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Abstract. Accurate estimations of extreme precipitation
return levels are critical for many hydrological applica-
tions. Extreme precipitation is highly variable in both space
and time; therefore, to better understand and manage the
related risks, knowledge of their probability at different5

spatial–temporal scales is crucial. We employ a novel non-
asymptotic framework to estimate extreme return levels
(up to 100 years) at multiple spatial–temporal scales from
weather radar precipitation estimates. The approach reduces
uncertainties and enables the use of relatively short archives10

typical of weather radar data (12 years in this case). We fo-
cus on the eastern Mediterranean, an area of high interest
due to its sharp climatic gradient, containing Mediterranean,
semi-arid, and arid areas across a few tens of kilometres, and
its susceptibility to flash flood. At-site intensity–duration–15

area–frequency relations are derived from radar precipitation
data at various scales (10 min–24 h, 0.25–500 km2) across the
study area, using ellipses of varying axes and orientations to
account for the spatial component of storms.

We evaluate our analysis using daily rain gauge data over20

areas for which sufficiently dense gauge networks are avail-
able. We show that extreme return levels derived from radar
precipitation data for 24 h and 100 km2 are generally compa-
rable to those derived from averaging daily rain gauge data
over a similar areal scale. We then analyse differences in25

multi-scale extreme precipitation over coastal, mountainous,
and desert regions. Our study reveals that the power-law scal-
ing relationship between precipitation and duration (simple
scaling) weakens for increasing area sizes. This finding has

implications for temporal downscaling. Additionally, precip- 30

itation intensity varies significantly for different area sizes at
short durations but becomes more similar at long durations,
suggesting that, in the region, areal reduction factors may not
be necessary for computing return levels over long durations.
Furthermore, the reverse orographic effect, which causes de- 35

creased precipitation for hourly and sub-hourly durations, di-
minishes for larger areas. Finally, we discuss the effects of
orography and coastline proximity on extreme precipitation
intensity over different spatial–temporal scales.

1 Introduction 40

Extreme precipitation is the main trigger of hazards such
as floods and landslides that have severe impacts on hu-
man beings and livelihoods, causing environmental, societal,
and economic damage worldwide – including loss of life
(Barredo, 2009; Borga and Morin, 2014). Extreme precipi- 45

tation is highly variable in both space and time, as various
physical processes are involved in its generation. Knowledge
about the spatial–temporal scales at which extreme precip-
itation interacts with catchments, and of the probability of
occurrence of extreme precipitation at such scales, is thus 50

crucial for infrastructure design, as well as an improved un-
derstanding and management of the related risks and impacts
of floods on ecosystems and communities (Mascaro et al.,
2023; Wright et al., 2017; Peleg et al., 2018; Mélèse et al.,
2019). 55
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Extreme precipitation frequency has traditionally been es-
timated using techniques based on the extreme value the-
ory. These methods focus on independent and identically dis-
tributed random variables and use the maxima within a tem-
poral block (commonly 1 year) assuming an infinite num-5

ber of events n is observed in each block (n→∞). Alterna-
tively, the peaks exceeding an asymptotically high threshold
θ (θ→∞) can be used. In these conditions, the cumulative
distribution function of the block maxima can only converge
to a generalised extreme value (GEV) distribution. These10

asymptotic techniques use a limited fraction of the avail-
able data (only the block maxima or the values exceeding
a very high threshold) and thus require long datasets in or-
der to provide accurate estimates. They are typically limited
to applications on rain gauge data, which generally possess15

the longest datasets. Rain gauge networks, however, are of-
ten sparse worldwide (Kidd et al., 2017), making a complete
and adequate statistical characterisation of extreme precipi-
tation difficult. In general, these methods are prone to large
uncertainties when estimating return periods longer than the20

available record.
Recently, non-asymptotic approaches such as the Metas-

tatistical Extreme Value (MEV) approach (Marani and Ig-
naccolo, 2015) and the simplified MEV (SMEV) approach
(Marra et al., 2019a) have been proposed (Marani and Ig-25

naccolo, 2015; Marra et al., 2018; Vidrio-Sahagún and He,
2022; Zorzetto et al., 2016). Unlike traditional methods,
these approaches derive an extreme value distribution based
on the bulk distributions of so-called “ordinary” events rather
than only considering the extremes. To this end, the ordi-30

nary events are defined as all the independent realisations
of the variable of interest (Zorzetto et al., 2016). The ad-
vantage therefore is that these methods use a large propor-
tion of the available data. This significantly decreases the un-
certainty of the estimated parameters, allowing for a more35

accurate estimation of rare return levels from short records
and records containing measurement errors affecting the ex-
tremes (Marani and Ignaccolo, 2015; Marra et al., 2018;
Zorzetto et al., 2016).

Non-asymptotic techniques are extremely well suited to40

radar precipitation data, which are increasingly available in
a systematic manner and are considered appropriate to cap-
ture the spatial variability of extreme precipitation, includ-
ing events with limited spatial extent (Lengfeld et al., 2020;
Pöschmann et al., 2021). Weather radars provide fine-scale45

precipitation data at high spatial and temporal scales over
both land and sea. Thus, applying these alternate approaches
to radar data provides a significant opportunity, not only to
estimate return levels in areas where point precipitation data
are unavailable but also to incorporate the areal component50

in extreme precipitation analysis – a natural advantage of us-
ing radar data. It should be noted however that radar prod-
ucts do have well-documented issues with precipitation esti-
mation errors, which translate to the extremes, and must be
considered (Peleg et al., 2018; Marra et al., 2019b).55

The MEV and SMEV frameworks have been successfully
applied to both point and spatial precipitation and to a va-
riety of locations. They are able to estimate return levels
corresponding to return periods much longer than the record
length better than traditional methods (Hu et al., 2020; Marra 60

et al., 2018; Schellander et al., 2019; Zorzetto et al., 2016).
These approaches therefore offer a promising means of man-
aging the risks associated with natural hazards by estimat-
ing the frequency of extreme precipitation events at multiple
scales from radar data. In particular, the SMEV approach has 65

been applied to several case studies, including this study lo-
cation, and demonstrated to have a number of advantages: it
is less sensitive to measurement errors typical of radar es-
timates (Marra et al., 2018) and to the use of short records
(Marra et al., 2018; Hu et al., 2020; Zorzetto et al., 2016) as 70

it correctly represents the tail of sub-daily precipitation inten-
sities (Wang et al., 2020; Marra et al., 2020). Comparing the
SMEV to asymptotic models based on the GEV distribution,
Vidrio-Sahagún and He (2022) found that SMEV-based mod-
els demonstrated superiority in the analysis of non-stationary 75

time series due to their higher accuracy, equivalent or better
fitting efficiency, as well as lower uncertainty compared to
other tested models, including the MEV.

The statistical characteristics of extreme precipitation are
commonly quantified using intensity–duration–frequency 80

(IDF) curves, which are cumulative distribution functions of
annual precipitation maxima conditioned on duration. IDF
curves are used to derive design storms and are employed in
hydrological design and as decision support information in
flood risk and water management. IDF curves display precip- 85

itation at the point scale for a specific location and are gener-
ally computed from rain gauge data. However, IDF curves
clearly do not address the aspect of spatial precipitation.
Areal precipitation intensity is generally computed by multi-
plying point precipitation by an areal reduction factor (ARF) 90

(Panthou et al., 2014). The ARF is a corrective coefficient,
which is defined as the ratio between the areal average pre-
cipitation and point precipitation. ARFs can be computed us-
ing either design precipitation intensity data or actual precip-
itation intensity, depending on the calculation method used, 95

the available information, and the purpose of the analysis. In
this study we refer to ARFs generally in the context of de-
sign precipitation. Typically, ARFs are presented as a set of
curves showing the variation of ARF with precipitation in-
tensity, duration, and frequency (Kao et al., 2020; Sivapalan 100

and Blöschl, 1998; Thorndahl et al., 2019).
Many methods to compute ARFs have been proposed in

the literature, including analytical formulations and empiri-
cal approaches based on precipitation observations. A com-
prehensive list can be found in Olivera et al. (2008) and 105

Svensson and Jones (2010). ARF values vary significantly
due to a variety of factors such as precipitation characteristics
and patterns (e.g. convective or frontal precipitation), loca-
tion, and surface characteristics (such as topography and al-
titude) and consequently are only representative of a limited 110
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area around a point. Thus, they must be calculated specifi-
cally for each location.

An alternative approach is to extend the concept of
IDF curves to also include the areal component and cre-
ate intensity–duration–area–frequency (IDAF) curves (De5

Michele et al., 2002; Mélèse et al., 2019). IDAF curves are
cumulative distribution functions of precipitation intensity
conditioned on duration and area and thus incorporate the
variability of precipitation intensity over a range of spatial
scales. They are becoming increasingly popular as they are10

more useful when storm severity needs to be characterised
over an area, say a catchment, for example when designing
hydraulic structures. To estimate IDAF curves for an area
using rain gauge measurements, point rainfall return levels
are generally transformed to areal rainfall return levels us-15

ing ARFs. This requires a high-density network of gauges,
and, therefore, issues arise in the light of the quality of
hydro-meteorological measurements, especially in develop-
ing countries. However, with remote sensing data, the calcu-
lation of ARFs is unnecessary as the use of distributed pre-20

cipitation allows for the direct estimation of areal precipita-
tion intensity.

In this study we apply the SMEV framework to examine
extreme precipitation at various spatial scales for the first
time, in order to investigate the impact of area size on lo-25

cal extremes. While the SMEV framework has demonstrated
efficacy in successfully estimating extreme rainfall, its prior
applications have all been confined to either the point-scale
(in the case of rain gauge data) or pixel-scale (when utilis-
ing radar rainfall data) analyses at different temporal scales.30

Here we extend the application of the SMEV to estimate ex-
treme return levels up to 100 years across multiple spatial and
temporal scales. The analysis is centred on a 12-year radar
precipitation dataset covering the eastern Mediterranean. We
compare extreme return levels derived from radar precipi-35

tation data to those derived from averaging rain gauge data
in several areas in which a sufficient rain gauge density is
available. We then construct IDAF curves to investigate the
characteristics of extreme precipitation in coastal, desert, and
mountainous regions and evaluate them over different spatial40

and temporal scales.

2 Study area and precipitation data

This study focuses on the eastern Mediterranean, an area of
high interest due to its sharp climatic spatial gradient, which
ranges from Mediterranean to semiarid and arid across a few45

tens of kilometres (Fig. 1). This results in catchments with
highly non-homogeneous climatic and hydrological condi-
tions (Zoccatelli et al., 2019). Precipitation emerges mainly
from cold fronts and the air masses that follow these fronts,
which are associated with mid-latitude cyclones during their50

eastward passage over the eastern Mediterranean (Goldreich,
2003). Additionally, precipitation can be caused by other sys-

tems which bring precipitation of a more local nature (Armon
et al., 2019). Precipitation occurs primarily during the winter
months, with almost no precipitation from June to Septem- 55

ber.

2.1 Radar data

Weather radar data were provided by the Israel Meteoro-
logical Service (IMS) from the C-band weather radar lo-
cated at Beit Dagan, Israel (Fig. 1). Precipitation data cover 60

the periods from the hydrological year 2007–2008 to 2017–
2018 (hydrological year is defined here as 1 September to
31 August). As the instrument was sometimes turned off, the
archive cannot be considered complete. The data have a tem-
poral resolution of 10 min and, after processing (see below), 65

are converted to a Cartesian grid with a spatial resolution of
500× 500 m2.

A combination of physics-based corrections and empiri-
cal adjustments, optimised for long-term radar archives and
high-intensity convective storms, was applied to the radar 70

archive to obtain a high-quality, homogeneous dataset. These
corrections consisted of the removal of non-precipitating
echoes (i.e. ground clutters) (see Marra and Morin, 2018),
correction of beam blockage due to orography (Marra et al.,
2014), identification and correction of non-orographic block- 75

ages (Marra et al., 2022), correction of beam attenuation dur-
ing heavy precipitation (Marra and Morin, 2015), and correc-
tion of vertical variations in reflectivity (Marra and Morin,
2015; Morin and Gabella, 2007).

After these corrections were performed, the precipitation 80

intensityR (mm h−1) was computed from radar reflectivityZ
(mm6 m−3) using a fixed power-law relationship in the fol-
lowing form:

Z = 3.16R1.5, (1)

which is well suited for the convective precipitation of the 85

region (Morin and Gabella, 2007).
Precipitation intensity at the ground was calculated by tak-

ing the average of the two highest intensities along the ver-
tical dimension for elevation angles up to 5° and converted
to Cartesian coordinates (Marra et al., 2022). The final radar 90

archive was obtained after a two-step bias adjustment based
on daily rain gauge archive data (Morin and Gabella, 2007;
Marra and Morin, 2015). This adjustment aimed at optimis-
ing the bias and dispersion of rainfall depths during indepen-
dent meteorological events. A full description of the radar 95

data elaboration procedure and overall data quality is pro-
vided in Marra et al. (2022), who demonstrated that the use
of these corrections significantly improves the quality of the
radar precipitation data archive. Note however, that there are
still some estimation errors in the data, due to issues such 100

as the underestimation caused by range effects (visible in
the northern and southern portions of the domain for areas
farther than approximately 100 km from the radar) and the
overfilling of blocked beams (Marra et al., 2022).
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Figure 1. Map of the study area displaying terrain elevation, the location of the radar station and the 140 km radar range, the location of
10 min and daily precipitation gauges, the location of the six validation sites analysed in Fig. 3a–e, the three analysis boxes analysed in
Figs. 5–7 (labelled Coast, Desert, and Mountains), and the location of the two transects displayed in Fig. 8.

2.2 Rain gauge data

Rain gauge data were provided by the IMS and consist of two
datasets:

i. A daily archive contains the precipitation depth
measured over the 24 h period from 06:00 UTC to5

06:00 UTC the following day. This dataset is used to
adjust and validate the weather radar archive, to define
storms (see Sect. 3.1), and to evaluate IDAF relations at
the 24 h, 100 km2 scale (see Sect. 3.3).

ii. A 10 min archive from automatic stations contains pre-10

cipitation intensity data with a 10 min temporal reso-
lution. This dataset is used to adjust the radar-derived
statistics at multiple temporal scales (see Sect. 3.2).

The rain gauge datasets are quality-controlled by the IMS. In
addition, stations located in regions with low weather radar15

data quality (e.g. due to residual contamination by ground
clutters and blockages) are removed to avoid negative im-
pacts on the bias adjustments. In total, 437 daily stations and
65 10 min stations are included in the analyses (Fig. 1). For
the case of the 10 min data used to adjust the radar statistics,20

hydrological years with more than 10 % missing radar data
are removed to ensure accurate quantification of the precipi-
tation statistics, as recommended by Marra et al. (2020).

3 Methodology

Extreme precipitation return levels are estimated across the 25

study area using the novel non-asymptotic SMEV framework
proposed by Marra et al. (2019a, 2020), a simplified version
of the original MEV framework proposed by Marani and Ig-
naccolo (2015). The MEV and SMEV approaches are based
on the concept of “ordinary events”, which are all the inde- 30

pendent realisations of the process of interest. Unlike classic
extreme value theory, which only exploit a small subset of
the data, i.e. the annual maxima or the peaks exceeding a
high threshold, they make use of a greater proportion of ob-
servations to fit the distribution parameters, thus decreasing 35

the parameter estimation uncertainty.
The SMEV is a modified version of the MEV; it ne-

glects the interannual variability of the distribution of ordi-
nary events and their number of yearly occurrences (Marra et
al., 2019a). The SMEV formulation significantly reduces the 40

number of parameters and allows for a direct interpretation of
their meaning. This results in a simpler formulation for the
non-exceedance probabilities of extreme rainfall and more
robust parameter estimation. Several studies have applied the
SMEV to precipitation frequency analysis over different re- 45

gions (Marra et al., 2019a, 2020; Miniussi and Marra, 2021;
Araujo et al., 2023), including over the study area (Marra
et al., 2022), and have demonstrated the robustness of the
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method’s assumptions and its ability to reproduce extreme
frequencies from relatively short records. The SMEV is used
here to estimate precipitation events of varying area sizes and
durations, so that spatial and temporal effects on extreme pre-
cipitation can be analysed.5

3.1 Identification of the independent storms and of the
ordinary events

We follow the unified approach proposed by Marra et
al. (2020), in which “storms” are defined as independent me-
teorological objects, and one “ordinary event” at the scale10

of interest (both spatial and temporal) is extracted from each
storm. Individual storms used for the analysis are first iden-
tified at the regional scale (i.e. the entire study area) from
the daily rain gauge dataset. A day is considered wet when
at least five rain gauges are measuring precipitation greater15

than 0.1 mm, and a storm consists of consecutive wet days
separated by at least 1 dry (i.e. not wet) day. More informa-
tion is given in Marra et al. (2022). A total of 498 storms
were identified in the 12-year dataset. Storms are then identi-
fied locally at each pixel within the study area using the radar20

precipitation data; if any radar precipitation occurs at a pixel
(or when considering the areal scale over the selected ellipse
centred on that pixel (described below)) during one of the
gauge-identified storms it is classed as a storm for that pixel.

Ordinary events at the spatial (area) and temporal (dura-25

tion) scales of interest are then identified at each radar pixel
for each storm, with one ordinary event calculated for each
storm. Ordinary events are defined as the storm’s maximal
space- and time-averaged precipitation intensity for a given
area, centred at the pixel, and for a given duration. Area30

and duration are taken from a combination of different pre-
selected area sizes (pixel scale, 10, 50, 100, 500 km) and du-
rations (10, 30 min, 1, 3, 12, 24 h). It should be noted that
for each area considered, the number of ordinary events at
each pixel is consistent for all the examined durations. This35

is due to the unified approach used to define the ordinary
events, which goes through the identification of independent
“storms” separated by at least 24 dry hours.

For the pixel area size (i.e. 500× 500 m2), a time series of
radar precipitation data is first constructed at each radar pixel,40

at the original temporal resolution of 10 min. The ordinary
events are then identified using a moving-time-window ap-
proach (window size according to the selected duration and
at 10 min time steps) to select the period within the storm
which maximises average precipitation intensity for the anal-45

ysed pixel. This is performed for each of the considered du-
rations. Note that these pixel-scale analyses are analogous to
the ones presented in Marra et al. (2022).

For areas larger than the pixel size, we adopt a pixel-
centred approach, in which precipitation is characterised as50

an ellipse having the selected area and centred at the analysed
pixel. Storms have frequently been approximated as ellipti-
cal shapes (Karklinsky and Morin, 2006; Kim et al., 2019;

Figure 2. Optimum ellipse identification for an area of 500 km2

and duration of 1 h around an analysed pixel. The selected optimum
ellipse and two rejected ellipses are shown.

Northrop, 1998; Olivera et al., 2008) since storms leave long
“traces” as they travel, and thus they are better captured by 55

ellipses than circles. Analysing elliptically shaped extreme
storms in South Korea, Kim et al. (2019) found that the use
of circles versus ellipses resulted in an underestimation of
storm-centred ARF values by an average of 20 %, with ob-
served underestimations as high as 70 %. 60

Ellipses are defined here in terms of ellipticity (i.e. the
ratio of the diameter of the minor axis to the major axis)
and orientation (the angle formed between the ellipse’s ma-
jor axis and the west–east axis). For each pixel, the best-
fitting or “optimum” ellipse for each storm event is identi- 65

fied by systematically varying the ellipticity and orientation,
while keeping the ellipse’s area fixed, and utilising a moving
time window across the selected duration. The combination
of ellipticity and orientation which maximises the average
precipitation intensity at any period within the storm event 70

is identified as the optimum ellipse best capturing that par-
ticular event for the analysed pixel. The process is shown
in Fig. 2, which displays the selected optimum ellipse for
500 km2 area, 1 h duration precipitation, and two rejected el-
lipses, for an example case. 75

This ellipse identification process is performed for every
combination of area and duration; thus, a total of 24 differ-
ent ellipses are identified per storm event for an individual
pixel (four areas and six durations). Selected ellipses were
found generally to have an ellipticity varying between 0.6 80

and 0.9; this is similar to the results presented by Karklinsky
and Morin (2006), who analysed the spatial characteristics of
radar-derived convective rain cells over southern Israel, and
by Peleg and Morin (2012), who examined convective rain
cells over northern Israel. Belachsen et al. (2017) observed 85

slightly lower ellipticities (mean of 0.57) when analysing
precipitation characteristics over the Dead Sea area, a region
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located in the eastern portion of the domain, forming part of
the Jordan Rift Valley (Fig. 1).

Utilising the procedure described above, the ordinary
events for different areas and durations are defined across the
study area. These ordinary events are then used to calculate5

return levels, as described in the following section.

3.2 Extreme value analysis

Following theoretical analyses (Wilson and Toumi, 2005)
and empirical results (Marra et al., 2020, 2023; Zorzetto
et al., 2016, among many others), we use a two-parameter10

Weibull distribution to model the tail of the ordinary events
distribution. To define this tail, we left-censor the data (i.e.
exclude observations below a selected threshold), following
the work performed by Marra et al. (2019a). This analy-
sis demonstrated that low-intensity ordinary events may di-15

verge from the distribution describing the upper tail and thus
should not be included when computing parameters describ-
ing the upper tail. The left-censoring procedure ignores the
intensities of the censored events while still retaining their
weight in the probability. The study found that left-censoring20

values between the 55th quantile and the 80th quantile pro-
vide virtually indistinguishable results for the area. Follow-
ing Marra et al. (2022), here we left-censor the lowest 55 %
of the ordinary events. The lower threshold was selected to
include the maximum number of ordinary events in the data25

sample.
Using the two-parameter Weibull model for the left-

censored ordinary events, the SMEV cumulative distribution
ζ can be written as

ζ (x)= F(x;λD,A,P, κD,A,P)
nP

=

[
1− e

−

(
x

λD,A,P

)κD,A,P ]nP

, (2)30

where ζ is the sought yearly non-exceedance probability (e.g.
99 % for the 100-year events); n is the average number of
storms per year (and so is the same for all durations for
a given area but can change with area size and also varies
among pixels); and λD,A,P and κD,A,P are the scale and shape35

parameters, respectively, which both depend on the examined
duration D, area A and pixel P.

The parameter n is computed for each pixel as the total
number of storms which are locally wet (identified from the
radar precipitation data as described in Sect. 3.1) divided by40

the number of years in the record. In order to account for
possible missing storms in the radar archive, n is adjusted
by dividing it by the ratio of the number of regional radar-
derived storms compared to the number of gauge-derived
storms (Marra et al., 2022).45

For each duration and area, the scale and shape parame-
ters are estimated using a least-squares regression in Weibull-
transformed coordinates (Marani and Ignaccolo, 2015) at
each radar pixel for various combinations of elliptical areas

and durations, as described above. The SMEV scale, shape, 50

and n parameters for each duration are next adjusted to in-
corporate information from the 10 min rain gauge data into
the weather-radar-data-derived parameters, using an adjust-
ment procedure developed by Marra et al. (2022). This is per-
formed to mitigate the impact of systematic biases and ran- 55

dom errors which have been demonstrated to dominate radar-
derived frequency analyses (see Marra and Morin, 2015)
and to account for potential missing precipitation events in
the radar archive (e.g. when the instrument was turned off).
SMEV parameters are estimated for each duration for both 60

the 10 min rain gauge data and the radar data. The local mul-
tiplicative biases between the radar-based (pixel size) and
the gauge-based parameters are then calculated at each rain
gauge location and interpolated using an inverse-distance-
weighted method, accounting for both lateral and vertical 65

distances. The radar-derived SMEV scale, shape, and n pa-
rameters at each pixel are then adjusted by dividing them by
the corresponding interpolated biases, and the adjusted return
levels are computed through inversion of the SMEV distribu-
tion. This procedure corrects spatial mismatches between the 70

rain gauge and radar data. A full description of this adjust-
ment is presented in Marra et al. (2022).

Note that this adjustment procedure was developed for
precipitation at the pixel scale and is applied here to precip-
itation over areas up to 500 km2. This is necessary as no in- 75

formation on the areal scale can be accurately derived from
the rain gauges due to the low density of sub-daily stations.
The underlying assumption is that biases in the parameters
at the areal scales are similar to biases in the parameters at
the pixel scale. We compared radar-derived return level esti- 80

mates at the 100 km2, 24 h scale against daily rain gauges to
get a sense of the accuracy of this assumption (see Sect. 3.3).

The associated uncertainty of the derived return levels is
quantified via block bootstrapping with replacement (100 it-
erations) among the years in the record during the calculation 85

of the return levels, as proposed by Overeem et al. (2008).
The technique generates samples by selecting blocks (here
a block is defined as a hydrological year) randomly with re-
placement, so that the number of blocks is the same as in
the original record. The ordinary events for each block are 90

concatenated to create the bootstrapped dataset, from which
the Weibull parameters and quantiles are estimated, using the
procedure described above. This enables the block structure
of the original rainfall data to be preserved.

3.3 Validation against rain gauge data 95

Radar precipitation data exhibit various uncertainties which
may affect the reliability of the derived return levels. There-
fore, the radar-derived return levels are first validated against
return level estimates derived from rain gauge data. To ex-
tract the areal component from the point-scale rain gauge 100

data, boxes are constructed in locations containing dense net-
works of rain gauges and the spatial average in these boxes
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calculated. Considering the higher density of the daily rain
gauge network compared to the 10 min gauges (see Fig. 1),
the validation is limited to the duration of 24 h and to areas
of 100 km2, representing a size where boxes with sufficient
gauge density can be found. Return levels are calculated from5

the daily, 100 km2 gauge-based precipitation spatial averages
using the SMEV formulation, utilising the same ordinary
events defined for the radar data. IDAF curves are then con-
structed and compared against radar-precipitation-derived
IDAF curves, calculated for 24 h duration and 100 km2 area10

size for the central pixel of the 100 km2 boxes.
As the daily rain gauge data are measured from 06:00 to

06:00 UTC, while the 24 h radar events are defined as the 24 h
time window containing the maximal precipitation intensity
during each storm, we also convert the radar data to daily15

time steps, from 06:00 to 06:00 UTC, and calculate 100 km2,
24 h return levels using the SMEV framework. Computing
return levels from these daily 06:00 to 06:00 UTC radar data
ensures a direct comparison with the gauge-derived results.
The locations of the six analysed sites are displayed in Fig. 1.20

The 100 km2 boxes were chosen to contain a minimum of
seven rain gauge stations with 30 years of data (1988–2018)
at each station, with the gauges evenly distributed inside the
box. This is to ensure a reasonable estimate of areal precip-
itation by spatial averaging and reasonable accuracy in the25

estimated return levels. Unfortunately, this limits the box lo-
cations to coastal and northern lowland areas only, as the
mountainous and desert regions contain sparser networks of
gauges. Additionally, the locations are required to be at least
1 km away from any 10 min rain gauge stations. This is be-30

cause data from the 10 min stations are used to adjust the
SMEV parameters during the bias correction procedure de-
scribed in Sect. 3.2. Therefore, using data from daily stations
too close to the 10 min stations could affect the independence
of the evaluation. The rain gauge data span a 30-year pe-35

riod, in contrast to the 12-year dataset used to derive the
radar data results. It was decided to use the whole time se-
ries, rather than matching the time periods, so as to produce
the most accurate return levels against which to validate the
radar-derived results.40

There are limitations to this method of comparison, related
to the nature of the rain gauge data; the radar-derived results
utilise precipitation from optimum ellipses best characteris-
ing each individual storm, rather than a fixed square. How-
ever, when applied to rain gauge data, the ellipses method be-45

comes problematic, as different rain gauges may be selected
for different ellipse options, affecting the spatially averaged
precipitation data. Thus, this is the best method available for
using rain gauges as a benchmark to evaluate the perfor-
mance of the radar data and assess the assumptions behind50

the adjustment procedure.

4 Results

Return levels across the study region are calculated using the
SMEV framework for varying areas (pixel scale and 10, 50,
100, and 500 km2) and timescales (10 and 30 min and 1, 3, 55

12, and 24 h) for a range of return periods (2, 5, 10, 25, 50,
and 100 years). The following section presents a comparison
between radar- and rain-gauge-derived extreme return levels
and then displays maps and IDAF curves of the estimated
results. 60

4.1 Validation

Figure 3 presents a comparison between the IDAF curves de-
rived from rain gauge measurements with the 24 h and the
daily 06:00 to 06:00 UTC radar data. The associated uncer-
tainty of the results is quantified as the 90 % confidence inter- 65

val from 100 bootstrap iterations (see Sect. 3.2). The figure
demonstrates that both the gauge- and radar-derived results
are generally in good agreement, particularly in the case of
the 06:00 to 06:00 UTC radar data. This is encouraging as the
radar results are computed using only 12 years of data and are 70

adjusted using relations derived for the pixel scale, whilst the
gauge results utilise 30 years of data and direct precipitation
observations. This validation supports therefore the robust-
ness of the applied framework for the study region, including
the use at the areal scale of an adjustment developed for the 75

pixel scale.
Distinctions arise between the 24 h and the 06:00 to

06:00 UTC daily-radar-derived results in certain regions. The
06:00 to 06:00 UTC radar results generally show very similar
behaviour to the rain-gauge-derived results for all six sites, as 80

well as similar levels of uncertainty; indeed within the uncer-
tainty intervals, the radar estimates largely cannot be distin-
guished from the gauge estimates. For sites a, b, c, and d, the
24 h radar data also produce good results, producing return
levels very similar to the gauge-derived levels. As expected, 85

the 24 h return levels are higher than the 06:00 to 06:00 UTC
radar levels, as the exact time window maximising precipita-
tion intensity for each storm is utilised, rather than the maxi-
mal 06:00 to 06:00 UTC period. However, at locations e and
f, the radar-derived return levels significantly exceed the rain- 90

gauge-derived levels. Interestingly, this mismatch is specific
to these two locations, and the 06:00 to 06:00 UTC radar data
yield satisfactory results for these sites.

An analysis by Marra et al. (2022) offers insight into this
discrepancy by examining the time of the day at which the 95

highest short-duration intensities (i.e. the ordinary events in
the distribution tail, as in this study defined as the largest
45 %) occur over the study area. They found that the high-
est offshore intensities tend to occur in the early morning
(02:00–08:00 UTC) or morning (08:00–14:00 UTC) and then 100

shift to mostly morning (08:00–14:00 UTC) at the coastline
and near inland. This is caused by the convergence created by
the superposition of the westerly winds typical of Mediter-
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Figure 3. Comparison of the 100 km2, 24 h precipitation intensity return levels derived from (i) 24 h radar data, (2) daily 06:00 to 06:00 UTC
data and (iii) from rain gauge data. The locations of the 100 km2 boxes are displayed in Fig. 1.

ranean cyclones with land breeze, which is expected to peak
in the early morning hours when the sea is warmest com-
pared to the land. Although Marra et al. (2022) focus only
on short-duration rainfall, and the results are given here for
24 h events, these findings may still explain the discrepancy5

between the results. Given that sites e and f are situated on
the coastline, high rainfall intensities occur more often in the
early mornings between 02:00–08:00 UTC; this could there-
fore lead to large differences between the maximal 24 h val-
ues and the maximal 06:00 to 06:00 UTC event values. Site10

d is somewhat further east, with Marra et al. (2022) indicat-
ing peak rainfall between 06:00 and 08:00 UTC, whilst sites
b and c are the most inshore and present high rainfall inten-
sity peak times of 11:00–14:00 UTC and 08:00–11:00 UTC
respectively. Therefore limiting the daily data to 06:00 to15

06:00 UTC may have a lesser impact on these inland sites.

4.2 Return level maps

Figure 4 displays the estimated 25-year return levels for
pixel-scale and 10 and 100 km2 areas, covering durations of
1 h and 24 h. Additional scales are shown in Fig. S1. For20

shorter durations, the highest return levels are located along
the coastline and over the mountainous regions in the north,
while the lowest values are found in the desert regions in
the south. As expected, increasing the event duration from
1 to 24 h results in a decrease in expected precipitation in-25

tensity across all area sizes. For long durations, the higher
precipitation intensities become concentrated primarily over
the central mountain region. Increasing the area size from the
pixel scale to 100 km2 results in lower return levels but does
not significantly alter the spatial distribution of high precip-30

itation intensities. An area of very low values, attributed to
data quality issues around the radar location, is clearly vis-
ible. Immediately south of the radar station, there is also a
distinct region of high values. This corresponds to the loca-
tion of validation site e shown in Fig. 1, which exhibits good 35

agreement between the 06:00 to 06:00 UTC daily-radar-data-
derived precipitation intensities and those calculated from
gauge data (Fig. 3), suggesting these values are correct. Sim-
ilarly, the high values along the coastline area are supported
by validation sites a, d and f, which also exhibit good agree- 40

ment between the radar- and gauge-derived return levels.

4.3 IDAF curves

IDAF relations are used to analyse the effect of duration and
area size on extreme return levels. Selected IDAF curves are
displayed in Figs. 5–7; the curves are displayed for three dif- 45

ferent regions – the coast, desert, and mountains (see Fig. 1).
Return levels over the three regions were computed by cal-
culating the spatial average of all the derived return levels
inside a 10 by 10 km2 CE1 box. The purpose of displaying re-
turn levels for a box rather than a single pixel is to reduce 50

fine noise that may characterise the results. The 90 % confi-
dence intervals are displayed as colour shades, computed via
bootstrapping (see Sect. 3.2), with 100 repetitions per radar
pixel; thus a total of 10 000 values were calculated for each
10 by 10 km2 CE2 box. Results are given for 25-year return 55

periods only, unless otherwise stated, due to space restric-
tions. Additional return periods are presented in the supple-
mentary material (Figs. S2 and S3), and the corresponding
shape and scale parameters for the different regions are pre-
sented in Fig. S4. 60
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Figure 4. Precipitation intensity return levels for varying areas and durations for 25-year return periods. The coastline, the Sea of Galilee in
the north, and the Dead Sea in the south are marked by the solid black line. The surface water divide is marked by the dotted black line.

Figure 5. IDAF curves estimated for the desert, coast, and mountains for 25-year return periods. Shaded areas represent the 90 % confidence
interval from 100 bootstrap samples. The locations of the three analysis sites are displayed in Fig. 1.

The differences in the behaviour of the IDAF curves over
the different locations are evident, with higher precipitation
intensities over the coastal and mountainous regions, as is
expected. Properties of the derived IDAF curves and param-
eters are discussed in the next section.5

5 Discussion

The objective of this study is to examine and quantify the ef-
fect of area and duration on extreme precipitation statistics
using the constructed IDAF curves. Here we identify three
main points of interest: (i) the influence of area and dura- 10

tion on precipitation intensity similarity, (ii) the scaling rela-
tion between precipitation intensity and duration at different
spatial scales, and (iii) the orographic effect. These points
are explored in detail below. We then examine the impact of
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Figure 6. CE3 (a–d) IDAF curves estimated for different area sizes for 25-year return periods. Shaded areas represent the 90 % confidence
interval from 100 bootstrap samples. (e) R2 between the log-transformed intensity and duration values presented in (a–d) for varying area
sizes. The locations of the three analysis sites are displayed in Fig. 1.

Figure 7. Ratio of return levels over the mountains compared to the coast for varying area sizes and return periods. The locations of the
analysis sites are displayed in Fig. 1.

proximity to the coastline and orography on extreme precip-
itation.

5.1 Influence of area and duration on precipitation
intensity similarity

Figure 5 presents the 25-year return levels derived for the5

coast, desert, and mountain locations (see Fig. 1), for vary-
ing area sizes. The return levels for 10- and 100-year return
periods are presented in Fig. S2. The figure demonstrates
that, at short durations, precipitation intensity is dissimilar
over different area sizes, with precipitation intensity sharply10

decreasing with increasing area. However, as duration in-

creases, the return levels for different areas become indis-
tinguishable, given the estimation uncertainty. Indeed, ex-
amining 24 h duration precipitation, intensity from the pixel
scale up to 500 km2 is almost identical for all area sizes. This 15

observation holds true for all three locations considered, as
well as for all the calculated return periods, despite the dif-
ferences in geography and precipitation characteristics. Ad-
ditionally, return levels were examined for the six validation
sites (Fig. 1) to verify that this pattern is consistent through- 20

out the study region, and the same pattern was consistently
observed.

This convergence is attributed to the varying precipitation
characteristics for short- and long-duration precipitation at
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different scales. For short durations and small areas, rainfall
is more localised; a single rain cell can cover the entire aver-
aged area, which is smaller than the spatial scale of the cell.
Therefore, the precipitation has a high level of homogene-
ity over the area. As area size increases, the examined area5

exceeds the spatial scale of the storm, thus decreasing the
degree of homogeneity and resulting in less similarity in the
precipitation intensities. With increasing durations, the time
window of precipitation accumulation likely contains multi-
ple rain cells, resulting in increasingly similar precipitation10

intensities for all area sizes.
The finding aligns with work presented by Peleg and

Morin (2012), who examined the spatiotemporal character-
istics of convective rain cells over northern Israel using a
cell tracking algorithm. The study, based on high-resolution15

weather radar data, found that the mean area of the convec-
tive rain cells ranged between 36.6 and 64.4 km2, depend-
ing on the synoptic type (shallow low, Cyprus low, or ac-
tive Red Sea trough), with a mean lifetime between 9.2 and
14 min and a maximum lifetime between 110 and 190 min.20

Belachsen et al. (2017) used the same cell-tracking algo-
rithm to analyse precipitation from radar images over the
Dead Sea area. They found that rain cells had a mean life-
time between 17.7 and 20.8 min depending on the synoptic
type and an average cell area between 77.2 and 100.4 km2.25

Note that Belachsen et al. (2017) used a lower threshold of
precipitation intensity for rain cell identification (a minimum
of 5 mm h−1 vs 10 mm h−1 used by Peleg and Morin, 2012);
thus their results are not directly comparable.

These studies confirm that the majority of rain cells in the30

study region have a lifetime under 30 min and an area size
smaller than 100 km2, supporting the theory that the exam-
ined area will generally exceed the spatial size of the cell for
areas 100 km2 and upwards and contain multiple rain cells
for longer durations. Note that Peleg and Morin (2012) lim-35

ited their study to northern Israel, which only covers the coast
site analysed here, while Belachsen et al. (2017) only focused
on the Dead Sea region. Additionally, both studies utilised a
precipitation intensity threshold, whereas no lower limit was
applied here, although low-intensity events will have been40

removed during the left-censoring of the data.
It is noteworthy that the estimated return levels for differ-

ent spatial scales converge at different durations for the dif-
ferent regions (around 1 h over the desert and approximately
3 and 12 h over the coast and mountain regions, respectively).45

In desert areas, rainfall primarily stems from highly localised
small-scale convective rain cells, and events are generally of
short duration (Armon et al., 2020; Marra et al., 2017). In-
deed for short durations, the highest rain intensity amounts
in the region are located in the desert. Therefore, rainfall50

is very dissimilar at different spatial scales when consider-
ing short durations. At durations greater than 1 h, rainfall in
desert areas becomes more homogenous in space, with less
significant variations in rainfall intensity, causing this con-
vergence. In contrast, rainfall events in the Mediterranean55

coastal and mountainous regions generally have larger rain-
fall amounts for longer durations (Armon et al., 2020). The
estimated return levels exhibit significant spatial differences
for longer multi-hour durations and do not show homogenous
behaviour over different spatial scales until around 3 to 12 h. 60

That rainfall becomes similar at long durations is signifi-
cant as the transformation of point precipitation derived from
rain gauge data to areal precipitation estimates is a topic of
great interest. As discussed in Sect. 1, ARFs are generally
used to estimate areal precipitation from point precipitation. 65

According to the results presented in Fig. 5, applying ARFs
at durations longer than 3–6 h may be unnecessary as precip-
itation at the pixel and areal scale is very similar for all the
area sizes analysed here up to 500 km2. This is advantageous
as ARFs proposed for a particular location can vary signifi- 70

cantly, due to many factors such as differences in the method-
ology utilised and differences in the dataset used. Further-
more, ARF estimates often contain significant uncertainty.

The notion of increasing ARF values with increasing du-
ration (indicating more similar values for point and areal pre- 75

cipitation) is widely accepted and is consistent with prior
studies (and evidenced in all of the studies mentioned here-
after); however, the extent of similarity between point and
areal precipitation remains unclear, with diverse findings in
the literature. Pavlovic et al. (2016), for instance, produced 80

ARF curves for 1 and 24 h durations, for 2- and 100-year re-
turn periods, using data from Oklahoma, central USA. In line
with our analysis, their results showed that 24 h ARF values
are significantly closer to 1 than 1 h values, with 24 h, 100-
year, 500 km2 values of approximately 0.95 and 1 h values of 85

approximately 0.75. Similarly, Overeem et al. (2010) calcu-
lated ARF values of 0.95, 0.84, and 0.7 for 100 km2 rainfall
events with durations of 24 h, 1 h, and 15 min, respectively.

Conversely, various studies have found a more significant
difference between point and areal precipitation. A study 90

by Biondi et al. (2021), investigating the Calabria region
in southern Italy using both a fixed and moving-centre ap-
proach, found that although ARF values increase with in-
creasing duration, the estimated values for 24 h precipitation
over large areas are low – indicating a large difference be- 95

tween the point- and large-scale areal precipitation. Specif-
ically, they derived values of approximately 0.27 and 0.45
for 1 and 24 h duration rainfall over a 500 km2 area using
a fixed-centre approach and values of 0.34 and 0.53 when
applying a moving centre approach. They do note, however, 100

that ARF values show a much sharper decrease for shorter
durations due to the small areal extent of the short-duration
events, while events with a long duration tend to be charac-
terised by sustained rain rates over larger areas, as expected.

Likewise, Kim et al. (2019) derived ARF values for the 105

Korean Peninsula of approximately 0.89 and 0.37 for 1 h du-
ration precipitation over areas of 10 and 530 km2 respectively
and values of 0.92 and 0.7 for 24 h precipitation over the
same area sizes. These results again demonstrate that rainfall
becomes more similar with increasing duration, but they still 110
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indicate differences between the small- and large-scale areal
precipitation. Lastly, Sivapalan and Blöschl (1998) anal-
ysed ARF values for a precipitation regime in Austria; they
present their results in term of the scaled catchment area
(A/λ2), where λ is the spatial correlation length of precip-5

itation. They also found a large difference between point-
and large-scale areal precipitation; analysing 24 h duration
precipitation only, they show that for 10-year return period
precipitation, ARFs decrease significantly with increasing
catchment size, with an ARF value of approximately 0.9510

for events with a scaled catchment area of 0.1 and a value of
approximately 0.24 for a scaled catchment area of 100.

It should be noted that there are several factors which may
influence the variability in these ARF values, including lo-
cation, seasonality, rainfall type, and geographical character-15

istics, all of which have been demonstrated to effect ARF
estimates (Kao et al., 2020). Moreover, the studies apply dif-
ferent methodologies for ARF calculation (moving centre vs
fixed centre approach) and utilise different precipitation data
sources (radar data vs rain gauge) and varying record lengths,20

all of which have demonstrated effects on ARF values. The
specific precipitation characteristics observed in Fig. 5 are
relevant only for the study area and for the analysed spa-
tial and temporal scales. The specific durations at which pre-
cipitation intensities become similar may vary across differ-25

ent regions of the world, influenced by the characteristics
of the storm regime. However, we believe that the general
behaviour of intensities becoming increasingly similar with
longer durations is expected to remain consistent. This un-
derstanding highlights the need for region-specific analyses30

when assessing the similarity between point and areal pre-
cipitation intensities.

The calculated shape and scale parameters, after correc-
tion factors have been applied, are presented in Fig. S4. The
effect of both duration and area is clearly visible: the scale35

parameter decreases with increasing duration and increasing
area, with the values converging at long durations – mirror-
ing the behaviour of the return levels presented in Fig. 5. In
contrast, the values of the shape parameter do not become
more similar for long durations. The parameter displays non-40

monotonic behaviour, with generally minimal change for du-
ration between 10 min and 1 h and a decrease for durations
between 1 and 6 h (implying an increasing tail heaviness).
Additionally, there is a significant difference between the
pixel and areal scales: very low parameters, between 0.445

and 0.75 (indicating heavy tails), are observed for area sizes
greater than the pixel scale, especially over the desert and
mountains, while exponential tales (i.e. values close to 1) are
observed for the pixel scale.

5.2 Scaling invariance of precipitation50

Figure 6 is presented to analyse the scale invariance of pre-
cipitation over different areal scales. That precipitation inten-
sity satisfies a simple-scaling relationship was first observed

by Sherman (1905) and has been shown by numerous stud-
ies since (Gupta and Waymire, 1990; Innocenti et al., 2017). 55

Simple scaling implies that precipitation intensity and dura-
tion are linked by a power-law relation (the logarithm of pre-
cipitation intensity and the logarithm of duration are linked
by a linear relation). Simple scaling is widely used in extreme
precipitation analysis. The main practical application of this 60

property is the temporal downscaling of extreme precipita-
tion data, for example, the estimation of sub-daily extremes
from daily data (Yamoat et al., 2023) or of sub-hourly ex-
tremes from hourly data (Lee et al., 2022). IDF relations can
then be derived using the downscaled data (Nguyen et al., 65

2002).
The duration-scaling characteristics of precipitation have

been well studied; however, research has generally focused
on point precipitation from rain gauge data. Here we can ex-
amine how precipitation changes with duration over differ- 70

ent areal scales. Figure 6 illustrates that, at the pixel scale,
precipitation displays a scale invariance that is well approx-
imated by simple scaling. However, as area size increases,
this power-law relation weakens, with return levels decreas-
ing less sharply with duration, particularly in mountainous 75

and coastal regions. Here, we quantify this deviation from the
simple scaling by the coefficient of determination, R2, of the
linear regression between the log-transformed intensity and
duration, shown in Fig. 6e. The R2 value decreases with area
for all three locations, indicating a decrease in the linearity of 80

the relation. Very similar behaviour is observed for the dif-
ferent regions, especially between the coast and mountains.
Results here are displayed for 25-year return levels, with 10-
and 100-year return periods presented in Fig. S3. The same
behaviour (with very similar R2 values) is observed for all 85

return periods.
The change in scaling is theorised to be related to the prop-

erties of precipitation in the region; at the pixel scale over a
time window of precipitation accumulation, it is likely that
only a single rain cell is present. However, over larger ar- 90

eas, as the duration window increases, multiple rain cells may
be present, resulting in this non-linear relationship. In desert
regions, precipitation is convective, and the lifetime of pre-
cipitation cells is generally shorter; thus precipitation over
longer durations decreases more significantly than in coastal 95

and mountainous regions, as evidenced in Fig. 6.
For point- and small-scale (10 km2) precipitation, simple

scaling can be used for the downscaling of low-resolution
daily precipitation data to higher-resolution sub-daily data
and for the subsequent derivation of IDAF relations. How- 100

ever, for precipitation over larger areas a simple scaling ap-
proximation becomes less suitable, and more complex meth-
ods are required for an accurate downscaling of the data.

5.3 Orographic effect

The presence of mountains is known to cause highly variable 105

precipitation patterns (Barros and Kuligowski, 1998; Houze
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Jr. et al., 2001; Haiden et al., 1992). Orography causes a lift-
ing of air masses along the windward slope of mountains,
enhancing water vapour condensation and cloud formation
and so increasing the overall precipitation yield. Conversely,
on the leeward side of the slope, precipitation is decreased,5

as moisture in the descending air has been reduced. This phe-
nomenon of “orographic enhancement” has been well docu-
mented in many regions worldwide on long-duration (daily
and multi-daily) precipitation amounts and extremes (John-
son and Hanson, 1995; Napoli et al., 2019; Roe, 2005). Re-10

cent studies have demonstrated that the effect is reversed for
short-duration (sub-hourly and hourly) extreme precipitation,
with precipitation intensity decreasing with increasing eleva-
tion (Allamano et al., 2009; Avanzi et al., 2015; Formetta et
al., 2022; Marra et al., 2021; Mazzoglio et al., 2022)15

Performing an analysis focusing on Mediterranean cy-
clones in the eastern Mediterranean, Marra et al. (2021)
proposed that the reverse orographic effect occurs as short-
duration events typically consist of individual convective
cores. The presence of orography redistributes precipitation20

to surrounding areas and smooths the event structure, thus
causing decreased extreme precipitation. In contrast multi-
hour and daily events include sequences of convective and
stratiform-like elements, which aggregate due to orography
and so cause an overall increase in precipitation. This inter-25

pretation was further supported by Dallan et al. (2023) by an
analysis of convection-permitting model simulations in the
Alps. The IDAF relations presented here also confirm the
presence of the reverse orographic effect; Fig. 6 demonstrates
that return levels are lower in the mountain region compared30

the coast for shorter durations (10 min–3 h) but are higher for
long durations (12 and 24 h).

Here we examine the effects of area and return period on
the reverse orographic effect. The ratio of return levels over
the mountains vs the coast is shown in Fig. 7 for various re-35

turn periods from 2 to 100 years. Longer return periods am-
plify the magnitude of the reverse orographic effect, causing
decreased short-duration and increased long-duration precip-
itation in comparison to the coast. Conversely, larger areas
appear to reduce the impact of the reverse orographic ef-40

fect, significantly increasing the ratio of precipitation over
mountains compared to the coast at short durations (0.45 for
10 min 25-year return levels at the pixel scale and 0.68 for
500 km2) and slightly decreasing this ratio for long durations
(1.18 for 24 h 25-year return levels at the pixel scale and 1.1345

for 500 km2). This phenomenon is attributed to the character-
istics of convective precipitation in the region. The presence
of orography directly influences rain cells over smaller areas.
As the size of the area expands, the ellipses contain multiple
rain cells, increasing the heterogeneity of the precipitation50

and producing an averaging effect that somewhat mitigates
the impact of mountains, thus leading to a decrease in the
reverse orographic effect.

The coast was selected as a comparison site to ensure that
the storm ellipses did not extend into the mountain region,55

thereby avoiding any potential influence of orography on the
derived return levels. However, it is important to acknowl-
edge that the coast has been demonstrated to also enhance
precipitation in the study region (as discussed in Sect. 5.4).
Furthermore, it should be noted that for large area sizes over 60

the mountains, the storm ellipses may extend beyond the
mountain range and into lowland areas, depending on the ori-
entation. This aspect could impact the results but is inherent
to the analysis of spatial precipitation.

5.4 Coastal and orographic effects on multi-scale 65

return levels

The effect of coastal proximity and orography on precipi-
tation are well documented. Research on precipitation and
proximity to the coastline has consistently found higher lev-
els of precipitation near the coast (Daniels et al., 2014). 70

The effect of elevation on precipitation, due to orographic
forcing, has also been well studied (Guan et al., 2005;
Lassegues, 2018; Tang et al., 2018; Marra et al., 2022). Marra
et al. (2022) demonstrated that orography and the distance
from the coastline influence extreme precipitation statistics 75

and design precipitation intensities over the studied region.
Analysing radar data on the pixel scale, they showed that
at short durations (sub-hourly), return levels peak within a
∼ 20–40 km strip around the coastline and over the rift val-
ley east of the mountain region. For longer durations, this 80

peak in return levels moves further inland, corresponding to
orographic ascents, and the rift valley causes decreased val-
ues.

Longitudinal variations in the return levels are examined
here to see the effect of changing area on these coastal and 85

orographic effects. The rationale for examining longitudinal
transects relates to the typical advection direction of Mediter-
ranean cyclones, which represent the vast majority of the
storms, across the region. Two longitudinal transects (Fig. 1)
are analysed, characterised from west to east by a sea–land 90

boundary, a mountain range, a major valley, and a second
mountain range. The location of these transects was selected
by Marra et al. (2022) based on radar visibility and on the
presence of regular orographic profiles. The transects are ob-
tained by averaging the values over a 10 km region surround- 95

ing the latitudes.
The results are shown in Fig. 8, with longitudinal vari-

ations in the precipitation intensity distribution parameters
along the same transects presented in Fig. S5. For 1 h du-
rations, return levels peak around the coastline; this is gen- 100

erally most significant for smaller areas. This peak corre-
sponds with an increase in the scale parameter for areas up
to 100 km2. As found by Marra et al. (2022), the peak in re-
turn levels moves east for 24 h duration precipitation, reach-
ing the first orographic barrier. This occurs for all area sizes, 105

with a corresponding peak in both the scale and shape pa-
rameters (see Fig. S5). Marra et al. (2022) found that return
levels also peak around the first mountain barrier. This peak
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Figure 8. Longitudinal variations in 2- and 100-year precipitation return levels along the two transects shown in Fig. 1 as a function of
coastline proximity (x axis) and area size (y axis). Results are shown for 1 h and 24 h durations. The transects are obtained by computing an
average over the 10 km region surrounding the two latitudes. Return levels are then normalised over the maximum value along the transect to
produce comparable values. Solid lines represent the orographic profile (see right-hand y axis). Dashed lines represent the sampling height
of the lowest non-blocked radar beam (see right-hand y axis).

becomes wider (i.e. covers a greater distance) with increas-
ing area. However, this widening can be explained by the
way we explore large areas using ellipses: larger ellipses are
likely to include orographically enhanced precipitation over
the mountain areas from further distances away. For transect5

1 there is also a peak at the second orographic barrier, which
again widens with increasing area.

The rift valley results in decreased return levels for all area
sizes, though this effect is more marked for 24 h durations
than 1 h. The decrease in return levels appears smaller for the10

larger 100 and 500 km2 areas. For transect 1, this corresponds
to increased scale and shape parameters and for transect 2 a
decreased shape parameter only. For sub-hourly durations,
particularly 10 min (not shown here), the rift valley causes
increasing values, as shown by Marra et al. (2022). This ef-15

fect is more significant for larger areas.
The return level transects are shown for 2-year (a and c)

and 100-year (b and d) return periods. With an increasing re-
turn period, there is generally similar behaviour, although the
peak in return levels over the mountains is more prominent20

for 100 years.

6 Conclusions

The yearly exceedance probability of extreme precipitation
at different spatial and temporal ranges is crucial for infras-
tructure design, risk management, and policymaking. This 25

study applied the novel SMEV framework to estimate ex-
treme precipitation return levels for multiple areas (0.25–
500 km2) and durations (10 min–24 h) directly from gauge-
adjusted weather radar precipitation estimates. We focus
on a region with sharp climatic gradients, characterised by 30

a wide variety of climatic conditions. The application of
the SMEV approach reduces uncertainties and enables the
use of 12 years of radar record, obtaining estimates in line
with those derived from averaging information from 30-
year recording stations. Intensity–duration–area–frequency 35

(IDAF) relations were derived from the estimated return lev-
els and used to examine the climatological differences in pre-
cipitation intensity emerging from coastal, mountainous, and
desert regions at different spatial and temporal scales. Three
key points were discussed: 40
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i. Precipitation and duration exhibit simple scaling at the
pixel scale, but this relationship breaks down with in-
creasing area – this has significance for temporal down-
scaling.

ii. Precipitation intensity is dissimilar for different area5

sizes at short durations but becomes increasingly sim-
ilar at long durations – thus areal reduction factors may
be unnecessary when computing precipitation for long
durations.

iii. The reverse orographic effect is demonstrated to cause10

decreased precipitation for hourly and sub-hourly dura-
tions; however, this effect decreases over larger areas.

Overall, the study demonstrates that radar-precipitation-
derived extreme return levels can provide important infor-
mation for the understanding of extreme precipitation clima-15

tology at multiple temporal and spatial scales. Further, this
information can be used for hydrological research and prac-
tice, as it provides two important innovations compared to
the standard analysis from gauge station data: firstly, radar
data allow the incorporation of the areal component into the20

analysis of extreme precipitation, and secondly it enables the
derivation of IDAF spatial patterns at high resolution over
the analysed region. Lastly, the study highlights the effective-
ness of radar precipitation in deriving extreme return levels
even in ungauged locations, broadening the application of ex-25

treme precipitation frequency analysis beyond the limitations
of gauge station networks.

Our future research will focus on the identification of the
spatial–temporal scales most relevant for extreme flood re-
sponses in catchments characterised by different sizes and30

climates. This will provide information useful toward a more
practical application of these results in engineering and risk
management.

Code availability. Codes used for the estimation of
SMEV parameters and return levels are freely available at35

https://doi.org/10.5281/zenodo.3971558 (Marra, 2020).

Data availability. Rain gauge data were provided and pre-
processed by the Israel Meteorological Service and are freely avail-
able at https://ims.gov.il/en/data_gov (last access: 10 April 2024,
Israel Meteorological Service, 2024a). Original weather radar data40

were provided by the Israel Meteorological Service (https://ims.gov.
il/en/node/179, last access: 22 June 2023, Israel Meteorological Ser-
vice, 2024b). Corrected and gauge-adjusted radar data are available
upon request to the head of the Hydrometeorology lab at the Hebrew
University of Jerusalem, Efrat Morin (efrat.morin@mail.huji.ac.il).45

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-28-1-2024-supplement.

Author contributions. FM, EM, and TR conceptualised the paper,
and TR conducted the analysis. TR prepared the manuscript with
contributions from all co-authors. 50

Competing interests. At least one of the (co-)authors is a member
of the editorial board of Hydrology and Earth System Sciences. The
peer-review process was guided by an independent editor, and the
authors also have no other competing interests to declare.

Disclaimer. Publisher’s note: Copernicus Publications remains 55

neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors. 60

Acknowledgements. Many of the methods used to create the
weather radar archive were developed by the team in the past years,
in addition to the novel statistical methodology used for extreme
value analyses. Similarly, studies about extreme precipitation in the
region and about the use of remotely sensed datasets for precipita- 65

tion frequency analyses were published by the team. The number of
self-citations is thus large. We did our best not to inflate the num-
ber of self-citations, and we hope the text will clarify why these
citations are needed.

Financial support. This research has been supported by the Israel 70

Science Foundation (grant nos. 1069/18 and 1999/22) and by the
Center for Interdisciplinary Data Science Research at the Hebrew
University of Jerusalem (CIDR). This study is a contribution to the
HyMeX programme. Francesco Marra was partially supported by
the CARIPARO Foundation through the Excellence Grant 2021 to 75

the “Resilience” Project and by the COST Action CA19109 “Med-
Cyclones” supported by COST European Cooperation in Science
and Technology.

Review statement. This paper was edited by Marie-Claire ten Veld-
huis and reviewed by two anonymous referees. 80

References

Allamano, P., Claps, P., Laio, F., and Thea, C.: A data-
based assessment of the dependence of short-duration pre-
cipitation on elevation, Phys. Chem. Earth, 34, 635–641,
https://doi.org/10.1016/J.PCE.2009.01.001, 2009. 85

Araujo, D., Marra, F., Ali, H., Fowler, H. J., and Nikolopoulos, E.
I.: Relation Between Storm Characteristics and Extreme Precipi-
tation Statistics Over CONUS, Adv. Water Resour., 178, 104497,
https://doi.org/10.1016/j.advwatres.2023.104497, 2023.

Armon, M., Morin, E., and Enzel, Y.: Overview of mod- 90

ern atmospheric patterns controlling rainfall and floods
into the Dead Sea: Implications for the lake’s sedimentol-

https://doi.org/10.5281/zenodo.3971558
https://ims.gov.il/en/data_gov
https://ims.gov.il/en/node/179
https://ims.gov.il/en/node/179
https://ims.gov.il/en/node/179
https://doi.org/10.5194/hess-28-1-2024-supplement
https://doi.org/10.1016/J.PCE.2009.01.001
https://doi.org/10.1016/j.advwatres.2023.104497


16 T. Rosin et al.: Precipitation intensity–duration–area–frequency relationships

ogy and paleohydrology, Quaternary Sci. Rev., 216, 58–73,
https://doi.org/10.1016/J.QUASCIREV.2019.06.005, 2019.

Armon, M., Marra, F., Enzel, Y., Rostkier-Edelstein, D., and Morin,
E.: Radar-based characterisation of heavy precipitation in the
eastern Mediterranean and its representation in a convection-5

permitting model, Hydrol. Earth Syst. Sci., 24, 1227–1249,
https://doi.org/10.5194/hess-24-1227-2020, 2020.

Avanzi, F., De Michele, C., Gabriele, S., Ghezzi, A., and
Rosso, R.: Orographic Signature on Extreme Precipita-
tion of Short Durations, J. Hydrometeorol., 16, 278–294,10

https://doi.org/10.1175/JHM-D-14-0063.1, 2015.
Barredo, J. I.: Normalised flood losses in Europe: 1970–

2006, Nat. Hazards Earth Syst. Sci., 9, 97–104,
https://doi.org/10.5194/nhess-9-97-2009, 2009.

Barros, A. P. and Kuligowski, R. J.: Orographic Effects during a Se-15

vere Wintertime Rainstorm in the Appalachian Mountains, Mon.
Weather Rev., 126, 2648–2672, https://doi.org/10.1175/1520-
0493(1998)126<2648:OEDASW>2.0.CO;2, 1998.

Belachsen, I., Marra, F., Peleg, N., and Morin, E.: Convective rain-
fall in a dry climate: relations with synoptic systems and flash-20

flood generation in the Dead Sea region, Hydrol. Earth Syst.
Sci., 21, 5165–5180, https://doi.org/10.5194/hess-21-5165-2017,
2017.

Biondi, D., Greco, A., and De Luca, D. L.: Fixed-
area vs storm-centered areal reduction factors: a25

Mediterranean case study, J. Hydrol., 595, 125654,
https://doi.org/10.1016/J.JHYDROL.2020.125654, 2021.

Borga, M. and Morin, E.: Characteristics of Flash Flood Regimes in
the Mediterranean Region, in: Advances in Natural and Techno-
logical Hazards Research, Vol. 39, Springer, Dordrecht, 65–76,30

https://doi.org/10.1007/978-94-007-7948-8_5, 2014.
Dallan, E., Marra, F., Fosser, G., Marani, M., Formetta, G., Schär,

C., and Borga, M.: How well does a convection-permitting re-
gional climate model represent the reverse orographic effect
of extreme hourly precipitation?, Hydrol. Earth Syst. Sci., 27,35

1133–1149, https://doi.org/10.5194/hess-27-1133-2023, 2023.
Daniels, E. E., Lenderink, G., Hutjes, R. W. A., and Holtslag,

A. A. M.: Spatial precipitation patterns and trends in The
Netherlands during 1951–2009, Int. J. Climatol., 34, 1773–1784,
https://doi.org/10.1002/JOC.3800, 2014.40

De Michele, C., Kottegoda, N. T., and Rosso, R.: IDAF
(intensity-duration-area frequency) curves of extreme storm
rainfall: a scaling approach, Water Sci. Technol., 45, 83–90,
https://doi.org/10.2166/WST.2002.0031, 2002.

Formetta, G., Marra, F., Dallan, E., Zaramella, M., and Borga,45

M.: Differential orographic impact on sub-hourly, hourly, and
daily extreme precipitation, Adv. Water Resour., 159, 104085,
https://doi.org/10.1016/j.advwatres.2021.104085, 2022.

Goldreich, Y.: The climate of Israel: observation, research and ap-
plication, Springer, 298 pp., ISBN 978-0306474453, 2003.50

Guan, H., Wilson, J. L., and Makhnin, O.: Geostatistical Mapping
of Mountain Precipitation Incorporating Autosearched Effects
of Terrain and Climatic Characteristics, J. Hydrometeorol., 6,
1018–1031, https://doi.org/10.1175/JHM448.1, 2005.

Gupta, V. K. and Waymire, E.: Multiscaling properties of spatial55

rainfall and river flow distributions, J. Geophys. Res., 95, 1999–
2009, https://doi.org/10.1029/JD095ID03P01999, 1990.

Haiden, T., Kerschbaum, M., Kahlig, P., and Nobilis, F.: A refined
model of the influence of orography on the mesoscale distribu-

tion of extreme precipitation, Hydrolog. Sci. J., 37, 417–427, 60

https://doi.org/10.1080/02626669209492609, 1992.
Houze Jr., R., James, C. N., and Medina, S.: Radar observations of

precipitation and airflow on the Mediterranean side of the Alps:
Autumn 1998 and 1999, Q. J. Roy. Meteor. Soc., 127, 2537–
2558, https://doi.org/10.1002/QJ.49712757804, 2001. 65

Hu, L., Nikolopoulos, E. I., Marra, F., Morin, E., Marani, M.,
and Anagnostou, E. N.: Evaluation of MEVD-based precipita-
tion frequency analyses from quasi-global precipitation datasets
against dense rain gauge networks, J. Hydrol., 590, 125564,
https://doi.org/10.1016/J.JHYDROL.2020.125564, 2020. 70

Innocenti, S., Mailhot, A., and Frigon, A.: Simple scaling of
extreme precipitation in North America, Hydrol. Earth Syst.
Sci., 21, 5823–5846, https://doi.org/10.5194/hess-21-5823-2017,
2017.

Israel Meteorological Service: Meteorological Database, https:// 75

ims.gov.il/en/data_gov, last access: 10 April 2024a.
Israel Meteorological Service: Radar raw data, https://ims.gov.il/en/

node/179, last access: 10 April 2024b.
Johnson, G. L. and Hanson, C. L.: Topographic and Atmo-

spheric Influences on Precipitation Variability over a Moun- 80

tainous Watershed, J. Appl. Meteorol. Clim., 34, 68–87,
https://doi.org/10.1175/1520-0450-34.1.68, 1995.

Kao, S. C., DeNeale, S. T., Yegorova, E., Kanney, J., and Carr,
M. L.: Variability of precipitation areal reduction factors in
the conterminous United States, J. Hydrol. X, 9, 100064, 85

https://doi.org/10.1016/j.hydroa.2020.100064, 2020.
Karklinsky, M. and Morin, E.: Spatial characteristics of radar-

derived convective rain cells over southern Israel, Meteorol.
Z., 15, 513–520, https://doi.org/10.1127/0941-2948/2006/0153,
2006. 90

Kidd, C., Becker, A., Huffman, G. J., Muller, C. L., Joe, P.,
Skofronick-Jackson, G., and Kirschbaum, D. B.: So, How Much
of the Earth’s Surface Is Covered by Rain Gauges?, B. Am.
Meteorol. Soc., 98, 69–78, https://doi.org/10.1175/BAMS-D-14-
00283.1, 2017. 95

Kim, J., Lee, J., Kim, D., and Kang, B.: The role of rainfall spatial
variability in estimating areal reduction factors, J. Hydrol., 568,
416–426, https://doi.org/10.1016/j.jhydrol.2018.11.014, 2019.

Lassegues, P.: Daily and climatological fields of precipitation
over the western Alps with a high density network for the 100

period of 1990–2012, Theor. Appl. Climatol., 131, 1–17,
https://doi.org/10.1007/s00704-016-1954-z, 2018.

Lee, T., Jo, J., and Singh, V. P.: Temporal downscaling of daily pre-
cipitation to 10 min data for assessment of climate change impact
on floods in small-size watersheds applied to Jinju, South Korea, 105

Clim. Dynam., 59, 2381–2407, https://doi.org/10.1007/s00382-
022-06216-1, 2022.

Lengfeld, K., Kirstetter, P. E., Fowler, H. J., Yu, J., Becker, A.,
Flamig, Z., and Gourley, J.: Use of radar data for character-
izing extreme precipitation at fine scales and short durations, 110

Environ. Res. Lett., 15, 085003, https://doi.org/10.1088/1748-
9326/AB98B4, 2020.

Marani, M. and Ignaccolo, M.: A metastatistical approach
to rainfall extremes, Adv. Water. Resour., 79, 121–126,
https://doi.org/10.1016/j.advwatres.2015.03.001, 2015. 115

Marra, F.: A Unified Framework for Extreme Sub-daily Precipi-
tation Frequency Analyses based on Ordinary Events – data &

https://doi.org/10.1016/J.QUASCIREV.2019.06.005
https://doi.org/10.5194/hess-24-1227-2020
https://doi.org/10.1175/JHM-D-14-0063.1
https://doi.org/10.5194/nhess-9-97-2009
https://doi.org/10.1175/1520-0493(1998)126<2648:OEDASW>2.0.CO;2
https://doi.org/10.1175/1520-0493(1998)126<2648:OEDASW>2.0.CO;2
https://doi.org/10.1175/1520-0493(1998)126<2648:OEDASW>2.0.CO;2
https://doi.org/10.5194/hess-21-5165-2017
https://doi.org/10.1016/J.JHYDROL.2020.125654
https://doi.org/10.1007/978-94-007-7948-8_5
https://doi.org/10.5194/hess-27-1133-2023
https://doi.org/10.1002/JOC.3800
https://doi.org/10.2166/WST.2002.0031
https://doi.org/10.1016/j.advwatres.2021.104085
https://doi.org/10.1175/JHM448.1
https://doi.org/10.1029/JD095ID03P01999
https://doi.org/10.1080/02626669209492609
https://doi.org/10.1002/QJ.49712757804
https://doi.org/10.1016/J.JHYDROL.2020.125564
https://doi.org/10.5194/hess-21-5823-2017
https://ims.gov.il/en/data_gov
https://ims.gov.il/en/data_gov
https://ims.gov.il/en/data_gov
https://ims.gov.il/en/node/179
https://ims.gov.il/en/node/179
https://ims.gov.il/en/node/179
https://doi.org/10.1175/1520-0450-34.1.68
https://doi.org/10.1016/j.hydroa.2020.100064
https://doi.org/10.1127/0941-2948/2006/0153
https://doi.org/10.1175/BAMS-D-14-00283.1
https://doi.org/10.1175/BAMS-D-14-00283.1
https://doi.org/10.1175/BAMS-D-14-00283.1
https://doi.org/10.1016/j.jhydrol.2018.11.014
https://doi.org/10.1007/s00704-016-1954-z
https://doi.org/10.1007/s00382-022-06216-1
https://doi.org/10.1007/s00382-022-06216-1
https://doi.org/10.1007/s00382-022-06216-1
https://doi.org/10.1088/1748-9326/AB98B4
https://doi.org/10.1088/1748-9326/AB98B4
https://doi.org/10.1088/1748-9326/AB98B4
https://doi.org/10.1016/j.advwatres.2015.03.001


T. Rosin et al.: Precipitation intensity–duration–area–frequency relationships 17

codes, Zenodo [code], https://doi.org/10.5281/zenodo.3971558,
2020.

Marra, F. and Morin, E.: Use of radar QPE for the
derivation of Intensity–Duration–Frequency curves in
a range of climatic regimes, J. Hydrol., 531, 427–440,5

https://doi.org/10.1016/J.JHYDROL.2015.08.064, 2015.
Marra, F. and Morin, E.: Autocorrelation structure of con-

vective rainfall in semiarid-arid climate derived from high-
resolution X-Band radar estimates, Atmos. Res., 200, 126–138,
https://doi.org/10.1016/j.atmosres.2017.09.020, 2018.10

Marra, F., Morin, E., Peleg, N., Mei, Y., and Anagnostou, E. N.:
Intensity–duration–frequency curves from remote sensing rain-
fall estimates: comparing satellite and weather radar over the
eastern Mediterranean, Hydrol. Earth Syst. Sci., 21, 2389–2404,
https://doi.org/10.5194/hess-21-2389-2017, 2017.15

Marra, F., Nikolopoulos, E. I., Creutin, J. D., and Borga, M.:
Radar rainfall estimation for the identification of debris-
flow occurrence thresholds, J. Hydrol., 519, 1607–1619,
https://doi.org/10.1016/J.JHYDROL.2014.09.039, 2014.

Marra, F., Nikolopoulos, E. I., Anagnostou, E. N., and Morin,20

E.: Metastatistical Extreme Value analysis of hourly rain-
fall from short records: Estimation of high quantiles and im-
pact of measurement errors, Adv. Water. Resour., 117, 27–39,
https://doi.org/10.1016/J.ADVWATRES.2018.05.001, 2018.

Marra, F., Zoccatelli, D., Armon, M., and Morin, E.: A simpli-25

fied MEV formulation to model extremes emerging from mul-
tiple nonstationary underlying processes, Adv. Water. Resour.,
127, 280–290, https://doi.org/10.1016/j.advwatres.2019.04.002,
2019a.

Marra, F., Nikolopoulos, E. I., Anagnostou, E. N., Bárdossy, A.,30

and Morin, E.: Precipitation frequency analysis from remotely
sensed datasets: A focused review, J. Hydrol., 574, 699–705,
https://doi.org/10.1016/J.JHYDROL.2019.04.081, 2019b.

Marra, F., Borga, M., and Morin, E.: A Unified Framework for
Extreme Subdaily Precipitation Frequency Analyses Based on35

Ordinary Events, Geophys. Res. Lett., 47, e2020GL090209,
https://doi.org/10.1029/2020GL090209, 2020.

Marra, F., Armon, M., Borga, M., and Morin, E.: Orographic
Effect on Extreme Precipitation Statistics Peaks at Hourly
Time Scales, Geophys. Res. Lett., 48, e2020GL091498,40

https://doi.org/10.1029/2020GL091498, 2021.
Marra, F., Armon, M., and Morin, E.: Coastal and oro-

graphic effects on extreme precipitation revealed by weather
radar observations, Hydrol. Earth Syst. Sci., 26, 1439–1458,
https://doi.org/10.5194/hess-26-1439-2022, 2022.45

Marra, F., Amponsah, W., and Papalexiou, S. M.: Non-
asymptotic Weibull tails explain the statistics of extreme
daily precipitation, Adv. Water. Resour., 173, 104388,
https://doi.org/10.1016/J.ADVWATRES.2023.104388, 2023.

Mascaro, G., Papalexiou, S. M., and Wright, D. B.: Ad-50

vancing Characterization and Modeling of Space-Time
Correlation Structure and Marginal Distribution of Short-
Duration Precipitation, Adv. Water. Resour., 177, 104451,
https://doi.org/10.1016/J.ADVWATRES.2023.104451, 2023.

Mazzoglio, P., Butera, I., Alvioli, M., and Claps, P.: The role of55

morphology in the spatial distribution of short-duration rain-
fall extremes in Italy, Hydrol. Earth Syst. Sci., 26, 1659–1672,
https://doi.org/10.5194/hess-26-1659-2022, 2022.

Mélèse, V., Blanchet, J., and Creutin, J. D.: A Regional Scale-
Invariant Extreme Value Model of Rainfall Intensity-Duration- 60

Area-Frequency Relationships, Water. Resour. Res., 55, 5539–
5558, https://doi.org/10.1029/2018WR024368, 2019.

Miniussi, A. and Marra, F.: Estimation of extreme daily pre-
cipitation return levels at-site and in ungauged locations us-
ing the simplified MEV approach, J. Hydrol., 603, 126946, 65

https://doi.org/10.1016/j.jhydrol.2021.126946, 2021.
Morin, E. and Gabella, M.: Radar-based quantitative pre-

cipitation estimation over Mediterranean and dry cli-
mate regimes, J. Geophys. Res.-Atmos., 112, 20108,
https://doi.org/10.1029/2006JD008206, 2007. 70

Napoli, A., Crespi, A., Ragone, F., Maugeri, M., and Pasquero,
C.: Variability of orographic enhancement of precipitation in the
Alpine region, Sci. Rep., 9, 1–8, https://doi.org/10.1038/s41598-
019-49974-5, 2019.

Nguyen, V. T. V., Nguyen, T. D., and Ashkar, F.: Regional frequency 75

analysis of extreme rainfalls, Water Sci. Technol., 45, 75–81,
https://doi.org/10.2166/WST.2002.0030, 2002.

Northrop, P.: A clustered spatial-temporal model of rain-
fall, P. Roy. Soc. A-Math. Phy., 454, 1875–1888,
https://doi.org/10.1098/RSPA.1998.0238, 1998. 80

Olivera, F., Choi, J., Kim, D., and Li, M.-H.: Estima-
tion of Average Rainfall Areal Reduction Factors in Texas
Using NEXRAD Data, J. Hydrol. Eng., 13, 438–448,
https://doi.org/10.1061/(asce)1084-0699(2008)13:6(438), 2008.

Overeem, A., Buishand, A., and Holleman, I.: 85

Rainfall depth-duration-frequency curves and
their uncertainties, J. Hydrol., 348, 124–134,
https://doi.org/10.1016/J.JHYDROL.2007.09.044, 2008.

Overeem, A., Buishand, A., Holleman, I., and Uijlen-
hoet, R.: Extreme value modeling of areal rainfall 90

from weather radar, Water Resour. Res., 46, W09514,
https://doi.org/10.1029/2009WR008517, 2010.

Panthou, G., Vischel, T., Lebel, T., Quantin, G., and Molinié, G.:
Characterising the space–time structure of rainfall in the Sa-
hel with a view to estimating IDAF curves, Hydrol. Earth Syst. 95

Sci., 18, 5093–5107, https://doi.org/10.5194/hess-18-5093-2014,
2014.

Pavlovic, S., Perica, S., St Laurent, M., and Mejía,
A.: Intercomparison of selected fixed-area areal re-
duction factor methods, J. Hydrol., 537, 419–430, 100

https://doi.org/10.1016/J.JHYDROL.2016.03.027, 2016.
Peleg, N. and Morin, E.: Convective rain cells: Radar-derived

spatiotemporal characteristics and synoptic patterns over the
eastern Mediterranean, J. Geophys. Res.-Atmos., 117, 15116,
https://doi.org/10.1029/2011JD017353, 2012. 105

Peleg, N., Marra, F., Fatichi, S., Paschalis, A., Molnar,
P., and Burlando, P.: Spatial variability of extreme rain-
fall at radar subpixel scale, J. Hydrol., 556, 922–933,
https://doi.org/10.1016/J.JHYDROL.2016.05.033, 2018.

Pöschmann, J. M., Kim, D., Kronenberg, R., and Bernhofer, C.: 110

An analysis of temporal scaling behaviour of extreme rainfall in
Germany based on radar precipitation QPE data, Nat. Hazards
Earth Syst. Sci., 21, 1195–1207, https://doi.org/10.5194/nhess-
21-1195-2021, 2021.

Roe, G. H.: Orographic Precipitation, 115

Annu. Rev. Earth Pl. Sc., 33, 645–671,

https://doi.org/10.5281/zenodo.3971558
https://doi.org/10.1016/J.JHYDROL.2015.08.064
https://doi.org/10.1016/j.atmosres.2017.09.020
https://doi.org/10.5194/hess-21-2389-2017
https://doi.org/10.1016/J.JHYDROL.2014.09.039
https://doi.org/10.1016/J.ADVWATRES.2018.05.001
https://doi.org/10.1016/j.advwatres.2019.04.002
https://doi.org/10.1016/J.JHYDROL.2019.04.081
https://doi.org/10.1029/2020GL090209
https://doi.org/10.1029/2020GL091498
https://doi.org/10.5194/hess-26-1439-2022
https://doi.org/10.1016/J.ADVWATRES.2023.104388
https://doi.org/10.1016/J.ADVWATRES.2023.104451
https://doi.org/10.5194/hess-26-1659-2022
https://doi.org/10.1029/2018WR024368
https://doi.org/10.1016/j.jhydrol.2021.126946
https://doi.org/10.1029/2006JD008206
https://doi.org/10.1038/s41598-019-49974-5
https://doi.org/10.1038/s41598-019-49974-5
https://doi.org/10.1038/s41598-019-49974-5
https://doi.org/10.2166/WST.2002.0030
https://doi.org/10.1098/RSPA.1998.0238
https://doi.org/10.1061/(asce)1084-0699(2008)13:6(438)
https://doi.org/10.1016/J.JHYDROL.2007.09.044
https://doi.org/10.1029/2009WR008517
https://doi.org/10.5194/hess-18-5093-2014
https://doi.org/10.1016/J.JHYDROL.2016.03.027
https://doi.org/10.1029/2011JD017353
https://doi.org/10.1016/J.JHYDROL.2016.05.033
https://doi.org/10.5194/nhess-21-1195-2021
https://doi.org/10.5194/nhess-21-1195-2021
https://doi.org/10.5194/nhess-21-1195-2021


18 T. Rosin et al.: Precipitation intensity–duration–area–frequency relationships

https://doi.org/10.1146/ANNUREV.EARTH.33.092203.122541,
2005.

Schellander, H., Lieb, A., and Hell, T.: Error Structure of Metas-
tatistical and Generalized Extreme Value Distributions for Mod-
eling Extreme Rainfall in Austria, Earth and Space Science, 6,5

1616–1632, https://doi.org/10.1029/2019EA000557, 2019.
Sherman, C. W.: Maximum Rates of Rainfall at

Boston, T. Am. Soc. Civ. Eng., 54, 173–180,
https://doi.org/10.1061/TACEAT.0001686, 1905.

Sivapalan, M. and Blöschl, G.: Transformation of point rainfall10

to areal rainfall: Intensity-duration-frequency curves, J. Hydrol.,
204, 150–167, https://doi.org/10.1016/S0022-1694(97)00117-0,
1998.

Svensson, C. and Jones, D. A.: Review of methods for deriv-
ing areal reduction factors, J. Flood Risk Manag., 3, 232–245,15

https://doi.org/10.1111/j.1753-318X.2010.01075.x, 2010.
Tang, G., Long, D., Hong, Y., Gao, J., and Wan, W.: Doc-

umentation of multifactorial relationships between precipita-
tion and topography of the Tibetan Plateau using space-
borne precipitation radars, Remote Sens. Environ., 208, 82–96,20

https://doi.org/10.1016/J.RSE.2018.02.007, 2018.
Thorndahl, S., Nielsen, J. E., and Rasmussen, M. R.: Esti-

mation of storm-centred areal reduction factors from radar
rainfall for design in urban hydrology, Water, 11, 1120,
https://doi.org/10.3390/w11061120, 2019.25

Vidrio-Sahagún, C. T. and He, J.: Hydrological frequency anal-
ysis under nonstationarity using the Metastatistical approach
and its simplified version, Adv. Water Resour., 166, 104244,
https://doi.org/10.1016/j.advwatres.2022.104244, 2022.

Wang, L.-P., Marra, F., and Onof, C.: Modelling sub-hourly rain- 30

fall extremes with short records – a comparison of MEV,
Simplified MEV and point process methods, EGU General
Assembly 2020, Online, 4–8 May 2020, EGU2020-6061,
https://doi.org/10.5194/egusphere-egu2020-6061, 2020.

Wilson, P. S. and Toumi, R.: A fundamental probability distri- 35

bution for heavy rainfall, Geophys. Res. Lett., 32, 8076–8082,
https://doi.org/10.1029/2005GL022465, 2005.

Wright, D. B., Mantilla, R., and Peters-Lidard, C. D.:
A remote sensing-based tool for assessing rainfall-
driven hazards, Environ. Modell. Softw., 90, 34–54, 40

https://doi.org/10.1016/J.ENVSOFT.2016.12.006, 2017.
Yamoat, N., Hanchoowong, R., Yamoad, O., Chaimoon, N.,

and Kangrang, A.: Estimation of regional intensity–duration–
frequency relationships of extreme rainfall by simple scal-
ing in Thailand, J. Water Clim. Change, 14, 796–810, 45

https://doi.org/10.2166/WCC.2023.430, 2023.
Zoccatelli, D., Marra, F., Armon, M., Rinat, Y., Smith, J. A., and

Morin, E.: Contrasting rainfall-runoff characteristics of floods in
desert and Mediterranean basins, Hydrol. Earth Syst. Sci., 23,
2665–2678, https://doi.org/10.5194/hess-23-2665-2019, 2019. 50

Zorzetto, E., Botter, G., and Marani, M.: On the emergence of
rainfall extremes from ordinary events, Geophys. Res. Lett., 43,
8076–8082, https://doi.org/10.1002/2016GL069445, 2016.

https://doi.org/10.1146/ANNUREV.EARTH.33.092203.122541
https://doi.org/10.1029/2019EA000557
https://doi.org/10.1061/TACEAT.0001686
https://doi.org/10.1016/S0022-1694(97)00117-0
https://doi.org/10.1111/j.1753-318X.2010.01075.x
https://doi.org/10.1016/J.RSE.2018.02.007
https://doi.org/10.3390/w11061120
https://doi.org/10.1016/j.advwatres.2022.104244
https://doi.org/10.5194/egusphere-egu2020-6061
https://doi.org/10.1029/2005GL022465
https://doi.org/10.1016/J.ENVSOFT.2016.12.006
https://doi.org/10.2166/WCC.2023.430
https://doi.org/10.5194/hess-23-2665-2019
https://doi.org/10.1002/2016GL069445


Remarks from the language copy-editor

CE1 Please provide an explanation of why this needs to be changed. We have to ask the handling editor for approval. Thanks.
CE2 Please provide an explanation of why this needs to be changed. We have to ask the handling editor for approval. Thanks.
CE3 Please confirm that all figures in the paper are correct prior to publication.

19


	Abstract
	Introduction
	Study area and precipitation data
	Radar data
	Rain gauge data

	Methodology
	Identification of the independent storms and of the ordinary events
	Extreme value analysis
	Validation against rain gauge data

	Results
	Validation
	Return level maps
	IDAF curves

	Discussion
	Influence of area and duration on precipitation intensity similarity
	Scaling invariance of precipitation
	Orographic effect
	Coastal and orographic effects on multi-scale return levels

	Conclusions
	Code availability
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

