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Highlights 20 

• The revision of functional water control in soil C and Earth systems models with large data across scales is needed to 

improve their spatial and temporal projections. 

• Substituting the Yasso07 soil C model’s original saturation type dependency of decomposition on precipitation with a 

one parameter hump-shaped Ricker moisture function improved modelled SOC stocks in a catena of mineral and 

organic/peat soils in boreal forest. 25 

• The Ricker moisture function which was set to peak at rate 1 and calibrated against SOC and CO2 data using Bayesian 

MCMC approach showed a maximum rate of decomposition in well-drained soils along the forest – mire soil moisture 

gradient. 

• Using forest-mire SOC and CO2 data together with the moisture data only from the topsoil humus layer in model 

optimization was crucial to accurately model the spatial SOC increase from mineral soil forests to peatlands. 30 

• The functional dependencies based only on soil CO2 emissions failed to estimate accurate SOC stocks (of forested 

peatlands) but showed good performance statistics for CO2 estimates. 

Abstract 

As soil microbial respiration is the major component of land CO2 emissions, differences in the functional dependence of 

respiration on soil moisture among the Earth system models (ESM) contributes significantly to the uncertainties in their 35 

projections. 

Using soil organic C (SOC) stocks and CO2 data from a boreal forest – mire ecotone in Finland and Bayesian data assimilation, 

we revised the original precipitation-based monotonic saturation dependencyenvironmental function  of the Yasso07 soil 

carbon model by using non-monotonic Ricker function based on soil volumetric water content. We fit the revisedis functional 

dependency of moisture to the observed microbial respiration response to moisture and SOC stocks and compared its 40 

performance against the original Yasso07 model and the version used in the JSBACH land surface model with a reduction 

constant for decomposition rates in wetlands.  

The Yasso07 soil C model coupled with the calibrated unimodal Ricker moisture function with an optimum in dry well-drained 

soils accurately reconstructed observed SOC stocks and soil CO2 emissions and clearly outperformed previous model versions 

on paludified organo-mineral soils in forested peatlands and water-saturated organic soils in mires. The best estimate of the 45 

posterior moisture response of decomposition used both measurements of SOC stocks and CO2 data from the full range of 

moisture conditions (from dry/xeric to wet/water-saturated soils). We observed unbiased residuals of SOC and CO2 data 

modelled with the moisture optimum in well-drained soils, suggesting that this modified function accounts more precisely for 

the long-term SOC change dependency according to ecosystem properties as well as the contribution of short-term CO2 

responses including extreme events. 50 
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The optimum moisture for decomposition in boreal forests was found in dry well-drained soils instead of the mid-range 

between dry and water-saturated conditions as is commonly assumed among soil C and ESM models. Although the unimodal 

moisture modifier with an optimum in well-drained soils implicitly incorporates robust biogeochemical mechanisms of SOC 

accumulation and CO2 emissions, it needs further evaluation with large scale data to determine if its use in land surface models 

will decrease the uncertainty of projections. 55 
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1 Introduction 60 

Soil moisture and soil C stocks in boreal forests are higher in forested peatlands on frequently paludified organo-mineral soils 

and peatlands on water-saturated organic soils than in well-drained forests on mineral soils (Weishampel et al., 2009; Ťupek 

et al., 2008; Bhatti et al., 2006; Hartshorn et al., 2003). Almost a quarter of the total terrestrial C (440 Pg C) stored in boreal 

moist and dry soils has accumulated since the last glaciation (Scharlemann et al., 2014) and is expected to create large C losses 

under warming climates (Hararuk et al., 2015). Moist organic soils are crucial for modelling dynamics of the global C cycle 65 

as they store five times more carbon than dry mineral soils (Leifeld and Menichetti 2018; Turetsky et al., 2015; Scharlemann 

et al., 2014). However, soil organic carbon (SOC) stocks modelled by Earth System models (ESM) show large uncertainty due 

to structural model differences (Hashimoto et al., 2017; Hararuk et al., 2014, 2015; Todd-Brown et al., 2013), and differences 

in environmental drivers and their functional dependencies used by soil C models (Thum et al., 2020; Ťupek et al., 2019; 

Falloon et al., 2011). 70 

Despite soil moisture being a dominant driver of variation in C dynamics (Humphrey et al., 2022), ESMs lack consensus on 

the response of decomposition to soil moisture and temperature (Yan et al., 2018; Sierra et al., 2015; Falloon et al., 2011). The 

functional forms of the temperature and moisture modifiers of default decomposition rates among models disagree in their 

representation of extreme cold/dry and hot/wet conditions (Sierra et al., 2015). For example, the moisture decomposition 

dependency in the Yasso07 soil C model (Tuomi et al., 2011, 2009) is based on annual precipitation, has a functional form 75 

reaching of monotonic saturation,, and is uninformed about soil characteristics. By a monotonic saturation function, we mean 

a function which is entirely nondecreasing, initially increasing rapidly and later slowly approaching maximum. The use of the 

saturation function is limited to well drained soils as under wet or poorly drained forest soils such model results to 

underestimation of the C stocks (Dalsgaard et al., 2016, Ťupek et al., 2016).  The soil module of the CENTURY model (Adair 

et al., 2008; Parton et al., 1996; Metherall et al., 1993) uses precipitation and basic soil data (bulk density, clay, and silt 80 

contents) to calculate soil moisture, which similarly to Yasso07 assumes saturation of decomposition rates. Other functional 

dependencies of moisture such as DAYCENT, Demeter, Standcarb, Candy, Gompertz, Mayers, Moyano, and Skopp assume 

all kinds various of functional forms.  E(e.g., non-monotonic Gaussian increase with optimum and reduction of decomposition 

(DAYCENT, Standcarb, Moyano), linear increase until optimum and linear reduction (Skoop),  continuous monotonic linear 

and non-linear increase (Demeter and Myers, respectively) or with monotonic saturation functions (CENTURY, Candy)), 85 

linear increase until optimum and linear reduction) (Kelly et al., 2000; Foley, 2011; Harmon and Domingo, 2001; Bauer et al., 

2008; Janssens et al., 2003; Mayers et al., 1982; Moyano et al., 2013; and Skopp et al., 1990 as cited by Sierra et al., 2015). 

The wide variation in commonly used moisture functions may result from the variety of data from different soil types and 

climates used to constrain these moisture indices.  

If environmental response functions were calibrated for mineral soils only, then these functions may not adequately represent 90 

responses in the moisture range characteristic of organic soils. For example, default response functions of soil C models cannot 

represent anoxic inhibition of decomposition rates in paludified peatland forest soils. However, the inhibition of decomposition 
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can be accounted for even in monotonic functions, e.g., by a reduction parameter such as “anerb” in CENTURY (Metherall et 

al., 1993). Due to variable water level and its determination of soil oxic/anoxic conditions and SOC accumulation in peatlands, 

peat SOC stocks are typically modelled with models specifically developed for peatlands (Bona et al., 2020; Kleinen et al., 95 

2012; St-Hilaire et al., 2010; Frolking et al., 2010, 2001; Clymo 1992). However, for global applications on peatlands, the 

general soil models in ESMs can be modified for peat soil by adjusting parameters such as the hydraulic conductivity, as seen 

in models like JULES (Chadburn et al., 2022) and ORCHIDEE (Qiu et al., 2018), or by reducing decomposition rates for 

wetlands as in LPJ (Wania et al., 2010) and JSBACH (Goll et al., 2015). The land surface model JSBACH coupled with the 

Yasso soil C model adopts heuristic 65% reduction of decomposition for wetlands (Kleinen et al., 2021; Goll et al., 2015). 100 

Using CENTURY model at the site-level, Raich et al. (2000) opted for improvement in modelled SOC of wetlands by 

modifying the environmental function with the anoxic inhibition for sites with insufficient drainage. This approach improved 

CENTURY compared to default Yasso07 in poorly drained forested peatlands in Sweden, though the SOC stocks of both 

models were still underestimated (on average by 10 and 13 kg C m-2, respectively) (Ťupek et al., 2016).  Similar magnitude of 

SOC underestimation of Yasso07 model with default dependency on precipitation was also observed for poorly drained forest 105 

soils (e.g., gleysols and organic soils) in Norway (Dalsgaard et al., 2016). 

We hypothesised that the SOC stocks and CO2 emissions of mineral and organic (peat) soils can be modelled accurately by 

revising the original precipitation-based environmental modifier of a parsimonious model like Yasso07 with a function 

accounting for the reduction of decomposition based on the long-term near surface moisture. Near surface moisture is strongly 

correlated with the ground water level depth in peatlands (Dimitrov et al., 2022) and the moisture values between mineral soil 110 

forests and peatlands are comparable on the same scale, which makes soil volumetric water content (SWC) a suitable variable 

for representing landscape moisture variation. Boreal forest SWC can either be measured in-situ or derived in high resolution 

using hydrological models (e.g., Leppä et al., 2020; Launiainen et al., 2019) and at larger scale by remote sensing and machine 

learning (Han et al., 2023). We aimed to develop the original Yasso07 model with global parameters as in Tuomi et al. (2011) 

by adding a revised unimodal moisture-based environmental function. We then optimized this function using Bayesian data 115 

assimilation of measurements from a boreal forest-mire hillslope catena of mineral, organo-mineral, and organic soils, and 

tested whether we could correctly reconstruct observed SOC stocks and CO2 emissions.  

2 Methods 

2.1 Study sites 

Nine forest/mire site types in this study were situated along the hillslope from Vatiharju esker to Lakkasuo mire in southern 120 

Finland (61º 47', 24º 19') (Fig. 1) and formed a forest-mire ecotone, a gradient in soil moisture and nutrient status, vegetation 

composition, biomass production, and SOC stocks (Dimitrov et al., 2014). The sites were situated along a 450 m transect on a 

3.3 % slope facing NE with a relative relief of 15 meters. The site typology described below was based on the vegetation 
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composition reflecting site wetness, fertility, and location on the slope according to Finnish forest and mire classification 

systems (Cajander 1949; Laine et al., 2004).  125 

On the crest of the esker was a well-drained xeric Scots pine forest (CT – Calluna type) which changed down the slope to 

subxeric mixed Scots pine - Norway spruce forest (VT – Vitis-idaea type), and in mid-slope to mesic and herbrich Norway 

spruce dominated forest (MT – Myrtillus type, OMT - Oxalis-myrtillus type) together referred to as mineral soils upland 

forests. On the toe of the slope were forest-mire transitions on gleyic organo-mineral soils or mixed spruce pine birch forests 

(OMT+ - Oxalis-myrtillus Paludified type, KgK – Myrtillus Spruce Forest Paludified type, and KR – Spruce Pine Swamp 130 

type). On the level were water-saturated sparsely forested mires on histosols (VSR1 and VSR2 - Tall Sedge Pine Fen types).  

The understory or forest floor vegetation along the ecotone changed from being dominated  by Calluna and Vaccinium Vitis-

idaea dwarf-shrubs and typical forest mosses on the uppermost sites (CT, VT), to Vaccinium myrtillus dwarf-shrubs with herbs 

in the mid-slope (MT, OMT), Vaccinium myrtillus dwarf-shrubs with herbs and Sphagnum in the transitions (OMT+, KgK, 

KR), and Vaccinium oxycocus and Betula nana dwarf-shrubs with Menyanthes triofoliata, Carex and Sphagnum species on 135 

the level (VSR1, VSR2) (Fig. 1). More detailed tree stand, soil and climate characteristics for these sites were reported by 

Ťupek et al. (2008, 2015). 

2.2 Auxiliary measurements 

Soil temperature, water content, and CO2 emissions (gCO2 m-2 h-1) were measured simultaneously during years 2004, 2005, 

and 2006. The measurement campaigns were conducted weekly, and we measured each plot once and all plots in one or two 140 

days between 7 am and 6 pm weekly during the vegetative season of 2004 (July-November), 2005 (May-November), 2006 

(May-September), and monthly during the non-vegetative season (December-April). The summer seasons of the years 2004, 

2005, and 2006 showed exceptionally different monthly weather patterns. Data from Finnish meteorological station, located 3 

km north-east from the ecotone in Juupajoki, showed that the summer season in 2004 was rainy and colder in comparison to 

long-term typically mild weather, in 2005 weather was typical, and in summer 2006 the weather was sunny and warm. The 145 

exceptional drought in 2006 caused by the lack of rain and increased temperatures in June and later July – early August (Gao 

et al., 2017) caused visible drying of the moss layer along all the sites of the ecotone. The 2006 summer drought ended with 

showers in mid-August and with more frequent rain in autumn the soil moisture recovered to a normal level.  

2.2.1 Soil temperature and moisture conditions  

The soil temperature was measured at depths of 5 cm (T5, °C) with a portable thermometer, and the soil volumetric water 150 

content at depth of 10 cm (SWC10, %, m3 m-3) in all sites with a portable ThetaProbe (Delta-T Devices Ltd) calibrated for each 

site type. The SWC calibration accounted for the bulk density/porosity of forest type specific soils (Ťupek et al., 2008, 2015). 

Because the forest-mire variation of soil organic layer bulk density was relatively small 0.34+/-0.07 g cm−3 (porosity 74+/-

5%) (Ťupek et al., 2015) the values SWC of top 10 cm were in the same order of magnitude between the forest/mire site types.   

For missing field campaigns during months with the snow cover (Nov 2004, Feb – Apr 2005, Dec 2005 – Apr 2006) we 155 



8 
 

interpolated the measured monthly mean T5 and SWC10 time series with a spline function. The SWC10 values among the forest 

and mire site types ranged between 0 and 1 (or 0 and 100 %) (Figure Fig. 3), whereas in comparison to water level depth the 

values range from 8 cm in tall-sedge mire to 881 cm in pine forest on the top of the esker (Tupek et al. 2008). 

2.2.2 Soil CO2 emissions 

Measurements of forest soil heterotrophic respiration (Rh, gCO2 m-2 h-1, positive sign) were taken using opaque cylindrical 160 

chambers (30 cm diameter, 21.2 L) placed on metallic collars (30 cm in diameter) which were installed permanently into 30 

cm soil depth. The collars locations (3 for each site type, 12 for mineral soil forests, 9 for transitions, and 6 for mires, together 

27) were selected to represent the spatial variation of each site type and the spatial variation along the forest-mire ecotone (e.g., 

dominant forest floor vegetation, microtopography, soil drainage, and nutrient status).  

The aboveground forest floor vegetation inside each collar was clipped at the time of collars installation and any plant regrowth 165 

of e.g., mosses was clipped approximately half an hour before the flux measurements. At the time of the collar installation the 

roots of the understory vegetation and trees were cut with a saw along the collars’ perimeter. The metallic collars installed to 

30 cm soil depth prevented the regrowth of the roots. Due to the vast majority of tree and understory roots in boreal forest 

occurring in the humus layer, the 30 cm depth was considered sufficient to cut the roots thus remove the signal of the root 

autotrophic respiration from the net CO2 emissions. In transitions and mires the depth of peat could be more than 30 cm (in 170 

range from 0.15 m in OMT+ to 1.2 m in VSR2 (Ťupek et al., 2008)) but the prevailing high ground water levels (in range from 

33 cm in OMT+ to 7 cm in VSR1 (Ťupek et al., 2008)) limit the root growth into the upper/sub-surface layer.  

The soil CO2 emissions were measured every 4.8 s during 80 s intervals with a portable infrared CO2 analyser (EGM4, SRC-

1 PP systems Inc.). We calculated CO2 flux rates from the development of CO2 concentration over time inside the chamber. 

2.2.3 Soil organic carbon stocks 175 

The soil data from the 2006 sampling up to 30 cm depth (Ťupek et al., 2015) were combined with additional soil sampling 

cores of up to 100 cm depth in October 2015 (3 per site) (Fig. S1). The bulk density, C and N concentrations for new samples 

were determined as in Ťupek et al. (2015).  

The SOC content (g cm-3) of separate soil layers were interpolated for the whole profile with the fitted spline functions and 

summed up for each depth and each forest/mire site (Fig. S1). The SOC content was similar in the upper-most humus layers 180 

of all forest/mire types (below 0.3 g cm-3 in a layer 0-10 cm), but in the sub-surface level (10-30 cm) clearly doubled from 

uplands to transitions and mires (from below 0.2 to above 0.4 g cm-3) (Fig. S1). In the soil layers below 30 cm the SOC content 

showed differences in degrees of magnitude (around 0, 0.01, and 0.1 g cm  -3 for forests, transitions, and mires, respectively) 

(Fig. S1). The SOC stock (kg C m-2) was a result of SOC content multiplied by a bulk density. 

 185 
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2.2.4 Biomass of tree stand and understory vegetation  

Breast height diameter and height of all Scots pine (Pinus sylvestris), Norway spruce (Picea abies), and Silver birch (Betula 

pendula) trees on each forest site type were measured in 2006. The biomass components for each species (leaves, branches, 

stems, coarse-roots) were estimated with biomass conversion functions (Repola et al., 2008, 2009) and fine-roots with 

functions by Lehtonen et al. (2015). Forest floor plants from three 0.07 m2 sample plots located nearby soil respiration 190 

measuring collars were harvested for each forest/mire site type in June-July 2004 (Ťupek et al., 2008). Plants were separated 

to herbs, mosses, and shrubs, dried and weighed for each category and each sample plot. The stand density and the tree biomass 

increased from xeric (CT) and mesic upland forest sites (VT and MT) towards the herb-rich forest site (OMT) and transitions 

(OMT+, KgK, and KR), and decreased to very sparse canopy in peatlands/mires (VSR sites) (Fig. 1b). The understory 

aboveground biomass correlated negatively with the density of the canopy cover thus positively with the light intercepted onto 195 

the forest floor (Ťupek et al., 2008). 

2.3 Data analysis 

2.3.1 Yasso07 SOC and CO2 modelling 

Equilibrium SOC stocks of up to 1 m depth, SOC changes and soil CO2 emissions (Rh) for the forest/mire types were modelled 

using the Yasso07 soil carbon model (Tuomi et al., 2009, 2011) with specific litter input and weather data in accordance with 200 

the method of Finnish greenhouse gas inventory (Statistics Finland, 2023). The  temperature and precipitation data for the 

weather input was from the nearest Finnish meteorological institute (FMI) weather station located 3 km away from our study 

sites. We first ran the Yasso07 model using the original formulation of the environmental function with precipitation and air 

temperature data, and then we ran the Yasso07 model fitted with the environmental modifier function based on SWC10 and T5 

of the forest/mire site types using the Bayesian data assimilation technique.  205 

2.3.1.1 Yasso07 soil C model  

The Yasso07 is a semi-empirical process-based soil carbon model where soil C is divided based on the organic matter solubility 

into five pools (CA, CW, CE, CN, and CH) from which three are fast (acid- (A), water- (W), and ethanol- (E) soluble), one is 

slow (non-soluble (N)) and one is  almost stable (humus (H)) (Tuomi et al., 2011). The rates of C decomposition in each pool 

and C transfers between the pools are affected by climate. The model can be expressed mathematically as a set of differential 210 

equations where decomposition of the entire structural matrix of C pools CA…CH defined by default mass flow parameters 

αA,W…αH and decomposition coefficients kA…kH (AYS) is scaled by the time step dependent scalar of the environmental rate 

modifier ξ(t) Eq. (1).   

 
𝑑𝑐(𝑡)

𝑑𝑡
=

(

 
 

𝑖𝐴
𝑖𝑊
𝑖𝐸
𝑖𝑁
𝑖𝐻)

 
 (𝑡) + 𝜉(𝑡)

(

  
 

−𝑘𝐴 𝛼A,W𝑘𝑊 𝛼A,E𝑘𝐸 𝛼A,N𝑘𝑁 0

𝛼W,A𝑘𝐴 −𝑘𝑊 𝛼W,E𝑘𝐸 𝛼W,N𝑘𝑁 0

𝛼E,A𝑘𝐴 𝛼E,W𝑘𝑊 −𝑘𝐸 𝛼E,N𝑘𝑁 0

𝛼N,A𝑘𝐴 𝛼N,W𝑘𝑊 𝛼N,E𝑘𝐸 −𝑘𝑁 0

𝛼𝐻𝑘𝐴 𝛼𝐻𝑘𝑊 𝛼𝐻𝑘𝐸 𝛼𝐻𝑘𝑁 −𝑘𝐻)

  
 

(

 
 

𝑐𝐴
𝑐𝑊
𝑐𝐸
𝑐𝑁
𝑐𝐻
)

 
 (𝑡)     (1) 
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Where t is time, i defines a vector of initial carbon pools iA… iH, and subscripts in α indicate mass transfer pools (e.g., αA,W 215 

defines mass transfer from pool W to pool A). The total soil respiration or CO2 efflux (Rh) is a product of a column vector by 

a row vector C(t), where the elements of the column vector are the fractions that were not transferred among the pools (Sierra 

et al. 2012). 

The model was originally calibrated for running on annual time steps (Tuomi et al., 2009), but it can run on monthly steps with 

monthly decomposition rates (1/12 of annual kA…kH), and monthly litter and climate data (Ťupek et al., 2019). Then ξ(tm) is 220 

defined by a combined function of monthly air temperature (Tm) and 1/12 of annual precipitation (Pa/12) (Eq. (2)). 

ξ𝑇(𝑡𝑚) = 𝑒
(𝛽1𝑇𝑚+𝛽2𝑇𝑚

2
) (1 − 𝑒

𝛾
𝑃𝑎
12)        (2) 

Where β1, β2, and γ are parameters of the environmental function and 𝑡𝑚 is the monthly time step.  To test our hypothesis of 

running the model for a catena of soils with gradually increasing moisture content (from xeric to mesic, paludified, and 

saturated), we re-defined the ξ(tm) function for the use with soil temperature based on a Q10 exponential function to T5 (used 225 

by Davidson et al. (2012) as an alternative to Arrhenius kinetics), and moisture data using adjusted hump shaped Ricker 

function (Bolker, 2008) for response to SWC10 which limits decomposition rate outside the optimum soil water content (ξAR, 

Eq. (3)).  

ξ𝐴𝑅(𝑡𝑚) = 𝑄10
(
𝑇5−10

10
)
𝑎𝑆𝑊𝐶10𝑒

(−𝑎𝑒−1𝑆𝑊𝐶10)     (3) 

Where the Q10 parameter represents the increase of the temperature function over 10 °C difference in T5, and the a controls 230 

both ascending and descending slopes of the moisture function when the peak is set to 1.  In the Ricker function with a and b 

parameters and an independent variable vector x (axe−bx), the height of the peak can be inferred as (a/b)e−1, and the x value of 

the peaks location as 1/b (Bolker, 2008). Thus, in our formulation by setting the peak in the Ricker function to 1 we could 

substitute b parameter by ae-1 and the SWC10 optimum (the SWC10 when decomposition is at optimum) was inferred as 1/ae-1. 

 235 

The Yasso07 model versions in this study run accordingly:  

1. the Yasso07.ξTW version is the Yasso07 coupled with original ξT (Eq. (2)) and with the original global parameter set 

(Tuomi et al., 2011) but with two k-rates parameter sets, (i) the original kA…kH rates for application on mineral soils 

applied for mineral and organo-mineral soil forests (CT, VT, MT, OMT, OMT+, KgK, KR) and (ii) with an inhibitor 

reducing k-rates by 35% (0.65kA…0.65kH) for application on wetlands (Goll et al., 2015, Kleinen et al., 2021) applied for 240 

mire sites (VSR1 and VSR2);  

2. the Yasso07.ξW wetland version is the same as the Yasso07.ξTW but with a fine-tuned k-rates inhibitor to fit the SOC of 

mire sites (VSR1 and VSR2); 
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3. the Yasso07.ξAR version for soil moisture gradient from mineral to peat soils (e.g., as in boreal forest - mire ecotone) is 

the Yasso07 model coupled with ξAR (Eq. (3)) with the original global parameter set of the structural matrix and optimized 245 

parameters of ξAR. 

The initial equilibrium SOC stock (Co) for each forest/mire type for the pre-trenching period was simulated analytically (Xia 

et al., 2012) (Eq. (4)).  

𝐶𝑜 = −𝜉𝐴𝑌𝑆
−1ū           (4) 

Where ξ is the environmental modifier, AYS is a structural matrix formulation of Yasso07 model’s differential equations, and 250 

ū is the litter input (mean annual litter of foliage, branches, stem, stump, roots, and understory).  

The Yasso07 model source code, used here, was built in R software (R Core Team 2023) on the platform of the SoilR package 

(Sierra et al., 2012) according to the mathematical description and parameters of Tuomi et al. (2011). The model outputs  are 

monthly SOC stocks and soil CO2 emissions. The model was run with data inputs of above- and below-ground litterfall 

(accounting for its chemical composition) and climate data (described in more detail below). Monthly model outputs of 255 

heterotrophic soil respiration were compared to mean monthly Rh measurements. 

2.3.1.2 Climate and litter C input data for Yasso07 model 

The Yasso07.ξTW was run with monthly air temperature and precipitation from the nearby Juupajoki weather station of the 

Finnish meteorological institute. The Yasso07.ξD was run using site type specific continuous monthly T5 and SWC10 time 

series. 260 

The litter C input of the forest/mire types (Fig. S2 and Fig. S3) used by Yasso07 was estimated as in Lehtonen et al. (2016) 

based on turnover rates of tree stand biomass components (including fine- and coarse-roots, stump, branches, and foliage) and 

understory vegetation. The litter C input was separated into Yasso07 A, W, E, N pools according to the component and species 

(or species groups) specific A, W, E, N ratios taken from the literature (Berg et al., 1991a, 1991b, 1993; Gholz et al., 2000; 

Trofymow et al., 1998; Vávřová et al., 2009; Straková et al., 2010) (Table S2). The annual litter was distributed to monthly 265 

resolution by accounting for seasonal trends of foliage, fine-roots, and understory (Ťupek et al., 2019; Zhiyanski 2014) or 

evenly. The litter input before trenching was assumed to represent the long-term average of the equilibrium state forest (Fig. 

S2a, Fig. S3). During trenching the severed fine- and coarse-roots made up the major component of the total litter (Fig. S2b) 

and resulted in a clear peak in the monthly litterfall time series (Fig. S3). After trenching the monthly litter levels decreased as 

the sum of components excluded the roots (Fig. S2c, Fig. S3). 270 

2.3.1.3 Bayesian SOC and CO2 data assimilation 

The Bayesian MCMC data assimilation has proven useful in improving soil organic carbon estimates (e.g., Xu et al., 2006; 

Hararuk et al., 2014). The Bayesian posterior uncertainty provides updated information on parameter values based on pre-

existing information on the parameters and the data through the likelihood function (Speich et al., 2021). The d, Q10, and 
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SWCopt parameters of the ξD (Eq. (4)) coupled with Yasso07 model were optimized on the level of the forest-mire ecotone 275 

using Bayesian data assimilation technique (Luo et al., 2011; Hartig et al., 2012; Speich et al., 2021) with observed SOC stocks 

and monthly Rh data of forest/mire types with prior information on best parameter values obtained from a purely empirical 

NLS model (Table 1) and the defined parameter range in Table S1. During the optimization, the Yasso07.ξD model was first 

run only with observed SOC stocks and second with both SOC stocks and Rh data combined obtaining a probability distribution 

of model parameters of ξD (the posterior uncertainty p(θ|y) conditional on the observations (y) and prior knowledge on the 280 

parameter values p(θ)). The sum of the probability density for the target parameter set (θ) between the model predictions and 

observations was maximized for the best agreement using the likelihood defined by a modified Laplace probability density 

function p(y|θ) (the probability of observing the data y with the model parameters set θ) where we allowed the width of the 

distribution to be affected by the observed SOC and Rh values (Eq. (5)).  

p(y│θ) = ∏ ∏
1

2(𝑎𝑗+𝑏𝑗𝑥𝑗,𝑖)
  𝑒

−|(𝑥𝑗,𝑖−𝜇𝑗,𝑖)|

𝑎𝑗+𝑏𝑗𝑥𝑗,𝑖
Nj
i=1

2
j=1       (5) 285 

where μj,i is the observed jth variable (e.g., SOC, CO2, or SOC and CO2) of ith observations, xi is the modelled prediction, N is 

the total number of observations, and a, b are parameters affecting the width of the distribution. In the combined SOC and CO2 

likelihood, the likelihood function p(y│θ) was then the multiplication of the distributions of SOC and CO2 at all observation 

times. We evaluated the variation in the estimated parameters by separating data for fitting the models and testing with 9-fold 

cross validation technique.  290 

The model parameters of ξAR and p(y|θ) were sampled from an assumed uniform distribution within their prior ranges (Table 

S1). Posterior probability distributions of parameters (Table 2) were derived by using the differential evolution (DEzs) Markov 

Chain Monte Carlo (MCMC) sampler (ter Braak and Vrugt, 2008) with used by the runMCMC function from the 

BayesianTools package in R (Hartig et al., 2012) and by computing three chains in parallel. The convergence of MCMC runs 

was evaluated using Gelman–Rubin multivariate potential scale reduction factor (psrf) (Brooks and Gelman, 1998). The 295 

MCMC simulation was considered converged if psrf was below 1.03 for all parameters (1.01, 1.01 and 1.016 for p(θ|SOC) , 

p(θ| CO2)  and p(θ|SOC-CO2), respectively). Trace plots of MCMC runs for target parameters showed effective sampling and 

unimodal parameter density with clearly defined peaks. The differences in parameter uncertainties (difference between 97.5% 

and 2.5% quantiles of the 95% confidence interval) were not significant (p = 0.99) when evaluated with a Welch Two Sample 

t-test between two posterior distributions p(θ|SOC), and p(θ|SOC-CO2) (Table 1). 300 

2.3.1.4 Performance evaluation of Yasso07.ξTW and Yasso07.ξAR  

The performance of Yasso07 model versions (i) Yasso07.ξTW and (ii) Yasso07.ξAR with ξAR parameter set θ from two posterior 

distributions, p(θ|SOC) , p(θ| CO2)  and p(θ|SOC-CO2), was evaluated with the modelled SOC and CO2 outputs against the 

observed data in the forest mire-ecotone with the coefficient of determination (R2), the mean absolute error (MAE), mean bias 

error (MBE), the root-mean-square error (RMSE), the Akaike information criterion (AIC) for considering the number of model 305 
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parameters in the error calculation as in Abramoff et al. (2022), and the fitted linear trends of normalized SOC and CO2 model 

residuals with observations against T5 and SWC10 data. 

3 RESULTS 

3.1 Distributions of SOC stocks and Rh in relation to SWC 

The SOC stock measurements (to a depth of 1 m) in forest-mire ecotone were distributed in range between 20 in well-drained 310 

soils of upland forests and 125 kg C m-2 in poorly drained soils in peatlands/mires (Fig. 2). The SOC stock values strongly 

correlated with the long-term moisture levels. The median Rh values ranged between 0.4 and 0.6 gCO2 m-2 h-1 for upland 

forests, 0.4 and 0.5 gCO2 m-2 h-1 for forest-mire transitions, and 0.3 and 0.4 gCO2 m-2 h-1for mires (Fig. 2). The forest/mire site 

type differences in median Rh values expressed per m2 were small and poorly correlated with the mean soil moisture levels.  

3.2 Distribution of Rh in climate space of soil T and SWC 315 

The site-specific time series of hourly Rh measured in the forest/mire ecotone during years 2004, 2005, and 2006 followed a 

typical seasonal pattern of temperature and was distributed in range between 0.08 and 1.6 gCO2 m-2 h-1 depending on the 

corresponding soil temperature and moisture conditions (Fig. 3). The Rh values were generally larger during wet years than 

during a typical year, and lowest during dry years (Fig. 3). 

The T5 and SWC10 values showed a typical seasonal variation (in range between around 0 and 20°C, dryest in summer and 320 

wettest in late autumn/spring) (Fig. 2b and 3c). The T5 showed similar magnitude among the forest/mire sites, whereas the 

SWC10 increased from driest (upland forest) to intermediate (forest-mire transition), and from upland to lowland for the wettest 

(mire) sites located on the slope (Fig. 3). The volumetric SWC10 (%) were comparable in the same order of magnitude between 

the forest/mire site types because the forest-mire variation of the soil organic layer bulk density was relatively small 0.34+/-

0.07 g cm−3 (porosity 74+/-5%). The forest-mire ecotone soil moisture at 10 cm depth ranged from 5% to 91%. The minimum, 325 

maximum and mean SWC at 10 cm depth between forests, transitions, and mires clearly differed showing the gradient of 

increasing moisture from forests to mires (Fig. 2a, Fig. 3). Due to highly variable weather (wet, typical, and dry year) all 

ecosystems experienced periods of extremely low and high SWC10 values. The SWC10 of upland forest ranged between 5 and 

25%, between 17 and 70% in transitions and mires between 49 and 91% (Fig. 3). The variation of soil temperature at 5 cm 

depth along the ecotone was similar among the forest/mire types and ranged between -3 and 22 °C (Fig. 3). The Rh values 330 

during dry 2006 year were in comparison to previous years clearly reduced mostly in upland forest and forest-mire transitions 

(Fig. 3). The spatial soil moisture gradient of forest/mire types was not clearly reflected in distribution of Rh values when 

expressed in gCO2 m-2 h-1 (Fig. 2) (unless expressed as a C fraction of SOC). The short-term SWC variation impacted the 

typical seasonal levels of Rh values mainly during the extreme events (rainy summer period in wet years, or drought summer 

period in dry years) (Fig. 3). 335 



14 
 

3.3 ξAR optimized with Yasso07.ξAR 

The optimization of ξAR (Eq. (3)) coupled with Yasso07 showed that in the catena of mineral and organic soils of the boreal 

forest-mire the optimum moisture content for decomposition and CO2 emissions was in well drained mineral soil forests 

(SWCopt medians between 14 and 27%, Table 1, Fig. 4). The MCMC fit with CO2 data produced larger SWCopt and larger tail 

in the Ricker function (compared to SOC or SOCCO2 fit). The decomposition rate outside the moisture optimum reduced 340 

decomposition similarly for the two data sources (SOC and SOC-CO2) used for calibration. However, the temperature and 

moisture functions were different when only CO2 was used for calibration.   

The two SOC and SOCCO2 based Q10 functions showed a similar increase with T5 until 10 °C (Fig. 4a). The combined non-

linear temperature and moisture response in whole climate data range showed larger nonlinear the variation of the change in ξ 

for mineral soil forests than forest mire transitions and peatlands (Fig. 5). The ξAR in the Fig. 5 panels a and b for SOC and 345 

SOCCO2 based ξAR are similar showing that both SOC and SOCCO2 parameterization is almost the same whereas the ξAR in 

the Fig.5c ξAR is different. Similar patterns were observed for ξAR in the climate space of T5 and SWC10 (Fig. 5a and b). The 

stronger CO2 based temperature sensitivity of  ξAR,p (θ | CO2) with median ξARQ10Q10 value 4.5 resulted in a more pronounced 

increase in decomposition rates especially in climate space with high water saturation (Fig. 4 and Fig. 5c). The SOC and SOC-

CO2 based ξARQ10 values for the forest – mire ecotone (medians 2.3 or 2.5, Table 1) were lower.   350 

3.4 Performance of Yasso07.ξTW, Yasso07.ξW and Yasso07.ξAR  

The model performance evaluation showed that the soil water and temperature modifier ξAR coupled with Yasso07 model 

(Yasso07.ξAR) outperformed the original Yasso07 environmental function even after 65 % reduction of decomposition rates 

for wetlands was applied (Yasso07.ξTW) (Table 2, Fig. 5). Although, the Yasso07.ξTW model version accurately predicted SOC 

stocks of mineral soil forests (CT…OMT), it heavily underestimated the SOC stocks of organo-mineral forested peatlands and 355 

mires (OMT+…VSR2), thus it showed the most biased model performance metrics (highest RMSE, MBE, MAE, AIC and 

lowest R2
adj) among the model versions compared (Table 2). Reduction of decomposition rates of 65% for mires in 

Yasso07.ξTW was not sufficient to simulate their SOC stocks as simulated SOC of mires were only about 10 % of measured 

values (Figs 5a, 5b, and 5c). The SOC simulations for VSR mires with Yasso07.ξW would have required as much as a 96% 

reduction of the decomposition rates. The optimized Yasso07.ξAR model version accurately simulated SOC stocks throughout 360 

the forest – mire ecotone.  

The version Yasso07.ξAR, p (θ | SOC) outperformed Yasso07.ξAR, p (θ | SOC-CO2) when evaluated against SOC data and both models  

were similar when evaluated against CO2 data (Table 3, Fig. 5). The Yasso07.ξAR, p (θ | CO2) outperformed the functions based 

on SOC or SOCCO2 against measured CO2 data but failed when evaluated against measured SOCs. The Ricker function 

improved the representation of decomposition for drier soils and the representation of optimal SWC for decomposition.  365 

The SWC optimum was derived from the fitted ascending slope parameter and its values were between 14 and 27 % (depending 

on the data used for fitting; 14% for SOC and CO2 and 27% for CO2). The MCMC fit with CO2 data produced larger SWCopt 
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and larger tail in the Ricker function (compared to SOC or SOC CO2 fit). However, the CO2 only fit also underestimated SOC 

stocks of forested peatlands (Fig. 5a). The normalized SOC residuals of the two Yasso07.ξAR models based on SOC or SOC 

and CO2 did not show any large T5 or SWC10 trends (Figs 5a, 5b, and 5c). Although, measured Rh fluxes during the cold 370 

season may be slightly overestimated.  

The soil CO2 emissions simulated with the original Yasso07.ξTW agreed unexpectedly well with observed Rh values (Table 2, 

Figs. 6d, 6e and 6f) outperforming the Yasso07.ξAR, p (θ | SOC) version (Table 2, Fig 6e). On the other hand, the Rh simulated 

with Yasso07.ξAR, p (θ | SOC) performed similarly as Yasso07.ξTW in terms of RMSE (same RMSE 0.16 g CO2 m-2 hour-1 for both 

models). The performance statistics for Yasso07.ξAR based on SOC and SOCCO2 were better compared with Yasso07.ξTW for 375 

SOC and about the same for Rh (Table 2). The performance statistics for Yasso07.ξAR based on CO2  were best among the 

models for CO2 but fail in similar fashion for SOCs as Yasso07.ξTW. The normalized modelled residuals showed that both 

Yasso07 model versions (Yasso07.ξTW and Yasso07.ξAR, p (θ | SOC)) showed small Rh biases in extreme, very cold and in very 

warm temperatures (Fig. 6e). The normalized CO2 residuals of the Yasso07.ξAR, p (θ | CO2) showed no bias among the functions 

(0 MBE, Table 2).  The normalized CO2 residuals evaluated against with SWC10 did not show any bias for any of the models 380 

(Fig. 6f). 

4 Discussion 

The Yasso07 model (Tuomi et al., 2011) coupled with a revised and optimized empirical Q10 soil temperature and Ricker 

moisture function ξAR (Eq. (3), Fig. 4), successfully reconstructed observed variation of SOC stocks and soil heterotrophic CO2 

emissions with increasing soil wetness in mineral, organo-mineral, and peat soils in boreal forest (Fig. 6). The Bayesian MCMC 385 

data assimilation has proven useful also in other studies (e.g., Xu et al., 2006; Hararuk et al., 2014). The original Yasso07 

monotonic precipitation function is effective due to easily available data on upper boundary condition, but also flawed in case 

of shallow water table when the lower boundary is equally important in defining the water content on the soil. Therefore, the 

usage of soil water content as a variable is structurally superior, and can be proved by inductive reasoning, e.g., from the test 

model runs. Separating the effect of structure against calibration would require more test runs with data from larger number of 390 

study sites. 

Our application of Yasso07 models on the hillslope accounted for the continuity in moisture conditions which was reflected 

in the modelled gradient of mineral and peat soils carbon stocks. The Yasso07 model initially developed for mineral soils was 

improved for application in peatlands by accounting for the soil temperature and volumetric moisture, as these are better 

predictors of heterotrophic respiration than air temperature and precipitation (Jian et al., 2022). Although, the empirical Ricker 395 

function ξAR used here was heuristic, its form implicitly accounted for prevailing intrinsic micro-scale processes on the hillslope 

controlling Rh and SOC accumulation e.g., plant and microbial communities, long-term and short-term limitation of oxygen 

and substrate with moisture (Davidson et al., 2012, Moyano et al. 2012, Ghezzehei et al. 2019). 
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The ξAR being able to simulate gradually increasing SOC stocks from mineral to organic soils makes it a preferable rate 

modifier for the Yasso07 model, instead of simply adjusting decomposition with a reduction constant for wetlands (e.g., Goll 400 

et al., 2015; Kleinen et al., 2021), which underestimated the SOC stocks of peatlands (Yasso07.ξTW in Fig. 5). In this study, 

the constant 96% reduction (0.04*k-rates) was proposed for the existing Yasso07.ξTW for more accurate SOC modelling in 

mires, a value comparable to rates of anaerobic decomposition (Schuur et al., 2015). Currently, 80% reduction of rates is used 

for water-saturation in an updated moisture modifier in the JULES model (Chadburn et al., 2022). Although The 96% reduction 

is comparable to JULES which accounts for oxygen inhibition with gradual reduces reduction of decomposition  linearly from 405 

the maximum rate 1 at the moisture optimum (30% - 75% SWC) to a reduced rate 0.2 in water-saturated peat soils (Chadburn 

et al., 2022)..  

4.1 The moisture response 

The use of gradually changing near surface soil moisture avoids biases in land surface modelling related to ignoring high SOC 

stocks of organo-mineral soils of forested peatlands (Dalsgaard et al., 2016, Ťupek et al., 2016), e.g., forest-mire transitions 410 

(Fig. 1, and Fig. 2). The modelling decomposition rates accurately with diffusion-based moisture functions accounting for 

microbial processes requires correct representation of the drivers of heterotrophic respiration (Yan et al., 2018; Moyano et al., 

2012, 2013; Manzoni et al., 2012; Ghezzehei et al., 2019). However, uncertainty in functional moisture - soil respiration 

dependencies are high (Sierra et al., 2015; Falloon et al., 2011) and dependencies vary with the soil properties, e.g., SWC 

optimum increases for soils with higher organic C content (from 30% to 75% SWC, Moyano et al., 2012, 2013).  The ξAR 415 

function’s SWCopt found in dry and well-drained conditions and reduction of default decomposition rates (k) with increasing 

soil wetness contrasted with responses from the short-term laboratory incubation soil respiration studies (weeks, months) 

showing increase in decomposition from dry conditions until reduction in very wet (Sierra et al., 2017; Moyano et al., 2012, 

2013; Kelly et al., 2000; Skopp et al., 1990; Yan et al., 2018). The ξAR optimized with SOC and CO2 data showed that the 

optimum/maximum decomposition rate in the forest-mire ecotone was in dry well-drained conditions around 14% of mean 420 

long-term near surface SWC (around 20 % WFPS, corresponding to sub-xeric and mesic forest site types) (SWCopt parameters 

inferred from a parameter in Table 1, Fig. 4b) whereas the moisture optimum of studies based only on respiration from 

laboratory soil incubations was around 40% - 60% (Fairbairn et al., 2023; Moyano et al., 2013; Kelly et al., 2000; Skopp et 

al., 1990; Yan et al., 2018).  

The moisture optimum found inderived from the field sites soil respiration datasets of sites from a larger moisture range was 425 

found in 50% water-filled pore space (WFPS) and corresponding to around 31% SWC assuming mean porosity of 62%, 

Hashimoto et al., 2011). Our SWCopt between 14 and 27% SWC (Table 1) was comparable to the optimum derived from the 

field sites data which was somewhat lower than in othercompared to laboratory studiesincubations. The SWCopt discrepancy 

of the ξAR function highlights the difference between (1) the responses from the field-based or long-term soil respiration 

measurements reflecting moisture responses of older, stabilized and slowly decomposing SOC, and (2) the short-term 430 

incubation-based soil respiration studies which predominantly capture decomposition of newly available, labile and rapidly 
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decomposing, SOC pool (González-Domínguez et al., 2022; Huang and Hall, 2017). Over longer periods of incubation high 

Q10 can be observed (Zhou et al., 2019). The enhanced C mineralization can occur during periods of elevated moisture under 

Fe reduction when microbes can access previously protected labile C (Huang and Hall, 2017). The incubations are short term 

(from few days to few months) and are useful to identify short term processes. Moreover, they are performed on disturbed 435 

soils (sometimes even sieved) and therefore the soil structure is not representative of the field. 

The ecosystem scale application of moisture reduction functions obtained in the laboratory can be hindered by several factors. 

There are number of feedback mechanisms which modify the response obtained on a limited size soil sample. Among them is 

a change in microbial community composition, the texture-and- structure-dependent effect of pore-scale connectedness of soil 

solutions and competition between plants and microorganism for resources under different environmental stress conditions.  440 

Under changing climate these feedback mechanisms may lead to the system behaviour unpredictable from extrapolation. 

Therefore, the validation of the models at the site level with series of various in-situ stress levels is necessary for reliable future 

predictions..  

In its impact on decomposition of the ξAR functions (calibrated with SOC, SOCCO2, and CO2 data) incorporated into Yasso07 

soil C model were comparable (e.g., all found the moisture optimum in dry well-drained soils of forest-mire ecotone). 445 

Although, the soil temperature and moisture functions showed a relatively small differences in Q10 between the model fits, the 

“a”  parameter of the moisture functions of CO2 based fit was larger than from SOC and SOCCO2 fit Although, the soil 

temperature and moisture function showed a relatively small differences in Q10 , the a parameter of CO2 based fit was larger 

than from SOC and SCOCO2 fit  (Table 1). In terms of the Yasso07 model constants, if temperature and moisture conditions 

are favourable for organic matter stabilization then the ξAR is reduced (Fig. 4, and 5) which reduces decomposition rates of fast 450 

and slow C pools, reduces their CO2 emissions, and increases C storage. The forest-mire sites’ heterotrophic respiration per 

unit of area did not show a clear difference between well-drained and water-saturated soils whereas the C mineralization per 

unit SOC was clearly reduced in soils with mean long term field soil moisture (Fig. 2). Reduction in decomposition rates in 

the environmental gradient from low to higher field moisture, indicates possible a difference in the soil C stabilization 

mechanisms under low- and high-water content (Das et al., 2019). Ghezzehei et al. (2019) suggested that empirical moisture 455 

sensitivity curves should be calibrated individually for each soil. However, our study shows that the common modifier function, 

based on the SWC of the topsoil humus layer which has comparable properties across the soil types, could provide insights 

into a more generalizable moisture sensitivity function. The mechanistic diffusion-based moisture functions (e.g., by 

Ghezzehei et al., 2019, Yan et al., 2018) could be in follow up studies compared against deterministic moisture functions to 

evaluate their applicability and interpretation. 460 

The ξAR function and its reduction with increasing wetness from dry soils was based on a large range of forest/mire soil C 

stocks (between 11 and 134 kg C m-2) reflecting a spatial long-term moisture gradient between forests and mires (Fig. 2) and 

its short-term moisture and CO2 dynamics over years with contrasting climate (Fig. 3). The soil respiration data from three 

years covered exceptionally contrasting wet and dry summers and likely captured a full range dependency on the soil moisture 
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induced by short-term weather variation in a spatial/long-term forest-mire gradient in soil moisture, soil C pools, vegetation 465 

litter input dynamics (Fig. S2 and S3), and microbial composition. The short-term deviations in respiration indicative of 

wetting/drying cycles (Barnard et al., 2020; Patel et al., 2021) could be seen by the respiration increases in wet summers or 

during and after a period of drought (Figure 3). Thus, the ξAR,p(θ|SOC-CO2) curve calibrated with highly variable SOC and CO2 

data from a forest-mire ecotone represented a mean robust moisture-decomposition dependency smoothing short-term weather 

dependent fluctuations with the spatial variation of organic matter decomposition across ecological gradients. This function 470 

could meet the land surface modelling criteria for spatial accuracy on small scales but also cost efficiency for running or 

forecasting the C dynamics at large scales (Luo and Schuur, 2020). 

The ξAR function’s SWCopt found in dry conditions and reduction of default decomposition rates (k) with increasing soil 

wetness contrasted with responses from the short-term laboratory incubation soil respiration studies (weeks, months) showing 

increase in decomposition from dry conditions until reduction in very wet (Sierra et al., 2017; Moyano et al., 2012, 2013; Kelly 475 

et al., 2000; Skopp et al., 1990; Yan et al., 2018). The ξAR optimized with SOC and CO2 data showed that the 

optimum/maximum decomposition rate in the forest-mire ecotone was in dry conditions around 14% of mean long-term near 

surface SWC (around 20 % WFPS, corresponding to sub-xeric and mesic forest site types) (SWCopt parameters inferred from 

a parameter in Table 1, Fig. 4b) whereas the moisture optimum of studies based only on soil respiration was around 40% - 

60% (Fairbairn et al., 2023; Moyano et al., 2013; Kelly et al., 2000; Skopp et al., 1990; Yan et al., 2018). 480 

IThe including SOC data or combination of SOC and CO2 data in model fitting resulted to lower SWCopt, and the model fitting 

based only on CO2 showed larger SWCopt and larger tail (descending slope) of the Ricker moisture function. Thus, in 

comparison to other studies, which dependencies were limited to relatively short-term responses of only soil heterotrophic CO2 

respiration from mainly mineral soils in laboratory conditions, the differences in SWCopt observed in our studies could be  

expectedbe expected from difference in data source used in model calibration. Unlike the data from controlled laboratory 485 

condition, we used data from field measurements (mineral soil and peat SOC stocks, litter input, soil CO2 respiration, T5 and 

SWC10 measured under extreme weather variability during three years. In optimizing model performance with a multi-variable 

data set, Keenan et al. (2013) found that a combination of data with fast and slow turnover (e.g., soil respiration and soil carbon 

stocks) leads to the largest improvement in model performance. The Yasso07.ξAR based only on slow (SOC) was as good as 

constraining with SOC and CO2, as both approaches accurately observed soil CO2 emissions and SOC stocks along the site 490 

types of the forest-mire ecotone with no clear bias in residuals (Fig. 6). Thus, in a catena of mineral and peat soils of forest-

mire ecotone, and in the combined measured SOC and CO2 data assimilation in ξD (9 and 2369, respectively), the relatively 

small number of SOC stocks (9 forest/mire types) largely determined the SWC response form reflecting both a spatial moisture 

gradient and its temporal variation. Whether the deterministic modifier rate was estimated correctly or not also for the drained 

peatlands should be tested in follow up studies, as our data did not include drained peatlands. The Ricker functional dependency 495 

has performed well for the drier region but the performance in soils with high water status still could be improved. This could 
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be deduced from better statistical performance of CO2 only fit with CO2 data (compared to SOC or SOCCO2 fit) which 

produced larger tail of the Ricker function. TAlthough, the CO2 only fit also underestimated SOC stocks of forested peatlands. 

The SWCopt discrepancy of the ξAR function highlights the difference between (1) the responses from the field-based or long-

term soil respiration measurements reflecting moisture responses of older, stabilized and slowly decomposing SOC, and (2) 500 

the short-term incubation-based soil respiration studies which predominantly capture decomposition of newly available, labile 

and rapidly decomposing, SOC pool (González-Domínguez et al., 2022; Huang and Hall, 2017). Over longer periods of 

incubation high Q10 can be observed (Zhou et al., 2019). The enhanced C mineralization can occur during periods of elevated 

moisture under Fe reduction when microbes can access previously protected labile C (Huang and Hall, 2017).  

Although, the moisture representation of the ξAR environmental function was accurate at the forest-mire ecotone level, at the 505 

forest site level the contrasting respiration responses to moisture (i.e., either respiration reduction during soil drying or 

increased CO2 emissions with rewetting (Barnard et al., 2020; Patel et al., 2021) for dry soils or the opposite for wet soils), 

were likely not captured sufficiently. Soil C modelling might be further improved using a moisture response that accounts 

separately for microbial respiration with increased water availability, and for oxygen limitation in soil reaching water saturation 

(Sierra et al., 2015). However, as the aim of the environmental modifier used in this study was applying the above concepts in 510 

a cost-efficient way using an empirical functionsempirical function with easily interpretable parameters (Q10 and a which 

informs about SWC optimum) (Davidson et al., 2012), the mathematical representation of the moisture function with increased 

complexity still needs to be evaluated in further studies testing different functional forms with larger regional data availability. 

Ghezzehei et al. (2019) suggested that empirical moisture sensitivity curves should be calibrated individually for each soil. 

The mechanistic diffusion-based moisture functions (e.g., by Moyano et al., 2013, Yan et al., 2018, Ghezzehei et al., 2019) 515 

could be in follow up studies tested against deterministic moisture functions (e.g., as in Davidson et al. 2012) to evaluate their 

applicability and interpretation. However, our study shows that the common modifier function, based on the SWC of the topsoil 

humus layer which has comparable properties across the soil types, could provide insights into a more generalizable moisture 

sensitivity function.  

In this study, we constrained the soil carbon model using both SOC (stock) and CO2 (flow) data. Few studies have constrained 520 

the soil carbon model to both SOC and CO2 data. Our study demonstrates the importance of extensive constraints on the soil 

carbon model to obtain a reliable model output. The SOC constraint improved the model performance; at the same time, 

intensive SOC and CO2 constraint did not result in the improvement of model performance, which implies the need for further 

model development and testing. One potential improvement in modelling could be the different responses to the environment 

(e.g., soil moisture) among different pools like the temperature dependency separated between the soil layers and soil C 525 

fractions in more recent versions of Yasso model e.g., Yasso15 and Yasso20 (Viskari et al. 2020, 2022).  The Yasso07 model 

adapts one common response function among different pools for simplicity; however, the fresh plant litter moisture limitation 

of decomposition may be expected to differ from the moisture limitation on older stabilized C in the humus horizon and 

mineral-associated C. Another factor could be the vertical process. The SOC is vertically distributed in the soil, and soil C 
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fractions differ among soil depths. Accounting for the depth of the soil layer with the largest proportion of net CO2 emissions 530 

(Davidson et al. 2006, 2012) which is expected to vary with fluctuating water level in forested peatlands may further improve 

the soil respiration estimates for organic soils. On a process level the key to understanding of the difference in moisture 

reduction function at different soil depth may lay in the nature of the physical and biochemical availability of substrate to 

enzymes released by microbial decomposers (Sainte-Marie et al, 2021).  

 535 

4.2 The temperature response  

The original air temperature-based modifier in Yasso07 was replaced by the Q10Arrhenius type temperature function driven 

by soil temperature (Davidson et al., 2012). This function was found to best represent the enzyme kinetics under unconstrained 

substrate and oxygen (Sierra et al., 2017). The optimized temperature function with SOC, and combined SOC and CO2 data 

produced slightly more biased Rh estimates than modifier based on CO2 data with Q10 around 4.5 (Table 1, Fig. 6). The Q10 540 

values around 4.0 were comparable with the well-, moderately-, and poorly- drained forest soils for similar climates (Chen et 

al., 2020; Davidson et al., 1998; Karhu et al., 2010; Pumpanen et al., 2008).  However, the optimization of the Q10Arrhenius 

type temperature response only with SOC data and SOC and CO2 with Q10 (2.3) (Table 1), showed lower R2
adj values than for 

the Gaussian type temperature dependency in the Yasso07.ξTW (Fig. 5). Thus, due to the comparable predictive power when 

using soil and air temperature (Jian et al., 2022), the original Gaussian air temperature dependency could be more accurate 545 

than Q10Arrhenius response for the optimization with soil temperature (Tuomi et al., 2008).  

Discrepancies in modelled respiration during winter (Fig. 6) could be also caused by a scarcity of winter field CO2 

measurements potentially resulting in larger random errors (e.g., due to difficulties of measuring relatively small respiration 

fluxes during soil freezing/thawing cycles, measurements on soil covered by snow layer, and reduced precision of gas analysers 

during measurements in lower temperature range). Density of CO2, temperature and SWC measurements can be seen in Fig.3. 550 

The less frequent measurements during the near zero soil temperature might have affected the fit of the temperature function. 

However, our main emphasis was on the moisture which in near zero temperature conditions plays only a minor role on 

controlling respiration. 

5 Conclusions 

The Yasso07 soil carbon model was developed and parameterized at global scale for mineral soils; however, it has also been 555 

applied for land surface modelling coupled with the JSBACH model with a 65% reduction of default decomposition for 

wetlands. In this study we emphasized on improving representation of the response of soil organic C stock change and 

respiration to soil moisture in Yasso07 model for forest - mire ecosystems. At the forest site level, we evaluated the 

performance of the Yasso07 model with an original climate modifier based on air temperature and precipitation against the 

model coupled with a revised environmental modifier based on soil temperature and moisture. We found that the Yasso07 560 
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model coupled with revised climate dependencies performed similarly for mineral soils but outperformed the original 

configuration with the JSBACH modification for undrained peatland soils. 

The optimization of moisture dependency conducted in this study accounted for both a spatial moisture gradient and its 

temporal variation. The moisture optimum at dry soils has not changed depending on whether the function was optimized 

using both slow (SOC) and fast (CO2) turnover data (combined SOC and CO2 data) or only slow (SOC) data.  565 

The SOC stocks in peatland forests were an order of magnitude larger in comparison to forests on mineral soil. On a landscape 

level, these peatland SOC stocks had the largest influence on calibrated the moisture optimum, when they were included along 

with fluxes in optimization. This could be inferred from the same calibrated moisture optimum when using calibration with 

only SOC or SOCCO2 as data source, whereas for only CO2 based calibration the optimum differs. The function implicitly 

accounted for relative contribution of C fluxes from short term biogeochemical processes in a long-term SOC accumulation. 570 

Thus, for accurate estimates of the boreal forest soil carbon pools with Yasso07 model, the SOC accumulation related to 

inhibition of decomposition with increasing wetness was more pronounced than the one related to dryness. 

This study illustrated the limitation of the default moisture functions used for peatland forest soil C modelling. Also, the 

unimodalnon-monotonic Ricker function with a proposed moisture optimum in well-drained mineral soils needs further 

evaluation with regional boreal forest data. The exact representation of the functional form of the soil moisture dependency is 575 

characteristic to conditions of our study e.g., the distribution of organic and mineral soil forests in the data.  Broader 

extrapolation of the conclusions e.g., to climate change or forest management on drained peatlands would require more model 

testing with spatially larger data and lower water levels in forests on organic soils. However, Iif the dry soil moisture optimum 

of litter decomposition in forests on well drained mineral soils of boreal forest landscape proves to be robust, then in the future 

warmer and drier climates the boreal forest could be expected to enhance soil C emissions to the atmosphere due to water level 580 

drawdown of presently water-saturated peat soils with large C stocks. In contrary However, rewetting of previously drained 

peatlands could be expected to reduce soil C emissions, turning SOC loss to long-term C sequestration.  

6 Data and code availability 

The input data (soil CO2 fluxes, soil temperature and moisture, air temperature and precipitation, tree stand and understory 

inventory, and soil C stocks) as well as the analysis (R codes) needed to run the Yasso07 model versions and reproduce the 585 

results of this study are available on Zenodo, https://doi.org/10.5281/zenodo.8111475. 
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Figure 1. Infrared areal image showing the location of nine studied forest/mire types forming a transect of approximately 450 

m on the northern hillslope in Finland (61º 47', 24º 19'). The series of hemispherical images of forest stands on the top of the 

aerial image show the increasing gradient in the canopy openness from upland forests (left) to mires (right). The series of soil 

profiles show the increasing gradient of the organic layer depth. The images in the series arranged from left to right mimic the 860 

site type location on the slope from the hill to depression. Sites range from upland (1) xeric, (2) sub-xeric, (3) mesic  and (4) 

herb-rich forest types (CT - Calluna, VT - Vitis Idaea, MT - Myrtilus, OMT - Oxalis-Myrtillus), through paludified forest - 

mire transitions (5 - 7) (OMT+ - Oxalis-Myrtillus Paludified, KgK – Myrtillus Spruce Forest Paludified, KR – Spruce Pine 

Swamp), to sparsely forested mires/peatlands in depression (8 - 9)  (VSR1 and VSR2 - Tall Sedge Pine Fen).  
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 865 

Figure 2.  Forest/mire site type specific observations of soil organic carbon (SOC) stocks (kg C m -2, summed up to 1 m) and 

the mean volumetric soil water content (SWC) at 10 cm depth (%) (with error bars showing one standard deviation of all 

measured values) (a) in comparison to their distributions of heterotrophic soil CO2 emissions/respiration measurements (Rh, 

gCO2 m-2 h-1) and Rh expressed as the emitted C fraction per site specific SOC stock (C SOC-1 ppm h-1) (b). The CT, VT, MT, 

and OMT types represent upland forests, OMT+, KgK, and KR forest-mire transitions, and VSR1 and VSR2 mires. The 870 

boxplot horizontal lines show 25th and 75th interval with median in between, and 5th and 95th confidence interval (whiskers).  
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Figure 3. The three years’ time series (2004 - wet, 2005 - typical, and 2006 - dry) of instantaneous measurements of  a) soil 

heterotrophic respiration (Rh, gCO2 m-2 h-1, positive sign), b) soil temperature at 5 cm depth (°C), and c) soil moisture at 10 cm 

depth (%)) of 9 forest/mire sites (4 upland forests (CT,MT, and OMT), 3 forest-mire transitions (OMT+, KgK, and KR) and 2 875 

mires (VSR1 and VSR2). The sites are arranged from left to right according to their position on the slope (see Fig. 1).  
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Figure 4. The optimized environmental modifier of default decomposition rates ξAR (Eq. (3)) (coupled with Yasso07 model) 

drawn with mean posterior values of parameters  and their confident intervals (dashed lines) (Table 1) for separate responses 880 

to (a) soil temperature at 5 cm, ξAR = f(T5) when f(SWC10) = 1, (b) to soil water content at 10 cm, ξAR = f(SWC10) when f(T5) 

= 1. The functions were fitted based on only CO2, SOC and CO2, or only SOC data. 
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 885 

Figure 5. The colors and contour lines showing optimized environmental modifier of default decomposition rates ξARD (Eq. 

(3)) (coupled with Yasso07 model) drawn with mean posterior values of parameters (Table 1) for combined responses to soil 

temperature at 5 cm, ξAR = f(T5) and to soil water content at 10 cm, ξD = f(SWC10) based on only SOC (a), SOC and CO2 (b), 

or only CO2 (c) data. In the panels of combined ξAR white circles show pairs of corresponding monthly means of T5 and SWC10, 

and the black circles show the annual T5 and SWC10 means for 9 forest/mires site types. 890 
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Figure 6. Scatterplots between observed SOC (kg C m-2) and Rh (g CO2 m-2 hour-1) from the forest-mire ecotone against 

modelled values with the two versions of Yasso07 model (i) Y07.ξTW – Yasso07 coupled with the default environmental 

modifier (ξT, Eq. (3)) based on air T and precipitation with global parameter set (Tuomi et al., 2011) (applied for CT…KR 

mineral and organo-mineral soil forest sites) and with the reduction of decomposition rates by 65% for wetlands (Goll et al., 895 

2015, Kleinen et al., 2021) (applied for VSR1, VSR2 mires sites), and (ii) Y07.ξAR - Yasso07 coupled with environmental 

modifier (ξAR, Eq.3) based on based on SOC, SOC-CO2, or CO2 data (a, d) compared with 1:1 line (dashed red line). The 

model residuals normalized with the observations (norm. SOC and CO2 residuals = residuals/observations) are plotted against 

the T5 and SWC10 with the trendlines of the linear fits and with their confident intervals (dashed lines) (b, c, e, and f). 
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Table 1. The posterior distribution of parameters of Yasso07 soil carbon model (parameters same as in Table S1) coupled with 

environmental function ξD (Eq. (3), parameters d, Q10, SWCopt) optimized with observations of SOC stocks (p (θ | SOC)) or 

SOC stocks and CO2 emissions (p (θ | SOC-CO2)) from forest/mire ecotone sites using Bayesian data assimilation (Hartig et 

al., 2012). The PSRF stands for Gelman–Rubin potential scale reduction factor and MAP for a maximum a posteriori 

probability. 1/ae-1. The SWC10 optimum (the SWC10 when the SOC decomposition in the foreal forest -mire ecotone was at 905 

optimum) was inferred as 1/ae-1 and ranged between 14 and 27 % (for aMAP SOC and aMAP CO2, respectively). 

Posterior 

p(θ | data) 

ξAR 

parameters 
PSRF MAP 2.50 % 50 % 97.50 % 

SOC Q10 1.001 2.239 1.157 2.503 4.72 

SOC a 1.001 19.576 18.172 19.271 20.538 

SOC ae1 1.002 0.099 0.032 0.077 0.099 

SOC be1 1.001 0 0 0 0.002 

SOC, CO2 Q10 1.016 2.342 1.611 2.213 3.103 

SOC, CO2 a 1.015 19.15 18.725 19.261 19.93 

SOC, CO2 ae1 1.017 0.015 0.011 0.029 0.121 

SOC, CO2 be1 1.024 0.01 0.01 0.01 0.012 

SOC, CO2 ae2 1.018 0.5 0.453 0.496 0.5 

SOC, CO2 be2 1.026 0.995 0.337 0.982 0.999 

CO2 Q10 1.004 4.897 3.525 4.57 4.982 

CO2 a 1.001 10.066 10.07 11.741 16.21 

CO2 ae 1.008 0.5 0.48 0.496 0.5 

CO2 be 1.01 0.999 0.923 0.986 0.999 
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Table 2. The SOC and CO2 performance statistics of Yasso07 (Y07) model versions against the measured data in boreal forest-910 

mire ecotone where N is the number of observations, MAE is the mean absolute error, MBE is the mean bias error, RMSE is 

the root mean square error, R2
adj is the adjusted coefficient of determination, and AIC is the Akaike Information Criterion. The 

units of MAE, MBE, and RMSE are in kg C m-2 and kg CO2 m-2 month-1 for SOC and CO2, respectively. 

Data Yasso07 model MBE MAE RMSE  R2
adj AIC 

SOC    Y07.ξTW -54.97 54.97 76.67 0.05 87.06 

SOC    Y07. ξAR.SOC -1.76 7.59 9.18 0.97 65.95 

SOC    Y07. ξAR.SOCCO2 -6.03 7.63 10.25 0.97 66.95 

SOC    Y07. ξAR.CO2 -42.17 43.98 62.2 0.63 83.17 

CO2     Y07.ξTW 0.01 0.11 0.16 0.6 -233.65 

CO2     Y07. ξAR.SOC -0.04 0.12 0.16 0.44 -237.37 

CO2     Y07. ξAR.SOCCO2 -0.06 0.12 0.16 0.44 -238.31 

CO2     Y07. ξAR.CO2 0 0.1 0.13 0.63 -266.9 

 

 915 


