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Highlights 

• Effects of O3 stress on photosynthesis and leaf senescence were added to the DSSAT/pDSSAT maize, rice, 20 

soybean, and wheat crop models. 

• The modified models reproduced growth and yields under different O3 levels observed in field experiments 

and reported in the literature. 

• Expected detrimental interactions between O3, CO2, and water deficit were reproduced with the new models. 

• The updated crop models can be used to simulate impacts of O3 stress under future climate change and air 25 

pollution scenarios. 

Abstract. Elevated surface ozone (O3) concentrations can negatively impact growth and development of crop 

production by reducing photosynthesis and accelerating leaf senescence. Under unabated climate change, future global 

O3 concentrations are expected to increase in many regions, adding additional challenges to global agricultural 

production. Presently, few global process-based crop models consider the effects of O3 stress on crop growth. Here, 30 

we incorporated the effects of O3 stress on photosynthesis and leaf senescence into the Decision Support System for 

Agrotechnology Transfer (DSSAT) crop models for maize, rice, soybean, and wheat. The advanced models 

reproduced the reported yield declines from observed O3-dose field experiments and O3 exposure responses reported 

in the literature (O3 relative yield loss RMSE < 10% across all calibrated models). Simulated crop yields decreased as 

daily O3 concentrations increased above 25 ppb, with average yield losses of 0.16% to 0.82% (maize), 0.05% to 0.63% 35 

(rice), 0.36% to 0.96% (soybean), and 0.26% to 1.23% (wheat) per ppb O3 increase, depending on the cultivar O3 

sensitivity. Increased water deficit stress and elevated CO2 lessen the negative impact of elevated O3 on crop yield, 
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but potential yield gains from CO2 concentration increases may be counteracted by higher O3 concentrations in the 

future, a potentially important constraint to global change projections for the latest process-based crop models. The 

improved DSSAT models with O3 representation simulate the effects of O3 stress on crop growth and yield in 40 

interaction with other growth factors and can be run in the parallel DSSAT global gridded modeling framework for 

future studies on O3 impacts under climate change and air pollution scenarios across agroecosystems globally. 
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1 Introduction 45 

Surface or ground-level, ozone (O3) is a major air pollutant that causes adverse impacts on agricultural productivity 

worldwide (Mills et al., 2018b; Emberson et al., 2018; Tai et al., 2021). O3 is formed through photochemical reactions 

between incoming solar radiation and primary pollutants such as Nitrogen Oxides (NOx = NO + NO2), Volatile 

Organic Compounds (VOCs), Carbon Monoxide (CO), or Methane (CH4) across all areas of the globe (Cooper et al., 

2014; Simpson et al., 2014). Global O3 concentrations have increased 2-7% per decade in northern mid-latitude regions 50 

and 2-12% per decade in tropical regions since the mid-1990s (Ipcc, 2021; Arias et al., 2021). Future O3 concentrations 

are projected to continue increasing if O3 precursor emissions are not mitigated, i.e., following the shared socio-

economic pathways where regional rivalry leads to doubling of CO2 emissions by 2100 (SSP3-7.0) or where fossil 

fuel enabled growth leads to doubling of CO2 emissions by 2050 (SSP5-8.5) (Ipcc, 2021; Arias et al., 2021; Szopa et 

al., 2021; Griffiths et al., 2021). 55 

Crops exposed to elevated levels of O3 concentrations can experience reduced photosynthesis, accelerated senescence, 

foliar chlorosis and even necrosis from increased cumulative oxidative stress (Ainsworth, 2017). These negative 

effects lead to decreased productivity resulting in global yield losses between 2-16% for the four main staple crops: 

maize, rice, soybean, and wheat (Ainsworth, 2017; Schiferl and Heald, 2018; Emberson, 2020), with global annual 

economic damages of approximately $34 billion (Sampedro et al., 2020; Feng et al., 2022). Climate change may 60 

exacerbate the negative effects from elevated O3 concentrations because O3 concentrations are highest in summer 

months and the projected higher temperatures with more frequent heat waves may lead to a longer period of more 

active photochemical reactions (Zhang and Wang, 2016; Hou and Wu, 2016; Szopa et al., 2021). Elevated 

concentrations of atmospheric CO2 and increased periods of water deficit stress cause stomatal closure that can reduce 

crop O3 uptake (Khan and Soja, 2003; Biswas et al., 2013), but in turn potential yield gains associated with the CO2 65 

fertilization effect (Toreti et al., 2020; Jagermeyr et al., 2021) may be constrained by elevated O3. Therefore, it is 

important to evaluate net O3 effects for crop growth and consider the effects of O3 in global agricultural assessments 

examining future scenarios. 

Process-based crop simulation models have been used to evaluate the impacts of O3 on crop yields (Guarin et al., 

2019; Tai et al., 2021), but most global gridded process-based crop models are still unable to respond to O3 stress. 70 

Recently, the global Lund-Potsdam-Jena managed Land (LPJmL) and Joint UK Land Environment Simulator 
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(JULES) models were modified to include the effects of O3 stress on soybean and wheat growth (Schauberger et al., 

2019; Leung et al., 2020). Additionally, the Agricultural Model Intercomparison and Improvement Project (AgMIP; 

Rosenzweig et al. (2013)) Ozone Team has recently developed protocols for incorporating O3 stress into a wider body 

of crop models aiming to establish the first multi-model assessment of ozone impacts in agriculture at global level 75 

(Emberson et al., 2018). 

The aim of this study is to incorporate the effects of O3 concentrations into the stress response functions of the maize, 

rice, soybean, and wheat models within the established Decision Support System for Agrotechnology Transfer 

(DSSAT) v4.8.0 modeling platform (Jones et al., 2003; Hoogenboom et al., 2019), and consequently the parallel 

DSSAT (pDSSAT) v4.8.0 global gridded modeling platform that is used to run DSSAT in a global setup (Elliott et 80 

al., 2014), to simulate O3 effects on global crop development and yield for the four major staple crops. The 

observational data from the Free-air CO2 Enrichment (FACE) field experiments conducted in Champaign, Illinois, 

USA (Choquette et al., 2020; Betzelberger et al., 2012) and well-known O3 exposure relationships reported in the 

literature are used to develop and calibrate the model O3 response functions. Additionally, the observed interactions 

between O3, CO2, and water deficit stress are examined via sensitivity analyses conducted with the modified models. 85 

2 Materials and Methods 

2.1 Description of crop models 

The crop models within the pDSSAT parallel modeling environment are based on the existing crop models within the 

widely used DSSAT crop modeling platform (Jones et al., 2003; Hoogenboom et al., 2019) combined with the Center 

for Robust-Decision Making on Climate and Energy Policy (RDCEP) Parallel System for Integrating Impact Models 90 

and Sectors (pSIMS) framework (Elliott et al., 2014) to allow for global gridded process-based crop modeling on high 

performance computational systems. The O3 stress routines presented here are also applied in the standard DSSAT 

crop models and can be used for field level simulations and point-based testing in addition to the global-level modeling 

applications. 

The four DSSAT crop models used in this study are the Crop Environment Resource Synthesis (CERES) -Maize, 95 

CERES-Rice, Crop Growth Simulation (CROPGRO) -Soybean, and Nitrogen Wheat (NWheat) models that have been 

used in previous AgMIP crop model intercomparisons (Bassu et al., 2014; Li et al., 2015; Asseng et al., 2015; Kothari 

et al., 2022). The CERES-Maize and CERES-Rice models were previously used to estimate global ozone crop losses 

(Schiferl and Heald, 2018); however, their approach was based on the multiplication of the simulated global base 

production by the relative yield-O3 response functions to determine a response proxy. The approach used in this 100 

present study integrates daily process-based stress calculations to simulate daily crop growth and stress dynamics. 

Thus, the models are more applicable to a much broader range of scenarios given that they can combine daily stress 

interactions and can be used to scale across agroecosystems in a more robust way. 

2.2 O3 incorporation into the crop models 
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The incorporation of O3 effects into the DSSAT crop models followed the same methodology as the O3 incorporation 105 

into the DSSAT-NWheat crop model (Guarin et al., 2019), which was based on the incorporation of previous abiotic 

stress routines (Asseng et al., 2004). O3 response was added to the models via the inclusion of daily photosynthesis 

reduction and leaf senescence acceleration functions. Additionally, the interaction between O3 and water deficit stress 

and/or atmospheric CO2 concentrations was incorporated into the models since these combined interactions can 

mitigate impacts from O3 on crop production and vice-versa.  For example, water deficit stress that induces stomatal 110 

closure in turn limits O3 stress because of reduced aerosol uptake (Khan and Soja, 2003; Biswas et al., 2013). 

2.2.1 CERES-Maize and CERES-Rice models 

The effects of O3 were incorporated into the CERES-Maize and CERES-Rice models using similar methodology since 

these two models share similar code. O3 was added into the models using a photosynthesis reduction stress factor 

(FO3) following Eq. (1): 115 

𝐹𝑂3 = max (0.0, − (
𝐹𝑂𝑍1

100
) ∗ 𝑂𝑍𝑂𝑁7 + (1.0 + (

𝐹𝑂𝑍1

100
) ∗ 25.0)) ,     (1) 

where OZON7 is the daily mean 7-hour (M7, 9:00 – 15:59 hr) O3 concentration (ppb) and FOZ1 is the O3 stress 

parameter for photosynthesis calibrated for different O3 sensitivities of cultivars divided by a decimal correction factor 

of 100. The decimal correction factor ensures that the FOZ1 parameter value ranges between 0.0 and 1.0 in the model 

ecotype parameter file for comprehensible user input. A minimum M7 O3 threshold of 25 ppb was set as the reference 120 

value based on pre-industrial O3 concentrations and the United States National Crop Loss Assessment Network 

(NCLAN) studies indicating that O3 damage within crops occurs above this threshold (Heck et al., 1984; Lesser et al., 

1990; Feng and Kobayashi, 2009). When the daily M7 O3 concentration exceeds this threshold, photosynthesis is 

reduced by a factor between 0.0 to 1.0 (Eq. (1)) and leaf senescence is accelerated by a factor between 0.0 to 1.0 (Eq. 

(5)). The M7 O3 metric was chosen as the model input because it is the most readily available metric in the literature, 125 

and conversion functions exist to convert between M7 and AOT40, daily mean 12-hour (M12), or daily mean 24-hour 

(M24) O3 metrics (Osborne et al., 2016). 

Eq. (1) does not include the interaction of O3 stress with water deficit stress or elevated atmospheric CO2. To consider 

these combined interactions on crop growth (PRFO3), FO3 was modified using Eq. (2): 

𝑃𝑅𝐹𝑂3 = min (1.0, (
𝐹𝑂3∗𝑃𝐶𝑂2

𝑆𝑊𝐹𝐴𝐶
)) ,         (2) 130 

where PCO2 is the atmospheric CO2 effect on potential daily dry matter production and SWFAC is the water stress 

factor on photosynthesis (Jones and Kiniry, 1986; Ritchie et al., 1987; Jones et al., 2003). Since PCO2 is always greater 

than one, multiplying by the CO2 effect mitigates the reduction caused by FO3. Because SWFAC is a reduction factor 

between zero and one, dividing by this factor decreases the reduction from FO3 under increased water deficit stress 

conditions. 135 

The simulated daily biomass production (CARBO, g plant-1 day-1) within the models was calculated based on the 

existing photosynthesis stress factors with the addition of PRFO3 using Eq. (3) for maize and Eq. (4) for rice: 
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𝐶𝐴𝑅𝐵𝑂𝑚𝑎𝑖𝑧𝑒 = 𝑃𝐶𝐴𝑅𝐵 ∗ min(𝑃𝑅𝐹𝑇, 𝑆𝑊𝐹𝐴𝐶, 𝑁𝑆𝑇𝑅𝐸𝑆, 𝑃𝑆𝑇𝑅𝐸𝑆1, 𝐾𝑆𝑇𝑅𝐸𝑆, 𝑃𝑅𝐹𝑂3) ∗ 𝑆𝐿𝑃𝐹 ,  (3) 

𝐶𝐴𝑅𝐵𝑂𝑟𝑖𝑐𝑒 = 𝑃𝐶𝐴𝑅𝐵 ∗ min(𝑃𝑅𝐹𝑇, 𝑆𝑊𝐹𝐴𝐶, 𝑁𝑆𝑇𝑅𝐸𝑆, 𝑇𝑆𝐻𝑂𝐶𝐾, 𝑃𝑆𝑇𝑅𝐸𝑆1, 𝐾𝑆𝑇𝑅𝐸𝑆, 𝑃𝑅𝐹𝑂3) ∗ 𝑆𝐿𝑃𝐹 , (4) 

where PCARB is daily potential dry matter production of the crop accounting for light interception, radiation use 140 

efficiency, and the CO2 effect on photosynthesis (g plant-1), PRFT, SWFAC, NSTRES, TSHOCK (CERES-Rice only), 

PSTRES1, KSTRES, and PRFO3 are the temperature, soil water, Nitrogen, transplanting shock, Phosphorous, 

Potassium, and O3 stress factors on photosynthesis, respectively, and SLPF is the soil fertility factor (Jones and Kiniry, 

1986; Ritchie et al., 1987; Jones et al., 2003). 

 145 

Leaf senescence acceleration due to O3 stress (SLFO3) was added to the models using Eq. (5): 

𝑆𝐿𝐹𝑂3 = max (0.0, − (
𝑆𝐹𝑂𝑍1

1000
) ∗ 𝑂𝑍𝑂𝑁7 + (1.0 + (

𝑆𝐹𝑂𝑍1

1000
) ∗ 25.0)) ,     (5) 

where SFOZ1 is the O3 stress parameter for leaf senescence calibrated for different O3 sensitivities of cultivars divided 

by a decimal correction factor of 1000 (to ensure the SFOZ1 parameter value ranges between 0.0 and 1.0 in the model 

ecotype file). The SLFO3 factor was then included in the existing daily rate of leaf area senescence function (PLAS, 150 

cm2 day-1) within the models as shown in Eq. (6) for maize and Eq. (7) for rice: 

𝑃𝐿𝐴𝑆𝑚𝑎𝑖𝑧𝑒 = (𝑃𝐿𝐴 − 𝑆𝐸𝑁𝐿𝐴) ∗ (1 − min(𝑆𝐿𝐹𝑊, 𝑆𝐿𝐹𝐶, 𝑆𝐿𝐹𝑇, 𝑆𝐿𝐹𝑁, 𝑆𝐿𝐹𝑃, 𝑆𝐿𝐹𝑂3)) ,   (6) 

𝑃𝐿𝐴𝑆𝑟𝑖𝑐𝑒 = (𝑃𝐿𝐴 − 𝑆𝐸𝑁𝐿𝐴) ∗ (1 − min(𝑆𝐿𝐹𝑊, 𝑆𝐿𝐹𝐶, 𝑆𝐿𝐹𝑇, 𝑆𝐿𝐹𝑁, 𝑆𝐿𝐹𝑃, 𝑆𝐿𝐹𝐾, 𝑆𝐿𝐹𝑂3)) ,  (7) 

where PLA is daily plant leaf area (cm2 plant-1), SENLA is daily normal leaf senescence (cm2 plant-1), and SLFW, 

SLFC, SLFT, SLFN, SLFP, SLFK, and SLFO3 are the leaf senescence stress factors due to water, light competition, 155 

temperature, Nitrogen, Phosphorous, Potassium (CERES-Rice only), and O3 stress, respectively (Jones and Kiniry, 

1986; Ritchie et al., 1987; Jones et al., 2003). 

2.2.2 CROPGRO-Soybean model 

The effects of O3 were incorporated into the CROPGRO-Soybean model using a similar approach as described in the 

CERES crop models. O3 was added into the model using the same FO3 and PRFO3 factors as in Eq. (1) and Eq. (2) 160 

(for Eq. (2), PCO2 is called PRATIO in CROPGRO-Soybean). However, CROPGRO-Soybean calculates daily 

photosynthesis differently than the other models and has two different photosynthesis calculation options, leaf or 

canopy photosynthesis (Wilkerson et al., 1983; Boote and Pickering, 1994; Jones et al., 2003). This study focuses on 

the default leaf photosynthesis calculation option (which was modified to read in the CO2 ratio effect for the PRFO3 

interaction). The daily gross photosynthesis (PG, g [CH2O] m-2 day-1) within the model was calculated based on the 165 

limiting photosynthesis stress factors using Eq. (8) for leaf photosynthesis and Eq. (9) for canopy photosynthesis: 

𝑃𝐺𝑙𝑒𝑎𝑓 = (
𝑃𝐺𝐷𝐴𝑌

44.0
∗ 30.0 ∗ 𝑆𝐿𝑃𝐹) ∗ min( 𝑆𝑊𝐹𝐴𝐶, 𝑃𝑅𝐹𝑂3) ∗ 𝑃𝑆𝑇𝑅𝐸𝑆1 ,    (8) 

𝑃𝐺𝑐𝑎𝑛𝑜𝑝𝑦 = 𝑃𝑇𝑆𝑀𝐴𝑋 ∗ 𝑆𝐿𝑃𝐹 ∗ 𝑃𝐺𝐹𝐴𝐶 ∗ 𝑇𝑃𝐺𝐹𝐴𝐶 ∗ 𝐸𝐹𝐴𝐶 ∗ 𝑃𝐺𝑆𝐿𝑊 ∗ 𝑃𝑅𝐴𝑇𝐼𝑂 ∗ 𝑃𝐺𝐿𝐹𝑀𝑋 ∗ min( 𝑆𝑊𝐹𝐴𝐶, 𝑃𝑅𝐹𝑂3) , (9) 
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where PGDAY is daily potential photosynthesis (g [CH2O] m-2 day-1), SWFAC, PSTRES1, and PRFO3 are the soil 

water, Phosphorous, and O3 stress factors on photosynthesis, respectively. PTSMAX is the potential amount of CH2O 170 

that can be produced for the full canopy (g [CH2O] m-2 day-1), PGFAC is a factor to compute daily PG as a function of 

leaf area index, TPGFAC is a reduction factor due to less than optimal daytime temperature, EFAC is the effect of 

Nitrogen and Phosphorous stress on daily canopy photosynthesis, PGSLW is the relative effect of leaf thickness on 

daily canopy photosynthesis, and PRATIO is the relative effect of atmospheric CO2 on daily canopy photosynthesis 

(Boote and Pickering, 1994). 175 

Leaf senescence acceleration due to O3 stress (SLFO3) was added to CROPGRO-Soybean using Eq. (10): 

𝑆𝐿𝐹𝑂3 = max (0.0, (
𝑆𝐹𝑂𝑍1

1000
) ∗ 𝑂𝑍𝑂𝑁7 − ((

𝑆𝐹𝑂𝑍1

1000
) ∗ 25.0) ∗ 𝑊𝑇𝐿𝐹) ,     (10) 

where WTLF is the dry mass of leaf tissue (gleaf m-2). The CROPGRO leaf senescence routine is based on existing 

WTLF using a different approach than the CERES leaf senescence reduction factor, so SLFO3 has the opposite trend 

when compared to the CERES model calculation (Fig. 1). The SLFO3 factor was then included in the existing daily 180 

defoliation due to daily leaf senescence (SLDOT, g m-2 day-1) calculation within the model as shown in Eq. (11): 

𝑆𝐿𝐷𝑂𝑇 = 𝑆𝐿𝐷𝑂𝑇𝑛 + max(𝑆𝐿𝑁𝐷𝑂𝑇, 𝑆𝐿𝐹𝑂3) ,       (11) 

where SLDOTn is the natural daily leaf senescence and SLNDOT and SLFO3 are the daily leaf senescence due to 

water and O3 stress (g m-2 day-1), respectively. 

2.2.3 DSSAT-NWheat model 185 

The incorporation of O3 into the NWheat crop model was described and validated in Guarin et al., (2019) and was 

used as the reference for the maize, rice, and soybean models. The approach used the same FO3 and PRFO3 equations 

as in Eq. (1) and (2) (note that the NWheat equations were simplified from Guarin et al., (2019) by the decimal 

correction factor and single FOZ1 parameter as in Eq. (1) for consistency among all models) and a similar SLFO3 

shown in Eq. (12): 190 

𝑆𝐿𝐹𝑂3 = (
𝑆𝐹𝑂𝑍1

10
) ∗ 𝑂𝑍𝑂𝑁7 + (1.0 − (

𝑆𝐹𝑂𝑍1

10
∗ 25.0)) .      (12) 

The O3 effect for the different cultivar sensitivities is controlled by the FOZ1 and SFOZ1 parameters, as in the other 

models (the SFOZ1 parameter is divided by 10 to ensure that the value ranges between 0.0 and 1.0 in the model ecotype 

file). The decimal correction factors vary between the crop models because the different models calculate stresses 

using different magnitudes. 195 

The FO3 and SLFO3 responses calculated over increasing M7 O3 concentrations are illustrated for each model in Fig. 

1 using the parameter values for different O3 cultivar classifications shown in Table 1. The FOZ1 and SFOZ1 parameter 

values for all models were determined from the cultivar sensitivities observed in the field experiments (section 2.3) 

and the sensitivities derived from the O3 exposure relationships from the literature (section 2.5). 

 200 
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Figure 1: Functions for the O3 photosynthesis reduction factor without interaction of water deficit stress and CO2 

fertilization effect (FO3) (first column) and the O3 leaf senescence acceleration stress factor (SLFO3) (second column) under 

increasing mean 7-hour (M7) O3 concentrations for the (a, b) CERES-Maize, (c, d) CERES-Rice, (e, f) CROPGRO-Soybean, 

and (g, h) NWheat models. Each figure shows three different O3 sensitivity cultivar classifications derived from the O3 205 
exposure-yield responses from the literature: tolerant (blue solid line), intermediate (gold short-dash line), and sensitive 

(magenta long-dash line). SLFO3 for CROPGRO-Soybean (Eq. (10)) shown with leaf tissue dry mass (WTLF) of 1 g m-2 for 

simplicity. Steeper slopes indicate a higher sensitivity to O3 for both FO3 and SLFO3. Table 1 shows the parameters used in 

the equations for each classification of O3 sensitivity (Eq. (1), (5), (10), and (12)). 
 210 
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Table 1: Summary of the O3 photosynthesis stress parameters (FOZ1) and the O3 leaf senescence stress parameters 

(SFOZ1) used in the FO3 and SLFO3 calculations (Eq. (1), (5), (10), and (12)) for the four DSSAT models under three 

different O3 sensitivity cultivar classifications. The CERES and CROPGRO parameter values were determined from the 

O3 exposure-yield responses in the literature (Fig. S2, Fig. S3). NWheat parameter values were from Guarin et al., (2019) 

and confirmed with the literature. 215 

O3 sensitivity cultivar 

classifications 

CERES-Maize CERES-Rice CROPGRO-Soybean NWheat 

FOZ1 SFOZ1 FOZ1 SFOZ1 FOZ1 SFOZ1 FOZ1 SFOZ1 

Tolerant 0.15 0.10 0.10 0.08 0.15 0.15 0.06 0.08 

Intermediate 0.30 0.20 0.30 0.10 0.25 0.25 0.10 0.25 

Sensitive 0.60 0.40 0.65 0.12 0.40 0.35 0.50 0.40 

 

2.3 Observed O3 exposure field experiments 

In general, detailed field experiments of crop growth under elevated O3 conditions for different crops are scarce and 

limit the granularity of model calibration.  All field experiments examined in this study used dominant management 

conditions to limit other stresses besides O3, e.g., water deficit or N stress, so the simulations assumed negligible 220 

outside stresses. For each crop, the DSSAT phenological and growth parameters were calibrated based on the observed 

control treatment with minimal O3 stress to ensure that the models were functioning properly regardless of O3 impact. 

Then, the O3 response parameters, FOZ1 and SFOZ1, were calibrated based on the observed O3 exposure-yield 

response between the elevated O3 treatments and the control to simulate the O3 effect. 

For maize, the FACE experiment conducted at Champaign, Illinois, USA (40.03 °N, 88.27 °W, 230 m elevation) in 225 

2018 was used for calibrating the CERES-Maize model (Choquette et al., 2020). The maize FACE experiment 

consisted of six cultivars grown under an ambient and an elevated O3 treatment with n = 4 (Table 2). Since there was 

only one year of data, the model was validated against the O3 exposure-relative yield response functions from the 

literature (section 2.5). The daily maximum temperature (TMAX), minimum temperature (TMIN), and precipitation 

(RAIN) weather data were collected from the nearby National Oceanic and Atmospheric Administration (NOAA) 230 

Willard airport weather station and the daily incoming solar radiation (SRAD) was collected from the National 

Aeronautics and Space Administration (NASA) Prediction Of Worldwide Energy Resources (POWER) database 

(https://power.larc.nasa.gov/). The soil consisted of the Drummer silty clay loam soil series, and the soil parameters 

for this series were obtained from the United States Department of Agriculture (USDA) Natural Resources 

Conservation Service (NRCS) Web Soil Survey database (Table S1) (NRCS, 2023). The cultivars were planted in two 235 

3.5 m rows with a row spacing of 0.76 m on May 13, 2018 (Choquette et al., 2020). The hourly O3 fumigation (from 

10:00 to 18:00) began on May 25, 2018 and ended on August 14, 2018 and was used to calculate the daily M7 O3 

concentrations. The cultivar plots were harvested at maturity on September 21, 2018. N and water deficit stress were 

reported to be non-limiting, so the simulations used the non-limiting N setting within the model and the simulated 

water stress was confirmed to be non-limiting with the provided rainfall. The DSSAT cultivar parameters were 240 

calibrated for phenology and growth under negligible stress conditions using the treatment with the ambient O3 

concentration (38 ppb) for each cultivar. After the phenology and growth cultivar parameters were calibrated, the 

FOZ1 and SFOZ1 O3 response parameters were calibrated using the yield response from the elevated O3 concentration 

treatments (Fig. S1 (a)). 

https://power.larc.nasa.gov/
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For soybean, data from the FACE experiment conducted at the same location in Champaign, Illinois, USA (40.03 °N, 245 

88.27 °W, 230 m elevation) in 2009 and 2010 was used for model testing (Betzelberger et al., 2012). The 2009 data 

was used for model calibration and the 2010 data was used for model validation. These data were previously used to 

incorporate O3 effects on leaf photosynthesis into the JULES model (Leung et al., 2020). The SoyFACE experiment 

consisted of seven soybean cultivars grown under nine O3 treatments with different target concentrations (Table 2). 

The hourly O3 fumigation data (plots fumigated for 8 to 9 hours daily except when leaves were wet) for each treatment 250 

was recorded in situ and was used to calculate the daily M7 O3 concentrations (Betzelberger et al., 2012). The weather 

data was collected from the same sources as used in the maize experiment (NOAA and NASA POWER), and the soil 

consisted of either the Drummer silty clay loam or the Flanagan silt loam series which were obtained from the USDA 

NRCS Web Soil Survey database (Table S1). The initial soil conditions of the simulations were set at 95% available 

water content and 100 kg N ha-1 to minimize water and N stress. The cultivars were planted in plots eight rows wide 255 

and 5.4 m long, with a row spacing of 0.38 m, on June 9, 2009 and May 27, 2010. The O3 fumigation started on June 

29, 2009 and June 6, 2010, and ended on September 27, 2009 and September 17, 2010. The cultivar plots were 

harvested at maturity on October 20, 2009 and September 30, 2010. For each specified cultivar maturity group 

(Betzelberger et al., 2012), the corresponding default DSSAT maturity group parameters were used as reference and 

then calibrated for phenology and growth under negligible stress using the treatment with the ambient O3 concentration 260 

(37 ppb). After the phenology and growth cultivar parameters were calibrated, the FOZ1 and SFOZ1 O3 response 

parameters were calibrated using the yield response from the elevated O3 concentration treatments (Fig. S1 (b)). The 

parameters for both maize and soybean were calibrated using the using the one-factor-at-at-time method (Morris, 

1991) until the best fit was found for the phenology, aboveground biomass and yield, and relative yield loss for each 

cultivar across all O3 treatments. 265 

 

Table 2: O3 fumigation target concentration and average mean 7-hour (M7, 9:00 – 15:59 hr) O3 concentrations for the 

2018 maize FACE experiment (Choquette et al., 2020) and the 2009 and 2010 soybean SoyFACE experiments 

(Betzelberger et al., 2012). 

Crop experiment O3 fumigation target concentration 

(ppb) 

Average M7 O3 concentration 

(ppb) 

Maize 2018 Ambient 38 

 100 77 

Soybean 2009 Ambient 37 

 40 39 

 55 47 

 70 57 

 85 61 

 110 75 

 130 96 

 160 102 

 200 126 

Soybean 2010 Ambient 37 

 55 46 

 70 52 

 85 59 

 110 69 
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 130 76 

 150 70 

 170 84 

 190 84 

 270 

For rice, there was no O3 field experiment data readily available, thus a representative rice-producing location in the 

main North American rice-producing area at Stuttgart, Arkansas, USA (34.50 °N, 91.55 °W, 60 m elevation) (USDA 

NASS, 2010) was simulated with the default DSSAT North American rice cultivar. 2009 was selected for consistency 

with the soybean simulations. The weather data was collected from the NASA POWER database and the dominant 

soil series for Arkansas County, Dewitt silt loam, was determined from the USDA NRCS Web Soil Survey database 275 

(Table S1) (NRCS, 2023). The initial soil conditions of the simulations were set at 100% available water content and 

100 kg N ha-1 to ensure negligible water and N stress. Four 50 kg N ha-1 fertilizer applications were applied throughout 

the season to ensure negligible N stress in the simulations. The cultivar was planted on April 20, 2009 based on the 

most active planting dates recorded for Arkansas in the USDA Field Crops handbook (USDA NASS, 2010), and the 

harvest date was automatically calculated based on when the model simulations reached physiological maturity. The 280 

default DSSAT North American rice cultivar parameters were used, and the FOZ1 and SFOZ1 O3 response parameters 

were calibrated using the yield response from the elevated O3 exposure functions from the literature (section 2.5). 

For wheat, the NWheat model was calibrated and validated using an air exclusion system O3 exposure wheat field 

experiment conducted in Wake County, North Carolina, USA (35.73 °N, 78.68 °W, 116 m elevation) and is described 

in detail in Guarin et al., (2019). 285 

2.4 Sensitivity analysis of O3 equations and parameters 

A sensitivity analysis for maize, rice, and soybean was conducted using simulations of nine constant daily M7 O3 

concentrations of 25, 40, 50, 60, 70, 80, 90, 100, and 120 ppb with different FOZ1 and SFOZ1 parameter values under 

combinations between normal or 50% reduced rainfall and 350 ppm or 550 ppm CO2 concentrations to confirm that 

the O3 modifications and stress interactions within the models were behaving as expected. The simulated locations 290 

and management setup for each crop were the same as the field experiments described above (section 2.3). For wheat, 

the sensitivity analysis was based on the 1993 FACE experiment conducted in Maricopa, Arizona (33.06 °N, 111.98 

°W, 361 m elevation) (Hunsaker et al., 1996; Kimball et al., 1999; Kimball et al., 2017). The simulation setup for the 

Maricopa FACE experiment used the same 9 M7 O3 concentrations with either a “Wet” irrigation schedule (total of 

629 mm sub-surface drip irrigation at 0.23 m from planting to harvest) or a “Dry” irrigation schedule (total of 347 mm 295 

sub-surface drip irrigation at 0.23 m from planting to harvest) under 350 ppm and 550 ppm CO2 concentrations to 

examine the O3-CO2-water interactions as detailed in Guarin et al., (2019). For all crops, each O3 parameter was first 

tested independently to examine the individual effects on photosynthesis and leaf senescence, i.e., when examining 

FOZ1, SFOZ1 was set to zero and vice versa. 

2.5 Observed O3 exposure relationships based on the literature 300 
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To confirm that the models were able to reproduce the observed relative yield loss due to O3 stress, the simulated 

results were compared to well-known literature reports of O3 exposure metrics and yield response for each crop using 

the M7 O3 concentrations. The simulated locations and management conditions were the same experimental conditions 

as described above for each crop. For each crop, different O3 classification of cultivar sensitivities were defined based 

on more severe response to O3 stress, i.e., tolerant, intermediate, and sensitive. These classifications of cultivar O3 305 

sensitivity were determined using the extensive literature review data from Mills et al. (2018a) combined with the 

maize and soybean FACE data for a total of 9 maize cultivars, 50 rice cultivars, 49 soybean cultivars, and 23 wheat 

cultivars. The literature review consisted of O3 exposure experiments conducted in open-top chambers, experimental 

fields, or greenhouses and included the experiments that contributed to the widely applied Weibull O3 response 

function (Heck et al., 1984; Adams et al., 1989; Lesser et al., 1990; Wang and Mauzerall, 2004; Tai et al., 2021; Feng 310 

et al., 2022). The selection criteria of the data are described in detail in Mills et al. (2018a). 

The yield data from the literature experiments were standardized as performed by Mills et al. (2018a) and described 

by Osborne et al. (2016). For each experiment, linear regression was used to determine the yield at 25 ppb M7 O3 and 

this value was the reference for calculating the relative yield, i.e., relative yield was calculated as the actual observed 

yield divided by the yield at 25 ppb O3. The 25 ppb M7 O3 threshold was chosen for proper comparison to the model 315 

results. After calculating the yield relative to 25 ppb M7 O3, a linear regression for each cultivar was performed using 

R statistical software, v4.3.0, (R Core Team, 2023; Wickham, 2016; Wickham et al., 2023) to determine the O3 

exposure response (Fig. S2). The cultivar O3 exposure responses were then classified into three evenly distributed 

quantiles, 0%-33%, 33%-66%, and 66%-100%, chosen to represent the three O3 sensitivity classifications: sensitive, 

intermediate, and tolerant, respectively (Fig. S3). These data were used to determine the model FOZ1 and SFOZ1 320 

values of each of the O3 cultivar classifications shown in Table 1 to evaluate if the models could accurately reproduce 

the O3 exposure-yield responses. 

3 Results 

3.1 Calibration of crop models and simulated relative yield loss against O3 exposure field experiments 

The simulated phenology (anthesis [flowering] and physiological maturity dates), biomass, yield, and relative yield 325 

due to elevated O3 stress from the maize and soybean experiments were compared to the field observations to 

determine performance of the O3 equations within the models (Tables 3 – 5, Fig. 2 and 3, Fig. S1). The relative yield 

due to O3 stress was calculated by dividing the yield of each corresponding O3 treatment over the control yield, i.e., 

the baseline O3 treatment, and multiplying by 100 to convert to a percentage. The relative yield loss was the difference 

between 100% and the calculated relative yield. There was no O3 field experiment data for rice, so the rice O3 330 

parameter values and performance were compared to the O3 exposure-yield response functions from the literature 

(section 3.3). 

The maize and soybean cultivars had different sensitivities to O3 stress which were accounted for by using different 

FOZ1 and SFOZ1 values (Fig. S1). The calibrated CERES-Maize and CROPGRO-Soybean models simulated the 

physiological maturity within four days of the observations (Table 5; Root Mean Square Error (RMSE) = 0.0 days for 335 
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maize 2018, 3.70 days for soybean 2009, and 3.30 days for soybean 2010). The calibrated CERES-Maize model was 

able to reproduce the yield and relative yield loss very well across all six cultivars (Fig. 2; RMSE = 107 kg ha-1 and 

2%; r2 = 0.99 and 0.99, respectively). This ideal model performance was because only two O3 treatments were 

available for each maize cultivar which simplified the calibration process (Fig. S1 (a)). The CROPGRO-Soybean 

model was able to reproduce the biomass, yield, and relative yield loss due to O3 stress well for the calibration year, 340 

2009 (Fig. 3 (a), (b), (c); RMSE = 1179 kg ha-1, 328 kg ha-1, and 10%; r2 = 0.81, 0.88, and 0.85), and acceptably for 

the evaluation year, 2010, across all seven cultivars (Fig. 3 (d), (e), (f); RMSE = 3339 kg ha-1, 1291 kg ha-1, and 16%; 

r2 = 0.59, 0.71, and 0.66). The model overestimated biomass and yield for all cultivars and treatments in 2010, which 

was likely the result of a factor outside of the model setup that mitigated the increased incoming solar radiation when 

compared to 2009 (section 4.3). The calibration and evaluation for the NWheat model was conducted and validated 345 

in Guarin et al. (2019), where the model reproduced the observed relative yield due to O3 stress with a Normalized 

Root Mean Square Error (NRMSE) of 23% and an r2 of 0.94, 0.91, and 0.88 for the tolerant, intermediate, and sensitive 

O3 sensitive cultivar classifications. 

 

Table 3: CERES-Maize cultivar and O3 parameters used to simulate the six maize cultivars from the 2018 FACE field 350 
experiment (Choquette et al., 2020). P1 = Thermal time from seedling emergence to the end of the juvenile phase 

(expressed in degree days above a base temperature of 8 °C), P2 = Extent to which daily development is delayed for each 

hour increase in photoperiod above the longest photoperiod at which development proceeds at a maximum rate (which is 

considered to be 12.5 hours), P5 = Thermal time from silking to physiological maturity (expressed in degree days above a 

base temperature of 8 °C), G2 = Maximum possible number of kernels per plant, G3 = Kernel filling rate during the 355 
linear grain filling stage and under optimum conditions (mg day-1), PHINT = Phylochron interval, i.e., the interval in 

thermal time (degree days) between successive leaf tip appearances, FOZ1 = O3 effect on photosynthesis, and SFOZ1 = O3 

effect on leaf senescence. 

Cultivar P1 P2 P5 G2 G3 PHINT FOZ1 SFOZ1 

B73 x Hp301 110 0.5 700 700 8.5 38.9 0.40 0.20 

B73_x_Mo17 110 0.5 700 700 5.9 38.9 0.20 0.15 

B73_x_NC338 110 0.5 700 700 7.8 38.9 0.65 0.40 

Mo17 x Hp301 110 0.5 700 700 5.5 38.9 0.10 0.10 

Mo17_x_NC338 110 0.5 700 700 8.5 38.9 0.50 0.30 

NC338_x_Hp301 110 0.5 700 700 5.1 38.9 0.10 0.10 
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Table 5: Observed and simulated anthesis day and maturity day for the six maize cultivars from the 2018 FACE 

experiment (Choquette et al., 2020) and the seven soybean cultivars from the 2009 and 2010 soybean SoyFACE 

experiments (Betzelberger et al., 2012). The observed maturity dates were estimated from the single reported harvest date 

for all cultivars but there may have been minor variation between the different cultivars. Observed anthesis was not 365 
available for soybean. 

Crop experiment Cultivar Observed anthesis 

(dap) 

Simulated anthesis 

(dap) 

Observed maturity 

(dap) 

Simulated maturity 

(dap) 

Maize 2018 B73 x Hp301 48 48 97 97 

 B73 x Mo17 48 48 97 97 

 B73_x_NC338 48 48 97 97 

 Mo17 x Hp301 48 48 97 97 

 Mo17 x NC338 48 48 97 97 

 NC338 x Hp301 48 48 97 97 

Soybean 2009 Pioneer93B15  52 133 131 

 Dwight  48 133 126 

 HS93-4118  53 133 133 

 IA-3010  50 133 128 

 LN97-15076  55 133 137 

 Loda  52 133 132 

 Pana  54 133 134 

Soybean 2010 Pioneer93B15  48 126 129 

 Dwight  44 126 125 

 HS93-4118  48 126 129 

 IA-3010  47 126 126 

 LN97-15076  50 126 131 

 Loda  48 126 130 

 Pana  51 126 131 

 

 

Figure 2: CERES-Maize model calibration of the 2018 FACE O3 field experiment conducted in Champaign, Illinois, USA 

(Choquette et al., 2020). Simulated and observed (a) yield and (b) relative yield due to elevated O3 stress (compared to the 370 
ambient control treatment) for six maize cultivars (colored points). The root-mean-square error (RMSE) and coefficient 

of determination (r2) show the model performance across all cultivars. Solid black line shows 1:1 comparison and dotted 

black line shows linear fit across all cultivars. For maize only one year of experimental data was available for calibration 

and evaluation. The model cultivar parameters are shown in Table 3. 
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 375 

Figure 3: CROPGRO-Soybean model performance and evaluation of the SoyFACE O3 field experiment conducted in 

Champaign, Illinois, USA (Betzelberger et al., 2012). Simulated and observed (a, d) above-ground biomass, (b, e) yield, 

and (c, f) relative yield in response to the nine progressive O3 increasing treatments (Table 2) for seven soybean cultivars 

(colored points). Relative yield is compared to the ambient control treatment within each year. The 2009 SoyFACE field 

experiment was used for model calibration (a, b, c), and the 2010 SoyFACE field experiment was used for model 380 
evaluation (d, e, f). The root-mean-square error (RMSE) and coefficient of determination (r2) show the model 

performance across all cultivars. Solid black line shows 1:1 comparison and dotted black line shows linear fit across all 

cultivars. The model cultivar parameters are shown in Table 4. 

3.2 Sensitivity analysis and combined effects of O3, CO2, and water deficit stress on yields 

The simulated relative yield losses due to O3 stress increased for all crops as the M7 O3 concentrations increased above 385 

the 25 ppb threshold when examining the photosynthesis and leaf senescence responses independently, as expected 

(Figs. 4 – 7). The simulated actual yields for all crops are shown in the Supplementary Tables S2 – S9. Wheat was the 

most sensitive crop to O3 stress of the four crops examined (compare slopes in Figs. 4 – 7 (a) and (b)) which agrees 

with previous literature (Mills et al., 2018a). For each model, simulations using a FOZ1 or SFOZ1 example value of 

0.5 were examined in more detail to illustrate the O3-CO2-water interactions (Figs. 4 – 7 (c) and (d), respectively). For 390 

all crops, the Dry/reduced rainfall and low CO2 treatment produced the lowest yields while the Wet/normal rainfall 

and high CO2 produced the highest yields (Tables S2 – S9). The simulated O3 effect was larger when water was non-

limiting, i.e., the higher rainfall and irrigated treatments experienced larger losses due to O3 stress because of increased 

stomatal uptake. The simulated O3 effect was reduced under the higher CO2 concentrations, thus capturing the 

responses from stomatal closure and the photosynthetic benefits from the CO2 fertilization effect. 395 
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Figure 4: Sensitivity analysis using the CERES-Maize model to simulate relative yield due to elevated O3 stress (relative to 

25 ppb M7 O3) for a range of (a) the photosynthesis O3 stress parameter (FOZ1) and (b) the leaf senescence O3 stress 

parameter (SFOZ1) values under the normal rainfall and 350 ppm CO2 scenario, and an example of (c) FOZ1 and (d) 

SFOZ1 set at 0.5 under the 50% reduced rainfall and 350 ppm CO2 (solid red line), normal rainfall and 350 ppm CO2 400 
(solid black line), 50% less rainfall and 550 ppm CO2 (dashed red line), and normal rainfall and 550 CO2 (dashed black 

line) scenarios. The Champaign, Illinois, USA 2018 FACE weather, soil, and dominant management conditions were used 

for the reference location. Each O3 parameter was tested independently, i.e., when examining FOZ1, SFOZ1 was set to 

zero and vice versa. The simulated actual yields are shown in Tables S2 and S3. 
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 405 

Figure 5: Sensitivity analysis using the CERES-Rice model to simulate relative yield due to elevated O3 stress for a range 

of (a) FOZ1 and (b) SFOZ1 values under the normal rainfall and 350 ppm CO2 scenario, and an example of (c) FOZ1 and 

(d) SFOZ1 set at 0.5 under the 50% reduced rainfall and 350 ppm CO2 (solid red line), normal rainfall and 350 ppm CO2 

(solid black line), 50% less rainfall and 550 ppm CO2 (dashed red line), and normal rainfall and 550 CO2 (dashed black 

line) scenarios. The Stuttgart, Arkansas, USA 2009 weather, soil, and dominant management conditions were used for the 410 
reference location. Each O3 parameter was tested independently, i.e., when examining FOZ1, SFOZ1 was set to zero and 

vice versa. The simulated actual yields are shown in Tables S4 and S5. 
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Figure 6: Sensitivity analysis using the CROPGRO-Soybean model to simulate relative yield due to elevated O3 stress for 

a range of (a) FOZ1 and (b) SFOZ1 values under the normal rainfall and 350 ppm CO2 scenario, and an example of (c) 415 
FOZ1 and (d) SFOZ1 set at 0.5 under the 50% reduced rainfall and 350 ppm CO2 (solid red line), normal rainfall and 350 

ppm CO2 (solid black line), 50% less rainfall and 550 ppm CO2 (dashed red line), and normal rainfall and 550 CO2 

(dashed black line) scenarios. The Champaign, Illinois, USA 2009 SoyFACE weather, soil, and dominant management 

conditions were used for the reference location. Each O3 parameter was tested independently, i.e., when examining FOZ1, 

SFOZ1 was set to zero and vice versa. The simulated actual yields are shown in Tables S6 and S7. Figure S6 shows the 420 
relative biomass loss corresponding to SFOZ1 (d) to explain the inverted CO2 effect under the 50% rainfall treatment. 
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Figure 7: Sensitivity analysis using the NWheat model to simulate relative yield due to elevated O3 stress for a range of (a) 

FOZ1 and (b) SFOZ1 values under the “Wet” irrigation and 350 ppm CO2 scenario, and an example of (c) FOZ1 and (d) 

SFOZ1 set at 0.5 under the “Dry” irrigation and 350 ppm CO2 (solid red line), “Wet” irrigation and 350 ppm CO2 (solid 425 
black line), “Dry” irrigation and 550 ppm CO2 (dashed red line), and “Wet” irrigation and 550 CO2 (dashed black line) 

scenarios. The Maricopa, Arizona, USA 1993 FACE weather, soil, and management conditions were used for the 

reference location (Kimball et al., 1999; Guarin et al., 2019). Each O3 parameter was tested independently, i.e., when 

examining FOZ1, SFOZ1 was set to zero and vice versa. The simulated actual yields are shown in Tables S8 and S9. 

 430 

3.3 Simulated relative yield loss compared to O3 relationships in the literature 

For all crops, the literature showed a large range of relative yield losses due to O3 stress caused by different cultivar 

O3 sensitivities (Fig. S2). Wheat was the most sensitive crop to O3 stress with an average yield loss of 0.70% ± 0.39 

(mean ± SD) per ppb M7 O3 increase above 25 ppb, followed by soybean, maize, and then rice (average yield losses 

of 0.60% ± 0.39, 0.39% ± 0.26, and 0.32% ± 0.37 per ppb M7 O3 increase above 25 ppb, respectively) (average of 435 

slopes in Table S10). To encompass the high variability of yield losses, the cultivars were classified into the O3 

tolerant, intermediate, and sensitive cultivar O3 sensitivities (Fig. S3). Since the cultivar sensitivities were not 

originally specified in the literature, the FOZ1 and SFOZ1 parameters used in the models were adjusted to provide the 

best fit across the O3 exposure responses (Table 1). Overall, the models reproduced the simulated O3 exposure 

relationships from the literature well; the RMSE for maize, rice, soybean, and wheat across all three O3 exposure 440 

sensitivities were 6.6%, 7.8%, 4.0%, and 5.4%, respectively (Fig. 8). The models performed better (lower RMSE) for 

the O3 tolerant and O3 intermediate cultivar sensitivities compared to the O3 sensitive cultivar sensitivity, but all 
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models explained the variance well (r2 > 0.96 across all O3 sensitivities). This suggests that different combinations of 

FOZ1 and SFOZ1 can be calibrated for specific observations to emulate the variation in different O3 exposure 

responses. 445 

 

 

Figure 8: Simulated relative yield due to O3 stress (solid lines) compared to the O3 exposure relationships (dotted lines) 

from the literature data (symbols) for the (a) CERES-Maize, (b) CERES-Rice, (c) CROPGRO-Soybean, and (d) NWheat 

models. The calculated relative yield from the well-known Weibull O3 response functions (dashed black lines, equations 450 
listed in Table S11) are based on the US NCLAN network O3 exposure field experiments conducted between the 1960s to 

1980s (Adams et al., 1989; Lesser et al., 1990; Wang and Mauzerall, 2004; Tai et al., 2021). The O3 exposure-yield 

response linear fits of the three O3 sensitivities: tolerant (blue), intermediate (gold), and sensitive (magenta) are given in 

Figure S3. The cultivars were classified by grouping the cultivar O3 exposure-yield response (Fig. S2) into three evenly 

distributed quantiles: 66%-100%, 33%-66%, and 0%-33%, respectively. The O3 sensitivities determined for each cultivar 455 
are listed in Table S10.  The simulated results for the crop models use the FOZ1 and SFOZ1 values from Table 1. For each 

model, the same weather, soil, and dominant management conditions as in the normal rainfall and 350 ppm CO2 
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treatment of the sensitivity analysis were used as reference (the O3 response functions from the literature included O3 

field experiments conducted when the atmospheric CO2 concentration was ~350 ppm). The literature data consists of the 

relative yields (scaled to 25 ppb M7 O3) of the cultivars examined in the Mills et al. (2018a) literature review combined 460 
with the maize and soybean cultivars used in this study for a total of 9 maize cultivars, 50 rice cultivars, 49 soybean 

cultivars, and 23 wheat cultivars (listed in Table S10). For the O3 sensitivity of each crop, the root-mean-square error 

(RMSE) and coefficient of determination (r2) show the crop model performance (RMSEsim) and the Weibull response 

function performance (RMSEweibull) compared to the linear fit of the O3 exposure literature data (text color corresponds 

to O3 sensitivity). The color shaded area shows the standard error for the linear fit of the literature data for each of the 465 
cultivar O3 sensitivities. 

4 Discussion 

4.1 Simulating O3 damage on crop yields 

The measured yield losses for the maize FACE experiment were between 5% to 40% for the M7 O3 concentrations 

when increasing from the ambient concentration (38 ppb) to the elevated O3 treatment (77 ppb), a yield loss of 0.14% 470 

to 1.01% per ppb M7 O3 above the ambient concentration, depending on the O3 cultivar sensitivity (Fig. 2b). Cv. 

NC338xHp301 and cv. Mo17xHp301 were classified as O3 tolerant because of relatively small yield losses of 5% and 

6%, respectively; cv. B73xMo17 was classified as O3 intermediate with a yield loss of 11%; and cv. B73xHp301, cv. 

Mo17xNC338, and cv. B73xNC338 were sensitive to O3 effects with yield losses of 22%, 30%, and 40%, respectively 

(Fig. S1a, Table S10). These cultivar O3 sensitivities are based on a single experimental year so additional testing is 475 

needed to further corroborate the classifications. Overall, the calibrated CERES-Maize model was able to reproduce 

these observed yield losses within 1%, i.e., simulated yield losses between 5% to 41%, or 0.12% to 1.05% per ppb O3 

increase above the ambient concentration. These yield losses were also calculated relative to 25 ppb (as described in 

section 2.5) for consistency with the literature, which resulted in simulated yield losses between 0.12% to 0.93% per 

ppb M7 O3 increase above 25 ppb across the six cultivars. 480 

When comparing the simulations to the maize O3 exposure-yield relationships from the literature, the model simulated 

average yield losses of 0.16%, 0.36%, and 0.82% per ppb M7 O3 increase above 25 ppb for the O3 tolerant, 

intermediate, and sensitive cultivar O3 sensitivities, respectively (Fig. 8 (a) solid lines). This agreed well with the 

literature yield losses of 0.24%, 0.33%, and 0.71% per ppb M7 O3 increase above 25 ppb for the O3 tolerant, 

intermediate, and sensitive cultivar sensitivities, respectively (Fig. S3 (a), Fig. 8 (a) dotted lines). The O3 parameter 485 

values used for the literature comparison were determined to provide the best fit across the literature experiments 

consisting of nine maize cultivars, but these O3 parameter values could be calibrated for other scenarios and cases, 

i.e., higher or lower cultivar O3 sensitivity. 

The measured yield losses for the SoyFACE experiment were between 51% to 77% for the M7 O3 concentrations 

when increasing from the ambient concentration (37 ppb) to the highest O3 treatment (126 ppb) in 2009, a yield loss 490 

of 0.57% to 0.86% per ppb M7 O3 above the ambient concentration, depending on the cultivar O3 sensitivity (Fig. 3 

(c)). The calibrated CROPGRO-Soybean model reproduced observed yields losses within 10%, i.e., simulated yield 

losses between 59% to 80%, or 0.66% to 0.90% per ppb O3 increase. Based on the calculated O3 classifications from 

the literature and low yield divergence across the seven cultivars (Fig. S1 (b)), cv. Pioneer93B15, cv. Dwight, cv. IA-

3010, and LN97-15076 were considered O3 intermediate sensitivity, and cv. HS93-4118, cv. Loda, and cv. Pana were 495 

considered O3 sensitive (Table S10). In 2010, the observed soybean yield losses ranged between 31% to 76% when 
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increasing from the ambient concentration (37 ppb) to the highest O3 treatment (84 ppb), a yield loss of 0.65% to 

1.60% per ppb M7 O3 above the ambient concentration. The model underestimated yield losses in 2010, between 27% 

to 44%, but because the experimental setup was the same for both years, an external factor may have affected yields 

that was not considered in the simulations (section 4.3). The 2010 yield losses were a similar magnitude to the 2009 500 

yield losses, but the 2010 experiment had higher yield loss and variation per ppb O3 increase with lower average M7 

O3 concentrations (Table 2, Fig. S4 (a)). 

When comparing the simulations to the soybean O3 exposure-yield relationships from the literature (Fig. 8 (c)), an 

average yield loss of 0.36%, 0.64%, and 0.96% per ppb M7 O3 increase above 25 ppb was simulated for the O3 tolerant, 

intermediate, and sensitive cultivar O3 sensitivities, respectively. This was substantiated by the literature yield losses 505 

of 0.45%, 0.63%, and 0.84% per ppb M7 O3 increase above 25 ppb for the O3 tolerant, intermediate, and sensitive 

cultivar O3 sensitivities, respectively (Fig. S3 (c), Fig. 8 (c) dotted lines). The literature data consisted of 49 soybean 

cultivars, which had a smaller range of O3 sensitivities compared to the other crops, although there were outliers where 

yield increased under higher O3 concentrations (described in section 4.2). 

The CERES-Rice model simulated an average yield loss of 0.05%, 0.23%, and 0.66% per ppb M7 O3 increase above 510 

25 ppb for the O3 tolerant, intermediate, and sensitive cultivar O3 sensitivities, respectively (Fig. 8 (b) solid lines). The 

rice literature had the most cultivars (50) of the four crops examined, and the simulated yield losses for the O3 tolerant 

and intermediate cultivar O3 sensitivities agreed well with the literature yield losses of 0.07% and 0.24% per ppb M7 

O3 increase above 25 ppb, respectively (Fig. 8 (b) dotted lines). A larger discrepancy between the simulated yield loss 

for the O3 sensitive classification and the literature O3 sensitive yield loss of 0.49% per ppb M7 O3 increase above 25 515 

ppb was due to the higher variability within the literature data (Fig. 8 (b) shaded area). 

Using the calibrated NWheat model, the simulated yield losses were 0.26%, 0.66%, and 1.23% per ppb M7 O3 increase 

above 25 ppb for the O3 tolerant, intermediate, and sensitive cultivar O3 sensitivities, respectively (Fig 8 (d)). These 

simulated yield losses were corroborated by the reported average yield losses of 0.33%, 0.61%, and 1.11% per ppb 

M7 O3 increase above 25 ppb for the O3 tolerant, intermediate, and sensitive cultivar O3 sensitivities, respectively. 520 

The literature expanded across different ranges of O3 concentrations for all crops, and yield loss per ppb is not always 

constant over an expansive range of O3 concentrations, so the model O3 parameter values can be adjusted for higher 

or lower cultivar O3 sensitivity. 

As an additional check of model performance, the calculated relative yield from the well-known Weibull O3 response 

functions (Table S11) were compared to the literature O3 exposure linear yield responses for each crop and O3 525 

classification (Fig. 8). The Weibull function performance was then compared to the simulated crop model results. 

Overall, the crop model simulations performed better (lower RMSE and higher r2) than the Weibull response functions 

across all crops for all three O3 classifications, except the O3 intermediate classification for soybean which had < 1% 

difference between the RMSE (compare RMSE and r2 in Fig. 8). The performance results suggest that it is best to use 

calibrated crop models when available, and that the Weibull response functions are mainly representative of O3 530 

intermediate classifications for maize, rice, and soybean, and O3 tolerant classifications for wheat. 

4.2 Simulated relative yield loss with the combined effects of O3, CO2, and water deficit stress 
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The sensitivity analyses showed that the yield losses due to O3 stress were higher under the normal rainfall and low 

CO2 treatment which agrees with previous literature that increased water availability increases O3 impact due to 

increased stomatal uptake (Khan and Soja, 2003; Biswas et al., 2013). It was unexpected that the simulated O3 535 

photosynthetic response difference between the normal and reduced rainfall treatments for maize was less than 1% 

(Fig. 4 (c)). This was because the model simulated low water deficit stress under the 50% reduced rainfall treatment 

which obscured the O3-water stress dynamics. Further reducing the rainfall to 40% of the normal amount increased 

the simulated water deficit stress and produced the photosynthetic O3-water dynamics consistent with the other models 

(Fig. S5). The elevated CO2 concentration mitigated the detrimental effect of O3 stress in the photosynthetic response 540 

for all models (Figs. 4 – 7 (c)), which agrees with recent global findings that elevated CO2 concentrations can mitigate 

and even negate elevated O3 impacts (Xia et al., 2021; Tai et al., 2021). Interestingly, the CROPGRO-Soybean model 

simulated an inverse O3-CO2 effect on relative yield under the 50% rainfall condition when examining SFOZ1 in detail 

(Fig. 6 (d)). This inverse yield response was due to the low actual yield simulated under the 50% rainfall and low CO2 

treatment (< 2,000 kg ha-1, Table S7) which resulted in smaller changes in yield compared to the 50% rainfall and 545 

high CO2 treatment, but the overall simulated aboveground biomass O3-CO2-water interaction was as expected (Fig. 

S6). 

For several of the observations from the actual soybean field experiment using cv. Pana, the yield increased under 

higher O3 concentrations (~2% to 18%, Fig. 3 (c) and Fig. S1 (b)). In some cases it is possible that elevated O3 

concentrations can benefit a crop via hormesis, a process where low levels of intermittent stress may benefit overall 550 

crop growth through improved resiliency (Calabrese, 2014). It is also possible that if elevated O3 concentrations reduce 

biomass growth throughout the season, and therefore reduce nutrient resource demand throughout the season, small 

yield increases can occur from a larger pool of resources available during the key reproductive/grain filling period 

(Asseng and Van Herwaarden, 2003; Guarin et al., 2019). This increase in yield under higher O3 concentrations was 

also observed under several other soybean and rice cultivars from the literature (Fig. S2 (b) and (c)). However, a 555 

soybean cultivar from the literature, cv. Cumberland, was reported to have a 34% increase under elevated O3 (67 ppb) 

compared to the control treatment (25 ppb), but such a large increase may indicate that another outside factor affected 

the yields. The experimentalists speculated that the large yield difference was due to changes in the seasonal water 

dynamics thereby causing increased drought stress under the control treatment compared to the elevated O3 treatment 

(Mulchi et al., 1988). 560 

4.3 Uncertainty in model simulations and O3 exposure field experiments 

Crop models contain uncertainties due to simplification of complex biological processes, but field experiments may 

also contribute uncertainty via measurement. The soybean simulations overestimated both biomass and yield across 

all cultivars and treatments for the 2010 SoyFACE experiment. Since both the ambient and elevated O3 treatments 

were overestimated, it is unlikely that the simulated O3 interactions caused the discrepancy. Examining the weather 565 

input showed a 14% increase in cumulative incoming solar radiation for the 2010 growing season compared to the 

2009 growing season (Fig. S4 (b)). The 2010 season was warmer than the 2009 season, average seasonal temperature 

of 23.4 °C compared to 19.1 °C, but no heat stress was reported and the difference in rainfall was negligible, 445 mm 
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compared to 454 mm. Since management was the same for both years and no water or N stresses were reported, it was 

expected that the 2010 yields would be higher than the 2009 yields due to the increased solar radiation, but the average 570 

2010 yield across all cultivars for the ambient treatment decreased, 3300 kg ha-1 in 2010 compared to 3700 kg ha-1 in 

2009. Therefore, it is possible that an outside stress factor not considered within the model limited soybean growth in 

the field in 2010 which led to the model overestimating biomass and yield. One possibility is that increased rainfall 

during the beginning of the 2010 season (221 mm in first 30 days compared to 153 mm in first 30 days of 2009 season, 

Fig. S4 (c)) may have resulted in germination or emergence stress due to excessive water such as flooding or lodging, 575 

which are factors not yet considered in the crop models. 

The sensitivity analyses showed that the CO2 effect was more pronounced in the model photosynthesis response than 

in the leaf senescence response (compare solid and dashed lines in Figs. 4 – 7 (c) and (d)). This is because the models 

do not have a CO2 effect directly applied to the daily leaf senescence calculation, whereas CO2 directly affects the 

daily photosynthesis calculation (PCARB in Eq. (3) and (4), and PRATIO in Eq. (9)). Improved CO2 representation 580 

within the crop models is being explored through the Agricultural Model Intercomparison and Improvement Project 

(AgMIP) studies (Ahmed et al., 2017; Ahmed et al., 2019; Toreti et al., 2020), but additional high-quality data is 

needed for model testing. 

5 Conclusion 

Crop responses to elevated O3 concentrations were incorporated into the DSSAT CERES-Maize, CERES-Rice, 585 

CROPGRO-Soybean, and NWheat crop models via functions reducing photosynthetic activity and accelerating leaf 

senescence. Model testing showed that each of the four models reproduced the observed O3 response from field 

experiments and previous literature, as well as the expected interactions between O3, CO2, and water deficit stress. 

The simulated yield responses were also more representative of the O3 exposure literature data than the well-known 

Weibull O3 response functions for all crops. Thus, this incorporation allows for improved simulation of the 590 

heterogeneity of O3 impacts across geographical regions and systems, as well as across years within seasons, which is 

more representative of real-world interactions than using a generic damage coefficient. Overall, increasing M7 O3 

concentrations had a negative effect on growth and yield across all four crops, and this negative effect was exacerbated 

by increased water availability and ameliorated by elevated CO2 concentrations. The O3 impact and stress response of 

the crop depends on the stress severity, duration, frequency, cultivar sensitivity, and seasonal timing (i.e., 595 

developmental stage) which can be accounted for by using the updated crop models. 

The addition of O3 stress functionality into crop models will improve both near- and long-term simulations of global 

environmental interactions using a key factor that is often not included in agricultural and climate change assessments. 

The DSSAT models in this study can be used to simulate the O3 impacts on crops in combination with climate change. 

The O3 parameter values in this study can be used as preliminary approximations, but to further improve model 600 

performance and robustness of the O3 stress routines, the models and parameters should continue to be tested and 

calibrated with additional O3 exposure experimental data when available. In addition, the models should be compared 

with other O3-modified crop models as part of multi-model ensemble intercomparison and improvement assessments 

conducted by the AgMIP (https://agmip.org/). As a next step, the AgMIP Ozone team is currently conducting a multi-

https://agmip.org/
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model ensemble study with crop models that have the capacity to evaluate the responses of future crop yields to 605 

different ozone concentrations. This effort will help produce more robust estimates of climate change impacts in global 

agriculture. The framework described here can be used by other process-based crop models, local or gridded, to 

incorporate O3 stress interactions into the model. This model improvement also suggests potential future collaboration 

between crop modelers and remote sensing experts using weather and climate models with dynamic chemistry 

components, such as the NASA Atmosphere Observing System (https://aos.gsfc.nasa.gov/). 610 

Code availability 
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website (https://dssat.net/). The current version of the pSIMS framework is available to download from the RDCEP 

website (http://www.rdcep.org/research-projects/psims). The O3-modified version of the DSSAT crop models will be 

available with the next DSSAT version release, and the O3-modified version of the pDSSAT crop models is available 615 

from the GitHub repository at https://github.com/jguarin4/dssat-csm-os/tree/develop_v4.8_pdssat. An archived 

version of the code is also available on Zenodo at https://zenodo.org/badge/latestdoi/232137043.The R code used to 

classify the cultivar O3 sensitivities is available on the Harvard Dataverse at https://doi.org/10.7910/DVN/0NN9MH. 
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