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Abstract. Chemical transport models (CTMs) are widely used for air pollution modeling, which suffer from significant biases 

due to uncertainties in simplified parameterization, meteorological fields, and emission inventories. Accurate diagnosis of 

simulation biases is critical for improvement of models, interpretation of results, and efficient air quality management, 15 

especially for the simulation of fine particulate matter (PM2.5). In this study, an efficient method based on machine learning 

(ML) was designed to diagnose the drivers of the Community Multiscale Air Quality (CMAQ) model biases compared to 

observations in simulating PM2.5 concentrations from three perspectives of meteorology, chemical composition, and emission 

sources. The source-oriented CMAQ was used to diagnose the influences of different emission sources on PM2.5 biases. The 

ML model can capture the complex relationship between input variables and simulation bias well with small performance gap 20 

between training and validation. The CMAQ model underestimates PM2.5 by -19.25 to -2.66 μg/m3
 in 2019, especially in winter 

and spring and high PM2.5 events. Secondary organic components showed the largest contribution to PM2.5 simulation bias for 

different regions and seasons (13.8 - 22.6%) among components. Relative humidity, cloud cover, and soil surface moisture 

were the main meteorological factors contributing to PM2.5 bias in the North China Plain, Pearl River Delta, and Northwestern, 

respectively. Both primary and secondary inorganic components from residential sources showed the largest contribution to 25 

this bias (12.05 % and 12.78 %), implying large uncertainties in this sector. The ML-based methods provide valuable 

complements to traditional mechanism-based methods for model improvement, with high efficiency and low reliance on prior 

information. 

1 Introduction 

Fine particulate matter (PM2.5) is a complex mixture of primary particulate matters (PPM) and secondary inorganic/organic 30 

components (SIA/SOA), with adverse effects on public health and ecosystems. Ambient levels of PM2.5 are influenced by 

meteorological conditions, emission from different sources, and atmospheric chemical processes (Organization, 2021; Xiao et 

al., 2021a; Yang et al., 2016; Liu et al., 2021b; Zhai et al., 2019). China has experienced severe PM2.5 pollution over the past 

two decades (Bai et al., 2022; Liang et al., 2020a). For effective air quality management, accurate PM2.5 modeling is essential. 

Chemical transport models (CTMs) like the Community Multiscale Air Quality (CMAQ) model, have been widely developed 35 

and applied to PM2.5 simulations through atmospheric processes of dispersion, deposition, and chemical reactions (Qiao et al., 

2018; Wang et al., 2021; Hu et al., 2017a). Application of CTMs simulations is often limited by the biases due to uncertainties 

of simplified parameterization, meteorological prediction, emission inventories, initial and boundary conditions (Binkowski 

and Roselle, 2003; Hu et al., 2014; Hu et al., 2016; Wang et al., 2023b; Wang et al., 2021). Thus, it is essential to diagnose 
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specific sources of simulation biases according to specific model applications, including grid resolution, parameterization, 40 

mechanisms, meteorological inputs, and emission inventories. 

Traditional bias diagnosis approaches for CTM models usually rely on empirical and prior assumptions with extensive 

sensitivity testing and high demands on computational resources, such as Monte Carlo methods or Latin hypercube sampling 

(Beekmann and Derognat, 2003; Hanna et al., 2005; Aleksankina et al., 2019). Recently machine learning (ML) methods, like 

Random Forest and XGBoost, have been widely used in environmental science researches due to their simple structure, fast 45 

speed, and ability to deal with no-linear relationships (Liu et al., 2022). Many studies used ML to predict air pollutant 

concentrations like PM2.5 and ozone (Wei et al., 2021a; Sun et al., 2021; Zhu et al., 2022; Bai et al., 2022), improve the accuracy 

of CTMs simulations (Wang et al., 2023b; Wei et al., 2020), and explain the prediction results using interpretable ML 

techniques (Hou et al., 2022; Li et al., 2023; Stirnberg et al., 2021). To date, few studies have used ML to diagnose the 

simulation bias of CTMs. A study has shown the potential of machine learning in explaining the simulation bias of ozone (Ye 50 

et al., 2022). However, as a complex multi-phase mixture, it is still challenging to diagnose biases in PM2.5 simulations using 

ML methods (Liu and Xing, 2022). Moreover, due to the strong influence of emissions, it is instructive to diagnose CTMs 

biases of PM2.5 based on a source-appointment perspective. 

In this study, we use the Light Gradient Boosting Machine (lightGBM) model, an efficient ensemble ML approach, to 

diagnose the drivers of CMAQ biases in simulating PM2.5 concentrations. A source-oriented version of CMAQ is used to track 55 

sectoral source contributions to PM2.5. Model biases are diagnosed from multiple perspectives, including meteorology, 

chemical components, and emission sources. 

2 Materials and methods 

2.1 Surface PM2.5 observations 

This study focused on 2019 because of the large number of observations, the reliability of the emission inventories, and without 60 

interference of COVID19. Hourly PM2.5 observations for 2019 are collected from the China National Environmental 

Monitoring Centre (CNEMC, http://www.cnemc.cn/). The daily observations data <0.1 % quantile and >99.9 % quantile, PM2.5 

exceeds PM10, and days with less than 20 valid hourly records are excluded. For observation sites located on the same CMAQ 

simulation grid (36 km × 36 km), average PM2.5 concentrations of these sites were calculated to compare with CMAQ 

simulation. The distribution of observation sites is shown in Figure S1. Analysis has been carried out on several haze-polluted 65 

regions and on all China (Figure S1), including Beijing-Tianjin-Hebei (BTH); the Yangtze River Delta (YRD); the Pearl River 

Delta (PRD); the Sichuan Basin (SCB); and Northwestern China (NWCHN). 

2.2 CMAQ simulation 

The Weather Research & Forecasting Model (WRF v4.2) was used to generate meteorological fields driven by the National 

Centers for Environmental Prediction (NCEP) FNL Operational Model Global Tropospheric Analyses dataset 70 

(http://rda.ucar.edu/datasets/ds083.2/) (Commerce, 2000). Several meteorological factors (Table A1) that are highly relevant 

to aerosol concentrations are selected for ML model building (Xiao et al., 2021b; Chen et al., 2020b; Meng et al., 2019). The 

CMAQ v5.0.2 with a modified SAPRC-11 photochemical mechanism and AERO6 aerosol module was applied for aerosol 

simulations (Carter and Heo, 2013; Ying et al., 2015; Binkowski and Roselle, 2003). Details of CMAQ model improvement 

can be found in previous studies (Hu et al., 2017b; Ying et al., 2015). The Multi-resolution Emission Inventory for China 75 

(MEIC) was used as anthropogenic emission (http://meicmodel.org/), and the Model for Emissions of Gases and Aerosols 

from Nature (MEGAN) version 2.1 was used to generate biogenic emissions (Guenther et al., 2012; Guenther et al., 2006). 

The Fire INventory from NCAR (FINN) based on satellite were used to generate open burning emission (Wiedinmyer et al., 

2011). The list of PM2.5 components simulated by CMAQ is shown in Table A1. The CMAQ simulation (36 km×36 km) was 
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carried out in mainland China and surrounding regions in 2019. 80 

The source apportionment method was used to quantify the contributions of industry, energy, residential, transportation, 

agriculture, open burning, and biogenic sources to PPM and SIA through a modified version of CMAQ (Zhang et al., 2012; 

Ma et al., 2021; Qiao et al., 2018). PPM from different source sectors are tracked by non-reactive tracers (10-5 of the PPM 

emission rates). The concentrations of PPM from given sources are then calculated by multiplying the tracer with 105. The 

contributions of source sectors to SIA are quantified using specific reactive tagged tracers. Specifically, NOx, SO2, and NH3 85 

from different sources were tracked separately through a series of chemical and physical processes involved in SIA formation. 

The source of SOA was not traced due to the complex and currently imperfect mechanism of SOA formation and the high 

uncertainties in the precursor VOCs emissions (Liu et al., 2021b; Hu et al., 2017b). Details of source apportionment can be 

found in previous studies (Zhang et al., 2012; Ma et al., 2021; Qiao et al., 2018; Ying et al., 2014). The contributions of source 

sectors to SOA were not tracked due to insufficient knowledge of its precursors and incomplete formation mechanisms (Yang 90 

et al., 2019; Carlton et al., 2007; Zhang et al., 2011). 

2.3 Machine learning method 

The LightGBM model is an optimized Gradient Boosting Decision Tree (GBDT) (Ke et al., 2017), and has shown accurate 

performance in many fields (Wei et al., 2021b; Yan et al., 2021; Sun et al., 2020; Liang et al., 2020b). Compared to XGBoost, 

a widely used GBDT, LightGBM uses Histogram's decision tree algorithm along with Gradient-based One-Side Sampling 95 

(GOSS), which saves memory and computation time (Ke et al., 2017). Three tree-based models, Random Forest, XGBoost, 

and LightGBM, were compared in our previous study (Wang et al., 2023a). Using the same input data and hyperparameters, 

LightGBM is as accurate as XGBoost, but faster and less overfitting (the difference in accuracy between training and testing), 

so the lightGBM model was used to diagnose PM2.5 simulation biases in this study. The target variable was set to be the 

difference between observed and simulated daily PM2.5 concentrations, and the key contributors to the simulation bias were 100 

then determined by the relative importance of the input features (Ye et al., 2022). Three categories of input variables were 

designed to separately fit the simulation biases: meteorological factors, chemical components, and emission sources. 

Meteorological factors, including wind speed, wind direction, temperature, humidity, surface pressure, cloud fraction, and 

boundary layer height, are used to investigate the impact of meteorology on the CMAQ simulation biases. The components of 

PM2.5 are divided into SIA ( sulfate, nitrate, ammonium), primary/secondary organic aerosols (POA/SOA), elemental carbon 105 

(EC), and other components. Seven sectoral sources (industry, energy, residential, transportation, agriculture, open burning, 

and biogenic emission) were used to quantify the contribution to the simulation bias. Cross-validation (CV) is an effective 

model validation method to prevent overfitting (Browne, 2000). To improve computational efficiency and enlarge the test 

dataset size, five-fold CV method was used to evaluate the model performance. The dataset was randomly divided into five 

parts, one was taken in turn as a test and the rest was used for training, which was repeated five times, and then the mean 110 

coefficient of determination (R2) and the root mean square error (RMSE) were calculated. 

3 Results and discussion 

3.1 Observation and simulation of PM2.5  

Figure 1a shows the time series of observed and simulated daily surface PM2.5 concentrations in China and five regions (BTH, 

YRD, PRD, SCB, and NWCHN) over 2019. Basically, the CMAQ model successfully simulates the daily variation of PM2.5 115 

with some biases. Observed PM2.5 concentrations were highest in BTH (51.172 μg/m3) and lowest in PRD (28.273 μg/m3). 

The CMAQ model underestimates PM2.5 concentrations of -8.59 μg/m3, -2.66 μg/m3, -6.21 μg/m3, and -19.25 μg/m3 in the 

BTH, YRD, PRD, and NWCHN, respectively (Figure 1b). Moreover, the underestimation occurred mainly in winter and spring 

(Figure 1c), as well as high PM2.5 events (Figure 1d) (Hu et al., 2016; Huang et al., 2017). 
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Table A2 shows the validation of CMAQ simulations against observations in different regions. Four indicators (MNB: 120 

mean normalized bias; MNE: mean normalized error; MFB: mean fractional bias; MFE: mean fractional error) were used to 

systematically evaluate the performance of the CMAQ simulations. The PM2.5 simulations in the BTH, YRD, and PRD regions 

were in better agreement with observations, with average MNB of -0.08, -0.07, and -0.08 respectively (within the standard of 

0.66). The PM2.5 simulations in SCB and NWCHN regions show large biases with MNB of 0.46 and -0.42 respectively. The 

differences of CMAQ performance between regions can be attributed to multiple factors including emission inventories, 125 

dominant mechanisms of PM2.5 generation, topographic, and meteorology conditions (Ma et al., 2021; Xue et al., 2019; Hu et 

al., 2014). 

Annual and monthly mean PM2.5 components (SIA, POA, SOA, EC, and other components) were calculated for China 

and five key regions (Figure 2). PM2.5 and its components show similar spatial distribution, with high concentrations occurring 

in the eastern regions (SCB, BTH, and central YRD). SOA showed high concentrations in summer over China (6.80 μg/m3), 130 

which could be related to enhanced solar radiation and atmospheric oxidation capacity in summer (precursors of SOA such as 

isoprene are highly dependent on temperature and light) (Yang et al., 2019; Chen et al., 2020a; Liu et al., 2021b). Nitrate and 

POA were the dominate components in winter (10.14 μg/m3 and 9.11 μg/m3 respectively). In BTH and SCB, POA accounts 

for a higher proportion than nitrate in winter, whereas nitrate has a higher proportion in YRD. Nitrate showed higher 

concentration than sulfate in most regions and seasons due to the implementation of coal combustion control policies (Shang 135 

et al., 2021; Liu et al., 2021b; Xu et al., 2019). 

The results of the PM2.5 sectoral source appointment (Figure 3 and Figure S2) show that industries and residential sources 

were the main contributors to daily PM2.5 concentrations for all regions and seasons, with seasonal fractional contributions of 

25.31 - 31.92 % and 11.13 - 30.64 %, respectively). The seasonal average fractional contributions from energy, transportation, 

and agricultural NH3 in whole China were 3.26 - 5.67%, 6.82 - 11.26 %, and 7.50 - 8.67 %, respectively. The contributions 140 

from biogenic source were negligible in all regions and seasons (< 1 %). In contrast to the contributions from energy, 

transportation, industrial, and agricultural sources, significant seasonal variations occurred from residential source in all five 

regions, with high contribution in winter (17.60 - 30.90 %) and low contribution in summer (5.53 - 16.46 %). 

As the secondary component makes up a large proportion of the total PM2.5, the source sectors of SIA were analyzed for 

five regions (Figure S2). High concentrations of SIA were found in winter (12.36 - 34.08 μg/m3), with large contribution from 145 

industrial, agricultural, and transportation sources (31.49 - 36.41 %, 20.40 -22.40 %, and 19.77 - 22.46 %). The low 

contribution of residential sector to secondary PM2.5 but the high contribution to total PM2.5 indicates that most residential 

emission sources emit PPM directly, with a small fraction of secondary generation. The contributions from biogenic and open 

burning sectors to SIA were relatively low in all regions and seasons (< 10 %). 

3.2 Drivers of PM2.5 simulation bias 150 

The contribution of each PM2.5 component to the simulation bias was further quantified by relative importance. First, 20% of 

the data (not involved in training) were randomly selected for model evaluation (Figure S4). Training was performed using a 

combination of PM2.5 components, meteorological, and emission features. The model showed an prediction R2 of 0.68 and 

RMSE of 17.26 μg/m3. Then, the ML models were trained separately for different regions and seasons, and a 5-fold CV was 

used to measure the model performance (Figure 4). The models explain most part of simulation bias, with some differences 155 

across seasons and regions (mean CV R2 of 0.49, 0.65, 0.52, 0.49 for spring, summer, autumn, and winter).  

Using PM2.5 components as input features to fit the total simulation bias can tell us which components have a large 

simulation bias. Among the PM2.5 components (Figure S5), SOA showed the largest contribution to PM2.5 simulation bias for 

different regions and seasons (13.8 - 22.6%), which is consistent with previous studies (Liu et al., 2021b; Yang et al., 2019; 

Fry et al., 2014). The inorganic aerosols (e.g. sulfates) are produced mainly by chemical pathways, while SOA is produced by 160 

the condensation of numerous partially oxidized gases and is therefore influenced by complex precursor concentrations and 
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multi-stage oxidation processes. The incomplete description of SOA formation pathways in CTMs models (simplified SOA 

parameterization) leads to significant differences between simulations and observations (Carlton et al., 2007; Zhang et al., 

2018; Yang et al., 2019). In addition, biogenic emissions play an important role in SOA formation, with biogenic SOA 

accounting for more than 70% of total SOA in China during summer (Hu et al., 2017b; Wu et al., 2020), so uncertainties in 165 

biogenic emissions can further contribute to uncertainties in SOA. Nitrate showed a large contribution to PM2.5 simulation bias 

in winter at BTH, which is consistent with the previous study.(Liu and Xing, 2022) Nitrate contribution to simulation bias 

further implies the inaccuracy of nitrate simulations, which can relate to the imperfect pathways of nitrate production (e.g., 

non-homogeneous oxidation) in SAPRC11 (that we used) and the uncertainties of nitrate precursor emission inventories in 

winter (Xu et al., 2019; Zhang et al., 2018; Carter and Heo, 2013). 170 

The main meteorological factors were used for modeling and were able to explain most simulation biases (CV R2 of 0.62, 

0.80, 0.69, 0.70 for spring, summer, autumn, and winter, Figure 4). The contribution of meteorological factors to the simulation 

bias varies across regions and seasons (Figure 5). In the BTH region, surface pressure and relative humidity contribute the 

most to the simulation bias. In the PRD region, relative humidity, cloud cover, and wind direction were the main contributors 

in all four seasons. 175 

Humidity positively or negatively influences PM2.5 concentrations through several mechanisms. By enhancing PM2.5 

hygroscopic increase, promoting the secondary formation, and facilitating the gas-to-particle partitioning, high humidity 

positively influences PM2.5 concentrations and contributes significantly to haze pollution (Chen et al., 2020b; Cheng et al., 

2015; Zhang et al., 2011). The contribution of humidity to CMAQ simulation biases can partly attributed to the uncertainties 

of WRF simulation. The mean RMSE of relative humidity from WRF simulations versus observations was 20.38% in this 180 

study (Table A3). In addition, imperfections in the mechanism of humidity-promoted secondary particle formation (e.g., non-

homogeneous catalysis of SOA) can also lead to simulation biases (Zhang et al., 2011; Liu et al., 2021b). Atmospheric pressure 

indirectly influences PM2.5 concentrations through other meteorological factors (e.g., humidity, wind, etc.). High pressure 

systems are connected to a stationary weather, which is unfavorable for PM2.5 dispersion. On the other hand, low pressure is 

usually accompanied by high humidity, influencing PM2.5 nucleation, condensation, and coagulation, leading to increased 185 

PM2.5 concentrations (Chen et al., 2020b). Therefore, influence of atmospheric pressure on the CMAQ simulation biases in the 

BTH region may be attributed to the uncertainties of meteorological field (Bei et al., 2017; Zhang et al., 2015). The contribution 

of wind direction in YRD may also related to the uncertainties of WRF simulation (mean RMSE: 90.39 °). Aerosols have 

feedback on meteorology (Qu et al., 2021). In addition to directly changing the radiation received by the earth through 

scattering and absorbing (direct radiation effect), PM2.5 can also influence radiation through aerosol-cloud interactions (indirect 190 

radiation effect) (Zhao et al., 2017; Yang et al., 2016). Moreover, PM2.5 can act as cloud condensation and nucleation sites, 

contributing to clouds' microphysical development and precipitation formation process (Wang et al., 2020). However, the 

aerosol-to-meteorological feedback mechanism is missing in CMAQ used in this study. Previous study showed the dominant 

role of cloud chemistry in aerosol-cloud interactions in southern China (Zhao et al., 2017). Therefore, the influence of cloud 

cover on simulation biases in YRD can attributed to the lack of aerosol feedback mechanism. 195 

In the NWCHN region, soil surface moisture and stomatal conductance contributed significantly to the simulation bias. 

These factors can be associated with ground-level sand rise and dust emission (Liu et al., 2021c). Underestimation of dust 

aerosol in NWCHN can be attributed to emission (both natural and anthropogenic sources), and an accurate emission inventory 

(empirical- or physical-based numerical models) should be established in Northwest China by detailed activity data and 

emission factors (Hu et al., 2016; Liu et al., 2021a). In addition, the parameterization and mechanism for dust aerosol 200 

simulation in CMAQ should be further examined and improved. 

Dry and wet days were divided to analyze the influence of humidity on the simulation biases (Table A4). In most areas 

of China, CMAQ underestimates PM2.5 more severely on dry days than on wet days, with larger absolute biases (-14.56 µg/m3, 

-7.09 µg/m3, -7.11 µg/m3, and -27.87 µg/m3 in spring, summer, autumn, and winter respectively). In dry days, BTH showed 
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severe underestimation in winter (-22.86 µg/m3), while PRD showed large simulation bias in spring (-21.55 µg/m3). Severe 205 

underestimation of PM2.5 was observed in both wet and dry days at NWCHN. These underestimates of PM2.5 in dry days can 

related to the dry deposition process. Dry deposition is a critical but highly uncertain sink for aerosols, which depends on the 

chemical and physical properties of aerosols, and is influenced by land surface properties and meteorological conditions (Shu 

et al., 2022). Different land-use types (e.g., vegetation, deserts, and snow) have significantly different abilities to capture 

particulate matter. The CMAQ model in this study used the dry deposition scheme PR11 from Pleim and Ran (Pleim and Ran, 210 

2011). This study shows that the PR11 scheme underestimates PM2.5 concentrations in China. Recent studies in the United 

States also showed an underestimation for PM10 concentrations (Shu et al., 2022). Therefore, it is necessary to further develop 

and optimize the dry deposition scheme, especially for PM2.5. PM2.5 underestimation in wet days may attributed to the biases 

of wet deposition and secondary organic aerosol formation under high humidity conditions (Wu et al., 2018; Ryu and Min, 

2022; Liu et al., 2021b; Zhang et al., 2011). 215 

Source sector contributions of PPM and SIA (obtained from the source-oriented CMAQ) were used to build the model 

and diagnose the influences of different emissions sources on PM2.5 simulation biases (Figure 6). In China and five key regions, 

sectoral sources were able to fit the simulation bias well, with mean R2 and RMSE of 0.53 % and 20.18 µg/m3 (Figure 4). The 

PPM and SIA from residential showed the largest contribution (12.05 % and 12.78 %) to PM2.5 simulation bias. The same 

conclusion was obtained when building model with total PM2.5 concentrations from different source sectors (Table A5). PM2.5 220 

from residential emission is the main contributor to the CMAQ simulation bias, accounting for 20.2% of the total bias.  

In China, residential sector consumed fossil fuels (coal, oil, and natural gas) and biofuels (wood and crop straw) with low 

combustion efficiency for cooking and heating and emitted large amounts of air pollutants (Li et al., 2017). However, due to 

the lack of reliable data (locally accurate emission factor and fuel consumption data), the residential sector has been recognized 

as a major uncertainty source in anthropogenic emission inventories (Liu et al., 2021d; Shen et al., 2021), which is consistent 225 

with the results identified by machine learning in this study. Therefore, developing an accurate residential sector emissions 

inventory is essential for accurate PM2.5 modeling, which requires reliable data of fuel consumption and emission factors based 

on fuel type, fuel characteristics, and combustion conditions (Liu et al., 2021d). 

3.3 Comparisons and uncertainties 

Huang et al. (2019) used a new reduced-form model coupled with a higher-order decoupled direct method and stochastic 230 

response surface model to identify sources of uncertainty in CMAQ simulations. An analysis for the PRD of China in spring 

2013 revealed a systematic underestimation of SOA and identified wind speed and primary PM2.5 emissions as key sources of 

uncertainties in PM2.5 simulations, which is consistent with the results identified using LightGBM in this study. Aleksankina 

et al. (2019) identified PM2.5 simulation bias in Europe using optimised Latin hypercube sampling and also demonstrated the 

important impact of primary emissions on PM2.5 simulation uncertainties. Liu and Xing (2022) used a fully connected neural 235 

network to identify PM2.5 simulations biases and found that NO2 is the main contributor in BTH during heavy polluted events 

in the winter, which is consistent with the main contribution of nitrate that we found in the BTH (Figure S5). 

Although we filtered the features according to their relative importance and priori knowledge, collinearity still exists 

among the input features. Features collinearity does not affect the performance of tree-based models like Random Forest and 

LightGBM (Belgiu and Drăguţ, 2016; Chen et al., 2016; Ke et al., 2017), but the contribution of a single feature might be 240 

influenced by other features, which is unfavorable for the interpretation of bias diagnosis results. In addition, the main objective 

of this study was diagnosing the contributors to CMAQ simulation biases using machine learning, rather than for prediction. 

Since meteorology or emissions can only partially explain the simulation bias, a low R2 is justified when fitting the model with 

only meteorology or emissions variables (Figure 4), which indicates a minor influence of the input variables to the simulation 

bias. Besides, the ML bias diagnosis model constructed in this study is based entirely on local data and some regional processes 245 

influencing PM2.5 concentrations are not considered in this study, such as vertical transport, long distance transport, which 
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should be better diagnosed in future work, and the main bias contributors of identified by variable importance are in good 

agreement with the current findings. 

4 Conclusion 

Based on artificial intelligence technology, this study systematically diagnoses the possible drivers of biases in PM2.5 250 

simulation from three perspectives of meteorology, chemical components, and emission sources. The relative importance of 

multiple factors helps to understand the sources of simulation bias and the deficiencies of the CMAQ mechanisms. SOA is the 

main contributor to simulation biases among chemical components. PM2.5 is more underestimated in dry weather. Among 

source sectors, residential contributed the most simulation bias for both PPM and SIA. These results provide valuable 

information for CMAQ model improvement from SOA and dust aerosol underestimation, meteorological field uncertainties, 255 

imperfection of the dry deposition scheme, and inaccurate residential emission inventories. As an efficient bias diagnosis 

method, machine learning based methods provide valuable complements to traditional mechanism-based methods. This 

approach also greatly reduces the prior information for diagnosing simulation bias and efficiently identifies the important 

contributors, so it can be easily extended to other CTMs models as well as other pollutants. 
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Figure 1. (a) The time series of observed (black) and CMAQ simulated (red) daily surface PM2.5 concentrations in China and five 

regions. Mean concentrations of the observed and simulated PM2.5 and MNB also shown in the inset. (b) Box plots of CMAQ 

simulated biases (simulated minus observed) for different regions. Crosses indicate average values and outliers are determined to 470 
be > 1.5 times of the upper quartile and < 1.5 times of the lower quartile. (c) Same as (b) but for four seasons. Spring, summer, 

autumn and winter are defined as March to May, June to August, September to November, December January and February, 

respectively. (d) Same as (b) but for different PM2.5 concentration levels (L1: [0, 35], L2: [35, 75], L3: [75, 115], L4: [115, 150], L5: 

[150, 1000]). 
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Figure 2. Annual mean concentrations map (a - g) and monthly mean concentrations (h-m) of PM2.5 and its components (SIA , POA, 

SOA, EC, and other components) for China and five key regions in 2019. Dotted lines in h-m indicate PM2.5 observations 

 

 480 

Figure 3. Seasonal average fractional contributions from different sources to PM2.5 concentrations (black circle on the right-hand 

axis) in China and five regions. 
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Figure 4. Cross validation (5-fold) results of CMAQ bias model training by meteorology (a), PM2.5 components (b), and source 485 
sectors (c). RMSE unit: µg/m3. 
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Figure 5. Contribution (%) of each meteorological factor to CMAQ simulation biases by region and season. 

 

 490 

Figure 6. Contribution (%) of each source sectors to CMAQ biases by region and season. res: residential, ene: energy, tra: 

transportation, agr: agriculture, ind: industry, AEC: elemental carbon, Other: other components. 


