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Abstract: Streams are defined by the presence of a streambed, which is a linear 15 

depression where water flows between discernible banks. The upstream 16 

boundary of a stream is called a channel head. Headwater streams, which are 17 

small streams at the top of a watershed, account for the majority of the total 18 

length of streams, yet their exact locations are still not well known. For years, 19 

many algorithms were used to produce hydrographic networks that represent 20 

headwater streams with varying degrees of accuracy. Although digital 21 

elevation models derived from LiDAR have significantly improved headwater 22 

stream detection, the performance of the algorithms with different geomorphic 23 

characteristics remains unclear. Here, we address this issue by testing different 24 

combinations of algorithms using classification trees. Homogeneous 25 

hydrological processes were identified through hydrological classification. The 26 

results showed that in shallow soil that mainly consists of till deposits, the 27 

algorithms that recreate the surface runoff process provide the best explanation 28 

for the presence of a streambed. In contrast, streambeds in thick soil with high 29 

infiltration rates were primarily explained by a small scale incision algorithm. 30 

Furthermore, the use of an iterative process that recreates water diffusion made 31 

it possible to more accurately detect streambeds than other methods tested, 32 

regardless of the hydrological classification. The method developed in this 33 

paper shows the importance of considering hydrological processes when 34 

aiming to identify headwater streams. 35 
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1. Introduction 38 

Streams are characterized by the presence of natural linear depressions, called streambeds. 39 

Streambeds, which are mostly formed by fluvial processes, consist of a bed floor and banks, 40 

and are identified morphologically. The upstream location of a streambed is generally 41 

recognized as being the beginning of a stream and is referred as the channel head. At times, 42 

streambeds can be discontinuous or diffuse, leading to subjective identification of 43 

streambeds in the field and influence the determined location of the surveyed channel head 44 

(Dietrich and Dunne, 1993; Wohl, 2018). On a large scale, headwater streams are 45 

extremely important to maintain natural hydrological processes. Indeed, they are 46 

representing about two-thirds of the total length of streams in a large watershed (Leopold 47 

et al., 1964). Because they have varied ecosystems that include ecotones, headwater 48 

streams support rich and diverse fauna and flora (Meyer et al., 2007). In addition, 49 

headwater streams provide many ecological services to humans, including good quality 50 

drinking water (Alexander et al., 2007; Freeman et al., 2007) and flood control (St-Hilaire 51 

et al., 2016). Creed et al. (2017) estimated that for 2.9 million km of headwater streams in 52 

the United States, 15.7 trillion US $ in ecological services are provided annually. 53 

Cartographic information on headwater streams at national or provincial scales are largely 54 

derived from photointerpretation of stereoscopic aerial photography. This is the main 55 

method used for the Géobase du réseau hydrographique du Québec (GRHQ) in Quebec 56 

province, Canada. This geodatabase combines and standardizes several sources of 57 

hydrographic data, covering an area of 154 million hectares and representing millions of 58 

hydrographic features identified from aerial photos. Unfortunately, this method 59 

underestimates the true length of streams and is especially inaccurate when identifying 60 
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where streams begin and where they become permanent. Streambeds are often 61 

imperceptible on stereoscopic images where only the wide valleys are evident 62 

(Montgomery and Dietrich, 1994). 63 

Other methods based on a digital elevation model (DEM) have been used for several years 64 

to detect streams. These methods, used to produce hydrographic networks, can be divided 65 

into two main categories: channel initiation and valley recognition (Lindsay, 2006). The 66 

channel initiation method can be used to identify the potential locations of streambeds by 67 

thresholding a flow accumulation raster by a minimum drainage area (Band, 1986; Fairfield 68 

and Leymarie, 1991; Jenson and Dominque, 1988; O’Callaghan and Mark, 1984). Valley 69 

recognition can be used to detect streambeds locally through a moving window that 70 

identifies specific pattern depending on the algorithm used (Passalacqua et al., 2012; 71 

Peucker and Douglas, 1975; Tribe, 1992). These methods have been widely used with 72 

coarse resolution DEMs (greater than 10 m) that have generally been derived from aerial 73 

photos. 74 

High resolution geospatial data from LiDAR technology allows for more accurate detection 75 

of headwater streams. These data have recently been made available over large areas, 76 

providing topographic data on the microtopography under the forest canopy and allowing 77 

the creation of DEMs with unprecedented accuracy (Wulder et al., 2008). The 78 

hydrographic networks generated with these new DEMs are much more accurate than those 79 

derived from photointerpretation or those produced from DEMs with a coarser resolution 80 

(Goulden et al., 2014). These DEMs allow for the subdivision of a larger number of small, 81 

previously undetected watersheds, thus generating multiple headwater streams, and 82 

consequently, many branches. Various authors have attempted to use these DEMs to 83 
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improve the accuracy of hydrographic networks and the position of channel heads. LiDAR-84 

derived DEMs have been used to detect streams both locally (Cho et al., 2011; James et 85 

al., 2007) and through channel initiation using a drainage area threshold (Murphy et al., 86 

2008; Persendt and Gomez, 2016). Other authors have attempted to include the slope to a 87 

flow accumulation raster in order to produce more explicit models (Elmore et al., 2013; 88 

Henkle et al., 2011; James et al., 2010; Montgomery and Foufoula-Georgiou, 1993). While 89 

these methods are more representative of the local impact of water, they still ignore the 90 

heterogeneity of an area and the many other elements that affect bed formation. Among 91 

other things, some authors noted the sensitivity of local flow direction to the elevation error 92 

of the DEM (Hengl et al., 2010; O’Neil and Shortridge, 2013; Schwanghart and Heckmann, 93 

2012). DEMs derived from LiDAR data were also used to quantify the variability of 94 

permanent stream flow lengths, although those studies did not specify where the streambed 95 

begins (Jensen et al., 2018, 2019; Van Meerveld et al., 2019). To the best of our knowledge, 96 

no study has addressed streambed detection using LiDAR data while considering both 97 

channel initiation and valley recognition methods (Heine et al., 2004) on a heterogeneous 98 

territory at the geomorphological level (Wu et al., 2021). Also, no study uses such a large 99 

validation database from real observations acquired in the field. 100 

The main objective of our study is to detect headwater streambeds at a provincial scale. 101 

Our method overcomes the many challenges that have limited this information in the past. 102 

These challenges include highly heterogeneous geomorphological characteristics (such as 103 

surface deposits) and strong anthropization of the land.  104 
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2. Study areas 105 

The study areas were located in the Appalachian Mountains, St. Lawrence Lowlands, 106 

Southern Laurentides Highlands and Abitibi Lowlands natural provinces, according to the 107 

Quebec Ecological Reference Framework (Fig. 1). This reference framework divides the 108 

territory of Quebec into spatially homogeneous units at various, intertwined levels. The 109 

different levels describe homogeneous units in terms of landform, spatial organization and 110 

hydrographic network configuration (Direction de l’expertise en biodiversité, 2018). The 111 

diversity of the natural provinces thus selected provides a general description of the 112 

headwater streams in Quebec. These natural provinces have distinct hydrological 113 

processes. 114 

The Southern Laurentides Highlands is mostly covered by till, the most widespread surface 115 

deposit in the province of Quebec (Blouin and Berger, 2004; Gosselin, 2002). This natural 116 

province is mountainous, with altitudes varying from 200 to 1200 m. The bedrock mainly 117 

consists of gneiss. Surface deposits are generally thin on summits and steep slopes and 118 

thicker on valley bottoms and gentle slopes. The land in the Southern Laurentides 119 

Highlands is largely forested. In the Appalachian Mountains, the surface deposits are 120 

somewhat similar in distribution to those in the Southern Laurentides Highlands, although 121 

they are thicker in certain areas. However, the bedrock in the Appalachian Mountains is 122 

sedimentary and therefore very different from the Southern Laurentides Highlands. The 123 

altitude here varies from 0 to 1200 m. Unlike the Southern Laurentides Highlands, there is 124 

high anthropization of this natural province due to urbanization and agriculture (Gosselin, 125 

2005a). In the St. Lawrence Lowlands, agricultural activity is also widespread. The surface 126 

deposits in this region are highly heterogeneous and are mainly derived from marine and 127 
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glaciolacustrine geomorphic processes. These processes lead to thick soils of sorted 128 

material, including clay and sand. These, in turn, create deposits that range from 129 

impermeable to very permeable. In addition to clay and sand, organic deposits are also 130 

present. The elevation of the St. Lawrence Lowlands is generally less than 100 m, as it was 131 

formed from the Champlain Sea during deglaciation (Gosselin, 2005b). In the Abitibi 132 

Lowlands, the surface deposits are rather thick and consist of silt and clay. These deposits 133 

were produced by marine and lacustrine invasions and are conducive to the formation of 134 

large peatlands. Therefore, the area is relatively flat with altitudes varying from 0 to 350 135 

m. Where present, the bedrock is made of basalt and gneiss (Blouin and Berger, 2002).  136 

Precipitation is not seasonal, but rather constant throughout the year in all study areas. 137 

Precipitation amounts are quite homogeneous and range from 900 mm/year to 1100 138 

mm/year, except in Southern Laurentides Highlands where it can reach 1450 mm/year. 139 

Approximately 20 % of the precipitation falls as snow during the cold season, except in the 140 

coldest regions such as the Abitibi Lowlands and the higher altitude areas of the Southern 141 

Laurentides Highlands where the proportion of snow can reach 30%. Indeed, the average 142 

annual temperature of all the study areas is 3° C to 5° C, except for these two regions where 143 

it is 0° C (MELCC, 2022). 144 

https://doi.org/10.5194/egusphere-2023-1521
Preprint. Discussion started: 13 July 2023
c© Author(s) 2023. CC BY 4.0 License.



8 
 

 145 

Figure 1 : Study areas in the Appalachian Mountains, St. Lawrence Lowlands, Southern 146 

Laurentides Highlands and Abitibi Lowlands natural provinces. [Color is not required 147 

for this figure. Single column fitting figure.] 148 

 149 

3. Methods 150 

3.1. Field surveys 151 

Field based data collection is essential to fully understand stream flow patterns. Field 152 

surveys were conducted from 2017 to 2021 during summer periods using an EOS GNSS 153 

Arrow 100 sub-meter precision GPS. The horizontal accuracy of these devices is  154 

± 0.6 m in open areas and ± 1.2 m in forested areas (Estrada, 2017). These devices were 155 
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connected to rugged cell phones in order to use the ArcGIS Field Maps application to 156 

integrate data collection forms as well as relevant background maps. 157 

The positions of streams were recorded from downstream at drainage area generally under 158 

1000 ha to upstream until the streambed completely disappeared. The flow regime, the 159 

width of the streambed, the extent of the water occupation in the streambed and the 160 

presence or the absence of a water flow were collected along de stream path to establish a 161 

high level of understanding. A position was taken on the streams every 50 m or so where 162 

a streambed was present, i.e. where the stream had a bed floor and banks formed by a 163 

fluvial process. Other positions were also taken to identify where there was no streambed. 164 

These information were essential for consistent calibration and validation of streambeds. 165 

To ensure consistent data collection, a 50 m x 50 m grid was used to determine which areas 166 

should be fully surveyed. These areas were mostly located at headwater streams in order 167 

to be able to include channel heads. This procedure was essential to properly assess the 168 

upstream boundary of the headwater streams and precisely record where the streambeds 169 

begin, where they flow from the watershed to the permanent stream, and where they are 170 

absent. 171 

3.2. Variables used for analysis 172 

The geomatic manipulations were mainly performed with the ArcGIS Desktop 10.7 173 

software package, including the Spatial Analyst and 3D Analysis extensions. The open 174 

source SAGA-GIS (Conrad et al., 2015) and WhiteboxTools (Lindsay, 2016a) software’s 175 

were also used. 176 

The variables used for analysis were produced from 1 m resolution DEMs of the different 177 

areas. These were generated from LiDAR data from the MFFP (Ministère des Forêts, de la 178 
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Faune et des Parcs), with a density of around 2.5 points/m². LiDAR acquisitions were 179 

conducted from 2016 to 2019 (Leboeuf and Pomerleau, 2015), with the exception of a few 180 

areas. The road network was carefully examined in order to include and burn all culverts 181 

that could affect the flow direction (Lessard et al., 2023). Hydrographic networks are 182 

greatly affected by deviations caused by the embankment of the roads. This type of 183 

anthropic influence must therefore be minimized in order to generate coherent flow 184 

direction (Li et al., 2013). Furthermore, the use of a breaching algorithm allowed to 185 

generate hydrologically coherent DEMs prior to hydrographic modeling (Lindsay, 2016b; 186 

Lindsay and Dhun, 2015). Physiographic factors must also be considered during the 187 

modeling process as they significantly influence the location of channel heads and the flow 188 

regime along streams. On the local scale, where the precipitation regime is uniform (Tucker 189 

and Slingerland, 1996), slope, hydraulic force and sediment cohesion generally dictates 190 

streambed formation (Dietrich and Dunne, 1978). The influence of these factors is variable 191 

depending on the type of surface deposit (Dietrich and Dunne, 1993; Dunne and Black, 192 

1970; Montgomery and Dietrich, 1994).  193 

Surface deposits can be used to assess which processes are involved in the formation of a 194 

streambed. Indeed, there are two major types of formation processes. The first type 195 

involves surface processes, which occurs when soil that has low permeability is exposed 196 

to rainfall amounts that exceed the infiltration capacity of the ground, causing surface 197 

runoff (Horton, 1945). Then, when the power of the water exceeds the cohesion of the 198 

sediments, usually in concavities, a streambed forms (Dietrich and Dunne, 1978). The 199 

second type involves subsurface processes that occur when the surface deposits are thick 200 

and infiltrative. Water vertically infiltrates into the ground and eventually reaches 201 
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saturation at a junction with the bedrock or an inferior and less infiltrating deposit. Then, 202 

lateral movement of the groundwater occurs. Water emerges from the ground when there 203 

is a change in slope or soil permeability. Streambeds formed in this way tend to be heavily 204 

incised, with flow regimes that are more stable than those formed through surface 205 

processes. Thus, the hydrological response of the streams from subsurface processes is 206 

slightly affected by the intensity of rainfall (Dunne and Black, 1970; Jensen et al., 2019; 207 

Wohl, 2018). Furthermore, it should be noted that there is a gradient between these two 208 

processes for each stream. In order to properly detect streambeds, it is essential to 209 

distinguish these processes through hydrological classification according to surface deposit 210 

type and land use.  211 

Surface deposit mapping has been standardized across the province, including our study 212 

area. Information was collected through photointerpretation conducted several years ago. 213 

Since photointerpretation was mainly used to distinguish forest structures and land use, the 214 

true boundaries of the surface deposits are imprecise, in some cases. Surface deposit 215 

boundaries in agricultural areas are more accurate than those in forested areas because no 216 

other information was mapped during the process. Regardless of these drawbacks, 217 

standardized mapping provides a rough description of the nature and thickness of surface 218 

deposits.  219 

Spatially heterogeneous surface deposits in Quebec have been classified into three 220 

categories and are described in Table 1 (Saucier et al., 1994). The purpose of this 221 

classification step is to differentiate the two types of hydrological processes for headwater 222 

stream formation that were previously described (Dietrich and Dunne, 1993; Lessard, 223 

2020). These classifications consider the infiltration capacity and the water storage 224 
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capacity of the ground (Dunne and Black, 1970). The two main variables considered were 225 

the potential thickness and the granulometry of the surface deposits (Dietrich and Dunne, 226 

1993; Wohl, 2018). 227 

 228 

Table 1 : Hydrological classification according to surface deposit types and land use 229 

Hydrological class Surface deposits and land use involved 

Shallow soil 

Glacial deposits without morphology such 

as till, frequent rock outcrops 

Thick soil with 

high infiltration 

rate (including 

anthropogenic land 

use) 

Glacial deposits with morphology such as 

moraines, glaciofluvial deposits, fluvial 

deposits, coarse lacustrine and marine 

deposits, slope deposits and eolian 

deposits; 

Anthropogenic land use were included in 

this class (Treeless areas including 

agricultural fields, roads, urbanized areas 

and powerlines) 

Thick soil with low 

infiltration rate 

Lacustrine and fine marine deposits, 

organic deposits 

 230 

The first analysis variable, called ‘D8’, refers to the D8 flow accumulation (O’Callaghan 231 

and Mark, 1984) produced with a 1 m resolution DEM. This variable was selected as it is 232 

the most common algorithm used to produce hydrographic networks. For meaningful 233 

correspondence analysis between this variable and field surveyed streams, the flow 234 

accumulation raster was aggregated at 3 m resolution according to the maximum value. 235 
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Then, a maximum focal statistic of two pixels was applied. The purpose of this treatment 236 

was to ensure a 6 m analysis distance between the D8 and the edge of a real stream, 237 

represented in the database by a geospatial line. This prevents the omission error from 238 

being overestimated. 239 

The second analysis variable uses the D8 flow accumulation algorithm while considering 240 

flow direction error due to the elevation uncertainty of the DEM (Hengl et al., 2010; 241 

O’Callaghan and Mark, 1984). This variable, called ‘PROB’, quantifies the uncertainty 242 

associated with the position of the drainage network. The elevation error in the DEM is 243 

directly related to the uncertainty of the LiDAR data (Wechsler, 2007) and impacts the 244 

position of the hydrographic network (Lindsay, 2006). This type of error is affected by the 245 

landform, and mainly occurs on gentle slopes and slightly convex terrain (Hengl et al., 246 

2010). Since this type of error is inherent to the shape of the land, it is not affected by the 247 

size of the drainage area implied. The iterative method described in Hengl et al. (2010) was 248 

reproduced in order to create the PROB variable. The method is based on repeatedly 249 

computing a flow accumulation raster from an initial DEM and several altered versions of 250 

the DEM. These altered versions are created by adding random elevation errors to the initial 251 

DEM in order to reproduce the elevation errors from the LiDAR data. The elevation errors 252 

therefore had a standard deviation of 0.08 m, randomly distributed over the DEM. A focal 253 

statistic of 3 m was used on the error raster to ensure the spatial autocorrelation of errors. 254 

Based on the convergence observed by (Lindsay, 2006), 50 iterations were carried out. 255 

Then, each of the flow accumulation rasters were thresholded to a 1.5 ha drainage area to 256 

sum the resulting binary stream network, where a value of 1 indicated the presence of a 257 

streambed and a 0 indicated the absence of a streambed. The matrix of the cumulative value 258 
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was then normalized as a percentage to be used as an analysis variable. This PROB variable 259 

revealed the diffusion process of the water in hillsides, where the slope is relatively 260 

uniform. The PROB variable was produced with a 3 m resolution DEM from a 1 m 261 

resolution DEM that was aggregated using the mean values. An average flow accumulation 262 

raster that corresponded to the average of the 50 flow accumulations raster without 263 

thresholding was also produced. This raster was used to create the analysis database and to 264 

calculate the drainage area of the channel heads. To ensure a 6 m analysis distance as well 265 

as the D8 variable, a maximum focal statistic of two cells was performed before summing 266 

or averaging the iterated raster. 267 

The third variable used for analysis is morphometric and allows for the complementary 268 

detection of headwater streams (Lindsay, 2006; Tribe, 1992). The morphometric algorithm 269 

used was the topographic position index, referred to as ‘TPI’. This algorithm allowed for 270 

the local detection of small incisions that might represent streambeds (Tribe, 1992). The 271 

scale at which this variable is calculated strongly influences the morphometric feature that 272 

is identified. When the scale is large, the variable will tend to identify valleys, while it 273 

tends towards streambeds when the scale is small (Montgomery and Dietrich, 1992, 1994). 274 

For the purposes of this paper, a relatively small scale of 6 to 30 m was used. This scale is 275 

consistent with the width of the majority of inventoried streambeds. The DEM used to 276 

calculate this variable had a resolution of 2 m and was derived from aggregating a 1 m 277 

resolution DEM with the minimum values. The tool named ‘Topographic Position Index’ 278 

in SAGA-GIS software was used to produce this variable (Guisan et al., 1999; Weiss, 279 

2001). The TPI variable has not been normalized to keep the homogeneity of the values 280 

between the different study areas. 281 
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3.3. Analysis database 282 

In order to perform the subsequent analyses, all actual streambeds were vectorized and geo-283 

interpreted according to the stream positions recorded in the field. It should be noted that 284 

information on the flow regime was not used in this database. Instead, the presence of a 285 

streambed was used to describe the presence or absence of a stream. Although some beds 286 

have been excavated and channelized, particularly in anthropogenic lands, a bed was 287 

considered to be present when natural fluvial processes allow it to be maintained. The 288 

geospatial lines indicating the exact location of the streambeds were complemented by a 289 

50 m x 50 m grid to represent the complete surveyed area. Thus, areas without a geospatial 290 

line have been assumed to not contain streambeds. 291 

Positions representing the presence of streams were systematically located every 20 m 292 

along geospatial lines that described real streams. Then, positions representing the absence 293 

of a streambed were located according to a sampling principle based on minimum flow 294 

accumulation where it was still possible to observe the presence of a stream. First, within 295 

the grid of the surveyed area, the average flow accumulation raster was thresholded at 0.11 296 

ha. This threshold represents the lowest drainage area of a channel head according to 297 

(Lessard, 2020). Then, the resulting raster was converted to a polygon. Following that step, 298 

a 20 m buffer zone was removed around the geospatial lines that represent real streams. 299 

Finally, absence positions were systematically located according to a hexagonal 300 

distribution in the final resulting polygon. Thus, polygons identifying absence positions 301 

were located only in areas with a minimum 1100 m2 mean drainage area and a minimum 302 

distance of 20 m from any real streams. The number of absence positions was equalized 303 
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with the number of presence positions for each natural region within the Quebec ecological 304 

reference framework. 305 

The analysis database was therefore composed of positions describing both the presence 306 

and the absence of streambeds (Fig. 2). The values for the three variables described in the 307 

previous section (D8, PROB and TPI) were extracted for all presence and absence 308 

positions. 309 

 310 

Figure 2 : Analysis database of positions indicating the presence and absence of 311 

streambeds (Aerial images from continuous imagery of the Government of Quebec; 312 

MRNF). [Color is not required for this figure. Single column fitting figure.] 313 
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 314 

3.4. Statistical analysis 315 

A total of nine logistic regression models were produced, one for each explanatory variable 316 

and hydrologic class combination. Response variable was the presence (1) or the absence 317 

(0) of a streambed. The area under the ROC (Receiver Operating Characteristic) curve was 318 

used to evaluate model performance (Fawcett, 2006). The ROC curve plots the true positive 319 

rate (1 minus omission) relative to the false positive rate (commission). This curve shows 320 

the performance of a given variable by determining the Area Under the Curve (AUC) and 321 

how the increase in the true positive rate will lead to an increase in the false positive rate. 322 

A model with a high AUC will provide a better balance between these two measurements 323 

and will produce better results. Thus, the AUC provides a measure of the ability of the 324 

individual variables to detect a streambed. 325 

Next, four streambed models were compared to each other. Detection performance was 326 

calculated according to hydrological class and using Cohen's kappa, which is a measure of 327 

agreement between the true positive rate and the false positive rate (Cohen, 1960).  328 

The first model examined was the GRHQ. An analysis distance of 6 m was used in order 329 

to compare properly the performance of the GRHQ with the other models. Two of the other 330 

three models corresponded to two different thresholds that were applied to the D8 variable, 331 

which is one of the most commonly used variables for generating stream networks. The 332 

first threshold was the median of the average drainage area of the channel heads surveyed 333 

in the field (referred to as Channel head). The second threshold was the one that maximized 334 

Cohen's kappa for the variable D8 (referred to as Max Kappa). The last model that was 335 

compared is based on a supervised classification approach. This approach groups 336 

observations according to explanatory variables based on previously determined groups, 337 
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also known as the response variable. In this case, the response variable was the presence 338 

or absence of a streambed. Classification And Regression Tree (CART) approach was used 339 

because it is simple to apply over a large territory (Breiman et al., 1984). This model was 340 

called CART. One tree was produced for each hydrologic class in order to describe the 341 

formation of headwater streams from homogeneous hydrologic processes. Based on the 342 

literature, different variables were used for each hydrological class. The PROB variable 343 

was the only one that was used to detect streambeds in shallow soil, as the bedrock is 344 

usually close to the surface of the ground and not very suitable for incisions (Jensen et al., 345 

2018). For the other two hydrological classes in thick soils, the TPI and PROB variables 346 

were used. The surface deposits in these classes are not consolidated, allowing the ground 347 

to be incised. This can then be detected by different morphometric indices (Montgomery 348 

and Dietrich, 1994). The depth and number of branches in the classification trees have been 349 

limited in order to prevent overfitting (Fürnkranz, 1997).  350 

 351 

4. Results 352 

A total of 464.7 km of streams were surveyed over a known territory of 161.5 km2. The 353 

positions for 1033 channel heads indicating the beginnings of streambeds were determined. 354 

The average drainage areas of the channel head are presented in Fig. 3 using whisker boxes 355 

according to hydrological class. Figure 3 shows that for shallow soil, the average drainage 356 

area is less variable than for thick soils. For thick soils with low infiltration rates, the 357 

average drainage area tends to be higher. 358 

 359 
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 360 

Figure 3 : Distribution of mean drainage areas of channel heads according to hydrological 361 

class. Median values are shown. [Color is not required for this figure. Single column 362 

fitting figure.] 363 

 364 

The analysis database contains a total of 40 354 positions describing streambeds (20 177 365 

with streambeds present and 20 177 with streambeds absent) located in the entire surveyed 366 

area. A correlation matrix between the analysis variables showed that PROB is negatively 367 
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correlated with TPI, with an R of -0.57. This variable therefore identifies where the water 368 

converges, which usually corresponds with the locations of incisions. The other variables 369 

were not correlated with each other. 370 

Three classification trees according to hydrological class are presented in Fig. 4. The tree 371 

for shallow soil shows that when PROB exceeds a threshold of 0.33, a streambed is 372 

generally present. For thick soil with a high infiltration rate, the incision indicated by the 373 

TPI first explains the presence of a streambed. When the incision is greater or equal to -374 

0.41, indicating a small incision, PROB must be very high in order to indicate the presence 375 

of a streambed, at 0.99. When there is a larger incision, a lower value for PROB can identify 376 

the presence of a streambed. Thus, when the ground is relatively well incised with a TPI 377 

value smaller than -0.41, PROB only needs to be higher than 0.39 to detect a streambed. 378 

In thick soil with a low infiltration rate, PROB provides the initial information regarding 379 

the presence or absence of a streambed. Depending on the different PROB thresholds, TPI 380 

then determines the presence or absence of a streambed. 381 

 382 

 383 

Figure 4 : Classification trees to detect the presence of streambeds according to variables 384 
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D8, PROB and TPI and hydrological class. [Color is not required for this figure. 2 385 

column fitting figure.] 386 

 387 

Figure 5 compares the AUC of individual variables, thus their potential to detect a 388 

streambed. The performance of the four streambed models is also presented. This figure 389 

shows that for the three hydrological classes, PROB performs more effectively than D8 390 

when it comes to detecting streambeds. For thick soil classes, the incision variable TPI has 391 

a higher AUC than D8. For shallow soil, the opposite is true. Compared to the other models, 392 

the GRHQ has a very low true positive rate, meaning it omits many streams regardless of 393 

the hydrologic class. However, the performance of GRHQ is higher for thick soils than for 394 

shallow soils. For shallow soils, although the false positive rate is slightly lower for D8 395 

thresholded with channel heads (Channel head), the Cohen’s kappa of the classification 396 

tree (CART) is still higher. The performance of the maximum Kappa of D8 (Max Kappa) 397 

is still very similar to the one of the classification tree (CART). Figure 5 also shows that 398 

the performance of the classification tree (CART) for shallow soil is not in the upper left 399 

part of the ROC curve of the variable PROB. This observation is consistent with the fact 400 

that only this variable was used to calibrate this model. Nevertheless, for both thick soil 401 

classes, the performance of the classification trees (CART) is in the upper left part of the 402 

ROC curve of the variable PROB. This means that the addition of the incision variable TPI 403 

improves the detection of streambeds. For thick soils with high infiltration rates, the two 404 

thresholding methods (Channel head and Max Kappa) yielded similar performances, 405 

although they did not perform as well as the classification tree (CART). The performance 406 

of the classification tree (CART) is also higher than both D8 thresholding methods for thick 407 

soils with low infiltration rates. However, the method using the maximum Kappa (Max 408 
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Kappa) yields a higher rate of true positives than the thresholding method using the channel 409 

heads (Channel head). 410 

 411 

 412 

Figure 5 : ROC curve and AUC values from the logistic regressions of the three variables 413 

according to hydrological class. The performance of the streambed models using Cohen’s 414 

kappa is also presented. [Figure 5 about here. Color is not required for this figure. 2 415 

column fitting figure.] 416 

 417 

5. Discussion 418 

The results suggest that the classification tree can detect streambeds more accurately than 419 

the other methods tested. By integrating different topographic indices and ground 420 

information such as surface deposits, the detection of headwater streambeds is much more 421 

efficient in large watersheds, despite the high anthropization of the ground that is 422 

sometimes present. In addition, as the results of the classification trees are rasters (Fig. 6 423 

a)), they can be easily integrated within attribute table of a drainage network by calculating 424 
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the mean using a zonal statistic to assess the probability presence of a streambed (Fig. 6 425 

b)). This integration can be done without altering the course or thresholds of the 426 

hydrographic network. Each segment can therefore be truncated according to the presence 427 

or absence of the stream predicted by the model. 428 

 429 

 430 

 431 

Figure 6 : Classification tree that has been integrated into the segments of a hydrographic 432 

network to assess the probability presence of a streambed (b) (Aerial images from 433 

continuous imagery of the Government of Quebec; MRNF).  [Color is not required for 434 

this figure. 1.5 column fitting figure.] 435 

 436 

The classification tree (CART) drastically increases the true positive rate compared to the 437 

GRHQ. This is because the GRHQ was based on aerial photographs that were primarily 438 

used to characterize vegetation and forest structure. Photointerpretation of these images 439 
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did not allow for the detection of streambeds formed by local fluvial processes under the 440 

forest cover (Lessard, 2020). At most, photointerpretation enables the identification of 441 

valleys, for example, on thick soils (Montgomery and Dietrich, 1994). For this reason, the 442 

GRHQ omits fewer streams in thick soil than in shallow soil. 443 

The PROB variable improved the detection of streambeds compared to the conventional 444 

use of only the D8 variable, since it has been thresholded to accurately match the lowest 445 

drainage areas of the channel heads. According to Fig. 3, the 1.5 ha threshold accounts for 446 

the majority of the channel heads. However, the drainage areas of the channel heads are 447 

generally higher for thick soils with low infiltration rates. The majority of the surveyed 448 

streams in this hydrologic class are located in the Abitibi Lowlands natural province. Some 449 

of the drainage areas of the channel heads in shallow soil are smaller than 1.5 ha. 450 

For the shallow soil hydrological class, the PROB variable improves streambed detection 451 

only when a false positive rate of at least 0.12 is specified. Figure 5 shows that for a false 452 

positive rate of 0.25, for example, PROB has a higher true positive rate than the D8 453 

variable. Streambeds that were not omitted with a PROB threshold greater than 0.12 were 454 

mostly small streams with highly variable positions due to the slightly upstream convex 455 

topography (Hengl et al., 2010). It seems that these streambed presence positions have very 456 

low PROB values (48% of these positions have a probability below the 0.33 threshold used; 457 

Fig. 4). The 0.33 PROB threshold enabled a false positive rate that is much lower than 458 

0.25. In fact, the false positive rate was only 0.12. With this 0.33 threshold, the performance 459 

of PROB was almost identical to D8. This is indicated on the figure by the two ROC curves 460 

that were at their closest to each other at approximately the same place as the classification 461 

tree model (CART) (Fig. 5). In order to increase the true positive rate while using the PROB 462 
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variable, the threshold could be decreased to allow the smallest streams to be identified. 463 

However, this modification would increase the false positive rate. 464 

The poor performance of the TPI variable for shallow soil is due to the fact that the surface 465 

deposits are generally thin and the slopes are frequently steep. The ground is therefore less 466 

prone to erosion and incision than for the other two hydrological classes (Jensen et al., 467 

2018; Montgomery and Dietrich, 1994). Indeed, the parameters used to compute TPI do 468 

not enable the detection of small streambeds if they are not located in a valley or in a larger 469 

incision. Furthermore, the hydrological processes involved in this class are mostly surface 470 

flow and not subsurface flow. It is for this reason that D8 and PROB, which tend to be able 471 

to quite precisely recreate surface flow, are the best performing variables in this 472 

hydrological class (Julian et al., 2012; Wohl, 2018).  473 

The incision variable TPI performed better in thick soils with high infiltration rates. This 474 

seems to be due to the fact that unlike shallow soils which are generally thin, infiltrative 475 

soils are thick and unconsolidated. Thus, the main hydrological process for this 476 

hydrological class is a subsurface process, where the water table plays an important role in 477 

the initiation of streambeds. Water infiltrates vertically into the permeable surface deposits 478 

and recharges the groundwater (Dunne and Black, 1970). The locations of the channel 479 

heads do not correspond to specific drainage areas that can be identified by flow 480 

accumulation variables, but rather to local incisions formed by gullying processes where 481 

groundwater intersects the ground surface (Dietrich and Dunne, 1993; Wohl, 2018). This 482 

process occurs where there is a significant change in slope or soil permeability. The 483 

emergence of water from the ground leads to progressive gullying that can be detected by 484 

incision variables (Montgomery and Dietrich, 1994). In this context, groundwater depth 485 
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variables such as depth-to-water (DTW; (White et al., 2012)) could be used to explain the 486 

presence of streams in areas where a water table is present. It is important to mention that 487 

the DTW is very sensitive to parameterization and more research is needed for its proper 488 

use (Drolet, 2020). 489 

Streambeds were better detected using solely PROB instead of D8 for thick soils with low 490 

infiltration rates, which occur in territories where there is a high proportion of wetlands 491 

and gentle slopes. The PROB variable mostly reduces the number of commission cases. 492 

For example, in Fig. 5, PROB had a much lower false positive rate than D8 for the same 493 

true positive rate of 0.75. This large reduction in the false positive rate achieved with PROB 494 

reflects the ability of this variable to reproduce a diffuse flow on very flat or slightly convex 495 

terrains (Hengl et al., 2010). Indeed, in 78 % of cases, the positions that correspond to an 496 

absence of a streambed and that are corrected with PROB are wetlands. This is noteworthy 497 

because wetlands represent only 64 % of these positions in this hydrological class. Thus 498 

the PROB variable, using uncertain DEM elevation information, can recreate more realistic 499 

behavior of the water, especially in thick soils with low infiltration rates. By using both 500 

PROB and TPI variables (Fig. 4), streambed detection for this hydrological class can be 501 

improved compared to the use of a single variable. Because the deposits are unconsolidated 502 

and the ground can be incised (Dietrich and Dunne, 1993), the classification tree is in the 503 

upper left part of the ROC curve for the PROB variable as well as for the hydrological class 504 

with the high infiltration. The use of the TPI variable therefore provides an advantage. 505 

A limitation of the classification tree method is that the surface deposit mapping is not 506 

accurate enough for all local hydrological issues. A visual inspection revealed some 507 

inconsistencies in the surface deposit mapping within the same hydrological class. 508 
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Another limitation is associated with the anthropization and linearization of natural 509 

streams. While a streambed is the result of a natural fluvial formation process that leads to 510 

ground erosion, an anthropogenic ditch is an artificial bed that is formed by mechanized 511 

digging. However, it is common for naturally formed streambeds to have been excavated 512 

and linearized in agricultural areas. In these cases, it becomes very difficult to distinguish 513 

a streambed from an anthropogenic ditch, even in the field. Excavation concentrates the 514 

flow of water in the artificial bed (Moussa et al., 2002). Thus, an area with previously no 515 

water flow could now be considered a stream (Roelens et al., 2018). Automated detection 516 

methods are therefore likely to be much less reliable in these situations. 517 

We believe that the method described for calibrating the classification tree model is simple 518 

and robust enough to be applied in a different climatic and geomorphic context with local 519 

data describing headwater streambeds. An accurate LiDAR derived headwater streambed 520 

mapping is a powerful tool for government and local organizations involved in water 521 

management and protection. 522 

 523 

6. Conclusion 524 

The classification tree method presented in this paper has improved the detection of 525 

headwater streambeds for different hydrological contexts over large watersheds. Reliable 526 

and consistent results were obtained by developing a comprehensive field database. The 527 

variable PROB, which describes the probability of occurrence of a streambed, was used to 528 

correct errors associated with the positioning of streambeds. This variable allowed for 529 

marginal corrections of streambeds in shallow soil, particularly when a high threshold was 530 

used. In order to more precisely explain where streams initiate in shallow soil, variables 531 
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characterizing the composition of the upstream watershed such as the average upstream 532 

slope or the composition of deposits should be explored. The variable TPI, which 533 

characterized small-scale incisions, significantly improved the detection of streambeds in 534 

both thick soil hydrological classes when combined with the PROB variable. The small-535 

scale incision variable worked better in soils with high infiltration rates and the probability 536 

of occurrence worked better in soils with low infiltration rates. 537 

The increased complexity of the methods (inputs and parameterization) makes the 538 

optimizations more difficult for very large territories. It is difficult to integrate the influence 539 

of all physiographic variables into a single model and improvements require multiple 540 

iterations which leads to high complexity. The integration of case studies could improve 541 

models by directly focusing on some of the identified limitations. It is also important to 542 

consider that the input data may sometimes be unreliable, such as those for the road 543 

network, culverts, surface deposits and land use. Thus, developments, such as those 544 

integrating surface deposits, will not be improve if the quality of the raw data remains 545 

unchanged. Visual interpretation of map products and verification by an expert with a good 546 

knowledge of the area is an essential step that should not be neglected under any 547 

circumstances. 548 
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