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Abstract.  

Predicting how increased atmospheric CO2 levels will affect water usage by whole mature trees remains a 

challenge. The present study investigates diurnal (i.e. daylight) water usage of old growth oaks within an old growth 

forest during an experimental treatment season April–October inclusive. Over five years, 2017–2021 inclusive 15 

(years 1–5 of the experiment),2022, we collected individual tree data from eighteen oaks (Quercus robur L.) within 

a large-scale manipulative experiment at the Birmingham Institute of Forest Research (BIFoR) Free-Air CO2 

Enrichment (FACE) temperate forest in central England, UK. Diurnal tree water usage per day (TWU, litres d-1) 

across the leaf-on seasons was derived from these data. Six trees were monitored in each of three treatments: 

FACE infrastructure arrays of (+150 µmol mol-1) elevated CO2 (eCO2); FACE infrastructure control ambient CO2 20 

(aCO2) arrays; and control Ghost (no-treatment-no-infrastructure) arrays. TWU was linearly proportional to For 

each tree, sap flux demonstrated a circumferential imbalance across two stem orientations. Median and peak 

(95%ile) diurnal sap flux and TWU increased in the spring from first leaf to a broad summer maximum (July–

September) and declining more slowly towards full leaf senescence (October–November). Water usage varied 

between individual oaks by size. TWU was linearly proportional to tree stem bark radius, Rb (ca. 3.1 litres d-1 mm-25 

1, 274 mm  Rb  465 mm). Rb was also a very good proxy for projected canopy area, Ac (m2), which was linearly 

proportional to Rb (ca. 617 m2 m-1). Applying the stem-to-canopy relation implied a mean July water usage of ca. 5 

litres d-1 m-2 of projected oak canopy in the BIFoR FACE forest. We normalised TWU by individual tree Rb, to 

derivewhich we call TWUn (litres d-1 mm-1). We report whole-season treatment effects, differing year on year, 

alongside July-only results. In 2019 and 2021 seasons, after correction for repeated-measures, there was a 13–30 

1614–19%, reduction in eCO2 TWUn compared with aCO2 TWUn, with a marginal 43% reduction in 2020. In July 

2019 there was a 26% reduction in TWUn under eCO2 treatment, but these model results were not statisticallyno 

significant. differences in other July data. Control trees exhibited a significant 2720–37% increase in aCO2 TWUn 

compared with Ghost TWUn consistently in whole-seasonseasons  and  July-only comparisons (10–48% increase) 

during 2019, with lesser, non-significant fixed effects in 2020 and –2021. Several factors may contribute: the 35 

installation or operation of FACE infrastructure; array-specific differences in soil moisture, slope, soil respiration; or 

the mix of sub-dominant tree species present. Our results of normalised per-tree water savings under eCO2 align 

with sap flow results for other FACE experiments and greatly extend the duration of observations for oak, 

elucidating seasonal patterns and interannual differences.  Our tree-centred viewpoint complements leaf-level and 

ground-based measurements to extend our understanding of plant-water usage in old growth oak forest.  40 
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1 Introduction 

Long-term manipulation experiments test enable prediction of how environmental drivers, such as, under climate 

change, increased atmospheric carbon dioxide levels, and climate extremes might affect plants and ecosystems. 

Plant hydraulics are adapted to expected ranges of environmental parameters, with larger plants exhibiting greater 

resilience to wider parameter variation due to their ability to maintain water and food reserves. Large trees can 45 

maintain their transpiration rates even during water stress but remain vulnerable (Süßel and Brüggemann, 2021). 

To maintain transpiration demands, trees accommodate to: diel variation in solar radiation; respiration fluctuation; 

high temperatures; and seasonal soil water deficits. Short-term mechanisms include stomatal regulation, use of 

reserves as evidenced by stem diameter variations (Sánchez-Costa et al., 2015), use of stored plant water (Köcher 

et al., 2013),, and use of available water at variable soil depth (David et al., 2013; Flo et al., 20211; Gao and Tian, 50 

2019; Nehemy et al., 2021). Longer term strategies include development Development of resilient root structures 

(David et al., 2013; Flo et al., 2021) and minimisation of embolism mitigated by different xylem structures (Gao and 

Tian, 2019) may also occur.). The ability of mature trees to withstand climate extremes may rely in part on using 

these buffering traits which act to prevent permanent damage and maintain viability (Iqbal et al., 2021; Moene, 

2014). This prompts the further question of how increasing atmospheric carbon dioxide levels will affect the 55 

hydraulic resilience of trees (section 1.1, below). 

The response of woody plants to drought varies considerably by species  (Leuzinger et al., 2005; Vitasse et al., 

2019), location (e.g. north versus south in Europe (Stagge et al., 2017)), soil characteristics such as soil texture 

(Lavergne et al., 2020) and combinations thereof (Fan et al., 2017; Salomón et al., 2022; Sulman et al., 2016; 

Venturas et al., 2017). Trees require water/ water vapour at all stages of life and experience insufficient water at 60 

times (e.g. under elevated temperatures and drought), so tree species have evolved different root traits 

(Montagnoli, 2022) and hydraulic characteristics (Sperry, 2003) to maintain their fitness to their environment. 

Volkmann et al., (2016) used rainwater isotopes to track soil water sources for sessile oak (Quercus petrea) and 

beech (Fagus sylvatica). Sánchez-Pérez et al., (2008) studied oak (Quercus robur), ash (Fraxinus excelsior) and 

poplar (Populus alba). Both studies found that use of soil water at different depths varied between species and 65 

seasonal variation of climatic conditions. Trees therefore exhibit variable resilience to water shortage/ excess and 

other environmental stressors (Brodribb et al., 2016; Choat et al., 2018; Grossiord et al., 2020; Landsberg et al., 

2017; Martínez-Sancho et al., 2022; Niinemets and Valladares, 2006; Schäfer, 2011; Süßel and Brüggemann, 

2021) with a broad spectrum of sometimes species-specific strategies and coping mechanisms (Schreel et al., 

2019). For example, large oak trees, the focus of the current study, may maintain their transpiration rates 70 

(compared to beech) during mild water stress but remain vulnerable to embolism and root damage (Süßel and 

Brüggemann, 2021). 

1.1 Future-forest atmospheric carbon dioxide and water usage 

Primary producers may respond to elevated CO2 (eCO2) levels by assimilating and storing more carbon, which for 

plants containing chlorophyll happens during photosynthesis. Global carbon and water cycle models (Guerrieri et 75 

al., 2016; De Kauwe et al., 2013; Medlyn et al., 2015; Norby et al., 2016) predict that, at least until the middle of 

the 21st century, trees and plants could potentially photosynthesise more efficiently, which may induce increased 

carbon storage. This could be beneficial for individual tree productivity. Stomatal regulation determines the trade-

offs between carbon assimilation and water loss and, for a given leaf area and stomatal density, determines the 

rate and quantity of water usage seen in the stems of woody plants. Water usage at tree level is, therefore, a 80 
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strongly integrative measure of the whole plant response to environmental drivers (such as temperature and 

precipitation) and experimental treatments (such as eCO2). 

Untangling the canopy water exchange and soil moisture hydraulic recharge dynamics within forest Free-Air CO2 

Enrichment (FACE) experiments can be complex, but responses to eCO2 manipulations (including stepwise 

increases (Drake et al., 2016)) inform our understanding of plant responses to climate change scenarios. Specific 85 

studies concerning transpiration and water savings of eCO2 responses (Ellsworth, 1999;  Li et al., 2003) have 

already improved the model predictions (De Kauwe et al., 2013; Donohue et al., 2017; Warren et al., 2011a) and 

here we seek additional evidenceimprovements to mechanistic process understanding that will enable further 

advances to predictive model capacity.   

Experimental research into ecohydrological responses of old growth and long-established deciduous forest to 90 

changing atmospheric CO2 levels has been limited. The Web-FACE  study (Leuzinger and Körner, 2007) reported 

on old individuals of temperate old growth species and found that eCO2 reduced water usage in Fagus sylvatica L. 

(dominant) and Carpinus Betula L. (subdominant) by about 14% but had no significant effect on the water usage 

of Quercus petraea (Matt.) Liebl., the other dominant species present. The There were a small number of trees (six 

Q. petraea) of a Quercus species included in Leuzinger and Körner’s (2007) study, were with water savings 95 

monitored to give measurements ofby accumulated sap flux (normalised against peak values in each tree) over 

two 21-day periods. Changes in water usage by long-establishedold growth oak trees at eCO2, measured when 

measuring for longer periods (greater than a month) across the leaf-on season, have not previously been reported. 

Previous forest FACE experiments which reported tree/standThe paucity of studies of the water usage of mature 

temperate trees under eCO2 significantly weakens model-data comparisons at FACE sites (De Kauwe et al., 2013).  100 

Warren et al., (2011a)),) reviewed the forest FACE experiments  which, apart from Web-FACE, all constituted 

younger deciduous and mixed plantations less than thirty years old (Schäfer et al., 2002; Tricker et al., 2009; 

Uddling et al., 2008; Wullschleger & Norby, 2001; Wullschleger et al., 2002). Some of these eCO2 treatmentsstudies 

are long-term (durations of over (> ten years in some cases) but all are limited in their period of monitoring sap 

flow, maximum continuous data periods being covered by Schäfer et al., (2002) at Duke forest USA (1997-2000) 105 

and lesser periods by Oak Ridge National Environmental Research Park (ORNL) USA and POP/ EuroFACE 

(Wullschleger & Norby, 2001; Tricker et al., 2009). Larger numbers of  young trees (252 aspen–birch) were 

monitored for sap flux by Uddling et al., (2008), whereas most recent sap flow studies of oak have either been 

single trees of different species (e.g. Steppe et al., 2016) or short-term proof-of-concept studies using experimental 

instrumentation (Asgharinia et al., 2022.). There are further (2010 onwards) sap flux studies of deciduous oak from 110 

studies which do not manipulate CO2 but which offer helpful data for comparison, for example within Europe 

(Aszalós et al., 2017; Čermak et al., 1991; Hassler et al., 2018; Perkins et al., 2018; Schoppach et al., 2021; Süßel 

and Brüggemann, 2021; Wiedemann et al., 2016) and North America (Fontes and Cavender-Bares, 2019). Robert 

et al. (2017) have reviewed the hydraulic characteristics of oakthese old growth species from multiple studies which 

help us to place our results in context. Within the UK maritime temperate climate, only a few ecohydrological studies 115 

(e.g. Herbst et al., 2007; Renner et al., 2016) have previously considered the sap flow responses to water 

availability and drought for mixed forestold growth Quercus species. 

The FACE method was developed to eliminate chamber/infrastructure influences (see, e.g., (Pinter et al., 2000; 

Miglietta et al., 2001), and provides good control over CO2 elevation levels (e.g. Hart et al., 2020). Nevertheless, 

few studies have explored the effects of the experimental infrastructure (e.g., on the resulting microclimate,  (LeCain 120 

et al., (2015)).). Disturbance of the vegetation was kept to a minimum while constructing BIFoR FACE (Hart et al., 

2020) but some clearing of ground flora and removal of coppice stems did occur plausibly reducing competition 
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and making more soil water available to the oaks. Other possible effects of infrastructure on water availability are 

discussed in section 3.5.2. 

1.2 Improving global vegetation models and questions of scale. 125 

Global vegetation models have been developed based on leaf-level plant knowledge alongside that of soil-tree-

atmosphere exchange (e.g. Medlyn et al., 2015). These models have predicted reduced canopy conductance, Gs 

and increased run-off in future climate scenarios, but an important gap has been identified between estimated and 

observed water fluxes (De Kauwe et al., 2013).  

Canopy/ leaf transpiration estimates from stem xylem sap flux (Granier et al., 2000; Wullschleger and Norby, 2001; 130 

Wullschleger et al., 2002), use the parameter canopy conductance (Gs) to reflect how the whole canopy transpires 

rather than concentrating on individual leaf stomatal conductance to water.  Measurements of Gs and transpiration 

and partitioning of evapotranspiration in deciduous forests (Tor-ngern et al., 2015; Wehr et al., 2017) have now 

clarified relationships between canopy parameters and environmental variables PAR, VPD and precipitation. Long-

term carbon and water flux data from flux towers in forest ecosystems (e.g. Ameriflux (Baldocchi et al., 2001), 135 

Euroflux (Valentini, 2003), FluxNet (Baldocchi et al., 2005)) and satellite datasets such as EOS/Modis worldwide 

(Huete et al., 1994), have provided canopy level and landscape wide data. Field based environmental manipulation 

studies, such as FACE, can provide data on individual parameters and processes to inform and challenge the 

models.  

At the forest scale, studies of the effects of European drought (2018-2019) on forested landscapes have shown 140 

that recovery time for surviving trees may be several years, affecting both plant growth, stem shrinkage (Dietrich 

et al., 2018) and branch mortality may be affected for several yearsduring that time, especially for deciduous 

species in mature or old-growth forests (Salomón et al., 2022). At this forest scale (Keenan et al., 2013; Renner et 

al., 2016), there is also a more complex impact on ecosystem and atmospheric demands as planetary-scale CO2 

levels increase, affecting boundary layer feedbacks.  145 

In contrast to forest- and leaf-scale studies, canopy transpiration estimates from stem xylem sap flux (Granier et 

al., 2000; Poyatos et al., 2016; Wullschleger and Norby, 2001; Wullschleger et al., 2002Granier et al., 2000) reflect 

how the whole canopy transpires rather than concentrating on individual leaf stomatal conductance to water. the 

present study is tree-focused, bridging model-informing and bridges the data gaps identified previously identified 

(De Kauwe et al., 2013; Medlyn et al., 2015).) in respect of model-data scale mismatch. Tree-scale studies have 150 

provided essential data for calibration and validation of tree-water models  (De Kauwe et al., 2013; Wang et al., 

2016;), identified key parameters driving responses to expected water shortages (Aranda et al., 2012) and 

compared species differences in mature tree responses to ambient (Catovsky et al., 2002) or eCO2 (Catoni et al., 

2015; Tor-ngern et al., 2015). Xu and Trugman, (2021) have updated the previous empirical parametric and 

mechanistic model approachesparameter approach to global vegetation modelling, reinforcing the need to use 155 

measured tree parameters (such as sapwood area) to improve model predictions of climate change response. 

Here we focus on whole-tree species’ characteristics and link these parameters to diurnal (i.e. daylight) tree water 

usage per day (TWU, litres d-1) from marginally intrusive stem xylem sap measurements. These measurements 

provide, affirming the influence of leaf-on season precipitation and solar radiation/ air temperature. Measurements 

of xylem sap flux are marginally intrusive, providing highly time-resolved data of plant water usage for several years 160 

with minimal maintenance. Heat-based measurement techniques (Forster, 2017; Granier et al., 1996; Green & 

Clothier, 1988) have been used over the past 40 years for measurements of plant xylem hydraulic function 
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(Landsberg et al., 2017; Steppe and Lemeur, 2007), with automated data capture enabling increasingly realistic 

models of whole tree xylem function.  

1.3 Objectives, research questions and hypotheses 165 

This study provides new data from a field-based FACE environmental manipulation experiment to characterise 

seasonal and inter-year patterns of daily water usage by old growth oak trees under eCO2. elevated CO2 and 

taking into account the effect of FACE infrastructure. We test for significant differences between treatments within 

these water usage distributions and patterns and take into account the effect of FACE infrastructure. . The paper 

examines the limitations of water usage measurement by compensation heat pulse (HPC) sap transducers. It also 170 

relates diurnal tree water usage per day (TWU, litres d-1) to measurable tree traits (stembark radius, Rb (mm) and 

canopy area, Ac (m2)) and examines variation of TWU with environmental drivers and soil moisture. It also examines 

the limitations of water usage measurement by compensation heat pulse (HPC) sap transducers. 

The following specific research questions and associated hypotheses are considered: 

1. Is there a measurable difference in TWU distribution under eCO2 compared to (infrastructure-containing) 175 

ambient CO2 control (aCO2) across the seasonal cycle? 

Hypothesis 1: A detectable eCO2 treatment effect on TWU is present, reducing TWU for eCO2 trees. 

2. Does the presence of FACE infrastructure measurably affect TWU? 

Hypothesis 2: TWU is greater in the presence of FACE infrastructure. 

2 Materials and Methods 180 

2.1 BIFoR FACE 

At the Birmingham Institute of Forest Research (BIFoR) FACE experiment in central England, UK, (Hart et al., 

2020), we investigate soil-plant-atmosphere flows and fluxes of energy and water (Philip, 1966). We monitor soil-

xylem-stomatal responses to aCO2 and eCO2 levels in a mixed deciduous temperate forest of approximately 180-

year-old trees. The eCO2 treatment represents conditions expected by the middle of the 21st century (see shared 185 

socioeconomic pathways (SSPs) in IPCC, 2021). This long-term experiment presents a rare opportunity to gain 

new insight into the complexity of water usage of old growth forest trees in a changed atmospheric composition. 

BIFoR FACE is unique amongst free-air experiments in its ability to study the ecohydrology of theseold growth 

pedunculate oaks (Quercus robur L., subsequently abbreviated to oak) under eCO2.  

The BIFoR FACE facility is in Staffordshire (52.801o N, 2.301o W), England, UK (Fig. 1). The forest is a circa 1840 190 

plantation of oak with Corylus avellana (hazel) coppice. Naturally propagated Acer pseudoplatanus (sycamore), 

Crataegus monogyna (hawthorn), Ilex aquafolium (holly) and smaller numbers of woody plants of other orders (e.g. 

Ulmus (elm), Fraxinus (ash)) of varying ages up to circa 100 years old are also present. Some subdominant trees 

e.g. sycamore, hawthorn and elm, impinge on the high closed canopy. Each experimental array, circa 30 m in 

diameter, was selected to contain circa six live old growth oak trees. There are nine experimental arrays: three with 195 

infrastructure injecting eCO2 (+150 µmol mol-1 or +150 parts per million by volume (ppmv)); three infrastructure 

controls injecting aCO2 (ca. 410 to 430 µmol mol-1 for 2017–2021 inclusive2022); and three Ghost (no-treatment-

no-infrastructure) controls. Data were collected for all three FACE facility treatments. Here we concentrated on oak, 

the dominant species, with sap flow monitoring restricted to two oaks in each of the nine experimental arrays 

totalling eighteen trees.  200 
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The climate at the site is temperate maritime, with a pre-experimental mean annual temperature of 9 ◦C and mean 

annual precipitation of 690 mm ().  

We compare individual tree’s sap flux and TWU responses under the three treatments across the leaf-on seasons 

for these early experimental FACE years looking at within-year and inter-year relationships. We also describe daily, 

monthly and seasonal changes to sap flux and TWU for mature oak over five years and discuss how these results, 205 

from our tree-centred viewpoint, will improve our understanding of future-forest water dynamics of old growth forest 

contributing to development of more realistic ecohydrological vegetation, soil and landscape models.  

These usages may differ from other authors’ usage (). 
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Figure 1: BIFoR FACE research woods showing three treatment types and nine arrays.details of three arrays. Below 210 
are oak positions in all arrays. Small brown rings within arrays (lefthand picture) indicate oak trees monitored for xylem 
sap flow. Infrastructure treatment arrays are paired for similar soil conditions (righthand picture). Top left: aerial 
view,photo image is adapted (with permission) from Ch. 7, Fig. 7 of Bradwell (2022). Top right: location of BIFoR FACE 
within the British Isles;Top map is cropped from https://d-maps.com/m/europa/europemin/europemin01.gif . Middle: 
Examples of three arrays, one per treatment, showing small brown rings within arrays to indicate oak trees monitored 215 
for xylem sap flow. Bottom left: oak positions in all arrays. Bottom right: Infrastructure treatment arrays are paired for 
similar soil conditions.  

Typical experimental arrays showing target oak trees are shown in Fig. 1. Parameter symbols used in this paper 

are covered in Appendix A: Table A1. The term ‘sap flow’ is used generally when referencing heat transducer 

methods to measure the water movement through sapwood. Use of terms ‘sap velocity’ and ‘sap flux’ are defined 220 

in Tables A1 and A2. These usages (from Lemeur et al. 2009; Tranzflo Manual 2016) may differ from other authors’ 

usage (e.g. Poyatos et al., 2020). 

2.2 Measurements overview 

Our experiment is a triple replicated (array) between-group (treatment type) design within which we selected our 

sample of oak tree individuals for continuous monitoring. There are three manipulation types from which we select 225 

two individual trees in each array (total sample six trees per treatment). The individuals were not changed during 

the continuous experiment, neither were the measurement devices removed. 

Here we report data from five treatment seasons, July 2017 to end of October 2021.  We focusThe study focuses 

on diurnal (i.e. daylight) responses within our experimental treatment season April–October inclusive. Sap flux and 

https://d-maps.com/m/europa/europemin/europemin01.gif
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TWU datasets for the eighteen old growth oaks are calculated from half-hourly tree stem sap flow measurements 230 

derived from HPC transducers. TWU data is accumulated from sap flux, then analysed monthly within the treatment 

season across each year. For all xylem sap flux monitored oak trees, tree identification, treatment type, array 

number, along with their stem circumference and average Rb, at probeset insertion point are shown in supporting 

information (Table S1). 

Figure S1 shows the key measurement points relating to tree hydraulics in this project. This sap flow study is 235 

supported by other core environmental (detailed below) and soil data available at our FACE experimental site 

(MacKenzie et al., 2021). Table S2 shows instrumentation types and related parameters used for analysis within 

this paper which are described below. 

We experienced early leaf-on herbivory attacks on oaks by European Winter moth larvae, especially in 2018 and 

2019 (Roberts et al., 2022), decreasing leaf area by 20-30% and affecting the timing of canopy closure. A longer 240 

dry period occurred in the meteorological summer of 2018 (Rabbai et al., 2023), with wide variation in summer 

monthly precipitation across the study years. From 2016-2021 (treatment years) the mean annual precipitation was 

750 mm  16% and the mean annual temperature was 10.6 ◦C +10%/-1% measured on or near to site, both (+9% 

and +18% respectively) higher than the previous reported means (see above). PrecipitationClimate during the 

measurement period is further discussed below with additional detail further in the supplementary information 245 

(Table S14, Figs. S10, S14, S15 and S16)..  

2.3 Seasonal definitions 

We define a plant hydraulic year as being, from the start of the dormant season (1st November) to the end of 

senescence (31st October). The seven months of CO2 treatment per year (with six months of leaf-on 

photosynthesis) do not easily divide into standardised meteorological seasons (Spring, Summer), so we define our 250 

months of interest, including non-treatment months as shown in Table 1. The table includes two months, March to 

April of pre-leaf growth when oak sap starts to rise. 

Season length between first leaf and full senescence/ first bare tree is relatively constant at 8 months for the years 

studied, although start and end vary year-on-year (Table 1). Canopy greenness, recorded as part of the PhenoCam 

network (https://phenocam.nau.edu/webcam/roi/millhaft/DB_1000/) shows a very rapid decline towards wintertime 255 

values from the beginning of November. We have not collected phenology data specific to our target trees to 

capture any variability amongst individuals (see Sass-Klaassen et al., 2011).  

2.4 FACE and meteorological measurements 

Local precipitation (from a mixture of sources including Met. towers, see MacKenzie et al., (2021 )) was recorded. 

Treatment levels of eCO2, diurnal CO2 treatment period, top canopy air temperature (Ta , o C) and total solar 260 

radiation (TG, Watt m-2), (see Figs. S9 & S11), were available from the FACE control system (Hart et al 2020; 

MacKenzie et al 2021). Data were averaged across the six infrastructure arrays for TG and Ta as the Ghost arrays 

have no FACE measurements. Set point levels of ambient CO2 were used to control treatment application in the 

eCO2 arrays. There are also increases in the ambient levels of CO2 present across the years of this study of about 

3.5 ppmv year-1. The enrichment level is unique to BIFoR FACE at +150 µmol mol-1, tracking the increasing ambient 265 

levels of CO2 present across the years of this study (ca. 410 to 430 µmol mol-1 2017–2022, Fig. S12) and altering 

the relative percentage change of eCO2 : aCO2 year on year by about 1% from 36% (beginning 2018) down to 35% 

(end 2021) (Fig. S12).  
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Water inputs of throughfall precipitation under the oak canopy (within 2 to 3 metres of an oak stem and situated 

near a soil moisture monitoring position) were measured in all arrays, with all transducers positioned under an oak 270 

canopy near the stem. Pre-treatment (2015-2017 for all arrays) and on-site soil and throughfall data were used to 

characterise the site. Supplementary (2018 onwards) throughfall/ soil monitoring sites were added (see Mackenzie 

et al. (2021)). These data were captured by the same CR1000 datalogger as the sap flow data. Given the frequency 

of rainy days during the treatment season we have not segregated our analyses into rainy and dry days. 

Calendar 
months 

FACE 
Treatment 

season label 

Note Oak phenology at BIFoR FACE 

   2017 2018 2019 2020 2021 

March – April 
(eCO2 starts 
beginning 

April) 

Budburst & 
first leaf 

March is  pre-treatment. 

First leaf dates for oak 

shown 

6 April * 25 April * 29 Mar * No data* 
(c. 6th 
April) 

27 April * 

May – June Early leaf-on Includes canopy closure 

early leaf of oak 
- - - - - 

July – August Mid leaf-on  - - - - - 

September – 
October 
(eCO2 until 

end October) 

Late leaf-on Includes start of senescence 
i.e. first tint 

6 Sept 12 Sept 1 Oct 15 Sept 28 Sept 

November – 

Feb 
Dormant All remaining non-treatment 

months 
- (after 21 

Nov)** 
26 Nov** (after 03 

Nov)** 
07 Dec ** 

  Assumed leaf-fall season  6 Sept 
2017 to 
25 April 
2018 

12 Sept 
2018 to 
29 Mar 
2019 

1 Oct 
2019 to 
c. 6 April 
2020 

15 Sept 
2020 to 
27 April 
2021 

28 Sept 
2021 to 
24th April 
2022 

        

Table 1: Definition of treatment season periods and dates for oak phenology at BIFoR FACE according to Nature’s 275 
Calendar criteria for years 2017–2021 inclusive ((note this excludes canopy closure data were- not recorded). First tint 
is also recorded for year 2016 as 4th Oct. * On-site first leaf data (not obtained in 2020 due to the Covid-19 pandemic; 
6th April 2020 was noted as budburst, unverified first leaf is recorded as 24th April 2020). Note: Separate records of 
leaf-fall season are recorded for LAI calculation purposes as Nature’s Calendar data does not discriminate first leaf 
fall by leaf colour. **First bare tree date recorded. Nature’s Calendar link: 280 
(https://naturescalendar.woodlandtrust.org.uk/). Phenocam data are additionally available for all years 
(https://phenocam.nau.edu/webcam/roi/millhaft/DB_1000/). 

2.41.1 FACE and meteorological measurements 

Local precipitation (from a mixture of sources including Met. towers, see). There are also increases in the ambient 

levels of CO2 present across the years of this study of about 3.5 ppmv year-1. The enrichment level is unique to 285 

BIFoR FACE at +150 µmol mol-1, tracking the increasing ambient levels of CO2 present across the years of this 

study (ca. 410 to 430 µmol mol-1 2017–2022, Fig. S11) and altering the relative percentage change of eCO2 : aCO2 

year on year by about 1% from 36% (beginning 2018) down to 35% (end 2021) (Fig. S11). Soil and throughfall 

precipitation data collection 

2.62.5 Water inputs of throughfall precipitation under the oak canopy (within 2 to 3 metres of an oak stem 290 
and situated near a soil moisture monitoring position) were measured in all arrays, with Fig. S2 
showing a typical installation set-up. Pre-treatment (2015-2017 for all arrays) and on-site soil and 
throughfall data were used to characterise the site. Supplementary (2018 onwards) throughfall/ soil 
monitoring sites were added (see Mackenzie et al. (2021)). These data were captured by the same 

https://naturescalendar.woodlandtrust.org.uk/
https://phenocam.nau.edu/webcam/roi/millhaft/DB_1000/
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CR1000 datalogger as the sap flow data. We have not segregated our analyses into rainy and dry 295 
dayTree selection 

Variation between individuals in treatment plots can arise from their precise location within an array or from inherent 

(biological) variation between individuals as well as different treatments (Chave, 2013). This individual-tree 

experiment design aims to minimise untypical variation. Accordingly the following criteria were used to select trees 

for sap flow monitoring: 300 

• canopy cover completely within the array (eCO2 & aCO2 arrays) 

• central within the plot near logger and adjacent to access facilities at height (eCO2 & aCO2 arrays, for 

sampling and porometry access) 

• straight stem, preferably with little epicormic growth 

• no large dead branches within the canopy which might affect the comparative biomass of the tree 305 

• unlikely to experience seasonal standing or stream water at the base 

Target oak trees conforming to the above were chosen for monitoring were also chosen to suit physical limitations 

of the transducer-to-logger to logger constraints (e.g. cabling lengths including extensions to same).rather than 

truly randomly.  

2.72.6 Tree characteristics 310 

The tree size measurement approach is shown in Fig. S3. All oak trees were of similar height (circa 25 m). 

StemBark circumference (metres) at insertion height of probes was measured at installation (from 2017 onwards), 

and in subsequent winters (Jan 2020–Feb 2022). The range and mean-per-treatment values in 2022 are tabulated 

(Tables S1 and S3). We note that tree size will affect TWU (Bütikofer et al., 2020; Lavergne et al., 2020; Verstraeten 

et al., 2008).  315 

Canopy spread of all target oak trees was measured, using clinometer around installation date (2017-2018) and 

laser distance device, to identify canopy extent (canopy radius) at the four cardinal compass points (Hemery et al., 

2005).repeated for all oaks in early 2022 (Fig. S3). We assume that the two-dimensional canopy area, Ac (m2),Ac, 

derived from the mean canopy diameter plus stem diameter, is correlated with canopya good approximation to 

actual canopy spread and hence the whole canopy surface experiencing leaf transpiration. Canopies were first 320 

measured around installation dates (2017-2018), then repeated for all oaks in early 2022.For trees of similar height 

we assume that allometric shape to estimate whole canopy volume will be similar. On the second occasion in 2022 

we measured the asymmetry of each tree stem across the probeset cardinal positions (East-West) and right-angles 

to this (North-South) as a check of mean Rb  value for sap flux calculations. 

2.82.7 Xylem sap flux 325 

Details of the xylem sap flux measurement method and associated calculations are provided in Table A2 and 

Appendix C. Each target oak tree had two probesets, facing East and West facing (Fig. S2). Appendix B discusses 

the lower detection limitlimitations which the time-out characteristic places on this set of HPC data and consequent 

results. Validity of high value extrema is considered within our analysis. 

To determine whole tree sap flux several tree characteristics were used: (a) tree stem circumference at insertion 330 

point (to determine stem radius),, (b) bark thickness. From these data we derived tree stem cambium radius at 

insertion point (R, m) and subsequently heartwood radius (H, m) from sensor spacing. H could not be determined 

from 10 cm cores as these were not taken for all sap trees monitored. 
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The xylem sap flow installations in target trees commenced in Jan. 2017. All Ghost oak trees provided data from 

August 2017 and commissioning of all 18 oak trees was completed by autumn 2018. All oak sap flow installations 335 

were successful and a total of 12,259 days of individual tree data (770,667 diurnal sap flux measurements across 

all months) were processed for the 2017–2021 TWU analysis. Resulting data gaps in the earliest installations 

affected four of the 36 probesets installed in four trees August 2017 until September 2019.  

Figure 2: Showing sap probeset layout, spacing dimensions between probes and indicative illustration of Hatton et al., 
(1990) weighted sum histogram, where R (m) is the radius to the cambium and H (m) is the heartwood estimated radius, 340 
both at the probeset insertion height. All equations and variables also defined in Tables A1 and A2. Graphical insert is 

Fig. C1(b). 

In respect of quality assurance of raw HPC data, commissioning and failure data were recorded for each probeset. 

This enabled a combination of data file amendment (especially for the earliest installations on separate loggers) 

and post capture filtering to eliminate periods of invalid data for each probeset. 345 

Sap flux and whole tree water usage.Using cambium radius (R) data, estimated heartwood radius (H) (0.05 m 

smaller than the inner sensor radial position), along with transducer radius positions (rz), volumetric (half tree) total 

sap flux is calculated for each probeset (Fig. 3).  
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Example diel sap flux patterns for the Ghost arrays in August 2019 (before filtering to eliminate nocturnal data) are 350 

shown in Fig. S34(a), with East– and West–facing probesets in each column. The sap flux data still show minimum 

threshold levels (which vary by tree size) determined by the post-heat-pulse sampling period. It is noticeable that 

there is often circumferential imbalance in xylem sap flux in the East (lefthand column of Fig. S34(a)) and West 

(righthand column of Fig. S34(a)) probeset position data, which reflect the asymmetry in growth ring width around 

the stem typical in these old oakgrowth trees. The blank panels represent faulty probes (in two Ghost trees), which 355 

were corrected by autumn 2019. 

 

To compare individual tree responses across the leaf-on seasons we filter the half-tree sap flux parameters using 

the solar azimuth and solar radiation parameters captured from the FACE control instrumentation (solar azimuth > 

-6° and solar radiation > 0 W m-2) to give just daylight (diurnal) data. Where both probesets in a tree are providing 360 

good data, a mean whole tree sap flux is derived and accumulated into TWU (Fig. S34(b)). We had sufficient whole-

tree data to exclude single probeset results.  

There are day-to-day differences in TWU between trees in our study (e.g., Fig. S34(b)) even though all of them 

experience very similar environmental conditions and this pattern is replicated across the three treatment types. 

The TWU data reported here compare well to results from other studies (Table S4: David et al., 2013; Sánchez-365 

Pérez et al., 2008; Tatarinov et al., 2005; Baldocchi et al., 2001). 

2.92.8 Data processing, visualization and analysis 

Manually collected data was pre-processed as .csv files for import to ‘R’ (R version 4.4.1,).. Raw data from 

dataloggers were processed, visualised and consequently analysed using ‘R’ versions 3.6.2, 4.0.3 and 4.2.1 (R 

Core Team, 2020, 2021 and 2022), R Studio (RStudio Team, 2022) on Windows 10 x 64 (build 1909). Most Results 370 

figures were created using R package ggplot (Wickham, 2016). Other standard packages (e.g. lubridate) are listed 
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in the R scripts accompanying the data (see data availability, below).. Regressions between Rb and water usage, 

and between Rb  and Ac were calculated using the lm function. Box and whisker plots to visualise seasonal and 

monthly differences in sap flux and water usage between trees and treatments were generated in ggplot where 

standard Tukey (McGill et al., 1978) percentiles (median + interquartile range) whiskers (1.5 * IQR from each hinge, 375 

where IQR is the inter-quartile range) plus points for outliers are used. LOESS (locally estimated scatterplot 

smoothing) was used for exploratory analysis of the time series data (e.g. Fig. S132), an approach that, does not 

rely on specific assumptions about the distributions from which observations are drawn.  Levene tests (Levene, 

1960) were carried out using leveneTest from the car library. ANOVA models were used to test hypotheses 

withused the functions anova and summary. Function autoplot from the ggfortify library was used to test the 380 

assumptions of normality of the ANOVA residuals. Non-parametric Wilcoxon rank-sum tests were used to check 

the ANOVA results, using wilcox.test. Generalised linear mixed effect (glmm) models (using function glmer from 

lme4) were selected to assess the random effects of the longitudinal (time-based) and individual (tree) repeated-

measures and estimate corrected fixed-effects of treatments. Functions summary and tab_plot (from the sjPlot 

package) were used to extract the results. 385 

3 Results and Discussion 

This section is organised as follows: We first report general characteristics of the distribution of sap flux (Section 

3.1) and then develop relationships between TWU, Rb, and projected canopy area, Ac (Section 3.2). Subsequently 

we discuss the characteristics of TWUn (litres d-1 mm-1, Section 3.3), which we use to test for treatment effects in 

an analysis of variance (Section 3.4). We provideWe examine eCO2 and infrastructure treatment effects (Section 390 

3.5), and finish with a qualitative discussion ofbrief assessment of limitations to the approaches adopted (Section 

3.6). We discuss the effects of seasonal weather in the supplement (Appendix S-A).. 

3.1 Sap flux within the season and between years. 

Diurnal stem sap flux responses to canopy photosynthetic demand typically exhibit increased sap flux from dawn 

to around midday (UTC ~ local solar time at the site) with an approximately symmetrical decrease to dusk (Fig. 395 

S3).Figs. 3 & 4). Exploring these data illustrates some of the important characteristics of this sap measurement 

approach. Figure 25 shows diurnal sap flux (i.e. QE and/or QW, data derived from each probeset, East- and West-

facing, installed per tree) in each of three Ghost array oaks (selected for smallest, largest and medium sized stem 

see Tables S1 and S3) for treatment seasons 2018–2021. The partial year 2017 is not shown. We have retained 

QE and QW to show more of the short-term variability rather than averaging to QT, as single probeset results 400 

demonstrate circumferential imbalance (Fig. S33 & Fig. 4(a)) which can change with year of operation (Fig. S4).  

Interquartile ranges are generally larger in the middle of the growing season for all sizes of example trees and 

collapse towards the minimum detectable value for each tree size at either end of the growing season. The 

minimum detectable sap flux using the present method is tree-size dependent (Appendix A2, Stage 5): 0.0035 

litres s-1 (3.5 ml s-1), for the smallest tree in Fig. 2 5; 5.2 ml s-1 for the medium-sized tree; and 6.5 ml s-1 for the 405 

largest tree shown. The imbalance between the probeset data on the example trees (Fig. 25) can be up to +/-25% 

(Fig. S4). This is greater in the earlier years 2017 and 2018. This imbalance determines the spread of the IQR 

when normalised tree values are combined. All the large tree example sap flux values lie within a factor of three of 

the minimum detectable value (i.e. to 0.02 litres s-1) until June 2020 (more than four years after installation) after 

which larger extreme values are present. 410 
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The distributions of the three examples are clearly offset by tree stem size, suggesting that normalisation by sizethis 

measure may be useful for inter-tree and array-to-array comparison (section 3.3). For these example trees, mean 

monthly diurnal sap flux increased in the spring from first leaf (see phenology in Table 1, above) to achieve peak 

values in July in 2018 and 2021. In 2019 and 2020, increases in mean monthly diurnal sap flux were more gradual 

through the treatment season, reaching peak values in August (2019) and September (2020). There was then a 415 

faster decrease in sap flux to end of October (the end of the CO2 treatment season) or later, presumably due to 

leaf senescence and the shortening of daylength. 

Figure 25: Comparison of diurnal sap flux measured in each probeset for three (small (‘smGH’),, medium (‘medGH’), 
and large (‘lgGH’))) Ghost (no-infrastructure control) trees in years 2018- 2021, panels (a), (b), (c), and (d), respectively, 
across the treatment season April–October (numbered subpanels within panels (a)-(d)).. Monthly 95%ile values are 420 
shown separately (Supplement Fig. S5). The graphical display is cropped at a sap flux of 0.02 litres s-1. The distributions 
are shown as box and whisker plots showing median and interquartile range (IQR, 25%ile to 75%ile) with whiskers 
calculated as 1.5 x IQR from the hinge and points for outliers. Mean values, calculated from the entire range of data, 

are shown as spot (pink). 

It is evident there are highly skewed distributions in Fig. 25. Figure S5 reports 95%ile sap flux values for each 425 

probeset and month across 2017-2021, showing variability in the timing of highest monthly 95%ile sap flux 

between half-tree data for each tree across the years of study. 95%ile sap flux is not synchronised for all 

probesets on a monthly basis, indicating the dominant role of individual tree characteristics or position in 

determining sap flux extrema (Dragoni et al., 2009). Although minimised as much as practicable (see 2.6, above), 

such individual characteristics cannot be completely eliminated and may relate to major changes in branch 430 

structure (e.g., from wind damage or mortality) affecting canopy photosynthetic controls. They may also depend 

on the aspect of the tree and competition for root water (proximity to other trees), indicating seasonal influences 

on leaf, branch and root growth.  
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3.2 Diurnal TWU variation between trees. 

3.2.1 TWU as a function of stembark radius 435 

Example relationships between Rb, (mm) and monthly mean TWU (𝑇𝑊𝑈̅̅ ̅̅ ̅̅ ̅TWU, litres d-1 month -1) for all trees with 

both probesets working were first analysed for 2019 summer months. July was used for comparison as typically it 

exhibits maximum 𝑇𝑊𝑈̅̅ ̅̅ ̅̅ ̅.TWU. The hypothesis that 𝑇𝑊𝑈̅̅ ̅̅ ̅̅ ̅TWU is a function of Rb was tested by a simple regression 

model. The best fit model for the combined 2019 data across all treatments was a simple linear fit; quadratic fits 

were tested and rejected. During July 2019, due to two probesets malfunctioning, Ghost tree 𝑇𝑊𝑈̅̅ ̅̅ ̅̅ ̅TWU results did 440 

not include trees as large as the largest in the infrastructure arrays as explained in Methods above. Data from six, 

13, 17 &or 17 trees were used for years 2018, 2019, 2020 & 2021 respectively.  
 

slope SE R2 Adj. 
R2 

intercept t df p 

 
(litres per day 
per millimetre) 

 
  (litres) 

   

Jul-18 3.716 0.742    0.86 0.83 -721 5.011   5 p<0.01 

Jul-19 3.268 0.442    0.82 0.81 -621       7.399 12 p<0.001 

Jul-20 2.233       0.511    0.54 0.52 -286       4.370 16 
 

p<0.001 

Jul-21 2.967 0.654 
 

0.58 0.55 -476 4.537 16 p<0.001 

Aug-19 2.913 0.310    0.88 0.87 -552 9.391 12 p<0.001 

July 2017-
2021 

3.100         0.422         0.50 0.49 -545 7.340 54 p<0.001 

Table 2: Linear regression model parameters for July mean TWU (𝑻𝑾𝑼̅̅ ̅̅ ̅̅ ̅,TWU, litres d-1 month-1) versus stembark radius 

at insertion point (Rb, mm). August 2019 is also shown. Final row shows model statistics for July all years 2017-2021, 

for 55 trees. The table does not discriminate 𝑻𝑾𝑼̅̅ ̅̅ ̅̅ ̅TWU in respect of treatment. Statistical results are rounded to four 445 
significant figures accounting for some uncertainty. See Appendix A Table A1 for statistical abbreviations. 

All years 2017–2021 of July data are shown in Fig. 3, illustrating the differences by year (Table 2) and treatment. 

The shorter regression for the Ghost array trees (Figs. 3(a) and (b)) has a smaller slope than infrastructure (eCO2 

and aCO2) array trees which exhibit similar slopes. Table 2 lists July model slopes for years 2018–2021 all 

treatments combined. The slopes are within +20%, -30%, giving a mean slope of 3.1  0.4 litres d-1 mm-1, for , 274 450 

mm  Rb  465 mm, although the steepest slope (July 2018) and the shallowest slope (July 2020) differ by more 

than their combined standard errors and so may represent different relationships. The intercept of the linear 

regression is not physically meaningful as we are only considering a relationship for trees of Rb between 0.25 and 

0.5 m. The results confirm the recent study by Schoppach et al., (2021) (and supporting reference (Hassler et al., 

2018)) in respect of the relationship between DBH and the water usage of oak. 455 



16 
 
 

Figure 36: Mean July TWU (𝑻𝑾𝑼̅̅ ̅̅ ̅̅ ̅,TWU, litres d-1 month-1) versus stembark radius Rb (m) at measurement height is 

shown for the three treatment types in years 2017–2021. (a), (b) show Ghost (no-infrastructure-no-treatment) trees all 
years. (c), (d) show infrastructure arrays for treatment (eCO2) and infrastructure control (aCO2),  years 2018–2021. (b) 
and (d) show treatment regression lines for all years combined (e) shows points for all years with single regression 460 
line. Rb is linearly proportional to 𝑻𝑾𝑼̅̅ ̅̅ ̅̅ ̅TWU (mean slope 3.1  0.4 litres d-1 mm-1).) . (a) and (c) error bars show sd. (e) 

additionally shows significance (***  p<0.001), SE and adjusted R2 (aR2) values. 

All years 2017–2021 of July data are shown in Fig. 6, illustrating the differences by year (Table 2) and treatment. 

The shorter regression for the Ghost array trees (Fig. 6(a) and (b)) has a smaller slope than infrastructure (eCO2 

and aCO2) array trees which exhibit similar slopes. Table 2 lists July model slopes for years 2018–2021 all 465 

treatments combined. The slopes are within +20%, -30%, giving a mean slope of 3.1  0.4 litres d-1 mm-1, although 

the steepest slope (July 2018) and the shallowest slope (July 2020) differ by more than their combined standard 

errors and so may represent different relationships. The intercept of the linear regression is not physically 

meaningful as we are only considering a relationship for trees of Rb between 0.25 and 0.5 m. The results confirm 

the recent study by Schoppach et al., (2021) (and supporting reference (Hassler et al., 2018)) in respect of the 470 

relationship between DBH and the water usage of oak. 

The slopes of the three treatments in July for all years’ data were also compared to determine differences due to 

treatment (Table S5). There is 10% difference between infrastructure treatment trees’ slopes (Table S5 and Fig. 
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36(d): aCO2 slope = 3.86, SE = 1.25 litres d-1 mm-1; eCO2 slope = 3.55, SE = 0.31 litres d-1 mm-1), which is not 

statistically significant given the standard error on the slopes. Overall, for infrastructure treatment trees (eCO2 and 475 

aCO2; Fig. 36(d)), the slope is greater than for no-infrastructure Ghost array trees (slope = 1.2, SE = 0.47  litres d-

1 mm-1) (Fig. 36(b)) and the magnitude of 𝑇𝑊𝑈̅̅ ̅̅ ̅̅ ̅TWU for all infrastructure trees is greater for a given size.  

3.2.2 Factors affecting 𝑻𝑾𝑼̅̅ ̅̅ ̅̅ ̅TWU as a function of Rb  

The relationship with 𝑇𝑊𝑈̅̅ ̅̅ ̅̅ ̅TWU varies on a year-by-year basis between 2.2 and 3.7 litres per day per millimetre of 

Rb. This is due, in years of lower values, to relatively larger decreases in 𝑇𝑊𝑈̅̅ ̅̅ ̅̅ ̅TWU by large trees compared to the 480 

smaller trees in the sample. Oaks respond sub-daily to solar radiation reduction events (Fig. S9S8) during cloud 

cover, suggesting that the year-to-year differences in slope (Table 2) are affected primarily by environmental factors 

(Wehr et al., 2017). In July 2020, the wettest year for mid-leaf (see Table S14S9 and Figs. S1410 and S1612 

below), we are not able to distinguish whether the smaller slope arises from (a) smaller trees’ 𝑇𝑊𝑈̅̅ ̅̅ ̅̅ ̅TWU being 

enhanced due to the truncation effect (Appendix B) or (b) larger trees’ 𝑇𝑊𝑈̅̅ ̅̅ ̅̅ ̅TWU being suppressed under poor 485 

light levels relatively more than the smaller trees, or (c) a combination of these two factors. Nonetheless, the inter-

year variation in the regression is likely due to monthly weather variation, such as different numbers of days of full 

sunlight or more days of rain (Table S14S9 and Fig. S16). S15) but this remains to be tested. 

3.2.3 Canopy area Ac as a function of stembark radius, Rb. 

Canopy area, Ac  (m2), measured in year of installation (‘First’) and early 2022 (‘Last’), correlates closely with Rb 490 

(Fig. 47 and Table 3, also Table S6 for data concerning repeat measures for each tree). On average, Ac is linearly 

proportional to Rb (ca. 617  108 m2 m-1; 0.261 m  Rb  0.473 m). There are changes in Ac (some positive and 

some negative) between first and last measurements.  

The three treatments do not show statistically significant differences in Ac per unit tree radius; eCO2 has the greatest 

Ac per Rb but the other fits, although smaller in the mean slope are fitted much less well to the linear model, resulting 495 

in much larger standard errors on the mean slope (Table 3, column 2). 

The measurements of Ac taken here are useful to assess water usage per unit of projected area of plant canopy 

but are insufficiently precise to quantify treatment effects. Changes in Ac, presumably due to a combination of 

measurement uncertainties and other influences such as branch growth, or loss during severe wind events, do not 

impact on the significance of the overall Ac versus Rb relationship (Table 3, all points).   500 
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Figure 47: Canopy area Ac (m2) variation with stembark radius Rb (m) for target oak trees measured in dormant season 
on two occasions per tree. Significance values, SE, adjusted R2 (aR2) and slopes are shown in Table 3.First 
measurement year is 2017-2018. Last measurement year is 2022. (a) shows a linear model for all trees monitored 

showing significance (***  signifying p<0.001), SE and aR2 values. Ac is linearly proportional to Rb (ca. 617  108 m2 m-505 
1; 0.261 m  Rb  0.473 m). A line joins first and last measurements.  (b) shows linear model relationships by treatment. 
Error bars show sd.  

 
slope SE R2 Adj. 

R2 
intercept  t Df p 

 
m2 m-1 

 
  (m2) 

   

2017-2022 
canopy area 

aCO2  

391 195.1   30.50 2.00 10 0.073 

2017-2022 
canopy area 

eCO2  

698 30.44   -120.7 7.72 10 p<0.001 
 

2017-2022 
canopy area 

Ghost   

560 263.0   -58.16 2.14 10 0.059 

2017-2022 all 
points 

617 108.3 0.49 0.47 -75.54    5.69 34 p<0.001 
 

Table 3: Oak tree canopy area Ac (m2) versus stembark radius (m) at insertion point. Data from 18 trees for two (first, 
last) Ac  measurements are shown (4th row) and modelled by treatment (rows one to three). First readings soon after 
installation, last readings in early 2022. Statistical results are rounded to four significant figures accounting for some 510 
uncertainty. 

We could use either Rb  or Ac  to remove the tree size-dependence of sap flux (Fig. 52) and hence 𝑇𝑊𝑈̅̅ ̅̅ ̅̅ ̅,TWU, 

exemplified in Fig. 36 above. Using the overall regressions in Tables 2 and 3, along with measurement error, the 

average July diurnal water usage is 5  0.3 litres d-1 m-2 of Ac. We use Rb (Fig. 58) below as the more convenient 

normalising factor (as it can be measured manually more easily and accurately by forest practitioners). 515 
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3.3 Yearly and seasonal variation of TWU. 

Box and whisker plots show TWU (Fig. 5(a), (b) and (c)) for years 2019–2021 and treatments across the treatment 

season (April–October). In comparison, TWU normalised by individual tree bark stem radius Rb, which we will call 

TWUn (litres d-1, mm-1) is shown for the same years in Fig. 5(d), (e) and (f). Years 2017 and 2018 are omitted 

because they have fewer data (Fig. S6) and are not fully representative of the tree size range across treatments. 520 

For years 2019–2021 (Fig. 5(a),(b),(c)), mean, median and 75%ile TWUs (litres d-1) increase steadily with daylength 

and solar radiation (Fig. S11)  from around budburst (April/ May) to a broad summer maximum (June, July, August), 

and then decline with daylength to full leaf senescence (October–November). Similar patterns are exhibited during 

2017 and 2018 (Fig. S6). 

In comparison, TWUn exhibits lower within-month variability indicated by smaller interquartile ranges, though the 525 

basic relationship between treatments remains (Fig. 5(d), Fig. 5(e) and Fig. 5(f)). There is close correspondence in 

TWU and TWUn inter-year patterns for all three treatments across the leaf-on seasons. The starting levels in April 

(lowest 2019) and peak month (July or August) of median TWUn vary year-on-year, likely resulting from differing 

throughfall and soil moisture retention within the previous 12 months (supplement Appendix S-A). Figure S7 shows 

the monthly sap flux and TWUn 95%iles for all trees illustrating the variation of high value extrema.  530 

 

Figure 58:   Treatment comparison of TWU. For years 2019- 2021 the TWU data is shown for the three treatment types. 
Tree data are combined for each treatment month April–October. The distributions are shown as box and whisker plots 
showing median and interquartile range (IQR, 25%ile to 75%ile) with whiskers calculated as 1.5 x IQR from the hinge 
and points for outliers. Mean values, calculated from the entire range of data, are shown as spots (pink). Panels (a), 535 
(b), and (c) show TWU (litres d-1) for years 2019, 2020, 2021. Panels (d), (e), and (f) show TWUn (litres d-1 mm-1), i.e. TWU 
normalised by stembark radius (mm) at stem probe insertion height. 

Box and whisker plots show TWU (Fig. 8(a), (b) and (c)) for years 2019–2021 and treatments across the treatment 

season (April–October). In comparison, TWU normalised by individual tree bark radius Rb, which we will call TWUn 

(litres d-1, mm-1) is shown for the same years in Fig. 8(d), (e) and (f). Years 2017 and 2018 are omitted because 540 

they have fewer data (Fig. S6) and are not fully representative of the tree size range across treatments. 
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For years 2019–2021 (Fig. 8(a),(b),(c)), mean, median and 75%ile TWUs (litres d-1) increase steadily with daylength 

and solar radiation (Fig. S8)  from around budburst (April/ May) to a broad summer maximum (June, July, August), 

and then decline with daylength to full leaf senescence (October–November). Similar patterns are exhibited during 

2017 and 2018 (Fig. S6). 545 

In comparison, TWUn exhibits lower within-month variability indicated by smaller interquartile ranges, though the 

basic relationship between treatments remains (Fig. 8(d), Fig. 8(e) and Fig. 8(f)). There is close correspondence in 

TWU and TWUn inter-year patterns for all three treatments across the leaf-on seasons. The starting levels in April 

(lowest 2019) and peak month (July or August) of median TWUn vary year-on-year, likely resulting from differing 

throughfall and soil moisture retention within the previous 12 months (supplement Appendix A). Figure S7 shows 550 

the monthly sap flux and TWUn 95%iles for all trees illustrating the variation of high value extrema.  

3.73.4 StatisticalANOVA testing of hypotheses. 

By using summary statistics (a traditional method for repeated measures analysis) for each individual (e.g. the 

mean of TWUn (𝑇𝑊𝑈𝑛
̅̅ ̅̅ ̅̅ ̅̅ )) on a monthly and an annual treatment season basis, with ANOVA and equivalent non-

parametric tests, inter-year and seasonal trends could be identified. Initially, Variance of tree water usage wasis 555 

tested using normalised data (TWUn) per tree grouped by treatment type. The ANOVA results, before consideration 

of residuals, are outlined in the supplement (Fig. S89, Table S74 and Table S85). Mean values for TWUn (𝑇𝑊𝑈𝑛
̅̅ ̅̅ ̅̅ ̅̅ ) 

in treatment season and July, for each of the years 2019 to 2021, weare calculated and compared. Levene’s test 

was applied showing heterogeneity of variance of TWUn data for each model using both the median and the mean. 

The results are reported in Table S9S7 for infrastructure groups (eCO2 and aCO2) and Table S10S8 for control 560 

groups (aCO2 and Ghost). Additional analyses were undertaken: ANOVA using the natural logarithm transform and 

the non-parametric Wilcoxon ranked-sum test. Both produced very similar results to the initial ANOVAs. ) and ) 

corrections were considered for application to reflect the repeat use of aCO2 data, but these do not enable a full 

assessment of the repeated-measuresANOVAs reported here. 

Hypothesis 1 concerning the trees and time.effect of CO2 is tested by one-way ANOVA between eCO2 TWUn 565 

compared with aCO2 TWUn (Table 4, Fig. 9).   

3.4.1 Models for repeated-measures non-linear data. 

TWUn data for each whole season of interest were next modelled using glmms for each season of interest (2019, 

2020, 2021). The intention was to develop a simple and parsimonious model sufficient to test the hypotheses as 

outlined in Section 1. Before modelling, some tree TWUn data were removed from each season data model where 570 

more than half of days were missing in the season (see Table S11). 
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To test hypothesis 1, infrastructure trees’ TWUn data (eCO2 and aCO2) for each CO2 season of interest (2019, 

2020, 2021) were analysed using Gamma glmm models with a log link. A random intercept model structure was 

adopted incorporating random components for each tree (treelabel) and for time (DOY): TWUn ~ CO2 + (1 | DOY) 575 

+ (1 | treelabel). We tried other model structures,  i.e., just array and for nested array/tree as random elements, 

but, using the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) from the anova function 

in R for model comparison, selected the above as the best model. Figure 6 and associated Table 4 show the results 

of these repeated-measures models for eCO2. Complete model statistics are tabulated in the SI Table S12.  

To test hypothesis 2 control group trees’ data (aCO2 and Ghost) were analysed for infrastructure (inf) effects using 580 

the same the treatment seasons (2019, 2020, 2021) and similar random intercept models: TWUn ~ inf + (1 | DOY) 

+ (1 | treelabel). Figure 6 and associated Table 5 show the results of these repeated-measures models for 

infrastructure. Complete model statistics are tabulated in the SI Table S13.In 2019 and 2021 seasons, the ANOVA 

suggested a highly significant (p<0.001), -19% to -13.9%, reduction in eCO2 TWUn compared with aCO2 TWUn (Fig. 

9 blue-yellow comparisons, Table 4). In 2020, the 3% reduction was marginally significant (p=0.08) for eCO2 TWUn 585 

vs. aCO2 TWUn. For July-only results, the ANOVA suggested a highly significant (p<0.001) -26% reduction in eCO2 

TWUn compared with aCO2 TWUn in July 2019, whilst comparisons for July 2020 and July 2021 showed no 

significant differences (Fig. 9 blue-yellow comparisons, Table 4). 
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Figure 69: Treatment comparison of TWUn (litres d-1 mm-1),TWU. For years 2019- 2021. the TWUn (litres d-1 mm-1) data 590 
is shown for the three treatment types. (a) The season data April–October inclusive is combined for each year. TWUn 
y-axis scale is truncated for clarity, with small numbers of additional outliers. Maximum TWUn values for each 
distribution each year (reading from left to right), are: 8.0, 3.9, 4.2, 6.6, 4.1, 4.8, 6.6, 8.0, and 4.8 litres d-1 mm-1.  Whole-
season mean values(b) July for each year is shown. The distributions are shown in pink. The 95% Confidence Intervals 
(CI) of the treatment effectsas box and whisker plots showing median and interquartile range (IQR, 25%ile to 75%ile) 595 
with whiskers calculated as 1.5 x IQR from the glmm modelshinge and points for outliers. Mean values, calculated 
from the entire range of data i.e. season (a) or July (b) are shown as spots (pink). p-values and F ratios are indicated 
in orange (hypothesis 1, Tables 4) for eCO2: aCO2 one-way ANOVA model and blue (hypothesis 2, Table 5) for aCO2: 
Ghost one-way ANOVA model. Values for both treatment season (a) and July mean (b) TWUn in each year are given. 
Tables also give One-way ANOVA results are shown in Fig. S8 (a) & (b) & Tables S7 & S8.% differences of both 600 
treatment season and July mean TWUn.  
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Parameter  Estimate  
(original 
units) 

SE 
(original 
units) 

 95% CI  
(original 
units) 

Significance  
Pr(>|z|)     
(p) 

year 

(Intercept) 
 
CO2Y       

1.31 1.111 1.07 – 1.62 0.00944 ** 
(0.010) 2019 

0.87 1.149 0.66 – 1.14 0.319 

(Intercept) 
 
CO2Y 

1.23 1.131 0.97 – 1.57 0.0927 . 
(0.093) 2020 

0.96 1.182 0.69 – 1.34 0.826 

(Intercept) 
 
CO2Y 

1.34 1.183 0.96 – 1.86 0.0845 . 
(0.085) 

2021 
0.84 1.261 0.53 – 1.32 0.450 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Table 4: Hypothesis 1, CO2 effects. Glmm random intercept model outputs for (eCO2: aCO2) TWUn for each year 2019-
2021 inclusive.  Estimate, SE, 95% CI and Significance are shown. Significance values Pr(>|z|) are taken from summary 
outputs. All other results (including p) are from tab_model outputs in original data units for TWUn (litres d-1 mm-1). Bold 605 
typeface indicates p-value <0.1. 

Parameter   Estimate  
(original 
units) 

SE 
(original 
units) 

 95% CI  
(original 
units) 

Significance  
Pr(>|z|)     
(p) 

year 

(Intercept) 
 
infY       

 1.05  1.100 0.87 – 1.27 0.5879   
2019  1.27  1.121 1.01 – 1.58 0.0389 * 

(0.039) 
(Intercept) 
 
infY 

 1.06 1.113 0.86 – 1.30 0.607 
2020 

 1.17 1.150 0.89 – 1.54 0.266  
(Intercept) 
 
infY 

 1.18 1.157 0.89 – 1.57 0.250 

2021 
 1.13 1.232 0.75 – 1.70 0.568 

 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Table 5: Hypothesis 2, infrastructure effects. Glmm random intercept model outputs for (aCO2 : Ghost) TWUn  for each 
year 2019-2021 inclusive.  Estimate, SE, 95% CI, and Significance are shown. Significance values Pr(>|z|) are taken 
from  summary outputs. All other results (including p) are from tab_model outputs in original data units for TWUn 
(litres d-1 mm-1). Bold typeface indicates p-value <0.1. 610 

 

 
 

2019 

p value 

2019 

F ratio 

2019 

% 

2020 

p value 

2020 

F ratio 

 2020 

% 

2021 

p value 

2021 

F ratio 

2021 

% 

Season < 0.001 91.90 -19% p>0.05, 
actual value 
0.079 

3.09  -3% <0.001 32.27 -13.9% 

July only < 0.001 35.61 -26% p>0.05, 
actual value 
0.37 

0.80  -4.5% p>0.05, 
actual 
value 0.19 

1.71 -7.3% 

Table 4: Hypothesis 1 CO2 effects. One-way ANOVA p-value, F ratio, and % difference summary for mean eCO2 TWUn, 
compared with mean aCO2 TWUn, in years 2019-2021. Mean values are compared, calculated from the entire range of 
data for season data April–October (Fig. 9(a)) and July (Fig. 9b), for each year as shown. Bold typeface indicates p-
value <0.05. 

  615 
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Hypothesis 2 concerning the effect of infrastructure is tested by one-way ANOVA between mean values of aCO2 TWUn 
compared with Ghost TWUn (Table 5, Fig. 9 blue-green comparisons). For all 2019, 2020 and 2021 seasons, the ANOVA 
suggested a highly significant (p<0.001) 37% to 20% increase in aCO2 TWUn compared with Ghost TWUn (Fig. 9, Table 
5). For July-only TWUn, the ANOVA suggested a highly significant (p<0.001) 48% to 22% increase in mean aCO2 TWUn 

compared with Ghost TWUn for July 2019 and July 2020 (Fig. 9, Table 5). For July 2021, a marginal 10% effect for aCO2 620 
TWUn vs. Ghost TWUn was found (p=0.07). 

 2019  

p value 

2019 

F ratio 

2019 

%  

2020  

p value 

2020 

F ratio 

2020 

% 

2021 

p value 

2021 

F ratio 

2021 

% 

Season < 0.001 187.38 +37% < 0.001 96.66 +20% <0.001 58.81 +20% 

July only < 0.001 57.35 +48% < 0.001 19.95 +22% p>0.05, 
actual 
value 
0.071 

3.29 +9.9% 

Table 5: Hypothesis 2 infrastructure effects. One way ANOVA p-value, F ratio, and % difference summary for aCO2 

compared with Ghost TWUn in years 2019-2021. Mean values are compared, calculated from the entire range of 

data for season data April–October (Fig. 9(a)) and July (Fig. 9b) for each year as shown. Bold typeface indicates 

p-value <0.05. 625 

4 Discussion  

 Mean normalisedof tree water usage, 𝑻𝑾𝑼𝒏
̅̅ ̅̅ ̅̅ ̅̅ ̅, ANOVAs are in the FACE experiment. 

Normalised water usage ( section 3.2 above), TWUn, is suitable for initial testing of treatment hypotheses as they 

use accumulated daily data and mean values across longer periods (months, year). These analyses align with 

techniques previously used for FACE experiments, extending. The water usage results extend those from previous 630 

eCO2 studies of oak (e.g., Leuzinger and Körner, 2007) by being over of a longer duration of treatment (numbers 

of years and numbers of treatment days per year) and a greater size range and sample of trees. A more robust 

approach to accounting for random repeated-measures effects (individual and time) uses generalised mixed-effect 

model (glmm) analysis. Findings from ANOVA and glmm are discussed below against each of the paired treatment 

comparisons undertaken. 635 

94.1.14.1.1 TWUn differences under eCO2 

Table 4 reports reductions in mean eCO2 TWUn compared to aCO2 TWUn (for the ANOVA model results, see SI 

Fig. S8 and Table S7).. Across whole growing seasons, the estimated (converted to aaverage percentage) fixed 

effect reduction from the glmm in 2019 is 13%. Inand 2021 ais 16%.5% (overall average 12% if the marginally 

significant reduction is seen whereas in 2020 only 4%is included).  The largest TWUn season-average reduction in 640 

Table 4 is shown. The model accounts for the individual and time19% but we observe substantial interannual 

variability most probably related repeated measures, but in all years these affects are low, supporting our original 

ANOVA model results.to differing precipitation and light level amounts. These modelstests confirm our hypothesis 

1 that there is likely to be reduced tree water usage over whole seasons. We also observe substantial interannual 

variability in fixed effect. This implies we cannot yet obtain a definitive prediction of the mean amount of TWUn 645 

reduction per annum as a fixed effect of eCO2. A greater number of years of results, given the changes in longterm 

trends of, for example, precipitation, would be necessary to detect any long-term trend., whilst July-only results 

have not been adjusted for repeated-measures and are less conclusive from the traditional ANOVA analyses (Table 

S7)..  
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We are not aware of other whole-growing-season oak results with which to compare these TWUn results. Each 650 

treatment TWUn is a proxy for stand transpiration so we next compare our FACE results to eCO2 : control 

transpiration ratios from previous FACE experiments of oak and other deciduous species .  

Short duration mid-summer FACE results have been reported for mature temperate broadleaves. Leuzinger and 

Körner (2007) were unable to statistically test species specific differences in transpiration for adult Q. petraea 

(Matt.) Liebl. under eCO2 in their web-FACE experiment but found a 14% reduction overall when results for Q. 655 

petraea were pooled with those of Carpinus betulus L., and Fagus sylvatica L. in summers 2004 and 2005. Their 

Web-FACE operated under a similar CO2 elevation (ambient is not reported) to that used at BIFoR FACE. Our 

uncorrected July-only TWUn results (reductions in every year but likely to be significant only significantly so for the 

uncorrected 26% reduction in 2019) for Q. robur differ from their results for Q. petraea but strengthen their overall 

conclusions regarding adult deciduous broadleaves, and regarding the large interannual variability they also 660 

observe.  

Both seasonal and summer results at ORNL are reported by Warren et al. (2011a) for 11,16 and 20-year-old 

Liquidambar styraciflua L. in years 1999, 2004 and 2008 and in early 2007 season by Warren et al. (2011b). Again 

similar FACE CO2 elevation was used as at BIFoR FACE. ORNL ambient CO2 levels were 380–400 µmol mol-1 

giving a ca. 40% elevation compared to our current ca. 35%. Warren et al. (2011a, their Table III) report 10–16% 665 

seasonal reductions in stand transpiration under eCO2 which increased with year of treatment. This may reflect a 

differing species response to eCO2. For summer only, a 7–16% reduction was reported, whilst Warren et al. (2011b, 

their Fig. 1) report ca. 28% reductions in the (non-drought) first half of a single growing season at the same ORNL 

site. This again reflects large interannual summer response variability. 

The reductions in TWUn in our study are consistent with other treatment effects seen at BIFoR FACE: diurnal results 670 

for photosynthetic enhancement  (23 ± 4% higher for eCO2, Gardner et al., 2022, although not specifically targeted 

at the focal TWUn trees);); and fine root production (45% higher for eCO2 in the first two years (Ziegler et al., 2023,  

) although not specifically targeted at the focal TWUn trees and covering whole year rather than season only). 

Synthesis of these treatment effects into quantitative budgets for water and carbon is outside the scope of the 

present work. 675 

94.1.24.1.2 FACE infrastructure effect on TWUn. 

The effect of FACE infrastructure on tree water usage has not to our knowledge been previously reported. TWUn 

was higherlower for the Ghost trees compared to infrastructure control aCO2 trees compared to Ghost (i.e. no-

infrastructure) trees across the three treatment years analysed, 2019–2021. In 2019, 2020 and 2021 seasons, the 

ANOVA models (Fig. S8, Table S8)we found a consistently significant 37% to 20% increase in mean aCO2 TWUn  680 

compared with Ghost TWUn. In contrast the glmm models showed a (Fig. 9, Table 5). Similar consistently significant 

fixed effect results hold for July-only inTWUn results 2019 (Fig. 4, Table 5) estimated to be 27% increase under 

infrastructure conditions. In 2020 and –2021 the models showed non-significant fixed effects of 17% and 13% 

increase respectively.. These tests confirm our hypothesis 2 that there is increased water usage within FACE 

infrastructure treatments, but do not yet enable us to predict the amounts in any one year due to the environmental 685 

interannual variations. 

The results of this study indicate the importance of infrastructure controls in forest FACE experiments. The greater 

aCO2 TWUn may be due to one or more of several factors: effects of FACE infrastructure gas injection on air mixing 

and turbulence and hence changes in microclimate; differences in ground cover; or array-specific differences in 
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soil moisture, slope, soil respiration, or species of sub-dominant trees present. Further work is needed to fully 690 

explore thesethe soil moisture results. 

Since the treatment effect for eCO2 is of opposite sign to that for infrastructure, (i.e. we see a reduction in eCO2 

TWUn compared with aCO2 TWUn, but an increase in aCO2 TWUn compared with Ghost TWUn) the infrastructure 

treatment effect cannot cause a pseudo-eCO2 effect in the statistics, but it does further reduce anyour certainty 

about the absolute magnitude of the eCO2 effect.  695 

94.24.2 Capabilities, limitations and usability of sap flux data from HPC probesets 

Although this experiment had relatively small sample size (total 18 trees, six per treatment), it was nevertheless a 

substantive experiment consisting of 12,259 days of individual tree data (770,667 diurnal sap flux measurements) 

in a unique experimental setting, making this dataset of high value for modellers of dynamic vegetation, water, and 

climate. We have defined a parameter TWUn to enable consistent water usage comparisons between individual 700 

trees and hence treatments diurnally across both summer months and whole seasons. We consider that this 

method of processing HPC sap flux results, along with the extensive and continuous dataset for all no-infrastructure 

Ghost control trees over more than four years, gives us high confidence in this normalised data. 

We can clearly demonstrate that use of four thermocouple positions across the sapwood for each of our HPC 

probesets has enabled us to capture successfully the position and size of point sap flux density (derived from sap 705 

velocity) and that this has given us a more reliable basis to explore the effects of tree size on both whole-probeset 

sap flux and TWU. With respect to sap flux, single probesets are unlikely to provide representative results of TWU 

due to asymmetry in sapwood radial width around the circumference of the tree. The effects of time-out value in 

the HPC measurement system have been discussed (Appendix B) and recommendations are made to ensure any 

repeat experiments using this technique consider truncation effects for diurnal sap flux. Here the diurnal truncated 710 

distributions have been accumulated to TWU and analysed using one-way ANOVA which gave sufficient 

confidence to enable testing of the two hypotheses.  

955 Conclusions  

Water usage was calculated from stem sap flux for 18 oaks in an old growth even-aged plantation during the first 

five years of an eCO2 treatment. The oaks were distributed  across the three treatment conditions eCO2, aCO2 and 715 

Ghost. Diurnal (i.e. daylight) responses accumulated over days, months, and growing seasons (April–October 

inclusive) were the focus. Within a given year, median, mean and extreme (95%ile) diurnal sap flux increased in 

the spring from first leaf to achieve peak daily values in summer months (July, August)). We accumulated sap flux 

daily to derive water usage information for each tree, averaging results from two probesets per tree to eliminate 

orientation imbalances. 720 

Differences in tree water usage varied according to tree size. Tree characteristics, Rb and Ac, were measured and 

correlated linearly with mean diurnal water usage, 𝑇𝑊𝑈̅̅ ̅̅ ̅̅ ̅,TWU, for July confirming a recent study (Schoppach et al., 

2021). The linear relationship between Ac and 𝑇𝑊𝑈̅̅ ̅̅ ̅̅ ̅TWU  is less certain than that between Rb and 𝑇𝑊𝑈̅̅ ̅̅ ̅̅ ̅TWU  but 

can be used to convert tree-based transpiration to a stand scale (Granier et al., 2000; Poyatos et al., 2016) for 

comparison with dynamic vegetation and climate models. 725 

Normalisation of TWU by Rb, to give TWUn, enabled comparison of data combined from multiple trees across the 

treatments. A growing-season reduction in TWUn under eCO2 was detected; the signal was less clear for July-only 

data. Repeated-measures due to individual tree and time affected the response, but did not dominate the perceived 

effects when modelled. There was considerable interannual variability in the treatment effect for growing-season 
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and July-only averages, likely related to environmental drivers but which remains to be diagnosed or modelled fully. 730 

Sub-seasonal and shorter timescale variability also remains to be explored more fully. 

Growing-season and July-only increases in TWUn under aCO2 compared to non-infrastructure controls (Ghost 

trees) were detected consistently in ANOVA in all years, whilst the repeated-measures glmm models estimated  

significant effects only in the 2019 season (and reduced the percentages by up to a third in all seasons in 

comparison to ANOVA). This showsshowing either that the presence of infrastructure affects water usage, or the 735 

Ghost positions are not comparable to those of the infrastructure arrays due to array-specific differences in soil 

moisture, slope, soil respiration or sub-dominant tree species presence. 

Whilst the experiment produced reliable data across the five years, outlier incidence appears to be increasing, and 

re-installation of probesets is recommended. To detect cavitation and embolism in situ, as a possible cause of 

outlier data, separate (e.g. acoustic) monitoring would be required. Whilst much further work remains, this first set 740 

of tree water usage results strongly supports the conclusion that old growth oak forests conserve water under eCO2 

at the whole-plant level.   
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966 Appendix A: Additional tables 

Symbol Description Units used in this 
publication (* not SI)  

Ac Canopy area  (i.e. the area of ground covered by a plant canopy) m2 

Asw Cross-sectional sapwood area * cm2 

Az Annular ring cross-sectional area at thermocouple z cm2 

FL volume fraction of water element of xylem woody matrix  unitless 

FM volume fraction of wood element of xylem woody matrix unitless 

Gs canopy stomatal conductance mm s-1 

H heartwood radius m 

J Sap flux density  m s-1 

Jz Point sap flux density across xylem sapwood area at measurement point. 
Unit derivation: m3 (water) m-2(xylem sapwood area) s-1 

m s-1 

P Precipitation mm 

Pr Local precipitation (outside  forest). Mm 

Pfs Throughfall estimate within treatment season April–Oct % 

Pis Interception estimate within treatment season April–Oct % 

Qp Probeset volumetric sap flux  (across sapwood) litres s-1 

QT Whole tree sap flux density litres s-1 

R cambium radius m 

Rb Bark radius mm 

rz radius of measurement point within sap transducer (z =1 to 4). M 

Ta Temperature o C 

TG Total solar radiation Watt m-2 

TWU Tree diurnal (dawn to dusk) water usage per day litres d-1 

TWU Monthly mean TWU litres d-1 month-1 

TWUn Tree diurnal (dawn to dusk) water usage per day normalised by bark radius at the point 

of probeset insertion, Rb (mm). 
litres d-1 mm-1 

TWUn  Monthly mean TWUn litres d-1 mm-1 month-1 

tz Time to heat balance point for one thermocouple pair position (z =1 to 4) in the xylem 
sap Compensated Heat Pulse (CMP) probeset data 

seconds 

Vs Raw heat velocity (uncompensated)  mm s-1 

Vc Wound compensated heat velocity m s-1 

Xd Vertical distance between heater probe and upper (downstream) sap sensor probe mm 

Xu Vertical distance between heater probe and upper (downstream) sap sensor probe mm 

Statistical term abbreviations 
SE – standard error,  adjusted R2 – adjusted coefficient of determination,  t – student’s t-test statistic, df – degrees of freedom,  

p – significance. 
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Symbol Description Units used in this 
publication (* not SI)  

Ac Canopy area  (i.e. the area of ground covered by a plant canopy) m2 

Asw Cross-sectional sapwood area * cm2 

Az Annular ring cross-sectional area at thermocouple z cm2 

FL volume fraction of water element of xylem woody matrix  unitless 

FM volume fraction of wood element of xylem woody matrix unitless 

Gs canopy stomatal conductance mm s-1 

H heartwood radius m 

J Sap flux density  m s-1 

Jz Point sap flux density across xylem sapwood area at measurement point. 

Unit derivation: m3 (water) m-2(xylem sapwood area) s-1 

m s-1 

P Precipitation mm 

Pr Local precipitation (outside  forest). Mm 

Pfs Throughfall estimate within treatment season April–Oct % 

Pis Interception estimate within treatment season April–Oct % 

Qp Probeset volumetric sap flux  (across sapwood) litres s-1 

QT Whole tree sap flux density litres s-1 

R cambium radius m 

Rb Stem radius mm 

rz radius of measurement point within sap transducer (z =1 to 4). M 

Ta Temperature o C 

TG Total solar radiation Watt m-2 

TWU Tree diurnal (dawn to dusk) water usage per day litres d-1 

𝑇𝑊𝑈̅̅ ̅̅ ̅̅ ̅ Monthly mean TWU litres d-1  

TWUn Tree diurnal (dawn to dusk) water usage per day normalised by stem radius at the point 
of probeset insertion, Rb (mm). 

litres d-1 mm-1 

𝑇𝑊𝑈𝑛
̅̅ ̅̅ ̅̅ ̅̅   Monthly mean TWUn litres d-1 mm-1  

tz Time to heat balance point for one thermocouple pair position (z =1 to 4) in the xylem 
sap Compensated Heat Pulse (CMP) probeset data 

seconds 

Vs Raw heat velocity (uncompensated)  mm s-1 

Vc Wound compensated heat velocity m s-1 

Xd Vertical distance between heater probe and upper (downstream) sap sensor probe mm 

Xu Vertical distance between heater probe and upper (downstream) sap sensor probe mm 

Statistical term abbreviations 

SE – standard error,  adjusted R2 – adjusted coefficient of determination,  t – student’s t-test statistic, df – degrees of freedom,  
p – significance, CI – confidence interval, Marginal R2 – variance explained by the fixed effects, Conditional R2 – variance 
explained by the whole glmm model.. 

 745 

Table A1: Table of parameter symbols and statistical abbreviations. 

 

Stage Parameter Relationship equation References 
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Stage 1 tz  

Time to heat 

balance point 

At each position z = 1 to 4  

 

Tranzflo Manual 

Stage 2 

 

Vs  

Raw heat velocity 

(uncompensated) 

At each position z = 1 to 4  

𝑉𝑠 =      {
(𝑋𝑑+𝑋𝑢)

2𝑡𝑧
}   

  
 (𝐴1) 

 For long probes Xd = 20, Xu = 5 in mm 

Vs = 12.5 / tz   

Swanson, 1962 

Tranzflo Manual 

Stage 3 Vc  

Wound 

compensated heat 

velocity 

At each position z = 1 to 4  

𝑉𝑐 = 𝑎 + 𝑏𝑉 + 𝑐𝑉2  + 𝑑𝑉3 (𝐴2)
 

  

Where V is Vs in m s-1. Empirical parameters a, b, c and d are 

chosen for probe diameter 2 mm. 

Green and Clothier, 

1988 

Stage 4 Jz    

Probeset (4 point) 

Sap flux density 

for each radius 

transducer 

position  

𝐽𝑧 =  {(0.505 𝐹𝑀 + 𝐹𝐿 )𝑉𝑐,𝑧} ; 𝑧 = 1: 4 (𝐴3) 

Where Jz is the sap flux density at each position z = 1 to 4  

Defining conversion factor c1 as 

𝑐1 =  (0.505 𝐹𝑀 + 𝐹𝐿 ) (𝐴4) 

gives 

𝐽 = 𝑐1 𝑉𝑐,𝑧  (𝐴5) 

Edwards and 

Warwick, 1984; 

Marshall, 1958 

Stage 5 Qp  

Probeset 

Volumetric Sap 

flux across 

sapwood 

 

 For each probeset 

𝑄𝑃 =  ∑ 𝐴𝑧𝐽𝑧

𝑧=4

𝑧=1
;  p=E (east) or W(west) (𝐴6) 

   

Area-weighted sum of sap flux density, where associated 

sapwood areas, 𝐴𝑧  for z = 1 to 4 for long probes, is calculated 

from R, rz, rz+1,… rz+3 (radii) and H . 

Hatton et al., 1990; 

Tranzflo Manual 

Stage 6 QT    

Whole tree Sap 

flux  

 

For each probeset at each sample time: 

(Qp1+ Qp2)/2 simplified model 

𝑄𝑇 =  
(𝑄𝐸 + 𝑄𝑊)

2
 (𝐴7) 

Where E and W indicate east -facing and west-facing probes.  

 

Stage 7 TWU 

Tree diurnal water 

usage 

𝑇𝑊𝑈 =  𝑁 ∑ 𝑄𝑇𝑖

𝑖=𝑖𝑑𝑢𝑠𝑘

𝑖=𝑖𝑑𝑎𝑤𝑛
(𝐴8) 

Where i is the 30-minute sample time of QTi, N is conversion 

factor from per second (QT) to per diurnal day dawn to dusk 

 

Table A2: Calculations stages 1 to 7 showing flow of data processing to obtain TWU from time to heat balance tz  from 
all differential HPC  probeset thermocouple radial positions. 

  750 
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977 Appendix B: Limitations of the time-out characteristic and outliers 

There are known limitations in the ability of the HPC system to measure low and reverse sap velocities (Forster, 

2017) and to some extent high sap velocities (Burgess et al., 2001). With respect to our set up, we optimised the 

high end of this limitation. The sap probe by choosing suggested sensor spacings recommended by a 

manufacturer, Tranzflo, hadwith extensive experience in a wide range of deciduous trees. Probesets used were 755 

custom made for us to suit oak trees of this size, using sensor spacings suggested by Tranzflo.  The limitations of 

the time-out characteristic and the effect this places on HPC data are recorded in several references (e.g. see 

Tranzflo: Measurements of Sap Flow by the Heat-Pulse Method. An Instruction Manual for the HPV system, 2016). 

The limitations impact on  our choice of data processing (e.g. diurnal versus diel) and feed through into the statistics 

we report. These limitations also introduce a truncation effect at lower heat velocities so that the distribution of the 760 

resulting raw  and processed data is not symmetrical. We had limited options to extend the time-out period due to 

the multiple types of data needing to be captured by our single logger/ multiplexer arrangement in each array. 

To normalise the data, given the above time-out effect, we select only those daylight periods where we can be 

confident that all four thermocouples are measuring and where they exhibit a shaped maximum point sap flux 

density value. We also focus on accumulation and percentile ranges rather than point time results. It is possible to 765 

use fewer positions for our calculations if, for example, one probeset position is giving a constant truncated value. 

These instances would need individual verification.  

There were limited options to extend the time-out period for the combination of Tranzflo probeset system and 

Campbell Scientific logger/ multiplexer used in this project. Based on our experience, extending the time-out 

beyond double (i.e. beyond 660 second = 11 minutes) would be impractical for the current set-up. Extension 770 

beyond, say, 7 minutes (420 seconds) would likely require a decrease to the sampling frequency to 1 s (currently 

set to 0.5 s) to ensure sufficient memory is available during the differential calculation period. This decrease in 

sampling frequency is an inevitable compromise between capturing low heat velocities and offering sufficient data 

discrimination to capture variation in heat velocity towards the maxima of the daily cycle.  

988 Appendix C: Details of xylem sap flow measurements and calculations 775 

In each research array a datalogger and multiplexer (CR1000+AM25T, Campbell Scientific, Logan, Utah, USA) 

was used for year-round 24-hour capture of raw data from sap flux HPC probesets manufactured by Tranzflo (New 

Zealand), soil and throughfall measurement devices. 

The logger was programmed for data capture using CRBasicEditor under LoggerNet (versions to 4.6.2), also by 

Campbell Scientific, Logan, Utah, USA. We tested our prototype installation set-up in mid-summer 2017 to 780 

determine if we could capture the expected range of heat velocities and applied similar capture programs to all 

array loggers. 

Each target oak tree had two probesets, East- and West-facing, using long (7 cm four-sensor) probes. Each 

probeset was inserted at a stem height between 1.1 and 1.3 m and contained a central heat pulse probe and two 

measurement probes (each containing four thermocouples for long probes respectively) upstream and downstream 785 

of the heater (Fig. S2). Transducers were positioned radially in the stem (to suit the ring-porous characteristics and 

bark thickness of theseold growth Q.robur trees). Each probeset was protected from natural heating by reflective 

insulation covers during the treatment season.  

During monitoring, a heater pulse of duration 1.5–2.5 secs was applied half-hourly through a heater box (one per 

tree) to the heater probes. The pulse duration was dependant on the number of heaters pulsed simultaneously. A 790 

2 second pulse was standard for the two oak per array (four long probeset) configuration. Each thermocouple pair 
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in the upstream and downstream positions took up to 330sec (5.5 minutes) to reach a differential heat balance 

point and this time determined the minimum detectable heat velocity, for a time just within this timeout period. The 

thermocouple datalogger sampling rate of 0.5 secs determined the maximum detectable speed (minimum time-to-

balance), which, given normal interference levels, was adequate for deriving maximum heat velocity. 16 differential 795 

thermocouple configurations were sampled per array in one 6 minute timeslot every 30 minutes, giving time-to-

balance tz data in seconds. 

Data collection problems, due to logger earthing and sap probe misconnections at manufacture, caused data loss 

early in the project. Contact with sapwood was maintained for all oak trees from installation to March 2021, when 

two out of the 36 probesets failed. 800 

98.18.1 Raw file processing 

Logger data from the nine C1000 FACE research loggers were collated by array and transducer type (i.e. 7 cm 

probeset datasets for oaks only) using ‘R’, then combined into year files for further data processing. 

98.28.2 Xylem sap flux calculations. 

Following quality checks, each stage of calculation to produce wound-corrected sap velocity and sap flux density 805 

at each transducer position (four per probeset) was performed in stages (see Table A2). Table A2 lists the 

methodology and equations along with associated literature sources for each stage.  

At stage 3 (Table A2), the Green and Clothier (1988) polynomial factors were used for wound compensation. For 

stage 4, the conversion factor c1 was derived  by measurement of wet and dry woodcores and microcores (Eq.(A4) 

and Eq.(A5)) to calculate xylem sap velocity from heat velocity in oakwood.  810 

Short incremental wood cores (circa 10 cm long, 4 mm diameter) were taken from two old growth oaks outside of 

the experimental arrays. Microcores were also taken near all 36 target oak probeset installation positions. These 

cores were used to determine wood hydraulic properties (Edwards and Warwick, 1984; Marshall, 1958) for sap 

velocity and flux calculations (see stage 4, Table A2 and definitions Table A1). In summer 2021 woodcores taken 

from some of the target oaks were further analysed to check the conversion (xylem woody matrix) factors from heat 815 

velocity to sap velocity and to verify the active xylem radial width. The visibly active xylem (sapwood) is typically 

between seven and 50 mm when viewed in wet cores. The uncertainty in heartwood boundary H (m), as described 

in Appendix B, could be resolved in future similar studies by taking short cores prior to installing instrumentation. 

98.2.18.2.1 Heat pulse to xylem sap flux calculations. 

Figure C1 shows example positional (i.e. thermocouple-specific), point sap flux density data from four probesets in 820 

two trees illustrating positioning of peak sap flux through the sapwood. Figure C1(a) pools results from both trees. 

Data from the thermocouple radial position giving the highest diurnal values (one thermocouple position for each 

probeset) are selected from the four-position data and shown across a 24-hour period (Fig. C1(a)). The diurnal 

maxima from the larger Tree 1 are larger than those for the smaller Tree 2.  Figure C1(b) pools probeset results 

from the larger tree, E-facing (top) and W-facing (bottom). Note the increase in sap flux density towards the centre 825 

of the sapwood, decreasing again towards the heartwood (Fig. C1(b)).  
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Figure C1: a) Example Stage 4 output showing peak point sap flux density in two trees for one sunny day in August 
2017. Tree 1 (vsfd1_3 and vsfd1_6) stembark radius is larger than Tree 2 (vsfd1_9 and vsfd_13). b) Example Stage 4 
output showing changes to point sap flux density across the active xylem for E facing (top) and W facing (bottom) 830 
probesets of one tree (Tree 1) on the same day in August 2017. The lefthand probe position is nearest to the bark and 
the righthand probeset position is nearest to the heartwood. Note the peak value occurs at different sensor positions 

for the two probesets. 

The nocturnal/ pre-dawn response for the smaller tree in 1(a) (vsfd1_9 and vsfd_13)) and the less vigorous 

thermocouple positions in the larger tree in Figure C1(b) (vsfd1_1, vsfd_4, vsfd1_5 and vsfd_8 ) have their minima 835 

determined by the previously mentioned time-out limit (i.e. tz of 330 secs). These minima do not affect the 

processing of diurnal values but influence nocturnal value accuracy of the lowest point sap flux density (see 

Appendix B). The radial pattern of sap flux density increases in amplitude to a peak position within the probeset 

measurement zone and then decreases again towards the heartwood boundary as depth from the cambium 

increases (Fig. C1(a) and (b)), a characteristic of these ring porous oak species. The radial amplitude patterns vary 840 

across seasons. 

98.38.3 Converting point xylem sap flux data to whole tree water usage. 

An adapted simple integration method (Hatton et al. 1990), based on a weighted average approach was used 

where the point sap flux density is weighted by the areas of the annular rings associated with each rz. Fig. C1. 

Hatton et al. (1990) consider their method, in comparison with alternatives (e.g. fitting a least-squares polynomial), 845 

a simpler and more accurate approach for estimation of the volume flux. 

Using cambium radius (R) data, estimated heartwood radius (H) (0.05 m smaller than the inner sensor radial 

position), along with transducer radius positions (rz), point sap flux density from the four measurements points is 

converted to volumetric (half tree) total sap flux for each probeset (Fig. 3) by using the integration of the point sap 

fluxes over the active sapwood conducting area (Stage 5, Appendix Table A2 and Appendix C). 850 

999 Code availability 

R code for sap flux and TWU data analysis and logger CSBasic programs, can be requested from the 

correspondence author (ARMK) or the first author (SEQ). R code for the precipitation and soil moisture data is 

available at https://github.com/giuliocurioni/Sue_paper1/invitations. 

10010 Data availability 855 

All data used to carry out this study are available upon request via the correspondence author (ARMK); this includes 

both logged data and physical tree measurements/ ecological information for example. Sap flux data are available 

at UBIRA eData repository doi. https://doi.org/10.25500/edata.bham.00000972 
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Phenocam data available https://phenocam.nau.edu/webcam/roi/millhaft/DB_1000/ 
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