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Comments from the editor: 

Please read the reviewer's comments and reply accordingly. 

- We appreciate the editor’s efforts on this manuscript. In the revision, we carefully 

revised the manuscript based on reviewers’ comments.  

 

Comments from Reviewer #1:  

The authors did not adequately address my comments. 

- Thank you for your feedback and for taking the time to review our manuscript. 

We appreciate your input, and we apologize if it seemed that we did not adequately 

address your comments in our previous revision. We take your comments seriously and 

are committed to improving our manuscript to meet your expectations. we have made 

the necessary revisions and provided a detailed response to each of your comments in 

this revision. We are dedicated to producing a high-quality manuscript, and your 

feedback is invaluable in achieving that goal. Thank you again for your time and 

consideration. We look forward to working closely with you to address your concerns 

and make the necessary improvements.  

 

1. A separate test dataset, which is excluded from the cross-validation process, is 

typically employed to validate the mode’s performance. However, the test data were 

no provided by the authors. Ref: https://en.wikipediaorg/wiki/Training,validation,and 

test data sets#Cross-validation 



- Thanks for the comment. We randomly divided a test set (20% of total data) 

that was not involved in the training and CV hyperparameter selection process, and a 

separate test dataset has been updated to zendo 

(https://zenodo.org/records/10283739). Hyperparameter selection and further model 

training were performed using the training dataset. The hyperparameters selected 

using only the training data are consistent with the hyperparameters we previously 

selected using all the data. The model was tested using a combination of 

meteorological, emission, and PM2.5 components features in the test set (Figure S4). 

The model shows a prediction R2 of 0.68 and RMSE of 17.26 μg/m3. We have added 

the corresponding results in Section 3.2. 

Changes in Lines 155-158: “First, 20% of the data (not involved in training) 

were randomly selected for model evaluation (Figure S4). Training was performed 

using a combination of PM2.5 components, meteorological, and emission features. The 

model showed a prediction R2 of 0.68 and RMSE of 17.26 μg/m3.” 

 

2. Poor R2 is not only due to the features also to the algorithm itself and the 

hyperparameters. How to determine what exactly is the cause? R2 could have been 

examined after the authors conducted the identical investigation using linear 

regression, what then is the purpose of LightGBM? Does not this simply because 

LightGBM produces superior outcomes in comparison to linear regression? And how 

did the authors ensure the current LightGBM-based mode is better than other models? 

- Thanks for the comment. It is indeed difficult to fully distinguish what causes 

the low R2. We designed a complementary experiment to measure the impact of the 

model itself by comparing popular regression models (including Linear Polynomial 

Regression, Quadratic Polynomial Regression, Random Forest, XGBoost, and 

LightGBM) with the same features (PM2.5 components). The results (Table A6) show 

that all models show similar performance, e.g., all models show lower R2 in the winter 

in the BTH (0.16 - 0.4), and higher R2 in the SCB region (0.7 - 0.8). This is a side 

evidence that the low R2 is more affected by the features than the model itself, as the 

commonly used regression models can hardly obtain high R2 with insufficient 



explanatory features (e.g., chemical component features in winter in BTH). 

LightGBM is used because it can better capture the non-linear relationship 

between the input features and the target, compensating for the shortcomings of linear 

models. Linear models can only capture the effects of some linear processes on PM2.5 

concentrations, e.g. more primary emissions lead to higher PM2.5 concentrations when 

secondary pollution is low. However, the effects of emissions and meteorological 

factors on PM2.5 concentrations are highly non-linear in scenarios with high secondary 

pollution, for example, high relative humidity increases the total PM2.5 concentration 

by promoting the hygroscopic growth of PM2.5 and the production of secondary 

particulate matter on the one hand, but on the other hand, it promotes the deposition 

of particulate matter, which reduces the concentration of PM2.5. The non-linear 

models such as LightGBM can better describe the nonlinear process among 

meteorological-emission-PM2.5 concentration and further identify the sources of 

model bias in CTMs. The model comparison results (Table A6) also show the better 

prediction ability of the nonlinear models. The LightGBM model shows superior 

accuracy and robustness than the other models. Therefore, we chose the LightGBM 

model to identify the source of simulation bias for CTMs. We have added the 

discussion in Section 3.3. 

Changes in Lines 249-258: “I In addition, the main objective of this study was 

diagnosing the contributors to CMAQ simulation biases using machine learning, 

rather than for prediction. Since meteorology or emissions can only partially explain 

the simulation bias, a low R2 is justified when fitting the model with only 

meteorology or emissions variables (Figure 4). We designed a complementary 

experiment to measure the impact of the model itself by comparing popular regression 

models (including multiple linear regression, polynomial regression (degree:2), 

Random Forest, XGBoost, and LightGBM) with the same features (PM2.5 

components). The results (Table A6) show that all models show similar performance, 

e.g., all models show lower R2 in the winter in the BTH (0.16 - 0.4), and higher R2 in 

the SCB region (0.7 - 0.8). This is a side evidence that the low R2 is more affected by 

the features than the model itself, as the commonly used regression models can hardly 



obtain high R2 with insufficient explanatory features (e.g., chemical component 

features in winter in BTH).” 

 

3. Why not develop distinct models for each chemical component individually? 

- Thanks for the comment. The main reason is that the observation data of 

chemical components are not openly available in China. The observation network of 

chemical components has been set up in China, but the data are closed-source. 

Currently, there are open-source machine learning based chemical reanalysis datasets 

in China, like (Liu et al., 2022; Wei et al., 2023), however, due to their high 

uncertainty, we cannot use them as the true values to build models. We attempted to 

crawl the data from the literature, but the quantity and quality of the data was 

insufficient. We hope to make China's air quality observation data more open source 

in the future. Using sufficient observed data on chemical composition and combining 

it with machine learning models, the sources of bias in CTM can be more accurately 

identified to guide model improvement. 

 

4. Why not separate each chemical components bias into its own model ? 

- Thanks for the comment. As mentioned above, the main reason that we do not 

model each chemical bias separately is that there are no publicly available 

observations of chemical composition in China. In the future, we hope to strengthen 

cooperation and promote data sharing to more accurately identify CTMs simulation 

deviations and guide CTMs’ improvement. 

 

5. What effect do feature interactions have? 

- Thanks for the comment. For LightGBM, the interaction between features 

(multicollinearity) does not affect model predictive power. LightGBM uses a Leaf-

wise Tree Growth algorithm, a node-splitting strategy that is less affected by 

covariance (Ke et al., 2017). The most extreme case of multicollinearity is when there 

are two identical features. When one feature is used, the decision tree will not use 

another feature because it adds no new valid information. The multicollinearity 



between features will affect features’ relative importance. If two variables are 

correlated, the importance of both will slightly decrease. Previous studies (Hou et al., 

2022; Ye et al., 2022) have used ML to explain the causes of air pollution and model 

bias, and although there was multicollinearity between the input features they used, 

they got reliable conclusions, showing the slight influence of multicollinearity and the 

reliability of tree-based machine learning methods. 

Changes in Lines 244-249: “Although we filtered the features according to their 

relative importance and priori knowledge, collinearity still exists among the input 

features. Features collinearity does not affect the performance of tree-based models like 

Random Forest and LightGBM (Belgiu and Drăguţ, 2016; Chen et al., 2016; Ke et al., 

2017), but the contribution of a single feature might be slightly influenced by other 

features. Previous studies (Hou et al., 2022; Ye et al., 2022) have used ML to explain 

the causes of air pollution and model bias, and although there was multicollinearity 

between the input features they used, they got reliable conclusions, showing the slight 

influence of multicollinearity and the reliability of tree-based machine learning 

methods.” 

 

Comments from Reviewer #2:  

 

General comments: This study uses ML algorithms to determine the source of CTM 

bias, it is an interesting and innovative study and the approach has the potential to be 

generalised to similar studies. After revisions, the manuscript has been greatly 

improved and here are a few minor issues that need to be addressed. 

- Thank you for your feedback and for taking the time to review our manuscript. 

We carefully address the concern and provide a detailed response to each of your 

comments in the revision. 

 

Specific comments: 

1. It is suggested to add the description of observation data, because this study is based 



on it, including the number and distribution of stations, and the number of effective 

observation dramas.  

- Thanks for the comment. We have added the description of observation data to 

give more information. 

Changes in Lines 65-67: “A total of about 350,000 valid observations were 

selected. The distribution of observation sites (about 1200) is shown in Figure S1. The 

stations are unevenly distributed, with dense stations in eastern populated areas and 

sparse stations in western Xinjiang and Tibet.” 

 

2. In the abstract, please show important results of model performance. 

- Thanks for the comment. We have added the model performance results in abstract. 

The ML model can capture the complex relationship between input variables and 

simulation bias well (test R2 = 0.68). Small performance gap between training and 

testing indicated model’s good generalization ability (delta R2: 0.16 – 0.18). 

Changes in Lines 19-21: “The ML model can capture the complex relationship 

between input variables and simulation bias well (test R2 = 0.68) with small 

performance gap between training and validation (delta R2: 0.16 – 0.18).” 

 

3. L45 Add full name of XGboost. 

- Thank you for your comment. We have added the full name of XGboost, as 

"eXtreme Gradient Boosting", which is an optimised implementation of Gradient 

Boosting Decision Trees that improves speed and performance. 

 

4. L54: “lightGBM” or LightGBM? Please make it case-sensitive. 

- Thanks for the comment. We uniformly modified the expression: 'LightGBM', and 

scrutinised the whole manuscript 



 

5. L111: Add formula of R2 and RMSE or reference. 

- Thanks for the comment. We added the formula of R2 and RMSE in Section 2.3. 

Changes in Lines 111-115: “The dataset was randomly divided into five parts, one was 

taken in turn as a test and the rest was used for training, which was repeated five times, 

and then the mean coefficient of determination (R2) and the root mean square error 

(RMSE) were calculated (Wei et al., 2020). 
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” 

6. L153: “an” – a. 

- Thanks for the comment. We apologise for our carelessness, we have corrected 

the expression and carefully checked the entire manuscript for grammatical correctness. 
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