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Abstract. High-resolution simulations were performed to assess the impact of different parameterization schemes, surface 15 
datasets, and analysis nudging on lower-tropospheric conditions near Lake Michigan. Simulations were performed where 16 
climatological or coarse-resolution surface datasets were replaced by high-resolution, real-time datasets depicting lake surface 17 
temperatures (SST), green vegetation fraction (GVF), and soil moisture and temperature (SOIL). Comparison of two baseline 18 
simulations employing different parameterization schemes (referred to as “AP-XM” and “YNT”, respectively) showed that 19 
the AP-XM simulation produced more accurate analyses on the outermost 12-km resolution domain, but that the YNT 20 
simulation was superior for higher-resolution nests. The diurnal evolution of the surface energy fluxes was similar in both 21 
simulations on the 12-km grid but differed greatly on the 1.3-km grid where the AP-XM simulation had much smaller sensible 22 
heat flux during the daytime and physically unrealistic ground heat flux. Switching to the YNT configuration led to more 23 
accurate 2-m temperature and 2-m water vapor mixing ratio analyses on the 1.3-km grid. Additional improvements occurred 24 
when satellite-derived surface datasets were incorporated into the modeling platform, with the SOIL dataset having the largest 25 
positive impact on temperature and water vapor. The GVF and SST datasets also produced more accurate temperature and 26 
water vapor analyses, but degradations in wind speed, especially when using the GVF dataset. The most accurate simulations 27 
were obtained when using the high-resolution SST and SOIL datasets and analysis nudging above 2 km AGL. These results 28 
demonstrate the value of using high-resolution satellite-derived surface datasets in model simulations. 29 

1 Introduction 30 

Locations along the Lake Michigan shoreline in the United States have a long history of recording surface ozone concentrations 31 
that exceed levels set by the National Ambient Air Quality Standards (NAAQS), especially during the warm season (Stanier 32 
et al. 2021). Since the first ozone NAAQS was released in 1979, most lakeshore counties in the states bordering Lake Michigan 33 
(Wisconsin, Illinois, Indiana, and Michigan) have been designated as being in nonattainment for surface ozone in one or more 34 
of the subsequent NAAQS revisions. These states are required by the Clean Air Act to develop State Implementation Plans 35 
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(SIPs) to demonstrate strategies to bring affected areas into attainment and to mitigate the impacts of high ozone 50 
concentrations. Large decreases in local emissions of ozone precursors such as nitrogen oxides and volatile organic compounds 51 
have steadily reduced one- and eight-hour maximum ozone concentrations across the region in recent decades (Adelman 2020). 52 
However, the implementation of stricter ozone NAAQS means that additional air quality modeling assessments are necessary 53 
to help states demonstrate that they can reach attainment by the required statutory deadlines. 54 
 55 
Urban and rural areas near Lake Michigan are susceptible to high ozone events due to the complex interaction between synoptic 56 
and mesoscale circulation patterns with large sources of industrial, transportation, and urban emissions along the southern end 57 
of the lake. High ozone days are most common when synoptic-scale weather patterns characterized by weak southerly winds 58 
transport ozone and its precursors northward from their primary source regions over the Chicago and Milwaukee metropolitan 59 
areas and then interact with the mesoscale lake and land breeze circulations (Lyons and Olsson 1973; Ragland and Samson 60 
1977; Lennartson and Schwartz 2002). At night, the land breeze carries ozone precursors from land-based emissions sources 61 
over the lake where they become confined within a shallow nocturnal boundary layer and are then converted into ozone after 62 
sunrise via photochemical processes (Dye et al. 1995). As the land surface warms during the day, a reversal of the mesoscale 63 
circulation leads to the formation of the lake breeze during the morning that transports the high ozone airmass back onshore, 64 
with elevated ozone concentrations occurring across inland areas during midday and afternoon. On high ozone days, the lowest 65 
ozone concentrations are often found in areas with high nitrogen oxide emissions, such as Chicago and northwestern Indiana, 66 
with the highest ozone levels located downwind in rural and suburban areas to the north of these urban and industrial locations 67 
(Foley et al. 2011; Cleary et al. 2015). 68 
 69 
When synoptic-scale conditions are favorable for lake and land breeze formation, the horizontal temperature gradient between 70 
adjacent land and water areas influences the strength of the circulation pattern and the distance that the lake breeze penetrates 71 
inland during the daytime. Changes in the location of the lake breeze can have a profound impact on near-surface meteorology, 72 
the depth and vertical structure of the planetary boundary layer (PBL), and ozone concentrations along the Lake Michigan 73 
shoreline (Dye et al. 1995). Among other things, an accurate depiction of near-surface features in numerical weather prediction 74 
models requires an accurate specification of lower boundary conditions at the land and water surface. For example, an accurate 75 
representation of land surface conditions (such as soil moisture, soil temperature, and green vegetation fraction) are necessary 76 
to correctly partition the surface net radiation into sensible, latent, and ground heat fluxes. This partitioning in turn impacts 77 
the growth and depth of the PBL and lower-tropospheric temperature, moisture, and wind profiles (Berg et al. 2014; Dirmeyer 78 
and Halder 2016; Schwingshakl et al. 2017; Welty and Zeng 2018). Soil moisture and vegetation fraction (or leaf area index) 79 
are especially important variables through their influence on land-atmosphere coupling processes that link the surface 80 
hydrologic and atmospheric components of the earth system (Santanello et al. 2018, 2019). Indeed, Huang et al. (2017) showed 81 
that use of improved soil moisture and green vegetation fraction estimates in high-resolution simulations reduced biases in air 82 
temperatures and PBL heights over the Missouri Ozarks and had a large impact on biogenic isoprene emissions. 83 
 84 
Given the important role that boundary layer meteorology and the land-lake breeze circulation have on ozone production and 85 
transport in the Lake Michigan region, it is critical to explore the ability of different parameterization schemes and surface 86 
datasets to improve the accuracy of near-surface meteorological and air quality simulations. For example, ozone production is 87 
highly sensitive to temperature and humidity (Bloomer et al. 2009; Camalier et al. 2007; Coates et al. 2016; Dawson et al. 88 
2007; Jacob and Winner, 2009; Pusede et al. 2015), and production and transport of ozone precursors such as nitrogen oxides 89 
and volatile organic compounds are also dependent on temperature and winds (Dye et al. 1995; Porter and Heald, 2019; Wang 90 
et al. 2022; Wiedinmyer et al. 2006). In this two-part study, we develop and assess the accuracy of a satellite-constrained 91 
modeling platform for the Midwest United States that supports the needs of the Lake Michigan Air Directors Consortium 92 
(LADCO) as they conduct detailed air quality modeling assessments for its member states. The modeling platform uses high-93 
resolution analyses of soil moisture, green vegetation fraction, and lake surface temperatures derived from satellite 94 
observations and an offline land surface model (LSM) to constrain the evolution of the lower boundary conditions during 95 
multi-week model simulations. In part I, we use results from a large set of Weather Research and Forecasting (WRF) model 96 
simulations to assess the impact of the high-resolution surface datasets, different parameterization schemes, and analysis 97 
nudging on near-surface meteorological conditions and energy fluxes. We will show that a baseline model configuration 98 
employing default surface datasets produces better results for model simulations performed at 12-km horizontal grid spacing, 99 
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but that more accurate results are obtained at higher resolutions when the satellite-derived surface datasets and alternative 104 
parameterization schemes are used. In part II of this study, we use meteorological analyses from two of the WRF model 105 
configurations as input to Community Multiscale Air Quality (CMAQ) model simulations to assess the impact of these model 106 
changes on ozone forecasts in the Lake Michigan region. The remainder of this paper is organized as follows. Section 2 107 
contains a description of the model configurations and surface datasets. Results are presented in Section 3, with a discussion 108 
and conclusions provided in Section 4. 109 

2. Methods 110 

2.1 WRF model configurations 111 

Version 3.8.1 of the WRF Preprocessing System (WPS) and WRF model (Powers et al. 2017) was used to perform simulations 112 
containing three one-way nested domains covering the contiguous United States, Midwest United States, and Lake Michigan 113 
regions with 12, 4, and 1.3 km horizontal resolutions, respectively (Fig. 1). Each simulation contained 40 terrain-following 114 
vertical layers, with seven of the layers located below 2 km. The model top was set to 100 hPa. The 0.25-degree resolution 115 
GFS Final reanalyses available at 6-h intervals served as initial and lateral boundary conditions (ICs/BCs) for the WRF model 116 
simulations. All simulations were run from 12 May 2017 – 22 June 2017, with our evaluation focusing on the 22 May – 22 117 
June 2017 time period corresponding to the Lake Michigan Ozone Study field project (Stainer et al. 2021). Except for the two 118 
baseline simulations described below, all of the simulations were performed in daily increments using the standard WRF model 119 
restart files to allow for daily updates of high-resolution surface datasets using the WPS. The 40-category National Land Cover 120 
Dataset (NLCD) 2011 land use dataset (Jin et al. 2013) was used to determine the vegetation type and soil properties for each 121 
model grid point. 122 
 123 

 124 
Figure 1. Map showing the geographic regions covered by the 12-km (red box), 4-km (orange box), and 1.3-km (yellow box) 125 
resolution domains used during the WRF model experiments. 126 
 127 
Eight model simulations were performed to assess the impact of different physics options and surface datasets on the model 128 
accuracy in the lower troposphere (Table 1). The first simulation, hereafter referred to as the “AP-XM” baseline configuration, 129 
employed the Morrison microphysics (Morrison et al. 2005), RRTMG longwave and shortwave radiation (Iacono et al. 2008; 130 
Mlawer et al. 1997), and ACM2 PBL (Pleim 2007) parameterization schemes on all three domains, along with the Kain-Fritsch 131 
cumulus scheme (Kain 2004) on the outer two domains. These schemes were chosen for the baseline configuration because 132 
they are often used in simulations performed at the U.S. Environmental Protection Agency (EPA). The ACM2 PBL scheme is 133 
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a hybrid first-order closure scheme that attempts to capture both local and non-local fluxes (Pleim 2007). When conditions are 145 
stable, only the local closure portion of the ACM2 scheme is used. Surface energy fluxes (sensible, latent, and ground) and 146 
changes in soil moisture and soil temperature were simulated using the Pleim-Xiu LSM (Gilliam and Pleim 2010; Xiu and 147 
Pleim, 2001). In addition, analysis nudging was used to continuously adjust the temperature, water vapor, and winds above 148 
the PBL toward the 6-h GFS analyses (e.g., Borge et al. 2008; Campbell et al. 2018; Harkey and Holloway 2013; Otte 2008a, 149 
b; Otte et al. 2012; Pleim and Gilliam 2009). Though additional procedures such as surface observation nudging and indirect 150 
soil moisture and soil temperature nudging (Pleim and Gilliam 2009; Pleim and Xiu 2003) are sometimes used to constrain 151 
the evolution of model simulations performed using the ACM2 scheme and Pleim-Xiu LSM, they are not employed during 152 
this study in order to maintain consistency with the other model simulations. 153 
 154 
A second simulation was performed using the YSU PBL (Hong et al. 2006), Noah LSM (Chen and Dudhia, 2001; Ek et al. 155 
2003), and Thompson microphysics (Thompson et al. 2008, 2016) schemes, which is hereafter referred to as the “YNT” 156 
configuration. Like the AP-XM simulation, this configuration employed the RRTMG longwave and shortwave radiation and 157 
Kain-Fritsch cumulus schemes on the outer two domains, along with grid nudging toward the GFS temperature, humidity, and 158 
wind analyses above the PBL. This particular set of schemes was chosen based on our previous studies showing that they 159 
performed well during the warm season across the United States (e.g., Harkey and Holloway 2013; Cintineo et al. 2014; 160 
Greenwald et al. 2016; Griffin et al. 2021; Henderson et al. 2021). Because there are dozens of parameterization schemes to 161 
choose from in the WRF model, we do not aim to find necessarily the best physics suite but instead to assess the potential of 162 
using other schemes to improve upon the performance of the baseline AP-XM configuration. The YSU PBL scheme is a first-163 
order, non-local closure scheme that allows non-local mixing with explicit entrainment processes at the top of the PBL (Hong 164 
et al. 2006; Hong 2010). The Noah LSM is a community model that has been widely used within the weather and climate 165 
modeling communities (Campbell et al. 2019). It contains four soil layers (0-10, 10-40, 40-100, and 100-200 cm depth) along 166 
with vegetation canopy, soil drainage, and runoff models that allow it to simulate surface hydrological and radiative processes. 167 
A realistic representation of land surface processes becomes increasingly important when moving towards higher model 168 
resolutions (e.g., Sutton et al. 2006; Case et al. 2008). 169 
 170 
The remaining six simulations (Table 1) use the YNT configuration as their baseline. These simulations are designed to assess 171 
the impact of three high-resolution surface datasets and analysis nudging above 2 km (rather than above the PBL) on the model 172 
accuracy when used individually or in combination. In particular, three simulations were run where the standard climatological 173 
or coarse-resolution surface datasets were replaced by high-resolution, real-time datasets depicting lake surface temperatures, 174 
green vegetation fraction (GVF), and soil moisture / soil temperature across the study region. These surface datasets and the 175 
methods used to incorporate them into the WRF model simulations are described in the next section. Simulations employing 176 
these datasets are referred to as “YNT_SST”, “YNT_GVF”, and “YNT_SOIL”, respectively. Another experiment was 177 
performed where analysis nudging was used above 2 km rather than above the PBL, which is referred to as the “YNT_N2KM” 178 
simulation. This change in nudging compared to the AP-XM and YNT baseline experiments was motivated by a modeling 179 
study by Odman et al. (2019) showing that the evolution of the nocturnal low-level jet across the Great Lakes region was more 180 
accurately simulated when nudging was withheld in the lower troposphere (e.g., below 2 km) when the PBL is shallow. 181 
Differences in the nocturnal low-level jet could affect the transport of ozone and its precursors from urban regions to Lake 182 
Michigan during the overnight hours. Finally, two “combination” simulations were performed where the 2-km analysis 183 
nudging approach was used along with all three of the high-resolution surface datasets (“YNT_SSNG”) or only with the lake 184 
surface temperature and soil datasets (“YNT_SSN”). The latter simulation is included because it was found that this 185 
combination of surface datasets and analysis nudging generally led to the best results. 186 
 187 
Table 1. List showing the parameterization schemes, model initialization datasets, surface datasets, and nudging approaches used 188 
during each of the eight WRF model experiments. Acronyms are described in the text. 189 
 190 

 AP-XM YNT YNT_SST YNT_GVF YNT_SOIL YNT_N2KM YNT_SSNG YNT_SSN 

PBL ACM2 YSU YSU YSU YSU YSU YSU YSU 
LSM Pleim-Xiu Noah Noah Noah Noah Noah Noah Noah 
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2.2 Surface datasets 224 

2.2.1 Lake surface temperatures 225 

Daily maps of Great Lakes surface temperatures, with a horizontal resolution of ~1.3 km, were obtained from the Great Lakes 226 
Surface Environmental Analysis (GLSEA) produced at the NOAA Great Lakes Environmental Research Laboratory (Schwab 227 
et al. 1992). The lake surface temperatures are estimated using clear-sky infrared brightness temperatures from the Advanced 228 
Very High-Resolution Radiometer onboard multiple polar-orbiting satellites. If a surface retrieval is not possible on a given 229 
day due to cloud cover, a smoothing algorithm is applied to the previous analysis to maintain complete coverage. Only satellite 230 
observations are used to produce the daily lake surface temperature analyses, which Schwab et al. (1992) showed have small 231 
bias and root mean square error (1-1.5° C) when compared to buoys. The daily GLSEA analyses were used to overwrite the 232 
simulated surface temperatures for Great Lakes grid points at 00 UTC each day in the YNT_SST, YNT_SSN, and YNT_SSNG 233 
simulations using the WPS. Replacing the coarse-resolution (0.25°) GFS FNL surface temperatures (Fig. 2a) with the GLSEA 234 
analyses (Fig. 2b) led to warmer lake temperatures near the shoreline, especially along northern parts of Lake Michigan where 235 
temperatures were > 2 K warmer, and cooler temperatures across the rest of the lake, when averaged over the 22 May – 22 236 
June 2017 time period (Fig. 2c). This spatial pattern indicates that the finer horizontal resolution of the GLSEA dataset allows 237 
it to capture warmer temperatures in shallower waters near the shoreline while also depicting the cooler mid-lake temperatures 238 
due to the cooler-than-normal weather conditions that prevailed across the region in May (NCEI 2017). 239 

2.2.2 VIIRS green vegetation fraction 240 

GVF is the photosynthetically active fractional green vegetation cover within a grid cell, with higher values indicating more 241 
extensive actively transpiring vegetation. It is a key parameter in an LSM because vegetation representation is used to partition 242 
the incoming solar radiation into sensible, latent, and ground heat fluxes, where the latent heat flux is largely due to vegetation 243 
transpiration (e.g., Yin et al. 2016). Surface latent heat flux is sensitive to GVF because vegetation roots are able to access 244 
deeper soil moisture that would not otherwise be able to evaporate (Miller et al. 2006). For this study, we used daily global 245 
GVF derived using observations from the Visible Infrared Imaging Radiometer Suite (VIIRS; Vargas et al. 2015) in place of 246 
the default monthly climatology to constrain the evolution of vegetation in the YNT_GVF and YNT_SSNG simulations. The 247 
VIIRS GVF composite product is generated daily at 4-km resolution and available from the NOAA Comprehensive Large 248 
Array-data Stewardship System (CLASS). Ding and Zhu (2018) have shown that the VIIRS GVF product has smaller errors 249 
and bias than other satellite derived GVF datasets because of reduced atmospheric influences, improved observing capabilities 250 
in high biomass regions, better representation of vegetation canopies, and reduced bidirectional reflection distribution function 251 
effects. The real-time daily GVF analyses were used to overwrite the default monthly climatological vegetation fraction data 252 

Deleted: Xu253 

Deleted: L254 

Deleted: Initialized as 10-day ave. of 2-m temperature255 
Formatted: Font: Italic

Deleted: p256 
Deleted: p257 
Deleted: p258 

Deleted: ; obs nudging to MADIS259 
Deleted: initialization 260 

Deleted: during 261 
Deleted: persistent 262 
Deleted: were263 
Deleted:  then264 



6 
 

used by the WRF model at 00 UTC each day. Using real-time, satellite derived GVF in place of a monthly GVF climatology 265 
has been shown to improve the representation of the surface energy budget and subsequent model forecasts during the warm 266 
season (Case et al. 2014). In Fig. 2f, it is evident that use of the real-time GVF led to lower leaf area index (Fig. 2e; computed 267 
internally by the WRF model) across most of the domain compared to the climatological vegetation data (Fig. 2d), with the 268 
exception of some forested regions in the northern portion of the domain and bands of enhanced leaf area index surrounding 269 
metropolitan areas such as Chicago. The lower leaf area index in agricultural areas is consistent with delayed crop growth due 270 
to the cool spring weather, whereas the bands of higher leaf area index represent the impact of urban sprawl since the 271 
climatological vegetation data shown in Fig. 2d was generated using satellite observations from the late 1980s and early 1990s 272 
(see Gutman et al. 1995). 273 
 274 
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 275 
Figure 2. Average lake surface temperatures (K) from the (a) YNT and (b) YNT_SST simulations, with their differences shown in 276 
(c). Average leaf area index (m2 m-2) from the (d) YNT and (e) YNT_GVF simulations, with their differences shown in (f). Average 277 
0-10 cm soil temperatures (K) from the (g) YNT and (h) YNT_SOIL simulations, with their differences shown in (i). Average 0-10 278 
cm soil moisture content (m3 m-3) from the (j) YNT and (k) YNT_SOIL simulations, with their differences shown in (l). The averages 279 
for each variable were computed using data valid at 00 UTC each day during the 22 May – 22 June 2017 time period. 280 
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2.2.3 SPoRT LIS soil moisture and temperature analyses 281 

A customized version of the Land Information System (LIS; Kumar et al. 2006) run at the Short-term Prediction Research and 282 
Transition Center (SPoRT) was used to generate high-resolution soil moisture and soil temperature analyses. Version 3.6 of 283 
the Noah LSM (Chen and Dudhia 2001) was run on a 1-km resolution domain covering the central and eastern United States 284 
and nearby portions of southern Canada. Required inputs to run the Noah LSM were obtained from hourly analyses of surface 285 
pressure, 2-m temperature, 2-m specific humidity, 10-m wind speed, and downwelling shortwave and longwave radiation from 286 
the North American Land Data Assimilation System – Phase 2 (NLDAS-2; Xia et al. 2012). No observations were assimilated 287 
during the LIS runs. Quantitative precipitation estimates (QPE) were obtained from the Multi-Radar Multi-Sensor (MRMS) 288 
gauge-adjusted radar product (Zhang et al. 2016), the Global Data Assimilation System (GDAS; Wang et al. 2013), and 289 
NLDAS-2. A simple blending methodology was used to incorporate the multiple sources of QPE because evaluation of the 290 
real-time SPoRT-LIS product (Case 2016; Case and Zavodsky 2018; Blankenship et al. 2018) and preliminary LIS experiments 291 
during this study revealed that the NLDAS-2 and MRMS precipitation products have a dry bias across the region. To reduce 292 
this bias, the precipitation forcing used the average of the highest two values of the MRMS, GDAS, and NLDAS-2 QPE 293 
datasets. Inspection of the blended precipitation product showed that the precipitation bias was reduced, while preserving 294 
small-scale spatial details in the MRMS QPE product. Daily VIIRS GVF composites were also used to constrain vegetation 295 
during the offline LIS-Noah simulation. 296 
 297 
Following an initial spin-up of LIS using NLDAS-2 forcing data from 2012-2016 to remove memory of the prescribed initial 298 
conditions, the final analysis from this run was used to restart the simulation on 01 January 2012 using NLDAS-2 atmospheric 299 
forcing data, VIIRS GVF, and the merged QPE product. Soil moisture and soil temperature analyses from this LIS simulation 300 
were then used to replace the corresponding variables in the YNT_SOIL, YNT_SSN, and YNT_SSNG simulations at 00 UTC 301 
each day from 12 May – 22 June 2017 using the WPS. Comparison of the 0-10 cm soil temperatures from the GFS (Fig. 2g) 302 
and LIS (Fig. 2h), averaged over the 22 May – 22 June 2017 period, shows that the topsoil temperatures are noticeably cooler 303 
in the LIS data across most of the region, except for northern parts of Wisconsin and Michigan. The cooler temperatures are 304 
most prominent in suburban regions where the largest increases in GVF also occurred (Fig. 2f). For 0-10 cm soil moisture, the 305 
LIS analyses are generally wetter across the domain (Fig. 2l), with the largest increases across forested regions of Wisconsin 306 
and Michigan. Deeper soil layers exhibited similar differences between the GFS FNL and LIS datasets (not shown). 307 

2.3 Evaluation methods 308 

The accuracy of the WRF model simulations was assessed using hourly surface observations of temperature, humidity, and 309 
winds from the Meteorological Assimilation Data Ingest System (MADIS, https://madis.ncep.noaa.gov/) during 22 May – 22 310 
June 2017. These observations were chosen because of their widespread availability and their important influence on surface 311 
chemistry processes. The model evaluations are performed on all three domains using observations from stations located on 312 
the innermost domain surrounding Lake Michigan, which allows us to assess the behavior of each configuration as a function 313 
of spatial resolution using the same set of stations. Version 1.4 of the Atmospheric Model Evaluation Tool (AMET; Appel et 314 
al. 2011) from the EPA was used to collocate hourly observed and modeled values in a grid cell where a particular observation 315 
station was located; and to calculate model performance statistics including bias and root mean square error. 316 

3. Results 317 

3.1 Assessment of AP-XM and YNT baseline experiments 318 

This section contains a high-level assessment of the accuracy of the AP-XM and YNT baseline experiments on each domain, 319 
with a more detailed evaluation of all experiments on the 1.3-km resolution domain provided in Section 3.2. Figure 3 shows 320 
2-m temperature, 2-m water vapor mixing ratio, and 10-m wind speed errors for each domain computed using hourly surface 321 
observations. The left column shows the bias for each variable and experiment, whereas the center and right columns show 322 
the percentage changes in RMSE for each experiment relative to the AP-XM and YNT baseline experiments, respectively. A 323 
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negative (positive) value for a given variable and domain indicates that the RMSE for that experiment is smaller (larger) than 336 
the actual RMSE for the corresponding baseline experiment plotted in the gray box. 337 
 338 

 339 
Figure 3. Summary statistics showing the (a) 2-m temperature bias for each experiment, along with the percentage change in the 2-340 
m temperature root mean square error (RMSE) for a subset of experiments relative to the (b) AP-XM baseline and (c) YNT baseline 341 
experiments, respectively. Statistics for the 12-km, 4-km, and 1.3-km resolution domains were computed using hourly data from all 342 
stations located on the 1.3-km resolution domain during 22 May – 22 June 2017. The actual RMSEs for the baseline experiments 343 
(gray boxes) are also shown. Blue (orange) shading indicates a negative (positive) bias for a given experiment in (a), whereas blue 344 
(orange) shading depicts smaller (larger) RMSE in a given experiment relative to the AP-XM and YNT baseline experiments in (b) 345 
and (c). (d-f) Same as (a-c), except for showing statistics for 2-m mixing ratio. (g-i) Same as (a-c), except for showing statistics for 346 
10-m wind speed. 347 
 348 
Inspection of the YNT statistics reveals a consistent pattern in the RMSE where the percentage changes for each variable either 349 
switch from positive to negative, or become more strongly negative, as the model resolution increases from 12 km to 1.3 km. 350 
For temperature, the RMSE improves from being 1.37% larger than the AP-XM on the 12-km domain to 25.83% smaller on 351 

Simulation 12 km 4 km 1.3 km 12 km 4 km 1.3 km 12 km 4 km 1.3 km
AP-XM -0.66 -0.83 -0.14 2.27 2.36 3.03
YNT 0.16 0.47 0.55 1.37 -5.12 -25.83 2.30 2.24 2.25
YNT_SST 0.17 0.48 0.56 0.79 -5.67 -26.22 -0.57 -0.58 -0.53
YNT_SOIL -0.39 -0.19 -0.22 0.35 -9.91 -31.01 -1.00 -5.04 -6.99
YNT_N2KM 0.25 0.58 0.67 0.79 -5.72 -25.33 -0.57 -0.62 0.67
YNT_GVF -0.28 -0.02 -0.03 0.88 -7.32 -28.53 -0.48 -2.32 -3.65
YNT_SSNG -0.56 -0.32 -0.38 -0.84 -10.46 -30.32 -2.17 -5.62 -6.06
YNT_SSN -0.29 -0.07 -0.09 -2.29 -12.57 -32.50 -3.61 -7.85 -8.99

Simulation 12 km 4 km 1.3 km 12 km 4 km 1.3 km 12 km 4 km 1.3 km
AP-XM 0.38 0.64 0.60 1.67 1.80 1.70
YNT 0.19 0.00 -0.20 -10.98 -19.87 -14.86 1.48 1.44 1.45
YNT_SST 0.20 0.00 -0.20 -11.76 -20.42 -15.62 -0.88 -0.69 -0.90
YNT_SOIL 0.24 0.10 -0.02 -11.16 -20.37 -16.74 -0.20 -0.62 -2.21
YNT_N2KM 0.22 0.05 -0.14 -10.68 -19.20 -13.68 0.34 0.83 1.38
YNT_GVF 0.30 0.17 0.02 -11.16 -19.87 -15.97 -0.20 0.00 -1.31
YNT_SSNG 0.36 0.28 0.24 -13.62 -21.14 -16.91 -2.96 -1.59 -2.41
YNT_SSN 0.27 0.14 0.04 -12.36 -21.14 -17.50 -1.55 -1.59 -3.10

Simulation 12 km 4 km 1.3 km 12 km 4 km 1.3 km 12 km 4 km 1.3 km
AP-XM -0.02 -0.22 -0.23 1.51 1.50 1.62
YNT 0.45 0.34 0.36 7.10 2.46 -3.26 1.61 1.54 1.57
YNT_SST 0.46 0.34 0.36 7.37 2.80 -2.34 0.25 0.32 0.95
YNT_SOIL 0.38 0.24 0.23 5.91 1.53 -4.43 -1.12 -0.91 -1.21
YNT_N2KM 0.42 0.32 0.34 5.44 0.87 -4.99 -1.55 -1.56 -1.78
YNT_GVF 0.60 0.54 0.60 11.75 8.26 4.13 4.34 5.65 7.64
YNT_SSNG 0.53 0.47 0.49 8.90 5.53 -0.18 1.67 2.99 3.18
YNT_SSN 0.36 0.23 0.22 4.65 0.07 -6.47 -2.29 -2.34 -3.31

% RMSE Change % RMSE Change
Bias vs. AP-XM vs. YNT

g) 10-m Wind Speed [m/s]

b) 2-m Temperature [K] c) 2-m Temperature [K]a) 2-m Temperature [K]

f) 2-m Mixing Ratio [g/kg]e) 2-m Mixing Ratio [g/kg]d) 2-m Mixing Ratio [g/kg]

i) 10-m Wind Speed [m/s]h) 10-m Wind Speed [m/s]
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the 1.3-km domain (Fig. 3b). A similar pattern is present for 10-m wind speed where the RMSE is 7.10% larger on the 12-km 358 
domain, but then steadily decreases so that the RMSE becomes 3.26% smaller on the 1.3-km domain (Fig. 3h). The AP-XM 359 
simulation had a smaller wind speed bias on all three domains compared to the YNT baseline. For 2-m mixing ratio (Fig. 3d, 360 
3d), a positive bias on the 12-km domain increased at higher spatial resolutions for the AP-XM simulation but decreased and 361 
turned into a negative bias for the YNT simulation, which also exhibits a large reduction in RMSE on all three domains. These 362 
results indicate that the AP-XM physics suite becomes less accurate at higher resolutions and that the YNT configuration 363 
provides superior performance on the 1.3-km domain when averaged across all stations. In the following sections, we will use 364 
results from this domain to examine the impacts of the surface datasets and analysis nudging on the model accuracy with 365 
respect to the AP-XM and YNT baseline experiments. 366 

3.2 YNT sensitivity experiments 367 

3.2.1 2-m temperature evaluation 368 

To examine regional differences in model performance, Fig. 4 shows the 2-m temperature bias and RMSE computed separately 369 
for each station using hourly observations from 22 May – 22 June 2017. For the AP-XM simulation, there is a north-south 370 
gradient in the RMSE, with the largest errors across northern Illinois and Indiana (Fig. 4a). Stations near Lake Michigan have 371 
the smallest RMSE due to its moderating influence on local weather conditions. Similar to the RMSE, the smallest biases 372 
occurred in the northern part of the domain and along the eastern shoreline; however, biases along the western shoreline are 373 
larger and of comparable magnitude to those at inland locations across Wisconsin and Illinois. Overall, the AP-XM simulation 374 
had an RMSE of 3.03 K and a bias of -0.14 K when averaged across all stations (Figs. 3a-b). Switching to the YNT 375 
parameterization suite greatly reduced the RMSE by 25.83% across the entire domain (Fig. 3b); however, the bias increased 376 
to 0.55 K (Fig. 3a). The largest RMSE reductions (up to 45%) occurred in rural areas of northern Illinois, with similar RMSEs 377 
found across the entire domain (Fig. 4b). The larger positive temperature bias in the YNT baseline simulation is primarily due 378 
to larger errors in Wisconsin and within densely populated urban areas along the western Lake Michigan shoreline from 379 
Chicago to Milwaukee (Fig. 4f). A mixed pattern of larger and smaller biases occurred elsewhere across the domain. 380 
 381 
Inspection of the YNT sensitivity experiments shows that the smallest RMSEs occurred during the YNT_SOIL, YNT_SSN, 382 
and YNT_SSNG simulations, with the average RMSE reduced by 30.32% to 32.5% relative to the EPA baseline (Fig. 3b) and 383 
from 6.0% to 9.0% relative to the already greatly improved YNT baseline (Fig. 3c). On an individual basis, the high-resolution 384 
soil dataset (YNT_SOIL) had the largest positive impact at most stations (Fig. 4d), whereas slightly larger RMSEs were 385 
observed when using nudging (YNT_N2KM) (Fig. 4j). Comparison of the YNT_SSN and YNT_SSNG simulations (Fig. 4l, 386 
4p) shows that inclusion of the VIIRS GVF dataset during the YNT_SSNG simulation led to slightly larger RMSE for stations 387 
near the lakeshore, but similar or smaller errors for stations located further inland. 388 
 389 
The bias pattern for the YNT simulations is more complex. Overall, the bias was largest (0.67 K) in the YNT_N2KM 390 
simulation, with the smallest biases occurring in the YNT_GVF (-0.03 K) and YNT_SSN (-0.09 K) simulations (Fig. 3a). 391 
Switching from the AP-XM to YNT baseline configurations led to larger biases across most of the domain, especially along 392 
the southwestern shoreline of Lake Michigan (Fig. 4e-f). The high-resolution SST dataset had a minimal impact on the biases 393 
(Fig. 4g) whereas they were smaller in the YNT_SOIL (Fig. 4h) and YNT_GVF (Fig. 4m) simulations relative to the YNT 394 
baseline. Use of these two land datasets however led to much larger negative biases along the eastern shoreline of Lake 395 
Michigan. When 2-km analysis nudging was used (YNT_N2KM), larger positive biases occurred from Chicago to Milwaukee, 396 
with smaller biases along the eastern shoreline (Fig. 4n). The increased RMSE and bias near the western shoreline compared 397 
to locations further inland during the YNT_N2KM simulation suggests that the modified nudging routine (applied to heights 398 
above 2 km instead of above the PBL) may not work well for areas near Lake Michigan due to the moderating influence of 399 
the lake on the PBL. Because the PBL tends to be more stable and shallower for locations over and near Lake Michigan due 400 
to the cooler surface temperatures, this means that confining analysis nudging to above 2 km limits its ability to constrain the 401 
evolution of the lower troposphere during the YNT_N2KM simulation. This behavior could also be due to deficiencies in the 402 
YNT configuration over complex urban-lake transition zones. 403 
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3.2.2 2-m water vapor evaluation 439 

For the 2-m water vapor mixing ratio, switching to the YNT physics suite led to nearly a 15% reduction in the station-average 440 
RMSE during the YNT simulation relative to the AP-XM baseline (Fig. 3e), with additional incremental reductions occurring 441 
in all sensitivity experiments except for YNT_N2KM (Fig. 3f). The lower RMSE in all of the YNT simulations is primarily 442 
due to the large reduction in bias (Fig. 3d). Whereas the AP-XM configuration had a large moist bias (0.60 g kg-1), the YNT 443 
bias was much smaller and also became negative (-0.20 g kg-1). The bias was further reduced during most of the sensitivity 444 
experiments, with only a slight increase during the YNT_SSNG simulation. Overall, the YNT_SSN simulation had the smallest 445 
RMSE and a bias close to zero when averaged across all of the stations. 446 
 447 
Looking more closely at the individual stations (Fig. 5), it is evident that most of them have a positive (e.g., moist) bias when 448 
the AP-XM configuration is used (Fig. 5e). The largest biases are located in the southern portion of the domain, especially for 449 
stations near the lakeshore. In contrast, about two-thirds of the stations exhibit a negative bias during the YNT simulation (Fig. 450 
5f). The spatial pattern of the biases is similar during all of the YNT sensitivity experiments; however, their magnitudes are 451 
generally smaller, which is consistent with the overall statistics (Fig. 3d). For RMSE, the largest errors in the AP-XM 452 
simulation occur primarily along the southern end of Lake Michigan, with generally smaller errors in the northern half of the 453 
domain (Fig. 5a). The RMSE during the YNT simulation is smaller at most locations, especially along the shoreline, though a 454 
few stations near the western shoreline have larger errors (Fig. 5b). Use of the SOIL and GVF datasets reduced the errors at 455 
these nearshore locations (Fig. 5d, 5i), with the smallest errors at most stations occurring during the combination experiments 456 
(YNT_SSN and YNT_SSNG). As was the case with 2-m temperature, the most accurate 2-m water vapor analyses were 457 
obtained during the YNT_SSN simulation. 458 

3.2.3 10-m wind speed evaluation 459 

Compared to the temperature and water vapor fields, changes to the 10-m wind speed statistics were much more modest during 460 
the YNT simulations. Switching from the AP-XM configuration to the YNT configuration led to a 3.26% reduction in the 461 
RMSE, but a larger bias that also changed sign from negative to positive (Fig. 3g). For the YNT experiments, the average 462 
RMSE was slightly smaller during the YNT_SOIL and YNT_N2KM simulations (-1.21% and -1.78%, respectively), but 463 
slightly larger (0.95%) during the YNT_SST simulation compared to the YNT baseline (Fig. 3i). Use of the GVF surface 464 
dataset led to a 7.64% increase in the RMSE during the YNT_GVF simulation, primarily due to a larger wind speed bias. 465 
Overall, the most accurate wind speed analyses were achieved during the YNT_SSN simulation, with an RMSE reduction of 466 
6.47% across all stations. 467 
 468 
Spatially, there is a latitudinal gradient in wind speed errors during the AP-XM simulation. The largest RMSEs are located 469 
across the southern part of the domain (Fig. 6a), with mostly negative wind speed biases (up to 2 m s-1) in the same region 470 
transitioning to a mix of negative and positive biases in northern Wisconsin and Michigan (Fig. 6e). The RMSE and bias were 471 
much smaller for stations around the southern shoreline of Lake Michigan during the YNT simulation; however, slightly larger 472 
RMSEs are present across inland locations in the northern part of the domain (Fig. 6b). A similar spatial pattern of changes 473 
relative to the AP-XM baseline occurred during the YNT sensitivity experiments, though the errors are generally larger during 474 
the YNT_GVF simulation (Fig. 6i, 6m) and smaller during the YNT_SOIL (Fig. 6d, 6h) and YNT_N2KM (Fig. 6j, 6n) 475 
simulations. The poor performance of the YNT_GVF and YNT_SSNG simulations is primarily due to larger errors across 476 
inland areas of Wisconsin where there are large positive wind speed biases (Fig. 6m, 6p), with similar errors elsewhere in the 477 
domain. 478 
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 499 
Figure 4. Maps showing the 2-m temperature (K) root mean square error (RMSE) and bias for each station on the 1.3-km domain 500 
computed using hourly data from 22 May – 22 June 2017. Statistics for the EPA, YNT, YNT_SST, and YNT_SOIL experiments are 501 
shown in (a)–(h), whereas results for the YNT_GVF, YNT_N2KM, YNT_SSN, and YNT_SSNG experiments are shown in (i)–(p). 502 
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 504 
Figure 5. Same as Fig. 4, except for 2-m water vapor mixing ratio (g kg-1). 505 Deleted: 506 
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 507 
Figure 6. Same as Fig. 4, except for 10-m wind speed (m s-1). 508 
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3.2.4 Diurnal error characteristics 510 

Fig. 7 shows the diurnal evolution of RMSE and bias for 2-m temperature, 2-m water vapor mixing ratio, and 10-m wind speed 511 
at hourly intervals starting at 1900 local standard time (LST). The time series were computed by averaging over data from all 512 
stations on the 1.3-km domain. Overall, it is apparent that the AP-XM simulation contains very different diurnal error patterns 513 
than the YNT simulations. For example, the 2-m temperature bias exhibits a prominent diurnal cycle (Fig. 7b) characterized 514 
by large positive/warm (negative/cool) biases during the night (day), resulting in an overall damping of the diurnal temperature 515 
cycle. The warm biases exceed 2.0 K during most of the night (22 – 03 LST) and the cold biases are < -2 K for several hours 516 
during the daytime (0900–1300 LST). These results indicate that the small temperature bias in the summary statistics for the 517 
AP-XM simulation (Fig. 3a) is misleading because it obscures the presence of substantial biases of opposite signs during the 518 
day and night. The RMSE is also much larger during the AP-XM simulation (Fig. 7a), with local maxima of 3.5 K at 1100 and 519 
2300 LST, respectively, corresponding to peaks in the temperature biases. Switching to the YNT baseline greatly reduces the 520 
temperature RMSE, and the bias time series is no longer characterized by the highly amplified diurnal pattern seen in the AP-521 
XM simulation. Examination of the YNT sensitivity experiments shows similar error patterns to the YNT baseline. The largest 522 
differences occur at night when use of the GVF and SOIL datasets leads to smaller biases. In contrast, confining the analysis 523 
nudging to above 2 km AGL (YNT_N2KM) slightly increases the RMSE and bias during the nighttime relative to the YNT 524 
baseline. 525 
 526 
For water vapor, the AP-XM simulation again exhibits larger bias and RMSE than the other simulations (Fig. 7c, 7d). It has a 527 
large moist bias that ranges from 0.2 g kg-1 shortly after sunrise to 0.9 g kg-1 near 1900 LST, before decreasing to a relatively 528 
stable bias of 0.6 g kg-1 during the night. The RMSE is smaller in the YNT baseline simulation, with a dry bias evident for all 529 
but the evening hours (1900-2200 LST). As is the case for temperature, the RMSE is smallest during the late-night hours and 530 
then steadily increases during the day before reaching its maximum in the evening. All of the YNT sensitivity experiments 531 
have similar RMSE and bias patterns to the YNT baseline, with the smallest (largest) spread between simulations occurring 532 
during the nighttime (daytime) hours, possibly due to differences in the PBL depth and surface energy balance (see Fig. 8). 533 
Comparison of the 10-m wind speed time series reveals that the AP-XM simulation has the smallest bias (~ 0.15 m s-1) during 534 
the night, but that the wind speeds are weaker than observed during the daytime, with the largest biases (-0.95 m s-1) occurring 535 
at noon (Fig. 7f). This diurnal pattern in the AP-XM simulation, characterized by winds that are too strong (weak) during the 536 
night (day), stands in contrast to the mostly positive biases in the YNT simulations. The biases are tightly clustered in all of 537 
the YNT experiments during the nighttime hours (2200–0700 LST), with the exception of the two simulations employing the 538 
GVF dataset (YNT_GVF and YNT_SSNG) that are characterized by persistently larger positive biases. These two simulations 539 
also have the largest RMSE (Fig. 7e). Further research is necessary to determine why incorporation of the high-resolution 540 
GVF dataset leads to larger surface wind speed errors. 541 
 542 
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By  566 
Figure 7. Time series showing the diurnal evolution of (a-b) 2-m temperature (K) root mean square error (RMSE) and bias, (c-d) 2-567 
m water vapor mixing ratio (g kg-1) RMSE and bias, and (e-f) 10-m wind speed (m s-1) RMSE and bias at hourly intervals starting 568 
at 1900 local standard time (LST). Errors were computed for each model simulation using observations from all stations located on 569 
the 1.3-km resolution domain during 22 May – 22 June 2017. 570 
3.2.5 Surface Energy Budget Considerations 571 
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Near-surface atmospheric conditions can be strongly impacted by the partitioning of net surface radiation into sensible, latent, 573 
and ground heat fluxes (Santanello et al. 2018). To examine this more closely, Fig. 8 shows time series depicting the average 574 
diurnal evolution of the PBL height, net surface radiation, and sensible, latent, and ground heat fluxes during 22 May – 22 575 
June 2017 computed using data from stations on the 1.3-km domain to maintain consistency with earlier results. Because in-576 
situ flux and PBL height observations are not available across the entire domain, the aim is not to examine the accuracy of the 577 
simulated surface energy fluxes and PBL height, but rather to use these variables to help explain differences in the near-surface 578 
temperature, water vapor, and wind speed errors in the model simulations. All of the variables were obtained directly from the 579 
WRF output files. The net surface radiation is defined as the sum of the upward and downward shortwave and longwave 580 
radiation fluxes at the surface. 581 
 582 
Inspection of Fig. 8 reveals large differences between the AP-XM and YNT simulations. The PBL is ~50-150 m deeper in the 583 
AP-XM simulation during the nighttime but then becomes much shallower than the YNT simulations from mid-morning 584 
through the afternoon (1000–1600 LST) with the daytime maximum in PBL height occurring ~2 h later (Fig. 8a). The AP-XM 585 
simulation is also characterized by a smoother and less amplified diurnal evolution. For the YNT simulations, the PBL heights 586 
are tightly clustered during the night (2100 – 0700 LST) but begin to diverge during the morning and reach their largest 587 
differences during the afternoon. In particular, simulations employing the high-resolution soil moisture analyses (YNT_SOIL, 588 
YNT_SSN, and YNT_SSNG) have average PBL heights that are ~100 m lower than the other YNT simulations. These three 589 
simulations also have slightly lower sensible heat flux (Fig. 8c) and higher latent heat flux during the afternoon (Fig. 8d), 590 
which is consistent with the wetter and cooler topsoil layer in the SPoRT LIS analyses (Fig. 2g-l) and cooler 2-m temperatures 591 
(Figs. 3a, 7b). Using the SST and GVF datasets and confining analysis nudging to above 2 km had minimal impact on the PBL 592 
heights in the YNT_SST, YNT_GVF, and YNT_N2KM simulations; however, sensible and latent heat fluxes are slightly 593 
smaller during the afternoon in the YNT_GVF simulation. 594 
 595 
Comparison of the AP-XM and YNT simulations also reveals large differences in the surface energy flux time series. For 596 
example, the AP-XM simulation has much smaller sensible heat flux during the daytime (Fig. 8c) and the latent heat flux 597 
remains relatively large during the night (Fig. 8d). Though the AP-XM and YNT simulations produce similar magnitudes of 598 
latent heat flux during the day, the afternoon maximum is delayed by 2 h in the AP-XM simulation. The combination of a 599 
shallower PBL during the day (Fig. 8a) and higher latent heat flux at night likely contributes to the persistent large moist bias 600 
in the 10-m water vapor mixing ratio (Figs. 3d, 7d) during the AP-XM simulation. Another noteworthy feature of the AP-XM 601 
simulation is that the ground heat flux remains negative at all times. This unphysical behavior stands in sharp contrast to the 602 
more realistic evolution during the YNT simulations where the positive (negative) ground heat flux during the night (day) 603 
indicates that heat is being transferred from (toward) the ground toward (from) the atmosphere due to cooler (warmer) surface 604 
temperatures. These results indicate that the poor performance of the AP-XM simulation on the 1.3-km domain when assessed 605 
using near-surface moisture, temperature, and wind observations is likely due to the presence of vastly different and sometimes 606 
unphysical surface energy fluxes. 607 
 608 
The lower accuracy of the AP-XM simulation could be due to limitations in the parameterization schemes when used at higher 609 
spatial resolution. This possibility is supported by Fig. 9, which shows the evolution of the PBL height and surface fluxes on 610 
the 12-km domain computed using simulated data from all stations on the 1.3-km domain. Differences between the AP-XM 611 
and YNT simulations are much smaller both in timing and magnitude on the 12-km domain. For example, the time series for 612 
PBL height, sensible heat flux, and latent heat flux are very similar for all of the simulations. Though the ground heat flux 613 
time series for the AP-XM simulation continues to be an outlier at this resolution, it now has the correct diurnal cycle with 614 
positive (negative) values during the night (day). The improved simulation of surface fluxes on the 12-km domain likely 615 
contributes to the more accurate temperature and wind speed analyses in the AP-XM simulation at that resolution (Fig. 3a-b, 616 
3g-h). The presence of persistently higher latent heat flux (Fig. 9d) leads to a positive moisture bias in the AP-XM simulation 617 
(Fig. 3d-e); however, the bias is smaller on the 12-km domain than it was on the 1.3-km domain. Inspection of the surface 618 
energy fluxes and PBL height on the 4-km domain revealed larger differences between the AP-XM and YNT simulations (not 619 
shown), but not as large as those on the 1.3-km domain. Though it is not the focus of this research, differences in PBL height 620 
between the AP-XM and YNT simulations could be due to differences in vertical mixing strength and entrainment flux in the 621 
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AMC2 and YSU PBL schemes (e.g., Hu et al. 2010). Together, these results show that the AP-XM simulation performs well 651 
at 12-km resolution, but that its accuracy decreases with increasing model resolution. 652 
 653 

 654 
Figure 8. Time series showing the diurnal evolution of the (a) planetary boundary layer height (m), (b) net radiation (W m-2), (c) 655 
sensible heat flux (W m-2), (d) latent heat flux (W m-2), and (e) ground heat flux (W m-2) at hourly intervals starting at 1900 local 656 
standard time (LST), averaged over all stations on the 1.3-km domain during 22 May – 22 June 2017. Results are shown individually 657 
for each of the model simulations. 658 
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 661 
Figure 9. Same as Fig. 8, except for showing results on the 12-km domain. Time series were computed using simulated data from all 662 
stations located on the 1.3-km domain. 663 
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4. Discussion and conclusions 666 

In this study, eight WRF model simulations were performed to assess the impact of different parameterization schemes, surface 667 
datasets, and analysis nudging on the simulation of surface energy fluxes and near-surface atmospheric conditions in the Lake 668 
Michigan region during a 1-month period (22 May – 22 June 2017) corresponding to the LMOS field campaign. The 669 
simulations employed a triple-nested domain configuration containing 12-, 4-, and 1.3-km resolution grids, respectively. Two 670 
baseline simulations (AP-XM and YNT) employing different sets of parameterization schemes were performed to assess the 671 
importance of different physics suites. The YNT configuration additionally served as the baseline for six sensitivity simulations 672 
that were used to assess the impact of three satellite- and model-derived surface datasets and analysis nudging. Simulations 673 
were run where standard climatological or coarse-resolution surface datasets were replaced by high-resolution, real-time 674 
datasets depicting lake surface temperatures, GVF, and soil moisture/soil temperature. Near-surface temperature, water vapor, 675 
and wind observations were used to assess the accuracy of each model simulation. 676 
 677 
The AP-XM configuration generally produced more accurate near-surface analyses on the 12-km domain, with the exception 678 
of a moist bias in the 2-m water vapor mixing ratio, but its relative performance decreased with finer model grid resolution. 679 
Evaluation of the AP-XM simulation showed that the diurnal evolution of the sensible and latent heat fluxes was similar to the 680 
YNT simulation on the 12-km domain but differed greatly on the 1.3-km nested domain where it had much smaller sensible 681 
heat flux during the daytime and larger latent heat flux at night. The increased latent heat flux combined with a shallower PBL 682 
contributed to the large moist bias in the 2-m water vapor mixing ratio. The evolution of the AP-XM ground heat flux was 683 
physically unrealistic on the 1.3-km domain because it remained negative at all times rather than changing signs between day 684 
and night as occurred during the YNT simulations. Because the evolution of the surface energy fluxes was more realistic on 685 
the 12-km domain, the poorer performance on the 4- and 1.3-km domains suggests that the Pleim-Xiu LSM is unable to 686 
adequately represent surface fluxes at higher resolutions. This could be due to its use of two soil layers including a very shallow 687 
(1 cm) topsoil layer that make it difficult to fully represent fine-scale features and soil heat fluxes. Increasing the number of 688 
soil layers in the Pleim-Xiu LSM could potentially improve its ability to simulate energy fluxes on high-resolution domains. 689 
In addition, use of observation nudging and soil moisture and soil temperature nudging as used in Torres-Vazquez et al. (2022) 690 
would also help constrain the evolution of this simulation. Though these specialized nudging techniques were not employed 691 
in our study due to their added complexity and confounding influence on the model evaluations because the same observations 692 
used in the nudging procedure would also be used to assess the accuracy of the simulations, their utility could be assessed in 693 
future work. 694 
 695 
Inspection of the YNT statistics revealed a pattern where the percentage change in the RMSEs for 2-m temperature, 2-m water 696 
vapor mixing ratio, and 10-m wind speed relative to the AP-XM baseline improved as the model resolution increased from 12 697 
km to 1.3 km. Switching to the YNT configuration led to substantial decreases in RMSE for 2-m temperature (25.8%) and 2-698 
m water vapor mixing ratio (14.9%), and a more modest 3.3% reduction in the RMSE for 10-m wind speed, when assessed 699 
using all stations on the 1.3-km domain. Despite the already large error reductions when using the YNT parameterization suite, 700 
additional improvements occurred in most variables when the high-resolution surface datasets were incorporated into the 701 
modeling platform. Evaluation of the YNT sensitivity experiments showed that the high-resolution soil dataset had the largest 702 
positive impact on temperature and water vapor errors and the second largest impact on wind speed. Use of the GVF and SST 703 
datasets also led to more accurate temperature and water vapor simulations, but some degradations in the wind speed, 704 
especially when using the GVF dataset. Only the simulation employing analysis nudging above 2 km produced more accurate 705 
10-m wind speed analyses; however, 2-m temperature errors were larger along the western shoreline of Lake Michigan when 706 
the nudging was confined to levels above 2 km instead of above the PBL. This suggests that the modified nudging approach 707 
may not work well for areas near Lake Michigan where the PBL tends to be shallower because it reduces its ability to constrain 708 
the evolution of the lower troposphere. Despite this limitation, the most accurate near-surface simulations were obtained during 709 
the experiment that employed analysis nudging above 2 km combined with the high-resolution SST and soil datasets. Slight 710 
degradation occurred when the satellite GVF dataset was included. 711 
 712 
With these differences in near-surface temperature, humidity, and winds across model configurations and inputs, we can expect 713 
ensuing differences in the accuracy of model simulations of the production and transport of ozone precursors, as well as the 714 
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production of ozone. In part II of this study (Pierce et al. 2023), we evaluate these impacts on ozone forecasts in the Lake 763 
Michigan region using meteorological analyses obtained from the baseline AP-XM and optimized WRF model configurations 764 
as input to CMAQ model simulations. 765 
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