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Abstract. Chemical transport models (CTMs) are widely used for air pollution modeling, which suffer from significant biases 

due to uncertainties in simplified parameterization, meteorological fields, and emission inventories. Accurate diagnosis of 

simulation biases is critical for improvement of models, interpretation of results, and management of air quality, especially for 15 

the simulation of fine particulate matter (PM2.5). In this study, an efficient method with fast speed and low requirement of 

computational resources based on the tree-based machine learning (ML) method, the Light Gradient Boosting Machine 

(LightGBM), was designed to diagnose CTMs simulation biases. The drivers of the Community Multiscale Air Quality 

(CMAQ) model biases compared to observations in simulating PM2.5 concentrations from three perspectives of meteorology, 

chemical composition, and emission sources. The source-oriented CMAQ was used to diagnose the influences of different 20 

emission sources on PM2.5 biases. The model can capture the complex relationship between input variables and simulation bias 

well, meteorology, PM2.5 components, and source sectors can partially explain the simulation bias. The CMAQ model 

underestimates PM2.5 by -19.25 to -2.66 μg/m3
 in 2019, especially in winter and spring and high PM2.5 events. Secondary 

organic components showed the largest contribution to PM2.5 simulation bias for different regions and seasons (13.8 - 22.6%) 

among components. Relative humidity, cloud cover, and soil surface moisture were the main meteorological factors 25 

contributing to PM2.5 bias in the North China Plain, Pearl River Delta, and Northwestern, respectively. Both primary and 

secondary inorganic components from residential sources showed the largest contribution to this bias (12.05 % and 12.78 %), 

implying large uncertainties in this sector. The ML-based methods provide valuable complements to traditional mechanism-

based methods for model improvement, with high efficiency and low reliance on prior information. 

1 Introduction 30 

Fine particulate matter (PM2.5) is a complex mixture of primary particulate matters (PPM) and secondary inorganic/organic 

components (SIA/SOA), with adverse effects on public health and ecosystems. Ambient levels of PM2.5 are influenced by 

meteorological conditions, emission from different sources, and atmospheric chemical processes (Organization, 2021; Xiao et 

al., 2021a; Yang et al., 2016; Liu et al., 2021b; Zhai et al., 2019). China has experienced severe PM2.5 pollution over the past 

two decades (Bai et al., 2022; Liang et al., 2020a). For effective air quality management, accurate PM2.5 modeling is essential. 35 

Chemical transport models (CTMs) like the Community Multiscale Air Quality (CMAQ) model, have been widely developed 

and applied to PM2.5 simulations through atmospheric processes of dispersion, deposition, and chemical reactions (Qiao et al., 

2018; Wang et al., 2021; Hu et al., 2017a). Application of CTMs simulations is often limited by the biases due to uncertainties 

of simplified parameterization, meteorological prediction, emission inventories, initial and boundary conditions (Binkowski 
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and Roselle, 2003; Hu et al., 2014; Hu et al., 2016; Wang et al., 2023b; Wang et al., 2021). Thus, it is essential to diagnose 40 

specific sources of simulation biases according to specific model applications, including grid resolution, parameterization, 

mechanisms, meteorological inputs, and emission inventories. 

Traditional bias diagnosis approaches for CTM models usually rely on empirical and prior assumptions with extensive 

sensitivity testing and high demands on computational resources, such as Monte Carlo methods or Latin hypercube sampling 

(Beekmann and Derognat, 2003; Hanna et al., 2005; Aleksankina et al., 2019). Recently machine learning (ML) methods, like 45 

Random Forest and eXtreme Gradient Boosting (XGBoost), have been widely used in environmental science researches due 

to their simple structure, fast speed, and ability to deal with no-linear relationships (Liu et al., 2022). Many studies used ML 

to predict air pollutant concentrations like PM2.5 and ozone (Wei et al., 2021a; Sun et al., 2021; Zhu et al., 2022; Bai et al., 

2022), improve the accuracy of CTMs simulations (Wang et al., 2023b; Wei et al., 2020), and explain the prediction results 

using interpretable ML techniques (Hou et al., 2022; Li et al., 2023; Stirnberg et al., 2021). To date, few studies have used ML 50 

to diagnose the simulation bias of CTMs. A study has shown the potential of machine learning in explaining the simulation 

bias of ozone (Ye et al., 2022). However, as a complex multi-phase mixture, it is still challenging to diagnose biases in PM2.5 

simulations using ML methods (Liu and Xing, 2022). Moreover, due to the strong influence of emissions, it is instructive to 

diagnose CTMs biases of PM2.5 based on a source-appointment perspective. 

In this study, we use LightGBM model, an efficient ensemble ML approach, to diagnose the drivers of CMAQ biases in 55 

simulating PM2.5 concentrations. A source-oriented version of CMAQ is used to track sectoral source contributions to PM2.5. 

Model biases are diagnosed from multiple perspectives, including meteorology, chemical components, and emission sources. 

2 Materials and methods 

2.1 Surface PM2.5 observations 

This study focused on 2019 because of the large number of observations, the reliability of the emission inventories, and without 60 

interference of COVID19. Hourly PM2.5 observations for 2019 are collected from the China National Environmental 

Monitoring Centre (CNEMC, http://www.cnemc.cn/). The daily observations data <0.1 % quantile and >99.9 % quantile, PM2.5 

exceeds PM10, and days with less than 20 valid hourly records are excluded. For observation sites located on the same CMAQ 

simulation grid (36 km × 36 km), average PM2.5 concentrations of these sites were calculated to compare with CMAQ 

simulation. A total of about 350,000 observations meeting quality control criteria were selected from all time series data points 65 

across multiple monitoring stations. The distribution of observation sites (about 1200) is shown in Figure S1. The stations are 

unevenly distributed, with dense stations in eastern populated areas and sparse stations in western Xinjiang and Tibet. Analysis 

has been carried out on several haze-polluted regions and the whole country (Figure S1), including Beijing-Tianjin-Hebei 

(BTH); the Yangtze River Delta (YRD); the Pearl River Delta (PRD); the Sichuan Basin (SCB); and Northwestern China 

(NWCHN). 70 

2.2 CMAQ simulation 

The CMAQ simulation (36 km×36 km) was carried out to simulate PM2.5 components in mainland China and surrounding 

regions in 2019. The list of PM2.5 components simulated by CMAQ is shown in Table A1. The Weather Research & Forecasting 

Model (WRF v4.2) was used to generate meteorological fields driven by the National Centers for Environmental Prediction 

(NCEP) FNL Operational Model Global Tropospheric Analyses dataset (http://rda.ucar.edu/datasets/ds083.2/) (Commerce, 75 

2000). Several meteorological factors (Table A1) that are highly relevant to aerosol concentrations are selected for ML model 

building (Xiao et al., 2021b; Chen et al., 2020b; Meng et al., 2019). The CMAQ v5.0.2 with a modified SAPRC-11 

photochemical mechanism and AERO6 aerosol module was applied for aerosol simulations (Carter and Heo, 2013; Ying et 

al., 2015; Binkowski and Roselle, 2003). The Multi-resolution Emission Inventory for China (MEIC) was used as 
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anthropogenic emission (http://meicmodel.org/), and the Model for Emissions of Gases and Aerosols from Nature (MEGAN) 80 

version 2.1 was used to generate biogenic emissions (Guenther et al., 2012; Guenther et al., 2006). The Fire INventory from 

NCAR (FINN) based on satellite was used to generate open burning emissions (Wiedinmyer et al., 2011).  

The source apportionment method was used to quantify the contributions of industry, energy, residential, transportation, 

agriculture, open burning, and biogenic sources to PPM and SIA through a modified version of CMAQ (Zhang et al., 2012; 

Ma et al., 2021; Qiao et al., 2018). PPM from different source sectors are tracked by non-reactive tracers (10-5 of the PPM 85 

emission rates), and source-specific PPM concentrations are then calculated by multiplying the tracer with 105. The 

contributions of source sectors to SIA are quantified using specific reactive tagged tracers. Specifically, NOx, SO2, and NH3 

from different sources were tracked separately through a series of chemical and physical processes involved in SIA formation. 

The source of SOA was not traced due to the complex and currently imperfect mechanism of SOA formation and the high 

uncertainties in the precursor VOCs emissions (Liu et al., 2021b; Hu et al., 2017b). Details of source apportionment can be 90 

found in previous studies (Zhang et al., 2012; Ma et al., 2021; Qiao et al., 2018; Ying et al., 2014). The contributions of source 

sectors to SOA were not tracked due to insufficient knowledge of its precursors and incomplete formation mechanisms (Yang 

et al., 2019; Carlton et al., 2007; Zhang et al., 2011). 

2.3 Machine learning method 

Tree-based ML models typically outperform deep learning approaches in tabular data (e.g., air pollutant observation 95 

datasets), and thus have been widely developed (Grinsztajn et al., 2022). Wei et al. (2021a) compared several models when 

reconstructing PM2.5 data records in China and found that the tree model showed superior performance. The LightGBM model 

is an optimized Gradient Boosting Decision Tree (GBDT) (Ke et al., 2017), and has shown accurate performance in many 

fields (Wei et al., 2021b; Yan et al., 2021; Sun et al., 2020; Liang et al., 2020b). Compared to XGBoost, a widely used GBDT, 

LightGBM uses Histogram's decision tree algorithm along with Gradient-based One-Side Sampling (GOSS), which saves 100 

memory and computation time (Ke et al., 2017). Three tree-based models, Random Forest, XGBoost, and LightGBM, were 

compared in our previous study (Wang et al., 2023a). Using the same input data and hyperparameters, LightGBM is as accurate 

as XGBoost, but faster and less overfitting (the difference in accuracy between training and testing). Besides, Multiple 

colinearities between features such as pollutant concentrations and meteorological factors can greatly affect the performance 

of traditional linear models. When independent variables are correlated, changes in one variable are associated with changes 105 

in the other, making it difficult for the model to independently estimate the relationship between each independent and 

dependent variable. However, these collinearities do not affect the performance of tree-based models like Random Forest and 

LightGBM, because they do not require the assumption of feature independence (Belgiu and Drăguţ, 2016; Chen et al., 2016; 

Ke et al., 2017). So the lightGBM model was used to diagnose PM2.5 simulation biases in this study. Two metrics were 

calculated to evaluate model performance, including the coefficient of determination (R2) and the root mean square error 110 

(RMSE) (Wei et al., 2020). 
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Cross-validation (5-fold) combined with RMSE was used to select hyperparameters. The dataset was randomly divided 

into five parts, one was taken in turn as the test set and the rest was used for training, which was repeated five times and the 115 

average test RMSE was calculated. Looping to increase model complexity, ending the loop and returning to the 

hyperparameters when the model test RMSE does not decrease significantly (< 0.01) or the gap between training and test 

RMSE increases significantly (< 0.05). The separate test sets (not involved in the training and CV hyperparameter selection 

process) were divided by randomly sampling 20% of the data from all stations in the region of interest. 

The target variable was set to be the difference between observed and simulated daily PM2.5 concentrations, and the key 120 



4 

contributors to the simulation bias were then determined by the relative importance (calculated by gain) of the input features 

(Ye et al., 2022; Loyola-González et al., 2023). Three categories of input variables were designed to separately fit the 

simulation biases: meteorological factors, chemical components, and emission sources. Meteorological factors, including wind 

speed, wind direction, temperature, humidity, surface pressure, cloud fraction, and boundary layer height, are used to 

investigate the impact of meteorology on the CMAQ simulation biases. The components of PM2.5 are divided into SIA ( sulfate, 125 

nitrate, ammonium), primary/secondary organic aerosols (POA/SOA), elemental carbon (EC), and other components. Seven 

sectoral sources (industry, energy, residential, transportation, agriculture, open burning, and biogenic emission) were used to 

quantify the contribution to the simulation bias. 

3 Results and discussion 

3.1 Observation and simulation of PM2.5  130 

Figure 1a shows the time series of observed and simulated daily surface PM2.5 concentrations in China and five regions (BTH, 

YRD, PRD, SCB, and NWCHN) over 2019. Observed PM2.5 concentrations were highest in BTH (51.172 μg/m3) and lowest 

in PRD (28.273 μg/m3). The CMAQ model underestimates PM2.5 concentrations of -8.59 μg/m3, -2.66 μg/m3, -6.21 μg/m3, and 

-19.25 μg/m3 in the BTH, YRD, PRD, and NWCHN, respectively (Figure 1b). Moreover, the underestimation occurred mainly 

in winter and spring (Figure 1c), as well as high PM2.5 events (Figure 1d) (Hu et al., 2016; Huang et al., 2017). 135 

Table A2 shows the validation of CMAQ simulations against observations in different regions. Four indicators (MNB: 

mean normalized bias; MNE: mean normalized error; MFB: mean fractional bias; MFE: mean fractional error) were used to 

systematically evaluate the performance of the CMAQ simulations. The PM2.5 simulations in the BTH, YRD, and PRD regions 

were in better agreement with observations, with average MNB of -0.08, -0.07, and -0.08 respectively (within the standard of 

0.66). The PM2.5 simulations in SCB and NWCHN regions show large biases with MNB of 0.46 and -0.42 respectively. The 140 

differences of CMAQ performance between regions can be attributed to multiple factors including emission inventories, 

dominant mechanisms of PM2.5 generation, topographic, and meteorology conditions (Ma et al., 2021; Xue et al., 2019; Hu et 

al., 2014). 

Annual and monthly mean PM2.5 components (SIA, POA, SOA, EC, and other components) were calculated for China 

and five key regions (Figure 2). PM2.5 and its components show similar spatial distribution, with high concentrations occurring 145 

in the eastern regions (SCB, BTH, and central YRD). SOA showed high concentrations in summer over China (6.80 μg/m3), 

which could be related to enhanced solar radiation and atmospheric oxidation capacity in summer (precursors of SOA such as 

isoprene are highly dependent on temperature and light) (Yang et al., 2019; Chen et al., 2020a; Liu et al., 2021b). Nitrate and 

POA were the dominant components in winter (10.14 μg/m3 and 9.11 μg/m3 respectively). In BTH and SCB, POA accounts 

for a higher proportion than nitrate in winter, whereas nitrate has a higher proportion in YRD. Nitrate showed higher 150 

concentration than sulfate in most regions and seasons due to the implementation of coal combustion control policies (Shang 

et al., 2021; Liu et al., 2021b; Xu et al., 2019). 

The results of the PM2.5 sectoral source appointment (Figure 3 and Figure S2) show that industries and residential sources 

were the main contributors to daily PM2.5 concentrations for all regions and seasons, with seasonal fractional contributions of 

25.31 - 31.92 % and 11.13 - 30.64 %, respectively). The seasonal average fractional contributions from energy, transportation, 155 

and agricultural NH3 in the whole China were 3.26 - 5.67%, 6.82 - 11.26 %, and 7.50 - 8.67 %, respectively. The contributions 

from biogenic source were negligible in all regions and seasons (< 1 %). In contrast to the contributions from energy, 

transportation, industrial, and agricultural sources, significant seasonal variations occurred from residential source in all five 

regions, with high contribution in winter (17.60 - 30.90 %) and low contribution in summer (5.53 - 16.46 %). 

As the secondary component makes up a large proportion of the total PM2.5, the source sectors of SIA were analyzed for 160 

five regions (Figure S2). High concentrations of SIA were found in winter (12.36 - 34.08 μg/m3), with large contribution from 
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industrial, agricultural, and transportation sources (31.49 - 36.41 %, 20.40 -22.40 %, and 19.77 - 22.46 %). The low 

contribution of the residential sector to secondary PM2.5 but the high contribution to total PM2.5 indicates that most residential 

emission sources emit PPM directly, with a small fraction of secondary generation. The contributions from biogenic and open 

burning sectors to SIA were relatively low in all regions and seasons (< 10 %). 165 

3.2 Drivers of PM2.5 simulation bias 

The ML models were separately trained by meteorology, PM2.5 components, and source sectors for different regions and 

seasons, and separate test sets were used to measure the model performance (Figure 4). All three feature combinations can 

partially explain the simulation bias. The mean test R2 for meteorology, PM2.5 components, and source sectors were 0.64, 0.52, 

and 0.50, respectively, and the RMSE was 17.41, 19.82, and 19.56 µg/m3, respectively. The model performed better in summer 170 

than in winter. This may be attributed to the high simulation biases in winter due to severe PM2.5 pollution and complex causes, 

while PM2.5 pollution in summer is lighter with lower CMAQ simulation bias. 

Using PM2.5 components as input features to fit the total simulation bias can tell us which components have a large 

simulation bias. Among the PM2.5 components (Figure S4), SOA showed the largest contribution to PM2.5 simulation bias for 

different regions and seasons (13.8 - 22.6%), which is consistent with previous studies (Liu et al., 2021b; Yang et al., 2019; 175 

Fry et al., 2014). The inorganic aerosols (e.g. sulfates) are produced mainly by chemical pathways, while SOA is produced by 

the condensation of numerous partially oxidized gases and is therefore influenced by complex precursor concentrations and 

multi-stage oxidation processes. The incomplete description of SOA formation pathways in CTMs models (simplified SOA 

parameterization) leads to significant differences between simulations and observations (Carlton et al., 2007; Zhang et al., 

2018; Yang et al., 2019). In addition, biogenic emissions play an important role in SOA formation, with biogenic SOA 180 

accounting for more than 70% of total SOA in China during summer (Hu et al., 2017b; Wu et al., 2020), so uncertainties in 

biogenic emissions can further contribute to uncertainties in SOA. Nitrate showed a large contribution to PM2.5 simulation bias 

in winter at BTH, which is consistent with the previous study (Liu and Xing, 2022). Nitrate contribution to simulation bias 

further implies the inaccuracy of nitrate simulations, which can relate to the imperfect pathways of nitrate production (e.g., 

non-homogeneous oxidation) in SAPRC11 (that we used) and the uncertainties of nitrate precursor emission inventories in 185 

winter (Xu et al., 2019; Zhang et al., 2018; Carter and Heo, 2013). 

 The contribution of meteorological factors to the simulation bias varies across regions and seasons (Figure 5). In the 

BTH region, surface pressure and relative humidity contribute the most to the simulation bias. In the PRD region, relative 

humidity, cloud cover, and wind direction were the main contributors in all four seasons. 

Humidity positively or negatively influences PM2.5 concentrations through several mechanisms. By enhancing PM2.5 190 

hygroscopic increase, promoting the secondary formation, and facilitating the gas-to-particle partitioning, high humidity 

positively influences PM2.5 concentrations and contributes significantly to haze pollution (Chen et al., 2020b; Cheng et al., 

2015; Zhang et al., 2011). The contribution of humidity to CMAQ simulation biases can partly attributed to the uncertainties 

of WRF simulation. The mean RMSE of relative humidity from WRF simulations versus observations was 20.38% in this 

study (Table A3). In addition, imperfections in the mechanism of humidity-promoted secondary particle formation (e.g., non-195 

homogeneous catalysis of SOA) can also lead to simulation biases (Zhang et al., 2011; Liu et al., 2021b). Atmospheric pressure 

indirectly influences PM2.5 concentrations through other meteorological factors (e.g., humidity, wind, etc.). High-pressure 

systems are connected to stationary weather, which is unfavorable for PM2.5 dispersion. On the other hand, low pressure is 

usually accompanied by high humidity, influencing PM2.5 nucleation, condensation, and coagulation, leading to increased 

PM2.5 concentrations (Chen et al., 2020b). Therefore, the influence of atmospheric pressure on the CMAQ simulation biases 200 

in the BTH region may be attributed to the uncertainties of meteorological field (Bei et al., 2017; Zhang et al., 2015). The 

contribution of wind direction in YRD may also related to the uncertainties of WRF simulation (mean RMSE: 90.39 °). 

Aerosols have feedback on meteorology (Qu et al., 2021). In addition to directly changing the radiation received by the earth 
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through scattering and absorbing (direct radiation effect), PM2.5 can also influence radiation through aerosol-cloud interactions 

(indirect radiation effect) (Zhao et al., 2017; Yang et al., 2016). Moreover, PM2.5 can act as cloud condensation and nucleation 205 

sites, contributing to clouds' microphysical development and precipitation formation process (Wang et al., 2020). However, 

the aerosol-to-meteorological feedback mechanism is missing in CMAQ used in this study. A previous study showed the 

dominant role of cloud chemistry in aerosol-cloud interactions in southern China (Zhao et al., 2017). Therefore, the influence 

of cloud cover on simulation biases in YRD can attributed to the lack of aerosol feedback mechanism. 

In the NWCHN region, soil surface moisture and stomatal conductance contributed significantly to the simulation bias. 210 

These factors can be associated with ground-level sand rise and dust emission (Liu et al., 2021c). Underestimation of dust 

aerosol in NWCHN can be attributed to emission (both natural and anthropogenic sources), and an accurate emission inventory 

(empirical- or physical-based numerical models) should be established in Northwest China by detailed activity data and 

emission factors (Hu et al., 2016; Liu et al., 2021a). In addition, the parameterization and mechanism for dust aerosol 

simulation in CMAQ should be further examined and improved. 215 

Dry and wet days were divided to analyze the influence of humidity on the simulation biases (Table A4). In most areas 

of China, CMAQ underestimates PM2.5 more severely on dry days than on wet days, with larger absolute biases (-14.56 µg/m3, 

-7.09 µg/m3, -7.11 µg/m3, and -27.87 µg/m3 in spring, summer, autumn, and winter respectively). In dry days, BTH showed 

severe underestimation in winter (-22.86 µg/m3), while PRD showed large simulation bias in spring (-21.55 µg/m3). Severe 

underestimation of PM2.5 was observed in both wet and dry days at NWCHN. These underestimates of PM2.5 in dry days can 220 

related to the dry deposition process. Dry deposition is a critical but highly uncertain sink for aerosols, which depends on the 

chemical and physical properties of aerosols, and is influenced by land surface properties and meteorological conditions (Shu 

et al., 2022). Different land-use types (e.g., vegetation, deserts, and snow) have significantly different abilities to capture 

particulate matter. The CMAQ model in this study used the dry deposition scheme PR11 from Pleim and Ran (Pleim and Ran, 

2011). This study shows that the PR11 scheme underestimates PM2.5 concentrations in China. Recent studies in the United 225 

States also showed an underestimation for PM10 concentrations (Shu et al., 2022). Therefore, it is necessary to further develop 

and optimize the dry deposition scheme, especially for PM2.5. PM2.5 underestimation in wet days may attributed to the biases 

of wet deposition and secondary organic aerosol formation under high humidity conditions (Wu et al., 2018; Ryu and Min, 

2022; Liu et al., 2021b; Zhang et al., 2011). 

Source sector contributions of PPM and SIA (obtained from the source-oriented CMAQ) were used to build the model 230 

and diagnose the influences of different emissions sources on PM2.5 simulation biases (Figure 6).  The PPM and SIA from 

residential showed the largest contribution (12.05 % and 12.78 %) to PM2.5 simulation bias. The same conclusion was obtained 

when building model with total PM2.5 concentrations from different source sectors (Table A5). PM2.5 from residential emissions 

is the main contributor to the CMAQ simulation bias, accounting for 20.2% of the total bias.  

In China, the residential sector consumed fossil fuels (coal, oil, and natural gas) and biofuels (wood and crop straw) with 235 

low combustion efficiency for cooking and heating and emitted large amounts of air pollutants (Li et al., 2017). However, due 

to the lack of reliable data (locally accurate emission factor and fuel consumption data), the residential sector has been 

recognized as a major uncertainty source in anthropogenic emission inventories (Liu et al., 2021d; Shen et al., 2021), which is 

consistent with the results identified by machine learning in this study. Therefore, developing an accurate residential sector 

emissions inventory is essential for accurate PM2.5 modeling, which requires reliable data of fuel consumption and emission 240 

factors based on fuel type, fuel characteristics, and combustion conditions (Liu et al., 2021d). 

3.3 Comparisons and uncertainties 

Huang et al. (2019) used a new reduced-form model coupled with a higher-order decoupled direct method and stochastic 

response surface model to identify sources of uncertainty in CMAQ simulations. An analysis for the PRD of China in spring 

2013 revealed a systematic underestimation of SOA and identified wind speed and primary PM2.5 emissions as key sources of 245 
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uncertainties in PM2.5 simulations, which is consistent with the results identified using LightGBM in this study. Aleksankina 

et al. (2019) identified PM2.5 simulation bias in Europe using optimised Latin hypercube sampling and also demonstrated the 

important impact of primary emissions on PM2.5 simulation uncertainties. Liu and Xing (2022) used a fully connected neural 

network to identify PM2.5 simulation biases and found that NO2 is the main contributor in BTH during heavily polluted events 

in the winter, which is consistent with the main contribution of nitrate that we found in the BTH (Figure S4). 250 

Although we filtered the features according to their relative importance and priori knowledge, collinearity still exists 

among the input features. Multicollinearity among features does not affect the performance of tree-based models like Random 

Forest and LightGBM (Belgiu and Drăguţ, 2016; Chen et al., 2016; Ke et al., 2017), but the contribution of a single feature 

might be slightly influenced by other features. Previous studies (Hou et al., 2022; Ye et al., 2022) have used ML to explain the 

causes of air pollution and model bias, and although there was multicollinearity between the input features they used, they got 255 

reliable conclusions, showing the slight influence of multicollinearity and the reliability of tree-based machine learning 

methods.  

The main objective of this study was to diagnose the contributors to CMAQ simulation biases using machine learning, 

rather than for prediction. Since meteorology or emissions can only partially explain the simulation bias, a low R2 is justified 

when fitting the model with only meteorology or emissions variables (Figure 4). We designed a complementary experiment to 260 

measure the impact of the model itself by comparing popular regression models (including multiple linear regression, 

polynomial regression (degree:2), Random Forest, XGBoost, and LightGBM) with the same features (PM2.5 components). All 

models show similar performance (Table A6), e.g., all models show lower R2 in the winter in the BTH (0.16 - 0.4), and higher 

R2 in the SCB region (0.7 - 0.8). This is a side evidence that the low R2 is more affected by the features than the model itself, 

as the commonly used regression models can hardly obtain high R2 with insufficient explanatory features (e.g., chemical 265 

component features in winter in BTH). Besides, LightGBM shows comparable accuracy to XGBoost but is faster and shows 

smaller accuracy gaps between training and testing with less overfitting.  

Previous pollution prediction studies based on tree models usually added the time-related features to describe the temporal 

pattern of pollutant changes to further improve the prediction ability, e.g., Wei et al. (2021a) improved the model performance 

by adding temporal features of day of year and Unix timestamps. However, the inclusion of temporal features cannot provide 270 

any useful information about contributors of simulation biases instead it is difficult to attribute them to meteorological or 

emissions contributions.Therefore, temporal features were not included in our model. Besides, the ML bias diagnosis model 

constructed in this study is based entirely on local data and some temporal and regional processes influencing PM2.5 

concentrations are not considered in this study, such as vertical transport, long distance transport, which should be better 

diagnosed in future work, and the main bias contributors of identified by variable importance are in good agreement with the 275 

current findings. 

4 Conclusion 

Based on artificial intelligence technology, this study systematically diagnoses the possible drivers of biases in PM2.5 

simulation from three perspectives of meteorology, chemical components, and emission sources. The relative importance of 

multiple factors helps to understand the sources of simulation bias and the deficiencies of the CMAQ mechanisms. SOA is the 280 

main contributor to simulation biases among chemical components. PM2.5 is more underestimated in dry weather. Among 

source sectors, residential contributed the most simulation bias for both PPM and SIA. These results provide valuable 

information for CMAQ model improvement from SOA and dust aerosol underestimation, meteorological field uncertainties, 

imperfection of the dry deposition scheme, and inaccurate residential emission inventories. As an efficient bias diagnosis 

method, machine learning based methods provide valuable complements to traditional mechanism-based methods. This 285 

approach also greatly reduces the prior information for diagnosing simulation bias and efficiently identifies the important 
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contributors, so it can be easily extended to other CTMs models as well as other pollutants. 
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Figure 1. (a) The time series of observed (black) and CMAQ simulated (red) daily surface PM2.5 concentrations in China and five 

regions. Mean concentrations of the observed and simulated PM2.5 and MNB also shown in the inset. (b) Box plots of CMAQ 500 
simulated biases (simulated minus observed) for different regions. Crosses indicate average values and outliers are determined to 

be > 1.5 times of the upper quartile and < 1.5 times of the lower quartile. (c) Same as (b) but for four seasons. Spring, summer, 

autumn and winter are defined as March to May, June to August, September to November, December January and February, 

respectively. (d) Same as (b) but for different PM2.5 concentration levels (L1: [0, 35], L2: [35, 75], L3: [75, 115], L4: [115, 150], L5: 

[150, 1000]). 505 
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Figure 2. Annual mean concentrations map (a - g) and monthly mean concentrations (h-m) of PM2.5 and its components (SIA , POA, 

SOA, EC, and other components) for China and five key regions in 2019. Dotted lines in h-m indicate PM2.5 observations 

 510 

 

Figure 3. Seasonal average fractional contributions from different sources to PM2.5 concentrations (black circle on the right-hand 

axis) in China and five regions. 
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 515 

Figure 4. Test results of CMAQ bias model training by meteorology (a), PM2.5 components (b), and source sectors (c). RMSE unit: 

µg/m3. 
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Figure 5. Contribution (%) of each meteorological factor to CMAQ simulation biases by region and season. 

 520 

 

Figure 6. Contribution (%) of each source sectors to CMAQ biases by region and season. res: residential, ene: energy, tra: 

transportation, agr: agriculture, ind: industry, AEC: elemental carbon, Other: other components. 


