Diagnosing drivers of PM$_{2.5}$ simulation biases from meteorology, chemical composition, and emission sources using an efficient machine learning method

Shuai Wang1, Mengyuan Zhang1, Yueqi Gao1, Peng Wang2,3, Qingyan Fu1, Hongliang Zhang1,3,5

1Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
2Department of Atmospheric and Oceanic Sciences, and Institute of Atmospheric Sciences, Fudan University, Shanghai, 200438, China
3IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China;
4Shanghai Environmental Monitoring Center, Shanghai 200235, China
5Institute of Eco-Chongming (IEC), Shanghai 200062, China

Correspondence to: Hongliang Zhang (zhanghl@fudan.edu.cn)

Abstract. Chemical transport models (CTMs) are widely used for air pollution modeling, which suffer from significant biases due to uncertainties in simplified parameterization, meteorological fields, and emission inventories. Accurate diagnosis of simulation biases is critical for improvement of models, interpretation of results, and efficient air quality management, especially for the simulation of fine particulate matter (PM$_{2.5}$). In this study, an efficient method based on machine learning (ML) was designed to diagnose the drivers of the Community Multiscale Air Quality (CMAQ) model biases in simulating PM$_{2.5}$ concentrations from three perspectives of meteorology, chemical composition, and emission sources. The source-oriented CMAQ were used to diagnose influences of different emission sources on PM$_{2.5}$ biases. The ML models showed good fitting ability with small performance gap between training and validation. The CMAQ model underestimates PM$_{2.5}$ by -19.25 to -2.66 μg/m3 in 2019, especially in winter and spring and high PM$_{2.5}$ events. Secondary organic components showed the largest contribution to PM$_{2.5}$ simulation bias for different regions and seasons (13.8 - 22.6%) among components. Relative humidity, cloud cover, and soil surface moisture were the main meteorological factors contributing to PM$_{2.5}$ bias in the North China Plain, Pearl River Delta, and northwestern, respectively. Both primary and secondary inorganic components from residential sources showed the largest contribution (12.05 % and 12.78 %), implying large uncertainties in this sector. The ML-based methods provide valuable complements to traditional mechanism-based methods for model improvement, with high efficiency and low reliance on prior information.

1 Introduction

Fine particulate matter (PM$_{2.5}$) is a complex mixture of primary (PPM) and secondary inorganic/organic components (SIA/SOA), with adverse effects on public health and ecosystems. Ambient levels of PM$_{2.5}$ are influenced by meteorological conditions, emission from different sources, and atmospheric chemical processes (Organization, 2021; Xiao et al., 2021a; Yang et al., 2016; Liu et al., 2021b; Zhai et al., 2019). China has experienced severe PM$_{2.5}$ pollution over the past two decades (Bai et al., 2022; Liang et al., 2020a). For effective air quality management, accurate PM$_{2.5}$ modeling is essential. Chemical transport models (CTMs) like the Community Multiscale Air Quality (CMAQ) model, have been widely developed and applied to PM$_{2.5}$ simulations through atmospheric processes of dispersion, deposition, and chemical reactions (Qiao et al., 2018; Wang et al., 2021; Hu et al., 2017a). Application of CTMs simulations is often limited by the biases due to uncertainties of simplified parameterization, meteorological prediction, emission inventories, initial and boundary conditions (Binkowski and Roselle, 2003; Hu et al., 2014; Hu et al., 2016; Wang et al., 2023c; Wang et al., 2021). Thus, it is essential to diagnose specific sources of simulation biases according to specific model applications, including grid resolution, parameterization, mechanisms,
meteorological inputs, and emission inventories.

Traditional bias diagnosis approaches for CTM models usually rely on empirical and prior assumptions with extensive sensitivity testing and high demands on computational resources, such as Monte Carlo methods or Latin hypercube sampling (Beekmann and Derognat, 2003; Hanna et al., 2005; Aleksankina et al., 2019). Recently machine learning (ML) methods have been widely used in environmental science research due to their simple structure, fast speed and ability to deal with no-linear relationships (Liu et al., 2022). Many studies used ML to predict air pollutant concentrations like PM$_{2.5}$ and ozone (Wei et al., 2021a; Sun et al., 2021; Zhu et al., 2022; Bai et al., 2022), improve the accuracy of CTMs simulations (Wang et al., 2023c; Wei et al., 2020), and explain the prediction results using interpretable ML techniques (Hou et al., 2022; Li et al., 2023; Stirnberg et al., 2021). To date, few studies have used ML to diagnose the simulation bias of CTMs. A study has shown the potential of machine learning in explaining the simulation bias of ozone (Ye et al., 2022). However, as a complex multi-phase mixture, it is still challenging to diagnose biases in PM$_{2.5}$ simulations using ML methods (Liu and Xing, 2022). Moreover, due to the strong influence of emissions, it is instructive to diagnose CTMs biases of PM$_{2.5}$ based on a source-appointment perspective.

In this study, we use the Light Gradient Boosting Machine (lightGBM) model, an efficient ensemble ML approach, to diagnose the drivers of CMAQ biases in simulating PM$_{2.5}$ concentrations. A source-oriented version of CMAQ is used to track sectoral source contributions to PM$_{2.5}$. Model biases are diagnosed from multiple perspectives, including meteorology, chemical components, and emission sources.

2 Materials and methods

2.1 Surface PM$_{2.5}$ observations

This study focused on 2019 because of the large number of observations, the reliability of the emission inventories, and without interference of COVID-19. Hourly PM$_{2.5}$ observations for 2019 are collected from the China National Environmental Monitoring Centre (CNEMC, http://www.cnemc.cn/). The hourly data from each station was sanity checked to exclude problematic data points, and the 24-hour average concentrations of PM$_{2.5}$ with less than 20 hourly valid records are excluded. For observation sites located on the same simulation grid, average PM$_{2.5}$ concentrations were calculated to compare with CMAQ simulation. The distribution of observation sites is shown in Figure S1. Analysis focuses on nationwide as well as several interested regions (Figure S1), including Beijing-Tianjin-Hebei (BTH); the Yangtze River Delta (YRD); the Pearl River Delta (PRD); the Sichuan Basin (SCB); and Northwestern China (NWCHN).

2.2 CMAQ simulation

The Weather Research & Forecasting Model (WRF v4.2) was used to generate meteorological fields driven by National Centers for Environmental Prediction (NCEP) FNL Operational Model Global Tropospheric Analyses dataset (http://rda.ucar.edu/datasets/ds083.2/) (Commerce, 2000). Several meteorological factors (Table S1) that are highly relevant to aerosol concentrations are selected for ML model building (Xiao et al., 2021b; Chen et al., 2020b; Meng et al., 2019). The CMAQ v5.0.2 with a modified SAPRC-11 photochemical mechanism and AERO6 aerosol module was applied for aerosol simulations (Carter and Heo, 2013; Ying et al., 2015; Binkowski and Roselle, 2003). Details of CMAQ model improvement can be found in previous studies (Hu et al., 2017b; Ying et al., 2015). The Multi-resolution Emission Inventory for China (MEIC) was used as anthropogenic emission (http://meicmodel.org/), and the Model for Emissions of Gases and Aerosols from Nature (MEGAN) version 2.1 was used to generate biogenic emissions (Guenther et al., 2012; Guenther et al., 2006). The Fire INventory from NCAR (FINN) based on satellite were used to generate open burning emission (Wiedinmyer et al., 2011). The list of PM$_{2.5}$ components simulated by CMAQ is shown in Table S1. The CMAQ simulation (36 km×36 km) was conducted over mainland China and surrounding regions in 2019.
The source apportionment method was used to quantify the contributions of industry, energy, residential, transportation, agriculture, open burning, and biogenic sources to PPM and SIA through a modified version of CMAQ (Zhang et al., 2012; Ma et al., 2021; Qiao et al., 2018). PPM from different source sectors are tracked by non-reactive tracers (10^{-5} of the PPM emission rates). The concentrations of PPM from given sources are then calculated by multiplying the tracer with 10^{-5}. The contributions of source sectors to SIA are quantified using specific reactive tagged tracers. NOx, SO2, and NH3 from different sources were tracked separately through a series of chemical and physical processes involving in SIA formation. Details of source apportionment can be found in previous studies (Zhang et al., 2012; Ma et al., 2021; Qiao et al., 2018; Ying et al., 2014). The contributions of source sectors to SOA were not tracked due to insufficient knowledge of its precursors and incomplete formation mechanisms (Yang et al., 2019; Carlton et al., 2007; Zhang et al., 2011).

2.3 Machine learning method

The lightGBM model was used to diagnose PM$_{2.5}$ simulation biases in this study (Ke et al., 2017). Our previous studies have shown its reliability for PM$_{2.5}$ modeling (Wang et al., 2023c; Wang et al., 2023b). The target variable was set to be the difference between observed and simulated daily PM$_{2.5}$ concentrations, and the key contributors to the simulation bias were then determined by the relative importance of the input features (Ye et al., 2022). LightGBM is an optimised gradient boosting decision tree (GBDT) that can handle non-linear relationships between multiple variables and has shown accurate performance in many fields (Wei et al., 2021b; Yan et al., 2021; Sun et al., 2020; Liang et al., 2020b).

Three combinations of input variables were designed to fit the simulation biases: meteorological factors, chemical components, and emission sources. Meteorological factors, including wind speed, wind direction, temperature, humidity, surface pressure, cloud fraction and boundary layer height, are used to investigate the impact of meteorology on the CMAQ simulation biases. The components of PM$_{2.5}$ are divided into SIA (sulfate, nitrate, ammonium), primary/secondary organic aerosols (POA/SOA), elemental carbon (EC), and other components. Seven sectoral sources (industry, energy, residential, transportation, agriculture, open burning, and biogenic emission) were used to quantify the contribution to the simulation bias. Five-fold cross-validation method was used to evaluate the model fit and prediction ability (Browne, 2000).

3 Results and discussion

3.1 Observation and simulation of PM$_{2.5}$

Figure 1a shows the time series of observed and simulated daily surface PM$_{2.5}$ concentrations in China and five regions (BTH, YRD, PRD, SCB, and NWCHN) over 2019. Basically, the CMAQ model successfully simulates the daily variation of PM$_{2.5}$ with some biases. PM$_{2.5}$ concentrations were higher in BTH (51.172 μg/m3) and lower in PRD (28.273 μg/m3). The CMAQ model underestimates PM$_{2.5}$ concentrations of -8.59 μg/m3, -2.66 μg/m3, -6.21 μg/m3, and -19.25 μg/m3 in the BTH, YRD, PRD, and NWCHN, respectively (Figure 1b). Moreover, the underestimation occurred mainly in winter and spring (Figure 1c), as well as high PM$_{2.5}$ events (Figure 1d) (Hu et al., 2016; Huang et al., 2017).

Table S2 shows the validation of CMAQ simulations against observations in different regions. Four indicators (MNB: mean normalized bias; MNE: mean normalized error; MFB: mean fractional bias; MFE: mean fractional error) were used to systematically evaluate the performance of the CMAQ simulations. The PM$_{2.5}$ simulations in the BTH, YRD, and PRD regions were in better agreement with observations, with average MNB of -0.08, -0.07, and -0.08 respectively (within the standard of 0.66). The PM$_{2.5}$ simulations in SCB and NWCHN regions show large biases with MNB of 0.46 and -0.42 respectively. The differences of CMAQ performance between regions can be attributed to multiple factors including emission inventories, dominant mechanisms of PM$_{2.5}$ generation, topographic, and meteorology conditions (Ma et al., 2021; Xue et al., 2019; Hu et al., 2014).

Annual and monthly mean PM$_{2.5}$ components (SIA, POA, SOA, EC, and other components) were calculated for China
and five key regions (Figure 2). PM$_{2.5}$ and its components show similar spatial distribution, with high concentrations occurring in the eastern regions (SCB, BTH, and central YRD). SOA showed high concentrations in summer over China (6.80 μg/m3), which could be related to enhanced solar radiation and atmospheric oxidation capacity in summer (precursors of SOA such as isoprene are highly dependent on temperature and light) (Yang et al., 2019; Chen et al., 2020a; Liu et al., 2021b). Nitrate and POA were the dominate components in winter (10.14 μg/m3 and 9.11 μg/m3 respectively). In BTH and SCB, POA accounts for a higher proportion than nitrate in winter, whereas nitrate has a higher proportion in YRD. Nitrate showed higher concentration than sulfate in most regions and seasons due to the implementation of coal combustion control policies (Shang et al., 2021; Liu et al., 2021b; Xu et al., 2019).

The results of the PM$_{2.5}$ sectoral source appointment (Figure 3 and Figure S2) show that industries and residential sources were the main contributors to daily PM$_{2.5}$ concentrations for all regions and seasons, with seasonal fractional contributions of 25.31 - 31.92 % and 11.13 - 30.64 %, respectively. The seasonal average fractional contributions from energy, transportation, and agricultural NH$_3$ in whole China were 3.26 - 5.67%, 6.82 - 11.26 %, and 7.50 - 8.67 %, respectively. The contributions from biogenic source were negligible in all region and seasons (< 1 %). In contrast to the contributions from energy, transportation, industrial, and agricultural sources, significant seasonal variations occurred from residential source in all five regions, with high contribution in winter (17.60 - 30.90 %) and low contribution in summer (5.53 - 16.46 %).

As the secondary component makes up a large proportion of the total PM$_{2.5}$, the source sectors of SIA were analyzed for five regions (Figure S2). High concentrations of SIA were found in winter (12.36 - 34.08 μg/m3), with large contribution from industrial, agricultural, and transportation sources (31.49 - 36.41 %, 20.40 - 22.40 %, and 19.77 - 22.46 %). The low contribution of residential sector to secondary PM$_{2.5}$ but high contribution to total PM$_{2.5}$ indicates that most residential emission sources emit PPM directly, with a small fraction of secondary generation. The contributions from biogenic and open burning sector to SIA were relatively low in all region and seasons (< 10 %).

3.2 Drivers of PM$_{2.5}$ simulation bias

The contribution of each PM$_{2.5}$ components to the simulation bias was further quantified by relative importance. The ML models were trained separately for different regions and seasons, and a 5-fold cross-validation was used to measure the model performance (Figure 4). The models explain most part of simulation bias, with some differences across seasons and regions (mean CV R^2 of 0.49, 0.65, 0.52, 0.49 for spring, summer, autumn, and winter).

Among the PM$_{2.5}$ components (Figure S4), SOA showed the largest contribution to PM$_{2.5}$ simulation bias for different regions and seasons (13.8 - 22.6%), which is consistent with previous studies (Liu et al., 2021b; Yang et al., 2019; Fry et al., 2014). The inorganic aerosols (e.g. sulphates) are produced mainly by chemical pathways, while SOA is produced by the condensation of numerous partially oxidized gases and is therefore influenced by complex precursor concentrations and multi-stage oxidation processes. The incomplete description of SOA formation pathways in CTMs models (simplified SOA parameterization) leads to significant differences between simulations and observations (Carlton et al., 2007; Zhang et al., 2018; Yang et al., 2019). In addition, biogenic emissions play an important role in SOA formation, with biogenic SOA accounting for more than 70% of total SOA in China during summer (Hu et al., 2017b; Wu et al., 2020), so uncertainty in biogenic emissions can further contribute to uncertainty in SOA. Nitrate showed large contribution to PM$_{2.5}$ simulation bias in winter at BTH, which is consistent with previous study (Liu and Xing, 2022). Nitrate contribution to simulation bias further implies the inaccuracy of nitrate simulations, which can relate to the imperfect pathways of nitrate production (e.g., non-homogeneous oxidation) and the uncertainties of nitrate precursor emission inventories in winter (Xu et al., 2019; Zhang et al., 2018).

The main meteorological factors were used for modeling and were able to explain most simulation biases (CV R^2 of 0.62, 0.80, 0.69, 0.70 for spring, summer, autumn, and winter, Figure 4). The contribution of meteorological factors to the simulation bias varies across regions and seasons (Figure 5). In the BTH region, surface pressure and relative humidity contribute the...
most to the simulation bias. In the PRD region, relative humidity, cloud cover, and wind direction were the main contributors in all four seasons.

Humidity positively or negatively influences PM$_{2.5}$ concentrations through several mechanisms. By enhancing PM$_{2.5}$ hygroscopic increase, promoting the secondary formation, and facilitating the gas-to-particle partitioning, high humidity positively influences PM$_{2.5}$ concentrations and contributes significantly to the haze pollution (Chen et al., 2020b; Cheng et al., 2015; Zhang et al., 2011). The contribution of humidity to CMAQ simulation biases can partly attributed to the uncertain of WRF simulation. The mean RMSE of relative humidity from WRF simulations versus observations was 20.38% in this study (Table S3). In addition, imperfections in the mechanism of humidity-promoted secondary particle formation (e.g., non-homogeneous catalysis of SOA) can also lead to simulation biases (Zhang et al., 2011; Liu et al., 2021b). Atmospheric pressure indirectly influences PM$_{2.5}$ concentrations through other meteorological factors (e.g., humidity, wind, etc.). High pressure systems are connected to the stationary weather, which is unfavorable for PM$_{2.5}$ dispersion. On the other hand, low pressure is usually accompanied by high humidity, influencing PM$_{2.5}$ nucleation, condensation and coagulation, leading to increased PM$_{2.5}$ concentrations (Chen et al., 2020b). Therefore, influence of atmospheric pressure on the CMAQ simulation biases in the BTH region maybe be attributed to the uncertain of meteorological field (Bei et al., 2017; Zhang et al., 2015). Contribution of wind direction in YRD may also related to the uncertain of WRF simulation (mean RMSE: 90.39 °). Aerosols have feedbacks on meteorology (Qu et al., 2021). In addition to directly changing the Earth’s radiation receipts through scattering and absorbing (direct radiation effect), PM$_{2.5}$ can also influence radiation through aerosol-cloud interactions (indirect radiation effect) (Zhao et al., 2017; Yang et al., 2016). Moreover, PM$_{2.5}$ can act as cloud condensation and nucleation sites, contributing to clouds’ microphysical development and precipitation formation process (Wang et al., 2020). However, the aerosol-to-meteorological feedback mechanism is missing in CMAQ used in this study. Previous study shown the dominant role of cloud chemistry in aerosol-cloud interactions in southern China (Zhao et al., 2017). Therefore, the influence of cloud cover on simulation biases in YRD can attributed to the missing of aerosol feedback mechanism.

In the NWCHN region, soil surface moisture and stomatal conductance contributed significantly to the simulation bias. These factors can associate with ground-level sand rise and dust emission (Liu et al., 2021c). Underestimation of dust aerosol in NWCHN can attributed to emission (both natural and anthropogenic sources), an accurate emission inventory (empirical- or physical-based numerical models) should be established in Northwest China by detailed activity data and emission factors (Hu et al., 2016; Liu et al., 2021a). In addition, the parameterization and mechanism for dust aerosol simulation in CMAQ should be further examined and improved.

Dry and wet days were divided to analyze influence of humidity on the simulation biases (Table S4). In most areas of China, CMAQ underestimates PM$_{2.5}$ more severely in dry days than in wet days, with larger absolute biases (-14.56 µg/m3, -7.09 µg/m3, -7.11 µg/m3, and -27.87 µg/m3 in spring, summer, autumn and winter respectively). In dry days, BTH showed severe underestimation in winter (-22.86 µg/m3), while PRD showed large simulation bias in spring (-21.55 µg/m3). Severe underestimation of PM$_{2.5}$ was observed in both wet and dry days at NWCHN. These underestimates of PM$_{2.5}$ in dry days can related to the dry deposition process. Dry deposition is a critical but highly uncertain sink for aerosols, which depends on the chemical and physical properties of aerosols, and influenced by subsurface and meteorological conditions (Shu et al., 2022). The CMAQ model in this study used the dry deposition scheme PR11 from Pleim and Ran (Pleim and Ran, 2011). This study shows that the PR11 scheme underestimates PM$_{2.5}$ concentrations in China. Recent studies for the United States also showed the underestimates for PM$_{10}$ concentrations (Shu et al., 2022). Therefore, it is necessary to further develop and optimize the dry deposition scheme, especially for PM$_{2.5}$. PM$_{2.5}$ underestimation in wet days may attributed to the biases of wet deposition and secondary organic aerosol formation under high humidity conditions (Wu et al., 2018; Ryu and Min, 2022; Liu et al., 2021b; Zhang et al., 2011).

Source sectors contributions of PPM and SIA (obtained from the source-oriented CMAQ) were used to build the model and diagnose influences of different emissions sources on PM$_{2.5}$ simulation biases (Figure 6). Cross validation results of model...
training by source sectors are shown in Figure 4. In China and in five key regions, sectoral sources were able to fit the simulation bias well, with mean R^2 and RMSE of 0.53% and 20.18 $\mu g/m^3$. The PPM and SIA from residential showed the largest contribution (12.05% and 12.78%) to PM$_{2.5}$ simulation bias. The same conclusion was obtained when building model with total PM$_{2.5}$ concentrations from different source sectors (Table S5). PM$_{2.5}$ from residential emission is the main contributor to the CMAQ simulation bias, accounting for 20.2% of the total bias.

In China, residential sector consumed fossil fuels (coal, oil, and natural gas) and biofuels (wood and crop straw) with low combustion efficiency for cooking and heating and emitted large amounts of air pollutants (Li et al., 2017). However, due to the lack of reliable data (locally accurate emission factor and fuel consumption data), residential sector has been recognized as a major uncertainty source in anthropogenic emission inventories (Liu et al., 2021d; Shen et al., 2021), which is consistent with the results identified by machine learning in this study. Therefore, developing an accurate residential sector emissions inventory is essential for accurate PM$_{2.5}$ modeling, which requires reliable data of fuel consumption and emission factors based on fuel type, fuel characteristics and combustion conditions (Liu et al., 2021d).

3.3 Uncertainties

Although we filtered the features according to their relative importance and priori knowledge, collinearity still exists among the input features. Features collinearity does not affect the performance of tree-based models like Random Forest and LightGBM (Belgou and Drăguţ, 2016; Ke et al., 2017; Chen et al., 2016), but the contribution of a single feature might be influenced by other features, which is unfavorable for the interpretation of bias diagnosis results. In addition, the main objective of this study was diagnosing the contributors to CMAQ simulation biases using machine learning, therefore we did not pursue a very good model performance. The models showed good fitting ability with small performance gap between training and validation (Figure 4). Therefore, we consider such machine learning models to be reliable. Besides, the ML bias diagnosis model constructed in this study is based entirely on local data and some regional processes influencing PM$_{2.5}$ concentrations are not considered in this study, such as vertical transport, long distance transport, which should be better diagnosed in future work, and the main bias contributors of identified by variable importance are in good agreement with the current findings.

4 Conclusion

Based on artificial intelligence technology, this study systematically diagnoses the possible drivers of biases in PM$_{2.5}$ simulation from three perspectives of meteorology, chemical components and emission sources. The relative importance of multiple factors helps to understand the sources of simulation bias and the deficiencies of the CMAQ mechanisms. SOA is the main contributor to simulation biases among chemical components. PM$_{2.5}$ is more underestimated in dry weather. Among source sectors, residential contributed the most simulation bias for both PPM and SIA. These results provide valuable information for CMAQ model improvement from SOA and dust aerosol underestimation, meteorological field uncertainties, imperfection of the dry deposition scheme, and inaccurate residential emission inventories. As an efficient bias diagnosis method, machine learning based methods provide valuable complements to traditional mechanism-based methods. This approach also greatly reduces the prior information for diagnosing simulation bias and efficiently identifies the important contributors, so it can be easily extended to other CTMs models as well as other pollutants.
Supporting

Additional descriptions of the study domain, WRF-CMAQ simulation performance, concentrations and biases contribution of PM$_{2.5}$ components and sectoral sources.

Code and data availability

The data and code (https://zenodo.org/record/7907626) are available on Zenodo (Wang et al., 2023a), including machine learning code for diagnosing CMAQ simulation bias and the corresponding training dataset. CMAQ is an open-source chemical transport model developed by the US Environmental Protection Agency, which can be downloaded at https://github.com/USEPA/CMAQ.

Author contribution

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Reference

Wang, S., Wang, P., Qi, Q., Wang, S., Meng, X., Kan, H., Zhu, S., and Zhang, H.: Improved estimation of particulate matter...
in China based on multisource data fusion, Science of The Total Environment, 161552, 2023c.
Figure 1. (a) The time series of observed (black) and CMAQ simulated (red) daily surface PM$_{2.5}$ concentrations in China and five regions. Mean concentrations of the observed and simulated PM$_{2.5}$ and MNB also shown in the inset. (b) Box plots of CMAQ simulated biases (simulated minus observed) for different regions. Crosses indicate average values and outliers are determined to be >1.5 times of the upper quartile and <1.5 times of the lower quartile. (c) Same as (b) but for four seasons. Spring, summer, autumn and winter are defined as March to May, June to August, September to November, December January and February, respectively. (d) Same as (b) but for different PM$_{2.5}$ concentration levels (L1: [0, 35], L2: [35, 75], L3: [75, 115], L4: [115, 150], L5: [150, 1000]).
Figure 2. Annual mean concentrations map (a - g) and monthly mean concentrations (h-m) of PM$_{2.5}$ and its components (SIA, POA, SOA, EC, and other components) for China and five key regions in 2019. Dotted lines in h-m indicate PM$_{2.5}$ observations.

Figure 3. Seasonal average fractional contributions from different sources to PM$_{2.5}$ concentrations (white circle on the right-hand axis) in China and five regions.
Figure 4. Cross validation (5-fold) results of CMAQ bias model training by meteorology (a), PM$_{2.5}$ components (b), and source sectors (c). RSME unit: µg/m3.

Figure 4. Cross validation (5-fold) results of CMAQ bias model training by meteorology (a), PM$_{2.5}$ components (b), and source sectors (c). RSME unit: µg/m3.

https://doi.org/10.5194/egusphere-2023-1531
Preprint. Discussion started: 10 August 2023
© Author(s) 2023. CC BY 4.0 License.
Figure 5. Contribution (%) of each meteorological factor to CMAQ simulation biases by region and season.

Figure 6. Contribution (%) of each source sectors to CMAQ biases by region and season. res: residential, ene: energy, tra: transportation, agr: agriculture, ind: industry, AEC: elemental carbon, Other: other components.