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Abstract. High-resolution simulations were performed to assess the impact of different parameterization schemes, surface
datasets, and analysis nudging on lower-tropospheric conditions near Lake Michigan. Simulations were performed where
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climatological or coarse-resolution surface datasets were replaced by high-resolution, real-time datasets depicting lake surface

temperatures (SST), green vegetation fraction (GVF), and soil moisture and temperature (SOIL). Comparison of twq,baseline
simulations employing different, parameterization schemes (referred to as “AP-XM"” and “YNT”, respectively) showed that

the AP-XM simulation produced more accurate analyses on the outermost 12-km resolution domain, but that the YNT
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simulation was superior for higher-resolution nests. The diurnal evolution of the surface energy fluxes was similar in both "

simulations on the 12-km grid but differed greatly on the 1.3-km grid where the AP-XM simulation had much smaller sensible

heat flux during the daytime and physically unrealistic ground heat flux. Switching to the YNT configuration led to more
accurate 2-m temperature and 2-m water vapor mixing ratio analyses on the 1.3-km grid. Additional improvements occurred
when gsatellite-derived surface datasets were incorporated into the modeling platform, with the SOIL dataset having the largest

Protection Agency (“EPA™) to another simulation employing an
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positive impact on temperature and water vapor. The GVF and SST datasets also produced more accurate temperature and
water vapor analyses, but degradations in wind speed, especially when using the GVF dataset. The most accurate simulations
were obtained when using the high-resolution SST and SOIL datasets and analysis nudging above 2 km AGL. These results
demonstrate the value of using high-resolution satellite-derived surface datasets in model simulations.

1 Introduction

Locations along the Lake Michigan shoreline in the United States have a long history of recording surface ozone concentrations
that exceed levels set by the National Ambient Air Quality Standards (NAAQS), especially during the warm season (Stanier
etal. 2021). Since the first ozone NAAQS was released in 1979, most lakeshore counties in the states bordering Lake Michigan
(Wisconsin, Illinois, Indiana, and Michigan) have been designated as being in nonattainment for surface ozone in one or more
of the subsequent NAAQS revisions. These states are required by the Clean Air Act to develop State Implementation Plans
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(SIPs) to demonstrate strategies to bring affected areas into attainment and to mitigate the impacts of high ozone
concentrations. Large decreases in local emissions of 0zone precursors such as nitrogen oxides and volatile organic compounds
have steadily reduced one- and eight-hour maximum ozone concentrations across the region in recent decades (Adelman 2020).
However, the implementation of stricter ozone NAAQS means that additional air quality modeling assessments are necessary
to help states demonstrate that they can reach attainment by the required statutory deadlines.

Urban and rural areas near Lake Michigan are susceptible to high ozone events due to the complex interaction between synoptic
and mesoscale circulation patterns with large sources of industrial, transportation, and urban emissions along the southern end
of the lake. High ozone days are most common when synoptic-scale weather patterns characterized by weak southerly winds
transport ozone and its precursors northward from their primary source regions over the Chicago and Milwaukee metropolitan
areas and then interact with the mesoscale lake and land breeze circulations (Lyons and Olsson 1973; Ragland and Samson
1977; Lennartson and Schwartz 2002). At night, the land breeze carries ozone precursors from land-based emissions sources
over the lake where they become confined within a shallow nocturnal boundary layer and are then converted into ozone after
sunrise via photochemical processes (Dye et al. 1995). As the land surface warms during the day, a reversal of the mesoscale
circulation leads to the formation of the lake breeze during the morning that transports the high ozone airmass back onshore,
with elevated ozone concentrations occurring across inland areas during midday and afternoon. On high ozone days, the lowest
ozone concentrations are often found in areas with high nitrogen oxide emissions, such as Chicago and northwestern Indiana,
with the highest ozone levels located downwind in rural and suburban areas to the north of these urban and industrial locations
(Foley et al. 2011; Cleary et al. 2015).

‘When synoptic-scale conditions are favorable for lake and land breeze formation, the horizontal temperature gradient between
adjacent land and water areas influences the strength of the circulation pattern and the distance that the lake breeze penetrates
inland during the daytime. Changes in the location of the lake breeze can have a profound impact on near-surface meteorology,
the depth and vertical structure of the planetary boundary layer (PBL), and ozone concentrations along the Lake Michigan
shoreline (Dye et al. 1995). Among other things, an accurate depiction of near-surface features in numerical weather prediction
models requires an accurate specification of lower boundary conditions at the land and water surface. For example, an accurate
representation of land surface conditions (such as soil moisture, soil temperature, and green vegetation fraction) are necessary
to correctly partition the surface net radiation into sensible, latent, and ground heat fluxes. This partitioning in turn impacts
the growth and depth of the PBL and lower-tropospheric temperature, moisture, and wind profiles (Berg et al. 2014; Dirmeyer
and Halder 2016; Schwingshakl et al. 2017; Welty and Zeng 2018). Soil moisture and vegetation fraction (or leaf area index)
are especially important variables through their influence on land-atmosphere coupling processes that link the surface
hydrologic and atmospheric components of the earth system (Santanello et al. 2018, 2019). Indeed, Huang et al. (2017) showed
that use of improved soil moisture and green vegetation fraction estimates in high-resolution simulations reduced biases in air
temperatures and PBL heights over the Missouri Ozarks and had a large impact on biogenic isoprene emissions.

Given the important role that boundary layer meteorology and the land-lake breeze circulation have on ozone production and
transport in the Lake Michigan region, it is critical to explore the ability of different parameterization schemes and surface
datasets to improve the accuracy of near-surface meteorological and air quality simulations. For example, ozone production is

highly sensitive to temperature and humidity (Bloomer et al. 2009; Camalier et al. 2007; Coates et al. 2016; Dawson et al.
2007; Jacob and Winner, 2009; Pusede et al. 2015), and production and transport of ozone precursors such as nitrogen oxides
and volatile organic compounds are also dependent on temperature and winds (Dye et al. 1995 Porter and Heald, 2019; Wang
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et al. 2022; Wiedinmyer et al. 2006). Jn this two-part study, we develop and assess the accuracy of a satellite-constrained

modeling platform for the Midwest United States that supports the needs of the Lake Michigan Air Directors Consortium
(LADCO) as they conduct detailed air quality modeling assessments for its member states. The modeling platform uses high-
resolution analyses of soil moisture, green vegetation fraction, and lake surface temperatures derived from satellite
observations and an offline land surface model (LSM) to constrain the evolution of the lower boundary conditions during
multi-week model simulations. In part I, we use results from a large set of Weather Research and Forecasting (WRF) model
simulations to assess the impact of the high-resolution surface datasets, different parameterization schemes, and analysis
nudging on near-surface meteorological conditions and energy fluxes. We will show that a baseline model configuration
employing default surface datasets produces better results for model simulations performed at 12-km horizontal grid spacing,
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but that more accurate results are obtained at higher resolutions when the satellite-derived surface datasets and alternative

parameterization schemes are used. In part II of this study, we use meteorological analyses from fwo of the WRF model
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configurations as input to Community Multiscale Air Quality (CMAQ) model simulations to assess the impact of these model
changes on ozone forecasts in the Lake Michigan region. The remainder of this paper is organized as follows. Section 2
contains a description of the model configurations and surface datasets. Results are presented in Section 3, with a discussion

and conclusions provided in Section 4.

2. Methods
2.1 WRF model configurations

Version 3.8.1 of the WRF Preprocessing System (WPS) and WRF model (Powers et al. 2017) was used to perform simulations
containing three one-way nested domains covering the contiguous United States, Midwest United States, and Lake Michigan
regions with 12, 4, and 1.3 km horizontal resolutions, respectively (Fig. 1). Each simulation contained 40 terrain-following
vertical layers, with seven of the layers located below 2 km. The model top was set to 100 hPa. The 0.25-degree resolution

CDeIeted: the baseline EPA and optimized

(Deleted: initialization

N AN AN AN

(Deleted: t

GFS Final reanalyses available at 6-h intervals served as initial and lateral boundary conditions (ICs/BCs) for the WRF model
simulations. All simulations were run from 12 May 2017 — 22 June 2017, with our gvaluation focusing on the 22 May — 22

June 2017 time period corresponding to the Lake Michigan Ozone Study field project (Stainer et al. 2021). Except for the two
baseline simulations described below, all of the simulations were performed in daily increments using the standard WRF model
restart files to allow for daily updates of high-resolution surface datasets using the WPS. The 40-category National Land Cover
Dataset (NLCD) 2011 land use dataset (Jin et al. 2013) was used to determine the vegetation type and soil properties for each

model grid point.
O
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Figure 1. Map showing the geographic regions covered by the 12-km (red box), 4-km (orange box), and 1.3-km (yellow box)
resolution domains used during the WRF model experiments.

Eight model simulations were performed to assess the impact of different physics options and surface datasets on the model

accuracy in the lower troposphere (Table 1). The first simulation, hereafter referred to as the *AP-XV” baseline configuration,,
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employed the Morrison microphysics (Morrison et al. 2005), RRTMG longwave and shortwave radiation (Iacono et al. 2008;

Mlawer et al. 1997), and ACM2 PBL (Pleim 2007) parameterization schemes on all three domains, along with the Kain-Fritsch
cumulus scheme (Kain 2004) on the outer two domains. These schemes were chosen for the baseline configuration because
they are often used in simulations performed at the U.S. Environmental Protection Agency (EPA). The ACM2 PBL scheme is
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a hybrid first-order closure scheme that attempts to capture both Jocal and non-local, fluxes (Pleim 2007). When conditions are

stable, only the local closure portion of the ACM2 scheme is used. Surface energy fluxes (sensible, latent, and ground) and
changes in soil moisture and soil temperature were simulated using the Pleim-Xiu LSM (Gilliam and Pleim 2010; Xiu and

Pleim, 2001). Jn addition, analysis nudging was used to continuously adjust the temperature, water vapor, and winds above

the PBL toward the 6-h GFS analyses (e.g., Borge et al. 2008; Campbell et al. 2018; Harkey and Holloway 2013 Otte 2008a.
b; Otte et al. 2012; Pleim and Gilliam 2009). Though additional procedures such as surface observation nudging and indirect
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soil moisture and soil temperature nudging (Pleim and Gilliam 2009; Pleim and Xiu 2003) are sometimes used to constrain
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the evolution of model simulations performed using the ACM?2 scheme and Pleim-Xju LSM, they are not employed during

this study in order to maintain consistency with the other model simulations g

A second simulation was performed using the YSU PBL (Hong et al. 2006), Noah LSM (Chen and Dudhia, 2001; Ek et al.
2003), and Thompson microphysics (Thompson et al. 2008, 2016) schemes, which is hereafter referred to as the “YNT”
configuration. Like the AP-XM simulation, this configuration employed the RRTMG longwave and shortwave radiation and

Kain-Fritsch cumulus schemes on the outer two domains, along with grid nudging toward the GFS temperature, humidity, and
wind analyses above the PBL. This particular set of schemes was chosen based on our previous studies showing that they
performed well during the warm season across the United States (e.g., Harkey and Holloway 2013; Cintineo et al. 2014;
Greenwald et al. 2016; Griffin et al. 2021; Henderson et al. 2021). Because there are dozens of parameterization schemes to
choose from in the WRF model, we do not aim to find necessarily the best physics suite but instead to assess the potential of
using other schemes to improve upon the performance of the baseline AP-XM configuration. The YSU PBL scheme is a first-

order, non-local closure scheme that allows non-local mixing with explicit entrainment processes at the top of the PBL (Hong
et al. 2006; Hong 2010). The Noah LSM is a community model that has been widely used within the weather and climate
modeling communities (Campbell et al. 2019). It contains four soil layers (0-10, 10-40, 40-100, and 100-200 cm depth) along
with vegetation canopy, soil drainage, and runoff models that allow it to simulate surface hydrological and radiative processes.
A realistic representation of land surface processes becomes increasingly important when moving towards higher model
resolutions (e.g., Sutton et al. 2006; Case et al. 2008).

The remaining six simulations (Table 1) use the YNT configuration as their baseline. These simulations are designed to assess
the impact of three high-resolution surface datasets and analysis nudging above 2 km (rather than above the PBL) on the model

accuracy when used individually or in combination. In particular, three simulations were run where the standard climatological
or coarse-resolution surface datasets were replaced by high-resolution, real-time datasets depicting lake surface temperatures,

green vegetation fraction (GVF), and soil moisture / soil temperature across the study region. These surface datasets and the
methods used to incorporate them into the WRF model simulations are described in the next section. Simulations employing
these datasets are referred to as “YNT_SST”, “YNT_GVF”, and “YNT_SOIL”, respectively. Another experiment was
performed where analysis nudging was used above 2 km rather than above the PBL, which is referred to as the “YNT N2KM”
simulation. This change in nudging compared to the AP-XM and YNT baseline experiments was motivated by a modeling

study by Odman et al. (2019) showing that the evolution of the nocturnal low-level jet across the Great Lakes region was more
accurately simulated when nudging was withheld in the lower troposphere (e.g., below 2 km) when the PBL is shallow.
Differences in the nocturnal low-level jet could affect the transport of ozone and its precursors from urban regions to Lake
Michigan during the overnight hours. Finally, two “combination” simulations were performed where the 2-km analysis
nudging approach was used along with all three of the high-resolution surface datasets (“YNT_SSNG”) or only with the lake

surface temperature and soil datasets (“YNT_SSN”). The latter simulation is included because it was found that this
combination of surface datasets and analysis nudging generally led to the best results.

Table 1. List showing the parameterization schemes, model initialization datasets, surface datasets, and nudging approaches used
during each of the eight WRF model experiments. Acronyms are described in the text.
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2.2 Surface datasets
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2.2.1 Lake surface temperatures

Daily maps of Great Lakes surface temperatures, with a horizontal resolution of ~1.3 km, were obtained from the Great Lakes
Surface Environmental Analysis (GLSEA) produced at the NOAA Great Lakes Environmental Research Laboratory (Schwab
et al. 1992). The lake surface temperatures are estimated using clear-sky infrared brightness temperatures from the Advanced
Very High-Resolution Radiometer onboard multiple polar-orbiting satellites. If a surface retrieval is not possible pn a given
day due tocloud cover, a smoothing algorithm is applied to the previous analysis to maintain complete coverage. Only satellite
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observations are used to produce the daily lake surface temperature analyses, which Schwab et al. (1992) showed have small
bias and root mean square error (1-1.5° C) when compared to buoys. The daily GLSEA analyses were,used to overwrite the

simulated surface temperatures for Great Lakes grid points at 00 UTC each day in the YNT _SST, YNT SSN, and YNT _SSNG
simulations using the WPS. Replacing the coarse-resolution (0.25°) GFS FNL surface temperatures (Fig. 2a) with the GLSEA
analyses (Fig. 2b) led to warmer lake temperatures near the shoreline, especially along northern parts of Lake Michigan where
temperatures were > 2 K warmer, and cooler temperatures across the rest of the lake, when averaged over the 22 May — 22
June 2017 time period (Fig. 2¢). This spatial pattern indicates that the finer horizontal resolution of the GLSEA dataset allows
it to capture warmer temperatures in shallower waters near the shoreline while also depicting the cooler mid-lake temperatures
due to the cooler-than-normal weather conditions that prevailed across the region in May (NCEI 2017).

2.2.2 VIIRS green vegetation fraction

GVF is the photosynthetically active fractional green vegetation cover within a grid cell, with higher values indicating more
extensive actively transpiring vegetation. It is a key parameter in an LSM because vegetation representation is used to partition
the incoming solar radiation into sensible, latent, and ground heat fluxes, where the latent heat flux is largely due to vegetation
transpiration (e.g., Yin et al. 2016). Surface latent heat flux is sensitive to GVF because vegetation roots are able to access
deeper soil moisture that would not otherwise be able to evaporate (Miller et al. 2006). For this study, we used daily global
GVF derived using observations from the Visible Infrared Imaging Radiometer Suite (VIIRS; Vargas et al. 2015) in place of
the default monthly climatology to constrain the evolution of vegetation in the YNT GVF and YNT_ SSNG simulations. The
VIIRS GVF composite product is generated daily at 4-km resolution and available from the NOAA Comprehensive Large
Array-data Stewardship System (CLASS). Ding and Zhu (2018) have shown that the VIIRS GVF product has smaller errors
and bias than other satellite derived GVF datasets because of reduced atmospheric influences, improved observing capabilities
in high biomass regions, better representation of vegetation canopies, and reduced bidirectional reflection distribution function
effects. The real-time daily GVF analyses were used to overwrite the default monthly climatological vegetation fraction data
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used by the WRF model at 00 UTC each day. Using real-time, satellite derived GVF in place of a monthly GVF climatology
has been shown to improve the representation of the surface energy budget and subsequent model forecasts during the warm
season (Case et al. 2014). In Fig. 2f, it is evident that use of the real-time GVF led to lower leaf area index (Fig. 2e; computed
internally by the WRF model) across most of the domain compared to the climatological vegetation data (Fig. 2d), with the
exception of some forested regions in the northern portion of the domain and bands of enhanced leaf area index surrounding
metropolitan areas such as Chicago. The lower leaf area index in agricultural areas is consistent with delayed crop growth due
to the cool spring weather, whereas the bands of higher leaf area index represent the impact of urban sprawl since the
climatological vegetation data shown in Fig. 2d was generated using satellite observations from the late 1980s and early 1990s
(see Gutman et al. 1995).
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80 for each variable were computed using data valid at 00 UTC each day during the 22 May — 22 June 2017 time period.
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2.2.3 SPoRT LIS soil moisture and temperature analyses

A customized version of the Land Information System (LIS; Kumar et al. 2006) run at the Short-term Prediction Research and
Transition Center (SPoRT) was used to generate high-resolution soil moisture and soil temperature analyses. Version 3.6 of
the Noah LSM (Chen and Dudhia 2001) was run on a 1-km resolution domain covering the central and eastern United States
and nearby portions of southern Canada. Required inputs to run the Noah LSM were obtained from hourly analyses of surface
pressure, 2-m temperature, 2-m specific humidity, 10-m wind speed, and downwelling shortwave and longwave radiation from
the North American Land Data Assimilation System — Phase 2 (NLDAS-2; Xia et al. 2012). No observations were assimilated
during the LIS runs. Quantitative precipitation estimates (QPE) were obtained from the Multi-Radar Multi-Sensor (MRMS)
gauge-adjusted radar product (Zhang et al. 2016), the Global Data Assimilation System (GDAS; Wang et al. 2013), and
NLDAS-2. A simple blending methodology was used to incorporate the multiple sources of QPE because evaluation of the
real-time SPoRT-LIS product (Case 2016; Case and Zavodsky 2018; Blankenship et al. 2018) and preliminary LIS experiments
during this study revealed that the NLDAS-2 and MRMS precipitation products have a dry bias across the region. To reduce
this bias, the precipitation forcing used the average of the highest two values of the MRMS, GDAS, and NLDAS-2 QPE
datasets. Inspection of the blended precipitation product showed that the precipitation bias was reduced, while preserving
small-scale spatial details in the MRMS QPE product. Daily VIIRS GVF composites were also used to constrain vegetation
during the offline LIS-Noah simulation.

Following an initial spin-up of LIS using NLDAS-2 forcing data from 2012-2016 to remove memory of the prescribed initial
conditions, the final analysis from this run was used to restart the simulation on 01 January 2012 using NLDAS-2 atmospheric
forcing data, VIIRS GVF, and the merged QPE product. Soil moisture and soil temperature analyses from this LIS simulation
were then used to replace the corresponding variables in the YNT_SOIL, YNT_SSN, and YNT_SSNG simulations at 00 UTC
each day from 12 May — 22 June 2017 using the WPS. Comparison of the 0-10 cm soil temperatures from the GFS (Fig. 2g)

and LIS (Fig. 2h), averaged over the 22 May — 22 June 2017 period, shows that the topsoil temperatures are noticeably cooler
in the LIS data across most of the region, except for northern parts of Wisconsin and Michigan. The cooler temperatures are
most prominent in suburban regions where the largest increases in GVF also occurred (Fig. 2f). For 0-10 cm soil moisture, the
LIS analyses are generally wetter across the domain (Fig. 21), with the largest increases across forested regions of Wisconsin
and Michigan. Deeper soil layers exhibited similar differences between the GFS FNL and LIS datasets (not shown).

2.3 Evaluation methods

The accuracy of the WRF model simulations was assessed using hourly surface observations of temperature, humidity, and
winds from the Meteorological Assimilation Data Ingest System (MADIS, https://madis.ncep.noaa.gov/) during 22 May — 22

June 2017._These observations were chosen because of their widespread availability and their important influence on surface

because of the similarly configured Noah LSM used in both the LIS
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chemistry processes. . The model evaluations are performed on all three domains using observations from stations located on

the innermost domain surrounding Lake Michigan, which allows us to assess the behavior of each configuration as a function
of spatial resolution using the same set of stations. Version 1.4 of the Atmospheric Model Evaluation Tool (AMET; Appel et
al. 2011) from the EPA was used to collocate hourly observed and modeled values in a grid cell where a particular observation
station was located; and to calculate model performance statistics including bias and root mean square error.

3. Results

31A t of AP-XM and YNT baseline experi t
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This section contains a high-level assessment of the accuracy of the AP-XM and YNT baseline experiments on each domain,

with a more detailed evaluation of all experiments on the 1.3-km resolution domain provided in Section 3.2. Figure 3 shows
2-m temperature, 2-m water vapor mixing ratio, and 10-m wind speed errors for each domain computed using hourly surface
observations. The left column shows the bias for each variable and experiment, whereas the center and right columns show
the percentage changes in RMSE for each experiment relative to the AP-XM and YNT baseline experiments, respectively. A
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negative (positive) value for a given variable and domain indicates that the RMSE for that experiment is smaller (larger) than
the actual RMSE for the corresponding baseline experiment plotted in the gray box.

Bias

a) 2-m Temperature [K]

% RMSE Change
vs. AP-XM

b) 2-m Temperature [K]

% RMSE Change
vs. YNT

c) 2-m Temperature [K]

Bias

a) 2-m Temperature [K]

Simulation 12 km 4km 1.3km 12 km 4km 1.3km 12 km 4km 1.3km . N
AP-XM 2066083l -0.14 227 236 303 Simulation 12km _4km 1.3km
YNT 016 047 055 137  -512 |-25.83 230 224 225 EPA 012~ -040 0.16
YNT_SST 017 048 056 079 -567 | -26.22 057 -058 -053 YNT 016 047 055
YNT_SOIL -0.39 -0.19 -0.22 0.35 -9.91 -1.00 -5.04 -6.99 YNT_SST 0.17 0.48 0.56
YNT_N2KM 0.25 0.58 0.67 079 572 | -25.33 -057 -062 067 YNT_SOIL = -0.39 -0.19 -0.22
YNT_GVF -0.28 -0.02 -0.03 0.88 -7.32 | -28.58 -0.48 -2.32 -3.65 YNT_N2KM 0.25 0.58 0.67
YNT_SSNG -056 -032 -0.38 -084 -10.46 217 562 -6.06 YNT GVF -0.28 -0.02 -0.03
YNT_SSN 029 007 -0.09 229 1257 361 | -7.85 | 899 | YNT SSNG| 056 -032 -038
» ) - ) - ) YNT_SSN -029 -0.07 -0.09
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Figure 3. Summary statistics showing the (a) 2-m temperature bias for each experiment, along with the percentage change in the 2-
m temperature root mean square error (RMSE) for a subset of experiments relative to the (b) AP-XM baseline and (c) YNT baseli 71(—?'
experiments, respectively. Statistics for the 12-km, 4-km, and 1.3-km resolution domains were computed using hourly data from all Deleted
stations located on the 1.3-km resolution domain during 22 May — 22 June 2017. The actual RMSE:s for the baseline experiments ‘ CDeIeted: EPA
(gray boxes) are also shown. Blue (orange) shading indicates a negative (positive) bias for a given experiment in (a), whereas blue
(orange) shading depicts smaller (larger) RMSE in a given experiment relative to the AP-XM and YNT baseline experiments in (b) CDeIeted: EPA
and (c). (d-f) Same as (a-c), except for showing statistics for 2-m mixing ratio. (g-i) Same as (a-c), except for showing statistics for
10-m wind speed.
Inspection of the YNT statistics reveals a consistent pattern in the RMSE where the percentage changes for each variable either ) (Deleted: 13.08
switch from positive to negative, or become more strongly negative, as the model resolution increases from 12 km to 1.3 km. 5 (Deleted: EPA
For temperature, the RMSE improves from being 1.37% larger than the AP-XM on the 12-km domain to 25.83% smaller on -

9

(on

18

AN




the 1.3-km domain (Fig. 3b). A similar pattern is present for 10-m wind speed where the RMSE is 7.10% larger on the 12-km
domain, but then steadily decreases so that the RMSE becomes 3.26% smaller on the 1.3-km domain (Fig. 3h). The AP-XM
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simulation had a smaller wind speed bias on all three domains compared to the YNT baseline. For 2-m mixing ratio (Fig. 3d,
3d). a positive bias on the 12-km domain increased at higher spatial resolutions for the AP-XM simulation but decreased and
turned into a negative bias for the YNT simulation, which also exhibits a large reduction in RMSE on all three domains. These

results indicate that the AP-XM physics suite becomes less accurate, at higher yesolutions_and fhat the YNT configuration

provides superior performance on the 1.3-km domain when averaged across all stations. In the following sections, we will use .

results from this domain to examine the impacts of the surface datasets and analysis nudging on the model accuracy with

Deleted: Though the EPA simulation has much larger bias and
RMSE for 2-m mixing ratio on all domains (Fig. 3d, 3e), the same
pattern emerges with this variable where it becomes less accurate at
higher resolutions. Aside from using different parameterization

1 the only difference between the baseline experiments is the

respect to the AP-XM and YNT baseline experiments.

3.2 YNT sensitivity experiments

3.2.1 2-m temperature gvaluation

\ CDeIeted: EPA

i [Deleted: , or the soil and surface nudging methods become less

To examine regional differences in model performance, Fig. 4 shows the 2-m temperature bias and RMSE computed separately
for each station using hourly observations from 22 May — 22 June 2017. For the AP-XM simulation, there is a north-south

gradient in the RMSE, with the largest errors across northern Illinois and Indiana (Fig. 4a). Stations near Lake Michigan have
the smallest RMSE due to its moderating influence on local weather conditions. Similar to the RMSE, the smallest biases
occurred in the northern part of the domain and along the eastern shoreline; however, biases along the western shoreline are
larger and of comparable magnitude to those at inland locations across Wisconsin and Illinois. Overall, the AP-XM simulation
had an RMSE of 3.03 K and a bias of -0.14, K when averaged across all stations (Figs. 3a-b). Switching to the YNT

parameterization suite greatly reduced the RMSE by 25.83% across the entire domain (Fig. 3b); however, the bias increased

to 0.55 K (Fig. 3a). The largest RMSE reductions (up to 45%) occurred in rural areas of northern Illinois, with similar RMSEs
found across the entire domain (Fig. 4b). The larger positive temperature bias in the YNT baseline simulation is primarily due
to larger errors in Wisconsin and within densely populated urban areas along the western Lake Michigan shoreline from
Chicago to Milwaukee (Fig. 4f). A mixed pattern of larger and smaller biases occurred elsewhere across the domain.

Inspection of the YNT sensitivity experiments shows that the smallest RMSEs occurred during the YNT SOIL, YNT SSN,
and YNT_SSNG simulations, with the average RMSE reduced by 30.32% to 32.5% relative to the EPA baseline (Fig. 3b) and

use of soil and surface observation nudging in the EPA simulation.

effective,...
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( Deleted: model

Deleted: . Because surface nudging is used on all domains during
the EPA simulation, the poor performance on the 1.3-km domain
suggests that it is no longer able to overcome deficiencies in the
parameterization schemes, especially the Pleim-Xu LSM (see
Section 3.3), at higher spatial resolutions. It is also possible that the
lack of dense surface observations makes it challenging to
effectively apply surface nudging at high resolutions since the
observations lack sufficient spatial detail to capture small-scale
atmospheric and land surface features. Regardless, Fig. 3 shows
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from 6.0% to 9.0% relative to the already greatly improved YNT baseline (Fig. 3c). On an individual basis, the high-resolution "

soil dataset (YNT _SOIL) had the largest positive impact at most stations (Fig. 4d), whereas slightly larger RMSEs were

observed when using nudging (YNT N2KM) (Fig. 4j). Comparison of the YNT SSN and YNT SSNG simulations (Fig. 41,
4p) shows that inclusion of the VIIRS GVF dataset during the YNT SSNG simulation led to slightly larger RMSE for stations
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near the lakeshore, but similar or smaller errors for stations located further inland.

The bias pattern for the YNT simulations is more complex. Overall, the bias was largest (0.67 K) in the YNT N2KM
simulation, with the smallest biases occurring in the YNT_GVF (-0.03 K) and YNT_SSN (-0.09 K) simulations (Fig. 3a).
Switching from the AP-XM to YNT baseline configurations led to larger biases across most of the domain, especially along

(Deleted: initialization

‘CDeIeted: 29.7
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the southwestern shoreline of Lake Michigan (Fig. 4e-f). The high-resolution SST dataset had a minimal impact on the biases
(Fig. 4g) whereas they were smaller in the YNT_SOIL (Fig. 4h) and YNT_GVF (Fig. 4m) simulations relative to the YNT
baseline. Use of these two land datasets however led to much larger negative biases along the eastern shoreline of Lake
Michigan. When 2-km analysis nudging was used (YNT_N2KM), larger positive biases occurred from Chicago to Milwaukee,
with smaller biases along the eastern shoreline (Fig. 4n). The increased RMSE and bias near the western shoreline compared
to locations further inland during the YNT_N2KM simulation suggests that the modified nudging routine (applied to heights
above 2 km instead of above the PBL) may not work well for areas near Lake Michigan due to the moderating influence of
the lake on the PBL. Because the PBL tends to be more stable and shallower for locations over and near Lake Michigan due
to the cooler surface temperatures, this means that confining analysis nudging to above 2 km limits its ability to constrain the
evolution of the lower troposphere during the YNT _N2KM simulation. This behavior could also be due to deficiencies in the
YNT configuration over complex urban-lake transition zones.
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3.2.2 2-m water vapor gvaluation

For the 2-m water vapor mixing ratio, switching to the YNT physics suite led to nearly a 15% reduction in the station-average

RMSE during the YNT simulation relative to the AP-XM baseline (Fig. 3e), with additional incremental reductions occurring
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in all sensitivity experiments except for YNT_N2KM (Fig. 3f). The Jower RMSE in all of the YNT simulations is primarily

due to the Jarge reduction in bias (Fig. 3d). Whereas the AP-XM configuration had a large moist bias (0.60,g kg'"), the YNT

bias was much smaller and also became negative (-0.20 g kg™'). The bias was further reduced during most of the sensitivity
experiments, with only a slight increase during the YNT_SSNG simulation. Overall, the YNT_SSN simulation had the smallest
RMSE and a bias close to zero when averaged across all of the stations.

Looking more closely at the individual stations (Fig. 5), it is evident that most,of them have a positive (e.g., moist) bias when

the AP-XM configuration is used (Fig. Se). The largest biases are located in the southern portion of the domain, especially for
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stations near the lakeshore. In contrast, about two-thirds of the stations exhibit a negative bias during the YNT simulation (Fig.
5f). The spatial pattern of the biases is similar during all of the YNT sensitivity experiments; however, their magnitudes are,

generally smaller, which is consistent with the overall statistics (Fig. 3d). For RMSE, the largest errors in the AP-XM

simulation occur primarily along the southern end of Lake Michigan, with generally smaller errors in the northern half of the
domain (Fig. 5a). The RMSE during the YNT simulation is smaller at most locations, especially along the shoreline, though a
few stations near the western shoreline have larger errors (Fig. 5b). Use of the SOIL and GVF datasets reduced the errors at

these nearshore locations (Fig. 5d, 51), with the smallest errors at most stations occurring during the combination experiments
(YNT_SSN and YNT_SSNG). As was the case with 2-m temperature, the most accurate 2-m water vapor analyses were
obtained during the YNT_SSN simulation.

3.2.3 10-m wind speed gvaluation

Compared to the temperature and water vapor fields, changes to the 10-m wind speed statistics were much more modest during
the YNT simulations. Switching from the AP-XM configuration to the YNT configuration led to a 3.26% reduction in the

RMSE, but a larger bias that also changed sign from negative to positive (Fig. 3g). For the YNT experiments, the average
RMSE was slightly smaller during the YNT_SOIL and YNT_N2KM simulations (-1.21% and -1.78%, respectively), but
slightly larger (0.95%) during the YNT_SST simulation compared to the YNT baseline (Fig. 3i). Use of the GVF surface
dataset led to a 7.64% increase in the RMSE during the YNT GVF simulation, primarily due to a larger wind speed bias.

Overall, the most accurate wind speed analyses were achieved during the YNT_SSN simulation, with an RMSE reduction of
6.47% across all stations.

Spatially, there is a latitudinal gradient in wind speed errors during the AP-XM simulation. The largest RMSEs are located

across the southern part of the domain (Fig. 6a), with mostly negative wind speed biases (up to 2 m s') in the same region
transitioning to a mix of negative and positive biases in northern Wisconsin and Michigan (Fig. 6e). The RMSE and bias were
much smaller for stations around the southern shoreline of Lake Michigan during the YNT simulation; however, slightly larger
RMSEs are present across inland locations in the northern part of the domain (Fig. 6b). A similar spatial pattern of changes
relative to the AP-XM baseline occurred during the YNT sensitivity experiments, though the errors are generally larger during

the YNT_GVF simulation (Fig. 6i, 6m) and smaller during the YNT SOIL (Fig. 6d, 6h) and YNT N2KM (Fig. 6j, 6n)
simulations. The poor performance of the YNT_GVF and YNT_SSNG simulations is primarily due to larger errors across
inland areas of Wisconsin where there are large positive wind speed biases (Fig. 6m, 6p), with similar errors elsewhere in the
domain.
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Figure 4. Maps showing the 2-m temperature (K) root mean square error (RMSE) and bias for each station on the 1.3-km domain
computed using hourly data from 22 May — 22 June 2017. Statistics for the EPA, YNT, YNT_SST, and YNT_SOIL experiments are
shown in (a)—(h), whereas results for the YNT_GVF, YNT_N2KM, YNT_SSN, and YNT_SSNG experiments are shown in (i)—(p).
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3.2.4 Diurnal error characteristics

Fig. 7 shows the diurnal evolution of RMSE and bias for 2-m temperature, 2-m water vapor mixing ratio, and 10-m wind speed
at hourly intervals starting at 1900 local standard time (LST). The time series were computed by averaging over data from all

baseline.

stations on the 1.3-km domain. Overall, it is apparent that the AP-XM simulation contains very different diurnal error patterns (Deleted: EPA
than the YNT simulations. For example, the 2-m temperature bias exhibits a prominent diurnal cycle (Fig. 7b) characterized
by large positive/warm (negative/cool) biases during the night (day), resulting in an overall damping of the diurnal temperature
cycle. The warm biases exceed 2.0,K during most of the night (22,— 03,LST) and the cold biases are < -2 K for several hours (Deleted: 5
during the daytime (0900-1300 LST). These results indicate that the small temperature bias in the summary statistics for the C,\ leted: 3
AP-XM simulation (Fig. 3a) is misleading because it obscures the presence of substantial biases of opposite signs during the %
day and night. The RMSE is also much larger during the AP-XM simulation (Fig. 7a), with local maxima of 3.5 K;at 1100 and . . (Deleted: 5
2300 LST, respectively, corresponding to peaks in the temperature biases. Switching to the YNT baseline greatly reduces the * CDeIeted: 10
temperature RMSE, and the bias time series is no longer characterized by the highly amplified diurnal pattern seen in the AP- ‘ (Deleted: EPA
XM simulation. Examination of the YNT sensitivity experiments shows similar error patterns to the YNT baseline. The largest (Delete d: EPA
differences occur at night when use of the GVF and SOIL datasets leads to smaller biases. In contrast, confining the analysis .
nudging to above 2 km AGL (YNT_N2KM) slightly increases the RMSE and bias during the nighttime relative to the YNT ‘(Deleted: 44
(Deleted: and 3.1 K
CDeIeted: 00
For water vapor, the AP-XM simulation again exhibits Jarger bias and RMSE than the other simulations (Fig. 7c, 7d). It has a
large moist bias that ranges from 0.2, kg! shortly after sunrise to 0.9,g kg! near 1900 LST, before decreasing to a relatively . (Deleted: 12
stable bias of 0.6,g kg™! during the night. The RMSE is smaller in the YNT baseline simulation, with a dry bias evident for all * . CDeIeted: EPA
but the evening hours (1900-2200 LST). As is the case for temperature, the RMSE is smallest during the late-night hours and (Deleted: EPA
then steadily increases during the day before reaching its maximum in the evening. All of the YNT sensitivity experiments ‘ CD eleted: much
have similar RMSE and bias patterns to the YNT baseline, with the smallest (largest) spread between simulations occurring
during the nighttime (daytime) hours, possibly due to differences in the PBL depth and surface energy balance (see Fig. 8). (Deleted: 9
Comparison of the 10-m wind speed time series reveals that the AP-XM simulation has the smallest bias (~ 0.1,5 m s') during (Deleted= 1.7
the night, but that the wind speeds are weaker than observed during the daytime, with the largest biases (-0.95,m s™") occurring i (r leted: 1.3
at noon (Fig. 7f). This diurnal pattern in the AP-XM simulation, characterized by winds that are too strong (weak) during the (Delete p—
night (day), stands in contrast to the mostly positive biases in the YNT simulations. The biases are tightly clustered in all of ., -
the YNT experiments during the nighttime hours (2200-0700 LST), with the exception of the two simulations employing the ) (Deleted: EPA
GVF dataset (YNT_GVF and YNT SSNG) that are characterized by persistently larger positive biases. These two simulations ‘(Deleted: 3
also have the largest RMSE (Fig. 76). Further research is necessary to determine why incorporation of the high-resolution ) (Deleted: 3
GVF dataset leads to larger surface wind speed errors. ; (Deleted- .
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Figure 7. Time series showing the diurnal evolution of (a-b) 2-m temperature (K) root mean square error (RMSE) and bias, (c-d) 2-
m water vapor mixing ratio (g kg'') RMSE and bias, and (e-f) 10-m wind speed_(m s”') RMSE and bias at hourly intervals starting
at 1900 local standard time (LST). Errors were computed for each model simulation using observations from all stations located on
the 1.3-km resolution domain during 22 May — 22 June 2017.

3.2.5 Surface Energy Budget Considerations
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Near-surface atmospheric conditions can be strongly impacted by the partitioning of net surface radiation into sensible, latent,

and ground heat fluxes (Santanello et al. 2018). To examine this more closely, Fig. 8 shows time series depicting the average
diurnal evolution of the PBL height, net surface radiation, and sensible, latent, and ground heat fluxes during 22 May — 22
June 2017 computed using data from stations on the 1.3-km domain to maintain consistency with earlier results. Because in-
situ flux and PBL height observations are not available across the entire domain, the aim is not to examine the accuracy of the
simulated surface energy fluxes and PBL height, but rather to use these variables to help explain differences in the near-surface
temperature, water vapor, and wind speed errors in the model simulations. All of the variables were obtained directly from the
WREF output files. The net surface radiation is defined as the sum of the pupward and downward shortwave and longwave

radiation fluxes at the surface.
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Inspection of Fig. 8 reveals large differences between the AP-XM and YNT simulations. The PBL is ~50-150 m deeper in the (Deleted: EPA
AP-XM simulation during the nighttime but then becomes much shallower than the YNT simulations from mid-morning C,\ leted: 10
through the afternoon (1000-1600 LST) with the daytime maximum in PBL height occurring ~2 h later (Fig. 8a). The AP-XM %
simulation is also characterized by a smoother and less amplified diurnal evolution. For the YNT simulations, the PBL heights (Deleted: 20
are tightly clustered during the night (2100 — 0700 LST) but begin to diverge during the morning and reach their largest ) CDeIeted: EPA
differences during the afternoon. In particular, simulations employing the high-resolution soil moisture analyses (YNT_SOIL, ' (Deleted: 1-
YNT _SSN, and YNT _SSNG) have average PBL heights that are ~100 m lower than the other YNT simulations. These three ‘ (Delete d: EPA
simulations also have slightly lower sensible heat flux (Fig. 8c) and higher latent heat flux during the afternoon (Fig. 8d),
which is consistent with the wetter and cooler topsoil layer in the SPORT LIS analyses (Fig. 2g-1) and cooler 2-m temperatures
(Figs. 3a, 7b). Using the SST and GVF datasets and confining analysis nudging to above 2 km had minimal impact on the PBL
heights in the YNT SST, YNT GVF, and YNT N2KM simulations; however, sensible and latent heat fluxes are slightly
smaller during the afternoon in the YNT_GVF simulation.
Comparison of the AP-XM and YNT simulations also reveals large differences in the surface energy flux time series. For (Deleted: EPA
example, the AP-XM simulation has much smaller sensible heat flux during the daytime (Fig. 8c) and the latent heat flux (,\ leted: EPA
remains relatively large during the night (Fig. 8d). Though the AP-XM and YNT simulations produce similar magnitudes of
latent heat flux during the day, the afternoon maximum is delayed by 2 h in the AP-XM simulation. The combination of a (Deleted: EPA
shallower PBL during the day (Fig. 8a) and higher latent heat flux at night likely contributes to the persistent large moist bias CDeIeted: EPA
in the 10-m water vapor mixing ratio (Figs. 3d, 7d) during the AP-XM simulation. Another noteworthy feature of the AP-XM (r leted: EPA
simulation is that the ground heat flux remains negative at all times. This unphysical behavior stands in sharp contrast to the CDeIete d: EPA
more realistic evolution during the YNT simulations where the positive (negative) ground heat flux during the night (day)
indicates that heat is being transferred from (toward) the ground toward (from) the atmosphere due to cooler (warmer) surface
temperatures. These results indicate that the poor performance of the AP-XM simulation on the 1.3-km domain when assessed CDeIeted: EPA
using near-surface moisture, temperature, and wind observations is likely due to the presence of vastly different and sometimes
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The lower accuracy of the AP-XM simulation could be due to,limitations in the parameterization schemes when used at higher .

spatial resolution, This possibility is supported by Fig. 9, which shows the evolution of the PBL height and surface fluxes on

the 12-km domain computed using simulated data from all stations on the 1.3-km domain. Differences between the AP-XM
and YNT simulations are much smaller both in timing and magnitude on the 12-km domain. For example, the time series for
PBL height, sensible heat flux, and latent heat flux are very similar for all of the simulations. Though the ground heat flux
time series for the AP-XM simulation continues to be an outlier at this resolution, it now has the correct diurnal cycle with

positive (negative) values during the night (day). The improved simulation of surface fluxes on the 12-km domain likely
contributes to the more accurate temperature and wind speed analyses in the AP-XM simulation at that resolution (Fig. 3a-b,

3g-h). The presence of persistently higher latent heat flux (Fig. 9d) leads to a positive moisture bias in the AP-XM simulation
(Fig. 3d-e); however, the bias is smaller on the 12-km domain than it was on the 1.3-km domain. Inspection of; the surface
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energy fluxes and PBL height on the 4-km domain revealed larger differences between the AP-XM and YNT simulations (not

shown), but not as large as those on the 1.3-km domain. Though it is not the focus of this research, differences in PBL height
between the AP-XM and YNT simulations could be due to differences in vertical mixing strength and entrainment flux in the

(Deleted:

EPA

: (Deleted:

EPA

(Deleted:

each of

‘(Deleted:

EPA

NANANAANANA AN




51
52
53

AMC?2 and YSU PBL schemes (e.g., Hu et al. 2010). Together,

these results show that the AP-XM simulation performs well

at 12-km resolution, but that its accuracy decreases with increasing model resolution.
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Figure 8. Time series showing the diurnal evolution of the (a) planetary boundary layer height_(m), (b) net radiation (W m), (c)
sensible heat flux (W m?), (d) latent heat flux (W m?), and (e) ground heat flux (W m) at hourly intervals starting at 1900 local
standard time (LST), averaged over all stations on the 1.3-km domain during 22 May — 22 June 2017. Results are shown individually

for each of the model simulations.
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4. Di ion and 1

In this study, eight WRF model simulations were performed to assess the impact of different parameterization schemes, surface

datasets, and analysis nudging on the simulation of surface energy fluxes and near-surface atmospheric conditions in the Lake -
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Michigan region during a 1-month period (22 May — 22 June 2017) corresponding to the LMOS field campaign. The

simulations employed a triple-nested domain configuration containing 12-, 4-, and 1.3-km resolution grids, respectively. Jwo .
baseline simulations (AP-XM and YNT) employing different sets of, parameterization schemes gvere performed to assess the |

importance of different physics suites,,The YNT configurationadditionally served as the baseline for six sensitivity simulations
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observation nudging. A second simulation (“YNT”) was performed
using different parameterization schemes

that were used to assess the impact of three satellite- and model-derived surface datasets and analysis nudging. Simulations * -

were run where standard climatological or coarse-resolution surface datasets were replaced by high-resolution, real-time

datasets depicting lake surface temperatures, GVF, and soil moisture/soil temperature. Near-surface temperature, water vapor,
and wind observations were used to assess the accuracy of each model simulation.

The AP-XM configuration generally produced more accurate near-surface analyses on the 12-km domain, with the exception

N (Deleted: then

of amoist bias in the 2-m water vapor mixing ratio, but its yelative performance decreased with finer model grid resolution.

(Evaluation of the AP-XM simulation showed that the diurnal evolution of the sensible and latent heat fluxes was similar to the ",

Deleted: that are easier to use because they do not require soil and
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Deleted: Another important difference is that the YNT simulation
used the more sophisticated Noah LSM to simulate land processes
rather than the Pleim-Xu LSM that was used in the EPA simulation.
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YNT simulation on the 12-km domain but differed greatly on the 1.3-km nested domain where it had much smaller sensible ' :

heat flux during the daytime and larger latent heat flux at night. The increased latent heat flux combined with a shallower PBL
contributed to the large moist bias in the 2-m water vapor mixing ratio. The evolution of the AP-XM ground heat flux was
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physically unrealistic on the 1.3-km domain because it remained negative at all times rather than changing signs between day
and night as occurred during the YNT simulations. Because the evolution of the surface energy fluxes was more realistic on
the 12-km domain, the poorer performance on the 4- and 1.3-km domains suggests that the Pleim-Xiu LSM is unable to
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adequately represent surface fluxes at higher resolutions. This could be due to its use of two soil layers including a very shallow
(1 cm) topsoil layer that make it difficult to fully represent fine-scale features and soil heat fluxes. Increasing the number of
soil layers in the Pleim-Xiu LSM could potentially improve its ability to simulate energy fluxes on high-resolution domains,

In addition, use of observation nudging and soil moisture and soil temperature nudging as used in Torres-Vazquez et al. (2022) “-‘
would also help constrain the evolution of this simulation. Though these specialized nudging techniques were not employed

in our study due to their added complexity and confounding influence on the model evaluations because the same observations
used in the nudging procedure would also be used to assess the accuracy of the simulations, their utility could be assessed in
future work.

Inspection of the YNT statistics revealed a pattern where the percentage change in the RMSEs for 2-m temperature, 2-m water

vapor mixing ratio, and 10-m wind speed relative to the AP-XM baseline improved as the model resolution increased from 12

km to 1.3 km. Switching to the YNT configuration led to substantial decreases in RMSE for 2-m temperature (25.8%) and 2-
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m water vapor mixing ratio (14.9%), and a more modest 3.3% reduction in the RMSE for 10-m wind speed, when d

using all stations on the 1.3-km domain. Despite the already large error reductions when using the YNT parameterization suite,
additional improvements occurred in most yariables when the high-resolution surface datasets were incorporated into the

modeling platform. Evaluation of the YNT sensitivity experiments showed that the high-resolution soil dataset had the largest
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positive impact on temperature and water vapor errors and the second largest impact on wind speed. Use of the GVF and SST

datasets also led to more accurate temperature and water vapor simulations, but some degradations in the wind speed,
especially when using the GVF dataset. Only the simulation employing analysis nudging above 2 km produced more accurate
10-m wind speed analyses; however, 2-m temperature errors were larger along the western shoreline of Lake Michigan when
the nudging was confined to levels above 2 km instead of above the PBL. This suggests that the modified nudging approach
may not work well for areas near Lake Michigan where the PBL tends to be shallower because it reduces its ability to constrain
the evolution of the lower troposphere. Despite this limitation, the most accurate near-surface simulations were obtained during
the experiment that employed analysis nudging above 2 km combined with the high-resolution SST and soil datasets. Slight
degradation occurred when the satellite GVF dataset was included.

With these differences in near-surface temperature, humidity, and winds across model configurations and inputs, we can expect
ensuing differences in the accuracy of model simulations of the production and transport of ozone precursors, as well as the
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production of ozone. In part IT of this study (Pierce et al. 2023), we evaluate these impacts on ozone forecasts in the Lake

Michigan region using meteorological analyses obtained from the baseline AP-XM and optimized WRF model configurations

as input to CMAQ model simulations,
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