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Abstract. High-resolution simulations were performed to assess the impact of different parameterization schemes, surface 15 
initialization datasets, and analysis nudging on lower-tropospheric conditions near Lake Michigan. Simulations were run 16 
where climatological or coarse-resolution surface initialization datasets were replaced by high-resolution, real-time datasets 17 
depicting lake surface temperatures (SST), green vegetation fraction (GVF), and soil moisture and temperature (SOIL). 18 
Comparison of a baseline simulation employing a configuration similar to that used at the Environmental Protection Agency 19 
(“EPA”) to another simulation employing an alternative set of parameterization schemes (referred to as “YNT”) showed that 20 
the EPA configuration produced more accurate analyses on the outermost 12-km resolution domain, but that the YNT 21 
configuration was superior for higher-resolution nests. The diurnal evolution of the surface energy fluxes was similar in both 22 
simulations on the 12-km grid but differed greatly on the 1.3-km grid where the EPA simulation had much smaller sensible 23 
heat flux during the daytime and physically unrealistic ground heat flux. Switching to the YNT configuration led to substantial 24 
decreases in root mean square error for 2-m temperature and 2-m water vapor mixing ratio on the 1.3-km grid. Additional 25 
improvements occurred when the high-resolution satellite-derived surface datasets were incorporated into the modeling 26 
platform, with the SOIL dataset having the largest positive impact on temperature and water vapor. The GVF and SST datasets 27 
also produced more accurate temperature and water vapor analyses, but degradations in wind speed, especially when using the 28 
GVF dataset. The most accurate simulations were obtained when using the high-resolution SST and SOIL datasets and analysis 29 
nudging above 2 km AGL. 30 

1 Introduction 31 

Locations along the Lake Michigan shoreline in the United States have a long history of recording surface ozone concentrations 32 
that exceed levels set by the National Ambient Air Quality Standards (NAAQS), especially during the warm season (Stanier 33 
et al. 2021). Since the first ozone NAAQS was released in 1979, most lakeshore counties in the states bordering Lake Michigan 34 
(Wisconsin, Illinois, Indiana, and Michigan) have been designated as being in nonattainment for surface ozone in one or more 35 
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of the subsequent NAAQS revisions. These states are required by the Clean Air Act to develop State Implementation Plans 36 
(SIPs) to demonstrate strategies to bring affected areas into attainment and to mitigate the impacts of high ozone 37 
concentrations. Large decreases in local emissions of ozone precursors such as nitrogen oxides and volatile organic compounds 38 
have steadily reduced one- and eight-hour maximum ozone concentrations across the region in recent decades (Adelman 2020). 39 
However, the implementation of stricter ozone NAAQS means that additional air quality modeling assessments are necessary 40 
to help states demonstrate that they can reach attainment by the required statutory deadlines. 41 
 42 
Urban and rural areas near Lake Michigan are susceptible to high ozone events due to the complex interaction between synoptic 43 
and mesoscale circulation patterns with large sources of industrial, transportation, and urban emissions along the southern end 44 
of the lake. High ozone days are most common when synoptic-scale weather patterns characterized by weak southerly winds 45 
transport ozone and its precursors northward from their primary source regions over the Chicago and Milwaukee metropolitan 46 
areas and then interact with the mesoscale lake and land breeze circulations (Lyons and Olsson 1973; Ragland and Samson 47 
1977; Lennartson and Schwartz 2002). At night, the land breeze carries ozone precursors from land-based emissions sources 48 
over the lake where they become confined within a shallow nocturnal boundary layer and are then converted into ozone after 49 
sunrise via photochemical processes (Dye et al. 1995). As the land surface warms during the day, a reversal of the mesoscale 50 
circulation leads to the formation of the lake breeze during the morning that transports the high ozone airmass back onshore, 51 
with elevated ozone concentrations occurring across inland areas during midday and afternoon. On high ozone days, the lowest 52 
ozone concentrations are often found in areas with high nitrogen oxide emissions, such as Chicago and northwestern Indiana, 53 
with the highest ozone levels located downwind in rural and suburban areas to the north of these urban and industrial locations 54 
(Foley et al. 2011; Cleary et al. 2015). 55 
 56 
When synoptic-scale conditions are favorable for lake and land breeze formation, the horizontal temperature gradient between 57 
adjacent land and water areas influences the strength of the circulation pattern and the distance that the lake breeze penetrates 58 
inland during the daytime. Changes in the location of the lake breeze can have a profound impact on near-surface meteorology, 59 
the depth and vertical structure of the planetary boundary layer (PBL), and ozone concentrations along the Lake Michigan 60 
shoreline (Dye et al. 1995). Among other things, an accurate depiction of near-surface features in numerical weather prediction 61 
models requires an accurate specification of lower boundary conditions at the land and water surface. For example, an accurate 62 
representation of land surface conditions (such as soil moisture, soil temperature, and green vegetation fraction) are necessary 63 
to correctly partition the surface net radiation into sensible, latent, and ground heat fluxes. This partitioning in turn impacts 64 
the growth and depth of the PBL and lower-tropospheric temperature, moisture, and wind profiles (Berg et al. 2014; Dirmeyer 65 
and Halder 2016; Schwingshakl et al. 2017; Welty and Zeng 2018). Soil moisture and vegetation fraction (or leaf area index) 66 
are especially important variables through their influence on land-atmosphere coupling processes that link the surface 67 
hydrologic and atmospheric components of the earth system (Santanello et al. 2018, 2019). Indeed, Huang et al. (2017) showed 68 
that use of improved soil moisture and green vegetation fraction estimates in high-resolution simulations reduced biases in 69 
near-surface air temperatures and PBL heights over the Missouri Ozarks and had a large impact on biogenic isoprene 70 
emissions. 71 
 72 
Given the important role that boundary layer meteorology and the land-lake breeze circulation have on ozone production and 73 
transport in the Lake Michigan region, it is critical to explore the ability of different parameterization schemes and surface 74 
initialization datasets to improve the accuracy of near-surface meteorological and air quality simulations. In this two-part 75 
study, we develop and assess the accuracy of a satellite-constrained modeling platform for the Midwest United States that 76 
supports the needs of the Lake Michigan Air Directors Consortium (LADCO) as they conduct detailed air quality modeling 77 
assessments for its member states. The modeling platform uses high-resolution analyses of soil moisture, green vegetation 78 
fraction, and lake surface temperatures derived from satellite observations and an offline land surface model (LSM) to 79 
constrain the evolution of the lower boundary conditions during multi-week model simulations. In part I, we use results from 80 
a large set of Weather Research and Forecasting (WRF) model simulations to assess the impact of the high-resolution surface 81 
datasets, different parameterization schemes, and analysis nudging on near-surface meteorological conditions and energy 82 
fluxes. We will show that a baseline model configuration employing surface datasets and parameterization schemes similar to 83 
those used by the United States Environmental Protection Agency (EPA) produces better results for model simulations 84 
performed at 12-km horizontal grid spacing, but that more accurate results are obtained at higher resolutions when the satellite-85 
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derived initialization datasets and alternative parameterization schemes are used. In part II of this study, we use meteorological 86 
analyses obtained from the baseline EPA and optimized WRF model configurations as input to Community Multiscale Air 87 
Quality (CMAQ) model simulations to assess the impact of these model changes on ozone forecasts in the Lake Michigan 88 
region. The remainder of this paper is organized as follows. Section 2 contains a description of the model configurations and 89 
surface initialization datasets. Results are presented in Section 3, with a discussion and conclusions provided in Section 4. 90 

2. Methods 91 

2.1 WRF model configurations 92 

Version 3.8.1 of the WRF model (Powers et al. 2017) was used to perform simulations containing three one-way nested 93 
domains covering the contiguous United States, Midwest United States, and Lake Michigan regions with 12, 4, and 1.3 km 94 
horizontal resolutions, respectively (Fig. 1). Each simulation contained 40 terrain-following vertical layers, with the model top 95 
set to 100 hPa. The 0.25-degree resolution GFS Final reanalyses available at 6-h intervals served as initial and lateral boundary 96 
conditions (ICs/BCs) for the WRF simulations. All simulations were run from 12 May 2017 – 22 June 2017, with our analysis 97 
focusing on the 22 May – 22 June 2017 time period corresponding to the Lake Michigan Ozone Study field project (Stainer et 98 
al. 2021). 99 
 100 

 101 

Figure 1. Map showing the geographic regions covered by the 12-km (red box), 4-km (orange box), and 1.3-km (yellow box) 102 
resolution domains used during the WRF model experiments. 103 
 104 
Eight model simulations were performed to assess the impact of different physics options and surface initialization datasets 105 
on the model accuracy in the lower troposphere (Table 1). The first simulation employed a configuration similar to that used 106 
in air quality modeling at the EPA and is hereafter referred to as the “EPA” baseline configuration. This simulation employed 107 
the Morrison microphysics (Morrison et al. 2005), RRTMG longwave and shortwave radiation (Iacono et al. 2008; Mlawer et 108 
al. 1997), and ACM2 PBL (Pleim 2007) parameterization schemes on all three domains, along with the Kain-Fritsch cumulus 109 
scheme (Kain 2004) on the outer two domains. The ACM2 PBL scheme is a hybrid local and non-local first-order closure 110 
scheme that attempts to capture both subgrid and supergrid-scale fluxes (Pleim 2007). When conditions are stable, only the 111 
local closure portion of the ACM2 scheme is used. Surface energy fluxes (sensible, latent, and ground) and changes in soil 112 
moisture and soil temperature were simulated using the Pleim-Xu LSM (Gilliam and Pleim 2010; Xiu and Pleim, 2001). 113 
Because this LSM only contains two layers (0-1 cm and 1-100 cm depth), indirect soil moisture and soil temperature nudging 114 
is used to improve the accuracy of these variables. The indirect nudging uses the weighted differences between simulated 2-115 
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m air temperature and relative humidity with available surface observations to reduce biases in the modeled soil moisture and 116 
soil temperature (Pleim and Gilliam 2009; Pleim and Xiu 2003). The 1-100 cm soil temperature was initialized as the average 117 
2-meter temperature for the 10-day spin-up period (12-22 May 2017) using the IPXWRF utility (Pleim and Gilliam, 2009). In 118 
addition, analysis nudging was used to continuously adjust the temperature, water vapor, and winds above the PBL toward the 119 
6-h GFS analyses (e.g., Borge et al. 2008; Campbell et al. 2018; Harkey and Holloway 2013; Otte 2008a, b; Otte et al. 2012; 120 
Pleim and Gilliam 2009). Finally, hourly surface observations of temperature, humidity, winds, and sea level pressure from 121 
the Meteorological Assimilation Data Ingest System (MADIS, https://madis.ncep.noaa.gov/) were used to perform surface 122 
nudging on all domains via the WRF OBSGRID utility. 123 
 124 
A second simulation was performed using the YSU PBL (Hong et al. 2006), Noah LSM (Chen and Dudhia, 2001; Ek et al. 125 
2003), and Thompson microphysics (Thompson et al. 2008, 2016) schemes, which is hereafter referred to as the “YNT” 126 
configuration. Like the EPA simulation, this configuration employed the RRTMG longwave and shortwave radiation and 127 
Kain-Fritsch cumulus schemes on the outer two domains, along with grid nudging toward the GFS temperature, humidity, and 128 
wind analyses above the PBL. This particular set of schemes was chosen based on our previous studies showing that they 129 
performed well during the warm season across the United States (e.g., Harkey and Holloway 2013; Cintineo et al. 2014; 130 
Greenwald et al. 2016; Griffin et al. 2021; Henderson et al. 2021). Because there are dozens of parameterization schemes to 131 
choose from in the WRF model, we do not aim to find necessarily the best physics suite but instead to assess the potential of 132 
using other schemes to improve upon the performance of the baseline EPA configuration. The YSU PBL scheme is a first-133 
order, non-local closure scheme that allows non-local mixing with explicit entrainment processes at the top of the PBL (Hong 134 
et al. 2006; Hong 2010). The Noah LSM is a community model that has been widely used within the weather and climate 135 
modeling communities (Campbell et al. 2019). It contains four soil layers (0-10, 10-40, 40-100, and 100-200 cm depth) along 136 
with vegetation canopy, soil drainage, and runoff models that allow it to simulate surface hydrological and radiative processes. 137 
A realistic representation of land surface processes becomes increasingly important when moving towards higher model 138 
resolutions (e.g., Sutton et al. 2006; Case et al. 2008). 139 
 140 
The remaining six simulations (Table 1) use the YNT configuration as their baseline. These simulations are designed to assess 141 
the impact of three high-resolution surface initialization datasets and analysis nudging above 2 km (rather than above the PBL) 142 
on the model accuracy when used individually or in combination. In particular, three simulations were run where the standard 143 
climatological or coarse-resolution surface initialization datasets were replaced by high-resolution, real-time datasets depicting 144 
lake surface temperatures, green vegetation fraction (GVF), and soil moisture / soil temperature across the study region. These 145 
surface datasets and the methods used to incorporate them into the WRF model simulations are described in the next section. 146 
Simulations employing these datasets are referred to as “YNT_SST”, “YNT_GVF”, and “YNT_SOIL”, respectively. Another 147 
experiment was performed where analysis nudging was used above 2 km rather than above the PBL, which is referred to as 148 
the “YNT_N2KM” simulation. This change in nudging compared to the EPA and YNT baseline experiments was motivated 149 
by a modeling study by Odman et al. (2019) showing that the evolution of the nocturnal low-level jet across the Great Lakes 150 
region was more accurately simulated when nudging was withheld in the lower troposphere (e.g., below 2 km) when the PBL 151 
is shallow. Differences in the nocturnal low-level jet could affect the transport of ozone and its precursors from urban regions 152 
to Lake Michigan during the overnight hours. Finally, two “combination” simulations were performed where the 2-km analysis 153 
nudging approach was used along with all three of the high-resolution surface initialization datasets (“YNT_SSNG”) or only 154 
with the lake surface temperature and soil datasets (“YNT_SSN”). The latter simulation is included because it was found that 155 
this combination of surface datasets and analysis nudging generally led to the best results. 156 
 157 
Table 1. List showing the parameterization schemes, model initialization datasets, and nudging approaches used during each of the 158 
eight WRF model experiments. Acronyms are described in the text. 159 
 160 

 EPA YNT YNT_SST YNT_GVF YNT_SOIL YNT_N2KM YNT_SSNG YNT_SSN 

PBL ACM2 YSU YSU YSU YSU YSU YSU YSU 

LSM Pleim-Xu Noah Noah Noah Noah Noah Noah Noah 
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Surface 

Layer 
Pleim-Xu 

Monin-

Obukhov 

Monin-

Obukhov 

Monin-

Obukhov 

Monin-

Obukhov 

Monin-

Obukhov 

Monin-

Obukhov 

Monin-

Obukhov 

Micro. Morrison Thompson Thompson Thompson Thompson Thompson Thompson Thompson 

Cumulus 
Kain-

Fritsch 

Kain-

Fritsch 

Kain-

Fritsch 

Kain-

Fritsch 

Kain-

Fritsch 

Kain-

Fritsch 

Kain-

Fritsch 

Kain-

Fritsch 

IC / LC GFS-FNL GFS-FNL GFS-FNL GFS-FNL GFS-FNL GFS-FNL GFS-FNL GFS-FNL 

SST default default GLSEA default default default GLSEA GLSEA 

GVF default default default VIIRS default default VIIRS default 

Soil 

Initialized 

as 10-day 

ave. of 2-m 

temperature 

default default default 
SPoRT 

LIS 
default 

SPoRT 

LIS 

SPoRT 

LIS 

Nudging 

analysis 

above the 

PBL; obs 

nudging to 

MADIS 

analysis, 

above 

PBL 

analysis, 

above PBL 

analysis, 

above 

PBL 

analysis, 

above 

PBL 

analysis, 

above 2 

km 

analysis, 

above 2 

km 

analysis, 

above 2 

km 

2.2 Surface initialization datasets 161 

2.2.1 Lake surface temperatures 162 

Daily maps of Great Lakes surface temperatures, with a horizontal resolution of ~1.3 km, were obtained from the Great Lakes 163 
Surface Environmental Analysis (GLSEA) produced at the NOAA Great Lakes Environmental Research Laboratory (Schwab 164 
1992). The lake surface temperatures are estimated using clear-sky infrared brightness temperatures from the Advanced Very 165 
High-Resolution Radiometer onboard multiple polar-orbiting satellites. If a surface retrieval is not possible during a given day 166 
due to persistent cloud cover, a smoothing algorithm is applied to the previous analysis to maintain complete coverage. Only 167 
satellite observations are used to produce the daily lake surface temperature analyses, which were then used to overwrite the 168 
simulated surface temperatures for Great Lakes grid points at 00 UTC each day in the YNT_SST, YNT_SSN, and YNT_SSNG 169 
simulations. Replacing the coarse-resolution (0.25°) GFS FNL surface temperatures (Fig. 2a) with the GLSEA analyses (Fig. 170 
2b) led to warmer lake temperatures near the shoreline, especially along northern parts of Lake Michigan where temperatures 171 
were > 2 K warmer, and cooler temperatures across the rest of the lake, when averaged over the 22 May – 22 June 2017 time 172 
period (Fig. 2c). This spatial pattern indicates that the finer horizontal resolution of the GLSEA dataset allows it to capture 173 
warmer temperatures in shallower waters near the shoreline while also depicting the cooler mid-lake temperatures due to the 174 
cooler-than-normal weather conditions that prevailed across the region in May (NCEI 2017). 175 

2.2.2 VIIRS green vegetation fraction 176 

GVF is the photosynthetically active fractional green vegetation cover within a grid cell, with higher values indicating more 177 
extensive actively transpiring vegetation. It is a key parameter in an LSM because vegetation representation is used to partition 178 
the incoming solar radiation into sensible, latent, and ground heat fluxes, where the latent heat flux is largely due to vegetation 179 
transpiration (e.g., Yin et al. 2016). Surface latent heat flux is sensitive to GVF because vegetation roots are able to access 180 
deeper soil moisture that would not otherwise be able to evaporate (Miller et al. 2006). For this study, we used daily global 181 
GVF derived using observations from the Visible Infrared Imaging Radiometer Suite (VIIRS; Vargas et al. 2015) in place of 182 
the default monthly climatology to constrain the evolution of vegetation in the YNT_GVF and YNT_SSNG simulations. The 183 
VIIRS GVF composite product is generated daily at 4-km resolution and available from the NOAA Comprehensive Large 184 
Array-data Stewardship System (CLASS). The real-time daily GVF analyses were used to overwrite the default monthly 185 
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climatological vegetation fraction data used by the WRF model at 00 UTC each day. Using real-time, satellite derived GVF 186 
in place of a monthly GVF climatology has been shown to improve the representation of the surface energy budget and 187 
subsequent model forecasts during the warm season (Case et al. 2014). In Fig. 2f, it is evident that use of the real-time GVF 188 
led to lower leaf area index (Fig. 2e; computed internally by the WRF model) across most of the domain compared to the 189 
climatological vegetation data (Fig. 2d), with the exception of some forested regions in the northern portion of the domain and 190 
bands of enhanced leaf area index surrounding metropolitan areas such as Chicago. The lower leaf area index in agricultural 191 
areas is consistent with delayed crop growth due to the cool spring weather, whereas the bands of higher leaf area index 192 
represent the impact of urban sprawl since the climatological vegetation data shown in Fig. 2d was generated using satellite 193 
observations from the late 1980s and early 1990s (see Gutman et al. 1995). 194 
 195 
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 196 

Figure 2. Average lake surface temperatures from the (a) YNT and (b) YNT_SST simulations, with their differences shown in (c). 197 
Average leaf area index from the (d) YNT and (e) YNT_GVF simulations, with their differences shown in (f). Average 0-10 cm soil 198 
temperatures from the (g) YNT and (h) YNT_SOIL simulations, with their differences shown in (i). Average 0-10 cm soil moisture 199 
content from the (j) YNT and (k) YNT_SOIL simulations, with their differences shown in (l). The averages for each variable were 200 
computed using data valid at 00 UTC each day during the 22 May – 22 June 2017 time period. 201 
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2.2.3 SPoRT LIS soil moisture and temperature analyses 202 

A customized version of the Land Information System (LIS; Kumar et al. 2006) run at the Short-term Prediction Research and 203 
Transition Center (SPoRT) was used to generate high-resolution soil moisture and soil temperature analyses. Version 3.6 of 204 
the Noah LSM (Chen and Dudhia 2001) was run on a 1-km resolution domain covering the central and eastern United States 205 
and nearby portions of southern Canada. Required inputs to run the Noah LSM were obtained from hourly analyses of surface 206 
pressure, 2-m temperature, 2-m specific humidity, 10-m wind speed, and downwelling shortwave and longwave radiation from 207 
the North American Land Data Assimilation System – Phase 2 (NLDAS-2; Xia et al. 2012). Quantitative precipitation 208 
estimates (QPE) were obtained from the Multi-Radar Multi-Sensor (MRMS) gauge-adjusted radar product (Zhang et al. 2016), 209 
the Global Data Assimilation System (GDAS; Wang et al. 2013), and NLDAS-2. A simple blending methodology was used 210 
to incorporate the multiple sources of QPE because evaluation of the real-time SPoRT-LIS product (Case 2016; Case and 211 
Zavodsky 2018; Blankenship et al. 2018) and preliminary LIS experiments during this study revealed that the NLDAS-2 and 212 
MRMS precipitation products have a dry bias across the region. To reduce this bias, the precipitation forcing used the average 213 
of the highest two values of the MRMS, GDAS, and NLDAS-2 QPE datasets. Inspection of the blended precipitation product 214 
showed that the precipitation bias was reduced, while preserving small-scale spatial details in the MRMS QPE product. Daily 215 
VIIRS GVF composites were also used to constrain vegetation during the offline LIS-Noah simulation. 216 
 217 
Following an initial spin-up of LIS using NLDAS-2 forcing data from 2012-2016 to remove memory of the prescribed initial 218 
conditions, the final analysis from this run was used to restart the simulation on 01 January 2012 using NLDAS-2 atmospheric 219 
forcing data, VIIRS GVF, and the merged QPE product. Soil moisture and soil temperature analyses from this LIS simulation 220 
were then used to replace the corresponding variables in the YNT_SOIL, YNT_SSN, and YNT_SSNG simulations at 00 UTC 221 
each day from 12 May – 22 June 2017. Direct insertion into the WRF model was possible because of the similarly configured 222 
Noah LSM used in both the LIS and WRF simulations. Comparison of the 0-10 cm soil temperatures from the GFS (Fig. 2g) 223 
and LIS (Fig. 2h), averaged over the 22 May – 22 June 2017 period, shows that the topsoil temperatures are noticeably cooler 224 
in the LIS data across most of the region, except for northern parts of Wisconsin and Michigan. The cooler temperatures are 225 
most prominent in suburban regions where the largest increases in GVF also occurred (Fig. 2f). For 0-10 cm soil moisture, the 226 
LIS analyses are generally wetter across the domain (Fig. 2l), with the largest increases across forested regions of Wisconsin 227 
and Michigan. Deeper soil layers exhibited similar differences between the GFS FNL and LIS datasets (not shown). 228 

2.3 Analysis methods 229 

The accuracy of the WRF model simulations was assessed using hourly surface observations of temperature, humidity, and 230 
winds from MADIS during 22 May – 22 June 2017. Note that these surface observations were also used to perform surface 231 
nudging during the EPA simulation, which will impact the results presented in Section 3 because surface nudging was not 232 
used during any of the YNT simulations. The model evaluations are performed on all three domains using observations from 233 
stations located on the innermost domain surrounding Lake Michigan, which allows us to assess the behavior of each 234 
configuration as a function of spatial resolution using the same set of stations. Version 1.4 of the Atmospheric Model 235 
Evaluation Tool (AMET; Appel et al. 2011) from the EPA was used to collocate hourly observed and modeled values in a grid 236 
cell where a particular observation station was located; and to calculate model performance statistics including bias and root 237 
mean square error. 238 

3. Results 239 

3.1 Assessment of EPA and YNT baseline experiments 240 

This section contains a high-level assessment of the accuracy of the EPA and YNT baseline experiments on each domain, with 241 
a more detailed evaluation of all experiments on the 1.3-km resolution domain provided in Section 3.2. Figure 3 shows 2-m 242 
temperature, 2-m water vapor mixing ratio, and 10-m wind speed errors for each domain computed using hourly surface 243 
observations. The left column shows the bias for each variable and experiment, whereas the center and right columns show 244 
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the percentage changes in RMSE for each experiment relative to the EPA and YNT baseline experiments, respectively. A 245 
negative (positive) value for a given variable and domain indicates that the RMSE for that experiment is smaller (larger) than 246 
the actual RMSE for the corresponding baseline experiment plotted in the gray box. 247 
 248 

 249 

Figure 3. Summary statistics showing the (a) 2-m temperature bias for each experiment, along with the percentage change in the 2-250 
m temperature root mean square error (RMSE) for a subset of experiments relative to the (b) EPA baseline and (c) YNT baseline 251 
experiments, respectively. Statistics for the 12-km, 4-km, and 1.3-km resolution domains were computed using hourly data from all 252 
stations located on the 1.3-km resolution domain during 22 May – 22 June 2017. The actual RMSEs for the baseline experiments 253 
(gray boxes) are also shown. Blue (orange) shading indicates a negative (positive) bias for a given experiment in (a), whereas blue 254 
(orange) shading depicts smaller (larger) RMSE in a given experiment relative to the EPA and YNT baseline experiments in (b) and 255 
(c). (d-f) Same as (a-c), except for showing statistics for 2-m mixing ratio. (g-i) Same as (a-c), except for showing statistics for 10-m 256 
wind speed. 257 
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 258 
Inspection of the YNT statistics reveals a consistent pattern in the RMSE where the percentage changes for each variable either 259 
switch from positive to negative, or become more strongly negative, as the model resolution increases from 12 km to 1.3 km. 260 
For temperature, the RMSE improves from being 13.08% larger than the EPA on the 12-km domain to 25.18% smaller on the 261 
1.3-km domain (Fig. 3b). A similar pattern is present for 10-m wind speed where the RMSE is 6.26% larger on the 12-km 262 
domain, but then steadily decreases so that the RMSE becomes 3.32% smaller on the 1.3-km domain (Fig. 3h). Though the 263 
EPA simulation has much larger bias and RMSE for 2-m mixing ratio on all domains (Fig. 3d, 3e), the same pattern emerges 264 
with this variable where it becomes less accurate at higher resolutions. Aside from using different parameterization schemes, 265 
the only difference between the baseline experiments is the use of soil and surface observation nudging in the EPA simulation. 266 
These results indicate that the EPA physics suite becomes less accurate, or the soil and surface nudging methods become less 267 
effective, at higher model resolutions. Because surface nudging is used on all domains during the EPA simulation, the poor 268 
performance on the 1.3-km domain suggests that it is no longer able to overcome deficiencies in the parameterization schemes, 269 
especially the Pleim-Xu LSM (see Section 3.3), at higher spatial resolutions. It is also possible that the lack of dense surface 270 
observations makes it challenging to effectively apply surface nudging at high resolutions since the observations lack sufficient 271 
spatial detail to capture small-scale atmospheric and land surface features. Regardless, Fig. 3 shows that the YNT configuration 272 
provides superior performance on the 1.3-km domain when averaged across all stations. In the following sections, we will use 273 
results from this domain to examine the impacts of the surface initialization datasets and analysis nudging on the model 274 
accuracy with respect to both the EPA and YNT baseline experiments. 275 

3.2 YNT sensitivity experiments 276 

3.2.1 2-m temperature analysis 277 

To examine regional differences in model performance, Fig. 4 shows the 2-m temperature bias and RMSE computed separately 278 
for each station using hourly observations from 22 May – 22 June 2017. For the EPA simulation, there is a north-south gradient 279 
in the RMSE, with the largest errors across northern Illinois and Indiana (Fig. 4a). Stations near Lake Michigan generally have 280 
the smallest RMSE due to its moderating influence on local weather conditions. Similar to the RMSE, the smallest biases 281 
occurred in the northern part of the domain and along the eastern shoreline; however, biases along the western shoreline are 282 
larger and of comparable magnitude to those at inland locations across Wisconsin and Illinois. Overall, the EPA simulation 283 
had an RMSE of 3 K and a bias of 0.16 K when averaged across all stations (Figs. 3a-b). Switching to the YNT parameterization 284 
suite greatly reduced the RMSE by 25.18% across the entire domain (Fig. 3b); however, the bias increased to 0.55 K (Fig. 3a). 285 
The largest RMSE reductions (up to 45%) occurred in rural areas of northern Illinois, with similar RMSEs found across the 286 
entire domain (Fig. 4b). The larger positive temperature bias in the YNT baseline simulation is primarily due to larger errors 287 
in Wisconsin and within densely populated urban areas along the western Lake Michigan shoreline from Chicago to 288 
Milwaukee (Fig. 4f). A mixed pattern of larger and smaller biases occurred elsewhere across the domain. 289 
 290 
Inspection of the YNT sensitivity experiments shows that the smallest RMSEs occurred during the YNT_SOIL, YNT_SSN, 291 
and YNT_SSNG simulations, with the average RMSE reduced by 29.7% to 31.9% relative to the EPA baseline (Fig. 3b) and 292 
from 6.0% to 9.0% relative to the already greatly improved YNT baseline (Fig. 3c). On an individual basis, the high-resolution 293 
soil initialization dataset (YNT_SOIL) had the largest positive impact at most stations (Fig. 4d), whereas slightly larger RMSEs 294 
were observed when using nudging (YNT_N2KM) (Fig. 4j). Comparison of the YNT_SSN and YNT_SSNG simulations (Fig. 295 
4l, 4p) shows that inclusion of the VIIRS GVF initialization dataset during the YNT_SSNG simulation led to slightly larger 296 
RMSE for stations near the lakeshore, but similar or smaller errors for stations located further inland. 297 
 298 
The bias pattern for the YNT simulations is more complex. Overall, the bias was largest (0.67 K) in the YNT_N2KM 299 
simulation, with the smallest biases occurring in the YNT_GVF (-0.03 K) and YNT_SSN (-0.09 K) simulations (Fig. 3a). 300 
Switching from the EPA to YNT baseline configurations led to larger biases across most of the domain, especially along the 301 
southwestern shoreline of Lake Michigan (Fig. 4e-f). The high-resolution SST dataset had a minimal impact on the biases 302 
(Fig. 4g) whereas they were smaller in the YNT_SOIL (Fig. 4h) and YNT_GVF (Fig. 4m) simulations relative to the YNT 303 
baseline. Use of these two land datasets however led to much larger negative biases along the eastern shoreline of Lake 304 
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Michigan. When 2-km analysis nudging was used (YNT_N2KM), larger positive biases occurred from Chicago to Milwaukee, 305 
with smaller biases along the eastern shoreline (Fig. 4n). The increased RMSE and bias near the western shoreline compared 306 
to locations further inland during the YNT_N2KM simulation suggests that the modified nudging routine (applied to heights 307 
above 2 km instead of above the PBL) may not work well for areas near Lake Michigan due to the moderating influence of 308 
the lake on the PBL. Because the PBL tends to be more stable and shallower for locations over and near Lake Michigan due 309 
to the cooler surface temperatures, this means that confining analysis nudging to above 2 km limits its ability to constrain the 310 
evolution of the lower troposphere during the YNT_N2KM simulation. 311 

3.2.2 2-m water vapor analysis 312 

For the 2-m water vapor mixing ratio, switching to the YNT physics suite led to nearly a 30% reduction in the station-average 313 
RMSE during the YNT simulation relative to the EPA baseline (Fig. 3e), with additional incremental reductions occurring in 314 
all sensitivity experiments except for YNT_N2KM (Fig. 3f). The much lower RMSE in all of the YNT simulations is primarily 315 
due to the notable reduction in bias (Fig. 3d). Whereas the EPA configuration had a large moist bias (1.35 g kg-1), the YNT 316 
bias was much smaller and also became negative (-0.20 g kg-1). The bias was further reduced during most of the sensitivity 317 
experiments, with only a slight increase during the YNT_SSNG simulation. Overall, the YNT_SSN simulation had the smallest 318 
RMSE and a bias close to zero when averaged across all of the stations. 319 
 320 
Looking more closely at the individual stations (Fig. 5), it is evident that almost all of them have a positive (e.g., moist) bias 321 
when the EPA configuration is used (Fig. 5e). The largest biases are located in the southern portion of the domain, especially 322 
for stations near the lakeshore. In contrast, about two-thirds of the stations exhibit a negative bias during the YNT simulation 323 
(Fig. 5f). The spatial pattern of the biases is similar during all of the YNT sensitivity experiments; however, their magnitude 324 
is generally smaller, which is consistent with the overall statistics (Fig. 3d). For RMSE, the largest errors in the EPA simulation 325 
occur primarily along the southern end of Lake Michigan, with generally smaller errors in the northern half of the domain 326 
(Fig. 5a). The RMSE during the YNT simulation is smaller at most locations, especially along the shoreline, though a few 327 
stations near the western shoreline have larger errors (Fig. 5b). Use of the SOIL and GVF initialization datasets reduced the 328 
errors at these nearshore locations (Fig. 5d, 5i), with the smallest errors at most stations occurring during the combination 329 
experiments (YNT_SSN and YNT_SSNG). As was the case with 2-m temperature, the most accurate 2-m water vapor analyses 330 
were obtained during the YNT_SSN simulation. 331 

3.2.3 10-m wind speed analysis 332 

Compared to the temperature and water vapor fields, changes to the 10-m wind speed statistics were much more modest during 333 
the YNT simulations. Switching from the EPA configuration to the YNT configuration led to a 3.32% reduction in the RMSE, 334 
but a larger bias that also changed sign from negative to positive (Fig. 3g). For the YNT experiments, the average RMSE was 335 
slightly smaller during the YNT_SOIL and YNT_N2KM simulations (-1.21% and -1.78%, respectively), but slightly larger 336 
(0.95%) during the YNT_SST simulation compared to the YNT baseline (Fig. 3i). Use of the GVF surface initialization dataset 337 
led to a 7.64% increase in the RMSE during the YNT_GVF simulation, primarily due to a larger wind speed bias. Overall, the 338 
most accurate wind speed analyses were achieved during the YNT_SSN simulation, with an RMSE reduction of 6.52% across 339 
all stations. 340 
 341 
Spatially, there is a latitudinal gradient in wind speed errors during the EPA simulation. The largest RMSEs are located across 342 
the southern part of the domain (Fig. 6a), with mostly negative wind speed biases (up to 2 m s-1) in the same region transitioning 343 
to a mix of negative and positive biases in northern Wisconsin and Michigan (Fig. 6e). The RMSE and bias were much smaller 344 
for stations around the southern shoreline of Lake Michigan during the YNT simulation; however, slightly larger RMSEs are 345 
present across inland locations in the northern part of the domain (Fig. 6b). A similar spatial pattern of changes relative to the 346 
EPA baseline occurred during the YNT sensitivity experiments, though the errors are generally larger during the YNT_GVF 347 
simulation (Fig. 6i, 6m) and smaller during the YNT_SOIL (Fig. 6d, 6h) and YNT_N2KM (Fig. 6j, 6n) simulations. The poor 348 
performance of the YNT_GVF and YNT_SSNG simulations is primarily due to larger errors across inland areas of Wisconsin 349 
where there are large positive wind speed biases (Fig. 6m, 6p), with similar errors elsewhere in the domain. 350 
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 351 

Figure 4. Maps showing the 2-m temperature root mean square error (RMSE) and bias for each station on the 1.3-km domain 352 
computed using hourly data from 22 May – 22 June 2017. Statistics for the EPA, YNT, YNT_SST, and YNT_SOIL experiments are 353 
shown in (a)–(h), whereas results for the YNT_GVF, YNT_N2KM, YNT_SSN, and YNT_SSNG experiments are shown in (i)–(p). 354 
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 355 

Figure 5. Same as Fig. 4, except for 2-m water vapor mixing ratio. 356 
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 357 

Figure 6. Same as Fig. 4, except for 10-m wind speed. 358 
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3.2.4 Diurnal error characteristics 359 

Fig. 7 shows the diurnal evolution of RMSE and bias for 2-m temperature, 2-m water vapor mixing ratio, and 10-m wind speed 360 
at hourly intervals starting at 1900 local standard time (LST). The time series were computed by averaging over data from all 361 
stations on the 1.3-km domain. Overall, it is apparent that the EPA simulation contains very different diurnal error patterns 362 
than the YNT simulations. For example, the 2-m temperature bias exhibits a prominent diurnal cycle (Fig. 7b) characterized 363 
by large positive/warm (negative/cool) biases during the night (day), resulting in an overall damping of the diurnal temperature 364 
cycle. The warm biases exceed 2.5 K during most of the night (23 – 05 LST) and the cold biases are < -2 K for several hours 365 
during the daytime (1000–1300 LST). These results indicate that the small temperature bias in the summary statistics for the 366 
EPA simulation (Fig. 3a) is misleading because it obscures the presence of substantial biases of opposite signs during the day 367 
and night. The RMSE is also much larger during the EPA simulation (Fig. 7a), with local maxima of 4.4 K and 3.1 K at 0000 368 
and 1200 LST, respectively, corresponding to peaks in the biases. Switching to the YNT greatly reduces the temperature 369 
RMSE, and the bias time series is no longer characterized by the highly amplified diurnal pattern seen in the EPA simulation. 370 
Examination of the YNT sensitivity experiments shows similar error patterns to the YNT baseline. The largest differences 371 
occur at night when use of the GVF and SOIL datasets leads to smaller biases. In contrast, confining the analysis nudging to 372 
above 2 km AGL (YNT_N2KM) slightly increases the RMSE and bias during the nighttime relative to the YNT baseline. 373 
 374 
For water vapor, the EPA simulation again exhibits much larger bias and RMSE than the other simulations (Fig. 7c, 7d). It has 375 
a large moist bias that ranges from 0.9 g kg-1 shortly after sunrise to 1.7 g kg-1 near 1900 LST, before decreasing to a relatively 376 
stable bias of 1.3 g kg-1 during the night. The RMSE is much smaller in the YNT baseline simulation, with a dry bias evident 377 
for all but the evening hours (1900-2200 LST). As is the case for temperature, the RMSE is smallest during the late-night 378 
hours and then steadily increases during the day before reaching its maximum in the evening. All of the YNT sensitivity 379 
experiments have similar RMSE and bias patterns to the YNT baseline, with the smallest (largest) spread between simulations 380 
occurring during the nighttime (daytime) hours, possibly due to differences in the PBL depth and surface energy balance (see 381 
Fig. 8). Comparison of the 10-m wind speed time series reveals that the EPA simulation has the smallest bias (~ 0.35 m s -1) 382 
during the night, but that the wind speeds are weaker than observed during the daytime, with the largest biases (-0.8 m s-1) 383 
occurring at noon (Fig. 7f). This diurnal pattern in the EPA simulation, characterized by winds that are too strong (weak) 384 
during the night (day), stands in contrast to the mostly positive biases in the YNT simulations. The biases are tightly clustered 385 
in all of the YNT experiments during the nighttime hours (2200–0700 LST), with the exception of the two simulations 386 
employing the GVF initialization dataset (YNT_GVF and YNT_SSNG) that are characterized by persistently larger positive 387 
biases. These two simulations also have the largest RMSE (Fig. 7e). Further research is necessary to determine why 388 
incorporation of the high-resolution GVF dataset leads to larger surface wind speed errors. 389 
 390 
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By  391 

Figure 7. Time series showing the diurnal evolution of (a-b) 2-m temperature root mean square error (RMSE) and bias, (c-d) 2-m 392 
water vapor mixing ratio RMSE and bias, and (e-f) 10-m wind speed RMSE and bias at hourly intervals starting at 1900 local 393 
standard time (LST). Errors were computed for each model simulation using observations from all stations located on the 1.3-km 394 
resolution domain during 22 May – 22 June 2017. 395 
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3.2.5 Surface Energy Budget Considerations 396 
 397 
Near-surface atmospheric conditions can be strongly impacted by the partitioning of net surface radiation into sensible, latent, 398 
and ground heat fluxes (Santanello et al. 2018). To examine this more closely, Fig. 8 shows time series depicting the average 399 
diurnal evolution of the PBL height, net surface radiation, and sensible, latent, and ground heat fluxes during 22 May – 22 400 
June 2017 computed using data from stations on the 1.3-km domain to maintain consistency with earlier results. Because in-401 
situ flux and PBL height observations are not available across the entire domain, the aim is not to examine the accuracy of the 402 
simulated surface energy fluxes and PBL height, but rather to use these variables to help explain differences in the near-surface 403 
temperature, water vapor, and wind speed errors in the model simulations. All of the variables were obtained directly from the 404 
WRF output files. The net surface radiation is defined as the sum of the sensible, latent, and ground heat fluxes. 405 
 406 
Inspection of Fig. 8 reveals large differences between the EPA and YNT simulations. The PBL is ~100-200 m deeper in the 407 
EPA simulation during the nighttime but then becomes much shallower than the YNT simulations from mid-morning through 408 
the afternoon (1000–1600 LST) with the daytime maximum in PBL height occurring 1-2 h later (Fig. 8a). The EPA simulation 409 
is also characterized by a smoother and less amplified diurnal evolution. For the YNT simulations, the PBL heights are tightly 410 
clustered during the night (2100 – 0700 LST) but begin to diverge during the morning and reach their largest differences 411 
during the afternoon. In particular, simulations employing the high-resolution soil moisture analyses (YNT_SOIL, YNT_SSN, 412 
and YNT_SSNG) have average PBL heights that are ~100 m lower than the other YNT simulations. These three simulations 413 
also have slightly lower sensible heat flux (Fig. 8c) and higher latent heat flux during the afternoon (Fig. 8d), which is 414 
consistent with the wetter and cooler topsoil layer in the SPoRT LIS analyses (Fig. 2g-l) and cooler 2-m temperatures (Figs. 415 
3a, 7b). Using the SST and GVF datasets and confining analysis nudging to above 2 km had minimal impact on the PBL 416 
heights in the YNT_SST, YNT_GVF, and YNT_N2KM simulations; however, sensible and latent heat fluxes are slightly 417 
smaller during the afternoon in the YNT_GVF simulation. 418 
 419 
Comparison of the EPA and YNT simulations also reveals large differences in the surface energy flux time series. For example, 420 
the EPA simulation has much smaller sensible heat flux during the daytime (Fig. 8c) and the latent heat flux remains relatively 421 
large during the night (Fig. 8d). Though the EPA and YNT simulations produce similar magnitudes of latent heat flux during 422 
the day, the afternoon maximum is delayed by 2 h in the EPA simulation. The combination of a shallower PBL during the day 423 
(Fig. 8a) and higher latent heat flux at night likely contributes to the persistent large moist bias in the 10-m water vapor mixing 424 
ratio (Figs. 3d, 7d) during the EPA simulation. Another noteworthy feature of the EPA simulation is that the ground heat flux 425 
remains negative at all times. This unphysical behavior stands in sharp contrast to the more realistic evolution during the YNT 426 
simulations where the positive (negative) ground heat flux during the night (day) indicates that heat is being transferred from 427 
(toward) the ground toward (from) the atmosphere due to cooler (warmer) surface temperatures. These results indicate that the 428 
poor performance of the EPA simulation on the 1.3-km domain when assessed using near-surface moisture, temperature, and 429 
wind observations is likely due to the presence of vastly different and sometimes unphysical surface energy fluxes. 430 
 431 
The lower accuracy of the EPA simulation on the 1.3-km domain could be due to the use of soil nudging in the Pleim-Xu LSM 432 
because the observations used in the nudging approach are typically too coarse to provide the fine-scale geographically induced 433 
details needed to perform high-quality soil nudging (J. Pleim, personal comm.). This possibility is supported by Fig. 9, which 434 
shows the evolution of the PBL height and surface fluxes on the 12-km domain computed using simulated data from all stations 435 
on the 1.3-km domain. Differences between the EPA and YNT simulations are much smaller both in timing and magnitude on 436 
the 12-km domain. For example, the time series for PBL height, sensible heat flux, and latent heat flux are very similar for all 437 
of the simulations. Though the ground heat flux time series for the EPA simulation continues to be an outlier at this resolution, 438 
it now has the correct diurnal cycle with positive (negative) values during the night (day). The improved simulation of surface 439 
fluxes on the 12-km domain likely contributes to the more accurate temperature and wind speed analyses in the EPA simulation 440 
at that resolution (Fig. 3a-b, 3g-h). The presence of persistently higher latent heat flux (Fig. 9d) leads to a positive moisture 441 
bias in the EPA simulation (Fig. 3d-e); however, the bias is smaller on the 12-km domain than it was on the 1.3-km domain. 442 
Inspection of each of the surface energy fluxes and PBL height on the 4-km domain revealed larger differences between the 443 
EPA and YNT simulations (not shown), but not as large as those on the 1.3-km domain. Together, these results show that the 444 
EPA simulation performs well at 12-km resolution, but that its accuracy decreases with increasing model resolution. 445 
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 446 
Figure 8. Time series showing the diurnal evolution of the (a) planetary boundary layer height, (b) net radiation, (c) sensible heat 447 
flux, (d) latent heat flux, and (e) ground heat flux at hourly intervals starting at 1900 local standard time (LST), averaged over all 448 
stations on the 1.3-km domain during 22 May – 22 June 2017. Results are shown individually for each of the model simulations. 449 
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 450 

Figure 9. Same as Fig. 8, except for showing results on the 12-km domain. Time series were computed using simulated data from all 451 
stations located on the 1.3-km domain. 452 
 453 
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4. Discussion and conclusions 454 

In this study, eight WRF model simulations were performed to assess the impact of different parameterization schemes, surface 455 
initialization datasets, and analysis nudging on the simulation of surface energy fluxes and near-surface atmospheric conditions 456 
in the Lake Michigan region during a 1-month period (22 May – 22 June 2017) corresponding to the LMOS field campaign. 457 
The simulations employed a triple-nested domain configuration containing 12-, 4-, and 1.3-km resolution grids, respectively. 458 
The “EPA” baseline simulation employed parameterization schemes and a model configuration similar to that used at the EPA, 459 
including soil and surface observation nudging. A second simulation (“YNT”) was performed using different parameterization 460 
schemes that are easier to use because they do not require soil and surface observation nudging. Another important difference 461 
is that the YNT simulation used the more sophisticated Noah LSM to simulate land processes rather than the Pleim-Xu LSM 462 
that was used in the EPA simulation. The YNT configuration then served as the baseline to perform six additional simulations 463 
to assess the impact of three satellite- and model-derived surface initialization datasets and analysis nudging. Simulations were 464 
run where standard climatological or coarse-resolution surface initialization datasets were replaced by high-resolution, real-465 
time datasets depicting lake surface temperatures, GVF, and soil moisture/soil temperature. Near-surface temperature, water 466 
vapor, and wind observations were used to assess the accuracy of each model simulation. 467 
 468 
The EPA configuration generally produced more accurate analyses on the 12-km domain, with the exception of a large moist 469 
bias in the 2-m water vapor mixing ratio, but its accuracy greatly decreased with finer model grid resolution. The superior 470 
performance of the EPA simulation on the 12-km domain is partially an artifact of its use of surface observation nudging 471 
because the same observations used in the nudging routine were also used for verification. However, surface observation 472 
nudging was also used on the 4-km and 1.3-km domains in the EPA simulation, which indicates that it becomes less effective 473 
at constraining the evolution of the atmosphere at higher spatial resolutions. This is possible because the surface observations 474 
lack sufficient spatial density to accurately capture and constrain small-scale features associated with abrupt changes in land 475 
surface characteristics such as occurs along coastlines or the interface between urban and rural areas. 476 
 477 
Evaluation of the EPA simulation showed that the diurnal evolution of the sensible and latent heat fluxes was similar to the 478 
YNT simulation on the 12-km domain but differed greatly on the 1.3-km nested domain where it had much smaller sensible 479 
heat flux during the daytime and larger latent heat flux at night. The increased latent heat flux combined with a shallower PBL 480 
contributed to the large moist bias in the 2-m water vapor mixing ratio. The evolution of the EPA ground heat flux was 481 
physically unrealistic on the 1.3-km domain because it remained negative at all times rather than changing signs between day 482 
and night as occurred during the YNT simulations. Because the evolution of the surface energy fluxes was more realistic on 483 
the 12-km domain, the poorer performance on the 4- and 1.3-km domains suggests that the Pleim-Xu LSM is unable to 484 
adequately represent surface fluxes at higher resolutions. This could be due to its use of two soil layers including a very shallow 485 
(1 cm) topsoil layer that make it difficult to fully represent fine-scale features and soil heat fluxes. Increasing the number of 486 
soil layers in the Pleim-Xu LSM could potentially improve its ability to simulate energy fluxes on high-resolution domains 487 
and reduce its dependence on nudging to constrain its evolution. 488 
 489 
Inspection of the YNT statistics revealed a consistent pattern where the percentage change in the RMSEs for 2-m temperature, 490 
2-m water vapor mixing ratio, and 10-m wind speed relative to the EPA baseline improved as the model resolution increased 491 
from 12 km to 1.3 km. The superior performance at higher resolutions when using the YNT configuration was achieved without 492 
using soil nudging or surface observation nudging. Switching to the YNT configuration led to substantial decreases in RMSE 493 
for 2-m temperature (25%) and 2-m water vapor mixing ratio (30%), and a more modest 3.3% reduction in the RMSE for 10-494 
m wind speed, when assessed using all stations on the 1.3-km domain. Despite the already large error reductions when using 495 
the YNT parameterization suite, additional improvements occurred in most of the variables when the high-resolution surface 496 
initialization datasets were incorporated into the modeling platform. Evaluation of the YNT sensitivity experiments showed 497 
that the high-resolution soil initialization dataset had the largest positive impact on temperature and water vapor errors and the 498 
second largest impact on wind speed. Use of the GVF and SST datasets also led to more accurate temperature and water vapor 499 
simulations, but some degradations in the wind speed, especially when using the GVF dataset. Only the simulation employing 500 
analysis nudging above 2 km produced more accurate 10-m wind speed analyses; however, 2-m temperature errors were larger 501 
along the western shoreline of Lake Michigan when the nudging was confined to levels above 2 km instead of above the PBL. 502 
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This suggests that the modified nudging approach may not work well for areas near Lake Michigan where the PBL tends to 503 
be shallower because it reduces its ability to constrain the evolution of the lower troposphere. Despite this limitation, the most 504 
accurate near-surface simulations were obtained during the experiment that employed analysis nudging above 2 km combined 505 
with the high-resolution SST and soil datasets. Slight degradation occurred when the satellite GVF dataset was included. 506 
 507 
In part II of this study (Pierce et al. 2023), meteorological analyses obtained from the baseline EPA and optimized WRF model 508 
configurations are used as input to CMAQ model simulations to assess their impact on ozone forecasts in the Lake Michigan 509 
region. 510 
 511 
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