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Comments from the editor: 

Please reply to the reviewers' comments carefully. 

- We appreciate the editor’s efforts on this manuscript. In the revision, we carefully 

revised the manuscript based on reviewers’ comments and made detailed responses. We 

hope to meet the requirements of the journal. Please contact us if there are any problems. 

 

Comments from Reviewer #1:  

Summary: In this manuscript, the author introduces LightGBM, a tree-based 

regression method, as a powerful tool for evaluating the performance of the 

Community Multiscale Air Quality (CMAQ) model. The primary focus is on 

diagnosing the CMAQ's effectiveness in pinpointing the predominant contributing 

factors responsible for prediction bias, particularly in relation to the prediction of PM 

2.5 concentration. To comprehensively assess potential biases associated with each 

source, LightGBM is employed to conduct separate time series regressions for 

features grouped into three major sources 

Major comments: 

After reading the manuscript, I think some major comments from Anonymous 

Reviewer #1 of last round are still not adequately addressed. In my opinion, the author 

should clearly address the following aspects: 

- Thank you for your feedback and time to review our manuscript. We apologize 

for not adequately addressing the comments in the last revision. We have made 

careful revisions and have provided detailed responses to each of your comments in 

this revision. Thank you again for your time and consideration. We look forward to 



working closely with you to address your concerns and make the necessary 

improvements. 

 

1. Dataset setting: 

a. Provide a clear description of the 350,000 valid observations, specifying whether it 

represents the sum of all time series data points across multiple monitoring stations. 

Clearly state the methodology for training and testing data separation. 

- Thanks for the comment. The observation data is the sum of all time series data 

points across multiple monitoring stations. We have added the specific description in 

Section 2.1. The training and testing data were randomly separated in an 8:2 ratio for 

all stations in the region of interest. We have clarified it in Section 2.3. 

Changes in Lines 65-66: “A total of about 350,000 observations meeting quality 

control criteria were selected from all time series data points across multiple 

monitoring stations.” 

Changes in Lines 118-119: “The separate test sets (not involved in the training 

and CV hyperparameter selection process) were divided by randomly sampling 20% 

of the data from all stations in the region of interest.” 

 

b. Clarify how random samples of observations are selected. Specify whether the 20% 

random sampling is performed at the station level or across all stations in the region 

of interest.  

- Thanks for the comment. The 20% random sampling was performed across all 

stations in the region of interest. We have clarified it in Section 2.3. 

Changes in Lines 118-119: “The separate test sets (not involved in the training 

and CV hyperparameter selection process) were divided by randomly sampling 20% 

of the data from all stations in the region of interest.” 

 

c. Time series data usually cannot be directly learned through tree-based model 

without additional pre-processing/feature engineering. Discuss the absence of data 

preparation and feature engineering before feeding data into tree-based models. If 

temporal structure is considered negligible, provide justification; otherwise, explain 

the approach taken to handle temporal aspects. 



    - Thanks for the comment. We combined time series data from multiple stations, 

eliminated the extreme values of 0.1%, and did not specifically preprocess the 

temporal structure. In previous studies of pollution prediction based on tree models, 

time-related features are usually added to characterize the temporal pattern of 

pollutant changes to further improve the prediction ability, e.g., Wei et al. (2021a) 

improved the model performance by adding temporal features of day of year and Unix 

timestamps. However, the goal of this study is to identify the contributors to the 

simulation bias based on feature importance rather than prediction, and the inclusion 

of temporal features cannot provide any useful information for us instead it is difficult 

to attribute them to meteorological or emissions contributions. For example, the 

simulated bias shows a clear temporal pattern, being larger in the winter and smaller 

in the summer, so temporal features would show a high contribution to the simulation 

bias, but provide no valid information. Therefore, we did not include temporal 

features in our model.  

Changes in Lines 268-272: “Previous pollution prediction studies based on tree 

models usually added the time-related features to describe the temporal pattern of 

pollutant changes to further improve the prediction ability, e.g., Wei et al. (2021a) 

improved the model performance by adding temporal features of day of year and Unix 

timestamps. However, the inclusion of temporal features cannot provide any useful 

information about contributors of simulation biases instead it is difficult to attribute 

them to meteorological or emissions contributions.Therefore, temporal features were 

not included in our model.” 

 

2. Tree-based model justification 

a. In the section (L95-100), provide examples of similar applications in terms of 

dataset, model, and research area. Demonstrate why tree-based methods are suitable 

for the specific dataset. Justify the selection of tree-based models beyond 

considerations of memory and computation time. 

- Thanks for the comment. We have provided examples of similar applications. 

Tree-based ML models typically outperform deep learning approaches in tabular data 

due to limited data number and relative sample structure (compared to image, video, 

and natural language). The LightGBM model has shown accurate performance in 



many fields, with fast speeds, less overfitting, and independence from collinearity. We 

have justified the selection of tree-based models in Section 2.3. 

Changes in Lines 95-109: “Tree-based ML models typically outperform deep 

learning approaches in tabular data (e.g., air pollutant observation datasets), and thus 

have been widely developed (Grinsztajn et al., 2022). Wei et al. (2021a) compared 

several models when reconstructing PM2.5 data records in China and found that the 

tree model showed superior performance. The LightGBM model is an optimized 

Gradient Boosting Decision Tree (GBDT) (Ke et al., 2017), and has shown accurate 

performance in many fields (Wei et al., 2021b; Yan et al., 2021; Sun et al., 2020; 

Liang et al., 2020). Compared to XGBoost, a widely used GBDT, LightGBM uses 

Histogram's decision tree algorithm along with Gradient-based One-Side Sampling 

(GOSS), which saves memory and computation time (Ke et al., 2017). Three tree-

based models, Random Forest, XGBoost, and LightGBM, were compared in our 

previous study (Wang et al., 2023). Using the same input data and hyperparameters, 

LightGBM is as accurate as XGBoost, but faster and less overfitting (the difference in 

accuracy between training and testing). Besides, Multiple colinearities between 

features such as pollutant concentrations and meteorological factors can greatly affect 

the performance of traditional linear models. When independent variables are 

correlated, changes in one variable are associated with changes in the other, making it 

difficult for the model to independently estimate the relationship between each 

independent and dependent variable. However these collinearities does not affect the 

performance of tree-based models like Random Forest and LightGBM, because they 

do not require the assumption of feature independence (Belgiu and Drăguţ, 2016; 

Chen et al., 2016; Ke et al., 2017). So the lightGBM model was used to diagnose 

PM2.5 simulation biases in this study.” 

 

b. Introduce a discussion on multicollinearity in the methodology section. 

- Thanks for the comment. We have added the discussion of multicollinearity in 

Section 2.3. 

Changes in Lines 103-109: “Besides, Multiple colinearities between features 



such as pollutant concentrations and meteorological factors can greatly affect the 

performance of traditional linear models. When independent variables are correlated, 

changes in one variable are associated with changes in the other, making it difficult 

for the model to independently estimate the relationship between each independent 

and dependent variable. However, these collinearities do not affect the performance of 

tree-based models like Random Forest and LightGBM, because they do not require 

the assumption of feature independence (Belgiu and Drăguţ, 2016; Chen et al., 2016; 

Ke et al., 2017).” 

 

3. Cross validation 

a. Clearly explain how cross-validation is performed and provide a statement on how 

the two metrics (R^2 and RMSE) influence model selection decisions. Clearly 

articulate the criteria for jointly considering model performance using these two 

metrics. 

- Thanks for the comment. Cross-validation (5-fold) combined with RMSE was 

used to select hyperparameters. Two metrics (R2 and RMSE) were used to evaluate 

the model performance in the separate test sets. Higher R2 and lower RMSE represent 

better model performance. We have clarified cross-validation and model evaluation in 

Section 2.3. 

Changes in Lines 114-119: “Cross-validation (5-fold) combined with RMSE 

was used to select hyperparameters. The dataset was randomly divided into five parts, 

one was taken in turn as the test set and the rest was used for training, which was 

repeated five times and the average test RMSE was calculated. Looping to increase 

model complexity, ending the loop and returning to the hyperparameters when the 

model test RMSE does not decrease significantly (< 0.01) or the gap between training 

and test RMSE increases significantly (< 0.05). The separate test sets (not involved in 

the training and CV hyperparameter selection process) were divided by randomly 

sampling 20% of the data from all stations in the region of interest.” 

Changes in Lines 109-111: “Two metrics were calculated to evaluate model 

performance, including the coefficient of determination (R2) and the root mean square 

error (RMSE) (Wei et al., 2020).” 



 

Minor comments: 

L15. Clarify the term "efficient" to provide a precise understanding within the context 

of this study. 

- Thanks for the comment. We defined the “efficient” as “fast speed and low 

requirement of computational resources”, and have reorganized the corresponding 

expression. 

Changes in Lines 14-18: “Accurate diagnosis of simulation biases is critical for 

improvement of models, interpretation of results, and management of air quality, 

especially for the simulation of fine particulate matter (PM2.5). In this study, an 

efficient method with fast speed and low requirement of computational resources 

based on tree-based machine learning (ML) method, the Light Gradient Boosting 

Machine (LightGBM), was designed to diagnose CTMs simulation biases.” 

 

L16. Instead of broadly referring to "machine learning," explicitly specify that 

LightGBM is a tree-based method. Additionally, consider breaking the sentence into 

two for enhanced readability. 

- Thanks for the comment. We changed the "machine learning" to “tree-based 

machine learning (ML) method, the Light Gradient Boosting Machine (LightGBM)”. 

We split the sentence in two and reorganized the expression accordingly. 

Changes in Lines 16-20: “In this study, an efficient method with fast speed and 

low requirement of computational resources based on tree-based machine learning 

(ML) method, the Light Gradient Boosting Machine (LightGBM), was designed to 

diagnose CTMs simulation biases. The drivers of the Community Multiscale Air 

Quality (CMAQ) model biases compared to observations in simulating PM2.5 

concentrations from three perspectives of meteorology, chemical composition, and 

emission sources.” 

 

L20. Reevaluate the assertion that an R^2 value of 0.68 constitutes good performance. 

Provide references from existing literature to substantiate this claim. Additionally, the 

relative performance gap of 0.16 is about 23.5% of 0.68, which might not be 



compelling enough; its significance in the context of overfitting and the ability to be 

applied to other fields is weak. 

- Thanks for the comment. We have reevaluated the model. The ML models were 

separately trained by meteorology, PM2.5 components, and source sectors for different 

regions and seasons, and the test sets were used to measure the model performance 

(Figure 4). The meteorology, PM2.5 components, and source sectors can partially 

explain the simulation bias, with mean test R2 of 0.64, 0.52, and 0.50, respectively, 

and the RMSE was 17.41, 19.82, and 19.56 µg/m3, respectively. We removed 

inappropriate content and have changed the description of the overfitting issue. 

Changes in Lines 167-172: “The ML models were separately trained by 

meteorology, PM2.5 components, and source sectors for different regions and seasons, 

and separate test sets were used to measure the model performance (Figure 4). All 

three feature combinations can partially explain the simulation bias. The mean test R2 

for meteorology, PM2.5 components, and source sectors were 0.64, 0.52, and 0.50, 

respectively, and the RMSE were 17.41, 19.82, and 19.56 µg/m3, respectively. The 

model performed better in summer than in winter. This may be attributed to the high 

simulation biases in winter due to severe PM2.5 pollution and complex causes, while 

PM2.5 pollution in summer is lighter with lower CMAQ simulation bias.” 

Changes in Lines 266-267: “Besides, LightGBM shows comparable accuracy to 

XGBoost but is faster and shows smaller accuracy gaps between training and testing 

with less overfitting.” 

 

L65. Revise the description of "valid" observations to explicitly convey that these 

observations adhere to the quality control criteria outlined in L62-64. Reorganize the 

sentences for better coherence. 

- Thanks for the comment. We have revised the description of "valid" to “meeting 

quality control criteria”, and reorganized the sentences for better coherence. 

Changes in Lines 65-66: “A total of about 350,000 observations meeting quality 

control criteria were selected from all time series data points across multiple 

monitoring stations.” 

 



L76. Consider either elaborating on the model's enhancements or removing the 

sentence for conciseness. 

- Thanks for the suggestion. We took your advice and removed the sentences for 

conciseness. 

 

L80-82. Clearly indicate that CMAQ is employed for simulating PM 2.5 components 

when introducing the model. Adjust the sequence of information to improve logical 

flow. 

- Thanks for the comment. We have adjust the sequence of the CMAQ 

introduction for better consistency. 

Changes in Lines 72-73: “The CMAQ simulation (36 km×36 km) was carried 

out to simulate PM2.5 components in mainland China and surrounding regions in 

2019. The list of PM2.5 components simulated by CMAQ is shown in Table A1.” 

 

L86. Enhance the fluency by adding a connecting word at the beginning of the 

sentence. 

- Thanks for the comment. We have reorganized the presentation to make the 

sentences more coherent and checked the coherence of the entire manuscript. 

Changes in Lines 85-86: “PPM from different source sectors are tracked by 

non-reactive tracers (10-5 of the PPM emission rates), and source-specific PPM 

concentrations are then calculated by multiplying the tracer with 105.” 

 

L119-120. Define "success" in quantitative or qualitative terms to provide a clearer 

understanding of the criteria for evaluating success. 

- Thanks for the comment. We eliminated the vague expression "success" and 

quantified it with specific statistics. 

Changes in Lines 132-134: “Observed PM2.5 concentrations were highest in 

BTH (51.172 μg/m3) and lowest in PRD (28.273 μg/m3). The CMAQ model 

underestimates PM2.5 concentrations of -8.59 μg/m3, -2.66 μg/m3, -6.21 μg/m3, and -

19.25 μg/m3 in the BTH, YRD, PRD, and NWCHN, respectively (Figure 1b).” 

 

L170. Remove the extra period before the citation. 



- Thanks for the comment. We have removed the extra period before the citation, 

and we apologize for our carelessness and have carefully examined the entire 

manuscript. 

  

L245. Replace "Features collinearity" with "Multicollinearity among features." 

- Thanks for the comment. We have replaced "Features collinearity" with 

"Multicollinearity among features." 

Changes in Lines 252-253: “Multicollinearity among features does not affect 

the performance of tree-based models like Random Forest and LightGBM” 

 

Table A6. Use bold font to highlight the best metric performance. Additionally, if 

XGB and LGB exhibit similar performance, with XGB slightly superior, consider 

including computational time as an additional metric to justify the preference for LGB 

over XGB. 

- Thanks for the comment. We have highlighted the best metric performance and 

include computational time as an additional metric in Table A6.  

Changes in Lines 266-267: “Besides, LightGBM shows comparable accuracy to 

XGBoost, but is faster and shows smaller accuracy gaps between training and testing 

with less overfitting.” 

 

Comments from Reviewer #2:  

This manuscript requires additional revisions. 

1. Cross-validation is mainly used for hyperparameter tuning, to select the best 

hyperparameter combination and prevent overfitting to the training data. After 

selecting the final model, we still need to evaluate performance on an independent test 

set to check the model's ability to generalize to real data. However, I noticed the 

evaluation of model performance in this paper is still based on 5-fold cross-validation 

(e.g., Lines 110-111 and Lines 158-159). The authors should rewrite Section 3.2 by 

using the independent testing data for model evaluation instead of cross-validation. 

- Thanks for the comment. We have rewritten the first part of Section 3.2 by using 

the independent testing data for model evaluation. Specifically, The ML models were 

separately trained by meteorology, PM2.5 components, and source sectors for different 

regions and seasons, and separate test sets were used to measure the model 



performance (Figure 4). The 5-fold cross-validation combined with RMSE was used 

to select hyperparameters. 

Changes in Lines 167-172: “The ML models were separately trained by 

meteorology, PM2.5 components, and source sectors for different regions and seasons, 

and separate test sets were used to measure the model performance (Figure 4). All 

three feature combinations can partially explain the simulation bias. The mean test R2 

for meteorology, PM2.5 components, and source sectors were 0.64, 0.52, and 0.50, 

respectively, and the RMSE was 17.41, 19.82, and 19.56 µg/m3, respectively. The 

model performed better in summer than in winter. This may be attributed to the high 

simulation biases in winter due to severe PM2.5 pollution and complex causes, while 

PM2.5 pollution in summer is lighter with lower CMAQ simulation bias.” 

Changes in Lines 114-119: “Cross-validation (5-fold) combine with RMSE to 

select hyperparameters. The dataset was randomly divided into five parts, one was 

taken in turn as the test set and the rest was used for training, which was repeated five 

times and the average test RMSE was calculated. Looping to increase model 

complexity, ending the loop and returning to the hyperparameters when the model test 

RMSE does not decrease significantly (< 0.01) or the gap between training and test 

RMSE increases significantly (< 0.05). The separate test sets (not involved in the 

training and CV hyperparameter selection process) were divided by randomly 

sampling 20% of the data from all stations in the region of interest.” 

 

2. LightGBM has two types of feature importance, namely "split" and "gain." Could 

you please clarify which feature importance type was used for analysis in this study? I 

think clearly mentioning the type used would strengthen the analysis. 

- Thanks for the comment. We used “gain” to measure feature importance, which 

is the size of the gain resulting from splitting through a certain feature. The type of 

“split” is the number of splits using a particular feature. For some highly indicative 

categorical features that may split only once during tree growth, but have high 

importance, at which time the split method may be inaccurate. So we used “gain” to 

measure feature importance. 

Changes in Lines 120-122: “The target variable was set to be the difference 

between observed and simulated daily PM2.5 concentrations, and the key contributors 



to the simulation bias were then determined by the relative importance (calculated by 

gain) of the input features (Ye et al., 2022; Loyola-González et al., 2023)” 
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