::
soil

:::::
water

::
is

:::
the

:::::
main

::::::
source

::
of

::::::::::
evaporative

:::::
water.

:::::::
During

:::
the

:::::::
growing

::::::
season

:::::::::
(summer),

:::
the

::::::
model

::::::::
exhibited

:::
the

::::::
largest

:::::::::
variability

::
in

::::::::
modeled

::::
ETa

::::::
(Figure

::::
8c).

:::::
This

:::
can

:::
be

:::::::::
associated

:::::
among

:::::
other

::::::
things

::::
with

::
a
::::
lack

::
of

::
a
:::::::
dynamic

:::::::::
vegetation

:::::::
growth

::::::
module

:::
in

::::::
mHM,

:::::
which

::::
may

::::
not

::::::
capture

:::
the

:::::
onset

:::
of

:::
the

::::::::
vegetation

::::::
period

:::::::::
adequately.

:::::
This

::::::::
variability

:::::
could

::::
also

::
be

:::::::::
attributed

::
to

:::::::
seasonal

:::::::
changes

::
in

:::::
vapor

:::::::
pressure

:::::::::
difference

::::::
(VPD)

::
or

::::
more

::::::::
localized

:::::::::
processes

::::::::
occurring

::
at

:::
the

:::::
forest

::::
site

:::::
(e.g.,

:::::::::
under-story

::::::::::
vegetation),

::::::
which

:::
are

::::::::
currently

:::
not

::::::::::
considered

::
in515

::
the

:::::::
model.

:::
The

::::::::::
comparison

:::
of

::::::::
observed

::::::
neutron

::::::
counts

::::
with

:::::::::
simulated

::::::
counts

::::
from

::::::
mHM

::::::::
improved

:::
not

:::::
only soil moisture

estimation in the model, but also the estimation of evapotranspiration
::
but

::::
also

:::::::::::::::
evapotranspiration

:::::::::
estimation

::
in

:::
the

:::::
model. This

provides major evidence that CRNS data has the potential to improve hydrological process understanding as a whole.

The Grosses Bruch site stands out as a mesophilic grassland site with a nearby water channel, shallow ground water, regular

cattle grazing,
:
and seasonal flooding (Hermanns et al., 2021). We find a large ensemble-related uncertainty at this site for all520
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three methods, while the uniformly weighted approach N(Des,U) :::::
NDes,U:shows a slightly better performance than the other two

methods N(Des,W) and N(COSMIC) ::::::
NDes,W :::

and
:::::::
NCOSMIC:(see Table. 4). The behaviour may result of

::
in a missing representation of

locally significant hydrological components, such as dynamic biomass, snow, shallow ground water, or nearby surface ponding

(Schrön et al., 2017). Moreover, in the middle of September, many cows had been present at this site, which could have led

to
:
a
:
non-negligible variation of the neutron signal and thus to a non-meaningful expression of correlation-related measures525

Schrön et al. (2017). Döpper et al. (2022) mentioned thigh impact of grazing on the plant traits and soil properties at this site.

Additionally, the use of one grid cell measurements by mHM in our study may have limited the accuracy of our results, as

the depth of measurement may not be representative of the entire soil profile. Notably, neutron counts were found to provide

a more accurate representation of soil water content during June, July, August, and September, when levels tend to be lower.

Further exploration of neutron counts may yield additional improvements to model performance.530

Overall, the three methods (NDes,U, NDes,W, and NCOSMIC) in mHM were able to consistently simulate the neutron count

variability throughout the available data period. The
:::::::
However,

::
a
::::::
broader

::::::::::
confidence

::::::
interval

::
is
:::::::::
observed,

::::::::
indicating

::
a

::::::
greater

::::
range

:::
of

:::::::::
variations,

:::::
which

::::::
implies

::
a
::::::
higher

:::::
degree

:::
of

:::::::::
uncertainty

::
in

:::
the

::::::::
NCOSMIC.

::::
The

::::::::
COSMIC

::::::::
approach

::::::::
explicitly

::::::::
accounts

::
for

:::::
water

:::::::
content

:::::
snow,

:::::::::
vegetation

:::::::::::
interception,

:::
and

:::::::::
root-zone

:::
soil

:::::::::
processes

:::
that

::::
may

::::::
likely

::::
lead

::
to

:
a
::::::

better
::::::::::::
representation

::
of

:::::::
observed

:::::::
neutron

:::::
count

:::::::
variation

:::::::::
compared

::
to

:::::::
Desilets

:::
that

::::::::::
empirically

::::::::
represent

::::
such

:::::::::
processes.

:::
The

:
simulated time series535

tended to slightly underestimate the CRNS neutron count rate, particularly during the dry season. This effect could be explained

by the known limitations of the equations under very dry conditions, while recent approaches exist (Köhli et al., 2021) that

could lead to further improvement in future studies. Nevertheless, the results generally confirmed the better performance of

the NDes,W than NDes,U, because of its more realistic representation of neutron propagation with depth. After optimizing the

soil hydraulic properties based on CRNS data, the integrated signal was reproduced very well (Fig. 5).
:::
The

:::::
better

:::::::::::
performance540

::
of

:::::::
NCOSMIC::::

and
::::::
NDes,W::::

over
::::::
NDes,U::::::::::::

demonstrates
:::
the

:::::::
benefits

::
of

::::::::
explicitly

::::::::
resolving

:::::::::
individual

::::
soil

:::::::
moisture

::::::::
profiles,

::::
bulk

:::::::
densities,

::::
and

::::::
lattice

:::::
water,

:::
as

:::::::
opposed

::
to

::
a
:::::::
uniform

:::::::
average

:::::
across

::::
the

:::::
layers.

:::::
This

:::::::::
perception,

::::::::
however,

::::::
might

::::::
depend

:::
on

::::::::::
site-specific

:::
soil

::::::
profile

::::::::::::
characteristics

::::
and

::
be

::::
less

:::::::::
prominent

::
if

::::::
profiles

:::
are

::::::
largely

:::::::
uniform

:::
or

:::::::::
incorrectly

:::::::::
resembled

:::
by

:::
the

:::::
model

::::::::
structure.

:
We also included offset hydrogen pools in the form of lattice water to the N0 calibration function, which

was important for more accurate soil moisture estimates, confirming initial suggestions by Bogena et al. (2013). Moreover, a545

strong correlation between biomass and the N0 parameter was reported in several studies (Franz et al., 2013; Hawdon et al.,

2014; Baatz et al., 2014, 2015). In our study, we pass the N0 parameter as a calibration parameter set in mHM. In using the

CRNS soil moisture measurement the drier locations show larger deviations than the wetter locations (Iwema et al., 2015).

The possibility of using simulated high-resolution soil moisture profiles instead of a few measurements at different soil depths

could further increase the accuracy of the model predictions (Brunetti et al., 2019).
:::
One

:::
of

:::
the

::::::
primary

:::::::
sources

::
of

::::::::::
uncertainty550

:
at
:::

the
:::::::

Grosses
::::::
Bruch

:::
site

::
is

::::::
surface

::::::::
ponding

:::
and

:::::::
shallow

:::::::::::
groundwater,

::
as

::::
well

::
as

:::
the

::::::
loamy

::::::
texture

::
of

:::
the

::::
soil.

::::::
Those

::::::
factors

::::::::
contribute

::
to

:::
the

:::::::::
formation

::
of

:::::::::
permanent

::::::
water

:::::
ponds

::
in

:::
the

::::
area

::::
and

::::
may

::::::::
introduce

:::::::
uniform

:::
or

::::
even

::::::
inverse

::::
soil

::::::::
moisture

::::::
profiles

::::::
which

::::::
directly

:::::::::
influence

:::
the

:::::::
neutron

:::::::::
emissions,

:::
but

::::::
cannot

:::
be

:::::::
captured

:::
by

:::
the

::::::
mHM

::::::
model.

:::::::
Another

:::::
factor

:::
is

:::
the

:::::::::::
time-variable

:::::
effect

::
of

::::::::
crowding

::::
cows

::::
near

:::
the

:::::::
station,

:::::
which

::::
may

::::::::
influence

:::
the

::::::
CRNS

::::::
signal,

:::
but

::
is

:::::::::
challenging

:::
to

::::::
correct

::
in

::
the

::::::
CRNS

:::::::::::
measurement

:::::::::::::::::
(Schrön et al., 2017)

:
.
:::
We

::::::::::
incorporate

::
the

::::::
CRNS

:::::::::
parameter

::
set

:::
in

:::::
mHM,

::::
and

::::
some

::::::::::
parameters

::::::
related555
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::
to

:::
soil

::::::::
moisture

:::
and

:::::::
neutron

:::::
counts

:::
are

:::::::::
effectively

::::::::::
constrained

:::::
based

:::
on

:::
the

::::::::
objective

:::::::
function

:::::
using

:::::::
KGEαβ .

::::::::
However,

:::::
there

:
is
::::
still

:::::
room

::
for

::::::::::::
improvement,

::::::::::
particularly

::::
with

:::::
regard

::
to
:::
the

:::::::::
coefficient

::
in

::::
root

::::::::
fractions

:::::::::
distributed

:::::
across

:::
soil

::::::
layers.

:

According to Beck et al. (2021), model calibration provides more overall benefits than data assimilation. Furthermore, model

calibration can be advantageous for regions with both sparse and dense rain gauge networks, whereas data assimilation is more

beneficial for regions with sparse rain gauge networks. In this paper, the Latin Hypercube Sampling (LHS) method McKay560

and Conover (1979) is adopted to generate input variable samples, which is a stratified sampling method that reduces the

number of simulations required compared to the conventional Monte Carlo method Iman and Helton (1988). LHS divides

the range of each input into N intervals and selects one representative value from each interval to ensure full coverage of

the input variables range and representation of all possible values in the simulation. Previous studies by Smith et al. (2019)

and Liu et al. (2022) addresses
::::::
address

:
the challenges of using the original KGE in Markov chain Monte Carlo (MCMC)565

methods, offering insights for accurate parameter estimation and posterior distribution exploration. To address this issue, it is

recommended to use adaptations to the LHS method instead of directly using the original KGE to improve the exploration of

the posterior distributions. Our approach can estimate the posterior distributions of model parameters based on the objective

function KGEαβ by taking the variance and bias.

This paper provides a framework to incorporate CRNS data into the mHM to assess the accuracy of soil water content570

on different land cover types, including agricultural land, deciduous forest, and grassland. The integration of methods from

Desilets et al. (2010) and Shuttleworth et al. (2013) in mHM, using climatic data and soil physical parameters, the parameter-

ization of soil moisture and evapotranspiration can
::::::::::::::
evapotranspiration

::
is
:
effectively improved (see Fig. ??).

:::
9).

:::::::::::
Additionally,

::::::::::::
Supplementary

::::
Fig.

::
S5

::::::::
illustrates

:::
the

::::::::
improved

::::::::::::
representation

::
of

:::
soil

::::::::
moisture

::
for

::::::
Hohes

:::::
Holz. This framework lies in its ability

to utilize observed neutron counts data, allowing for a comprehensive assessment of the model’s performance and enhancing575

its reliability in hydrological modeling.
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Figure 9. (a) Comparison of weekly soil water content time series for 2014-2021 at a depth of 0-25 cm for Hohes Holz CRNS-based soil

moisture data (grey line) and simulated data from mHM using two different sets of parameters. The red line represents the default parameters

used in the German drought monitoring system as described by Boeing et al. (2022), while the blue line represents the best-calibrated value

of our study with the improved Kling-Gupta Efficiency (KGE). (b) Comparison of weekly observed actual evapotranspiration (grey dots) and

simulated actual evapotranspiration using the default mHM parameters by Boeing et al. (2022) (red line) and the calibrated simulation (blue

dots) over the Hohes Holz site.

The findings of this study suggest that, with certain cautionary notes, our method has the potential to better characterize

drought compared to the approach used in the German drought monitoring system. Our assimilation of neutron counts in

mHM resulted in more accurate predictions of soil water content compared to the approach described by Boeing et al. (2022)

that is currently employed in the German drought monitor. However, the fact that our method still overestimated the severity of580

the drought in 2018 and 2019 is noticed, indicating that there may be other processes not accounted for by mHM that require

further investigation.

5 Conclusion and future outlook

This study evaluates the potential of the mHM a large-scale hydrological model for simulating neutron counts at the 0.01562
:::
1.2

:::
km×0.01562grid

:::::
1.2 km

:
scale across different land cover sites for the period 2014–2021. Two empirical and one physical585

model approaches are evaluated for deriving neutrons from the soil moisture profile. Neutron measurement data from four sites

in Germany are integrated, and the influence on hydrological model parameters, as well as simulated soil moisture and evap-

otranspiration are analyzed. The parameter sample of 100 000 realizations for neutron counts was taken, which are analyzed

regarding their uncertainty caused by the parameter estimation. The parameter sets are filtered based on the KGE of observed

vs simulated neutron counts. The best 1% member ensemble simulations are evaluated with neutron counts, evapotranspiration,590

and soil moisture observations.

The evaluation of neutron counts at four different sites yield
::::
yields

:
a KGE value of > 0.8, indicating a satisfactory repre-

sentation of the neutron observations. The 1% ensemble parameter set is found more representative of 100 000 realizations,
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suggesting a reliable model performance. The performance of the neutron counting methods varies across different land cover

types. The NDes,W method generally demonstrates good performance, particularly at the agricultural sites. While the NCOSMIC595

method performs slightly better at forest site and the NDes,U method shows slightly better results at the grassland site.

However, there is still room for improvement in some areas. Specifically, working with grassland sites presented challenges,

particularly with the NCOSMIC method. On the one hand it is a physics-based approach incorporating a comprehensive represen-

tation of the neutron counting process, but on the other hand, it relies on the detailed representation of the site characteristics

in the hydrological model. This complexity could introduce additional uncertainties and limitations in the model, potentially600

affecting its performance, especially when the site is more complex than it has been modeled. The study suggests that the

observed discrepancies between model and observations may be attributed to the representation of dynamic biomass, snow,

surface ponding, and shallow groundwater dynamics, which are present at the grassland site, for instance. Addressing these

features could further enhance the model’s accuracy.

The evaluation with evapotranspiration from eddy covariance at Hohes Holz stations indicates deficiencies in mHM to deal605

with forest systems, but also great potential for CRNS measurements to improve the water partitioning as a whole. Especially

in the growing season (March-August), deviations of the modeled and observed ETa indicate room for better representation

of mixed soils and dynamic vegetation modules at the local scale within mHM. The calibration on neutron counts not only

improved the soil moisture performance of the model , but also helped to set the modeled evapotranspiration straight.

In conclusion, the incorporation of neutron counts estimation into mHM by accounting for vertical soil moisture profiles im-610

proves the model’s accuracy and provides a more realistic representation of soil moisture dynamics as well as evapotranspiration

, particularly at the forest
::
at

::
all

::::
four

:::::
study

::::
sites

:::
and

:::::::::::::::
evapotranspiration

::
at
::::::
Hohes

::::
Holz site. This research presents a direction for

future studies to explore. The next step in this research is to evaluate the ability of this CRNS module in mHM for estimating

soil moisture through a large-scale soil moisture monitoring initiative, e.g. by utilizing more stationary CRNS networks or the

novel rail-based CRNS data from Altdorff et al. (2023).
::
To

:::::::
optimize

::::::::
accuracy

:::
and

:::::::::::::
understanding,

:::
we

::::::::::
recommend

:::::::::
integrating615

::::
both

::::::
CRNS

:::
and

:::::::
satellite

::::::
remote

:::::::
sensing

::::
data

::::
into

::::::
mHM.

:
Improving the model predictions will contribute to reducing the

uncertainties associated with drought and flood management strategies and informed agricultural decisions.

Code availability. Simulation data is attached as supplemental material. The mesoscale Hydrological Model mHM (version 5.12) is open-

source and can be freely accessed from GitLab: https://git.ufz.de/mhm/mhm/-/tree/v5.12.0?ref_type=tags.

Data availability. We kindly acknowledge the German Weather Service (DWD) for providing the meteorological datasets. The terrain eleva-620

tion data was collected from USGS EROS Archive - Digital Elevation - Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010),

available at https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-global-multi-resolution-terrain-elevation. Grid-

ded soil characteristics are based on the BUEK200 database obtained from the German Federal Institute for Geosciences and

Natural Resources (BGR, see online at https://geoportal.bgr.de/mapapps/resources/apps/geoportal/index.html?lang=en#/datasets/portal/

154997F4-3C14-4A53-B217-8A7C7509E05F). The geological dataset was downloaded from Institute for Biogeochemistry and Marine625
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Chemistry, KlimaCampus, Universitt Hamburg (https://www.geo.uni-hamburg.de/en/geologie/forschung/aquatische-geochemie/glim.html).

Leaf Area Index (LAI) dataset was downloaded from the Global Land Cover Facility (GLCF), available at http://iridl.ldeo.columbia.edu/

SOURCES/.UMD/.GLCF/.GIMMS/.NDVIg/.global/index.html. The land cover dataset was downloaded from the European Space Agency

(ESA), available at http://due.esrin.esa.int/page_globcover.php. The ET data were obtained from https://zenodo.org/record/7561854.
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