
 

1 
 

High-resolution automated detection of headwater streambeds for large watersheds 1 

Francis Lessard1,2,3, Naïm Perreault1,2, Sylvain Jutras1,2,3 2 

1 Department of Wood and Forest Science, Université Laval, 2405 rue de la Terrasse, G1V 3 

0A6, Québec, QC, Canada 4 

2 Centre d’étude de la forêt, Université Laval, 2405 rue de la Terrasse, G1V 0A6, Québec, 5 

QC, Canada 6 

3 CentrEau - Water Research Centre, Université Laval, 1065 avenue de la Médecine, G1V 7 

0A6, Québec, QC, Canada 8 

 9 

Corresponding author: Francis Lessard, francis.lessard.3@ulaval.ca 10 

Present address: Pavillon Abitibi-Price, 2405 rue de la Terrasse, G1V 0A6, Québec, QC, 11 

Canada 12 

 13 

Keywords: LiDAR, Streambed, Headwater stream, Remote sensing  14 



 

2 
 

Abstract: Streams are defined by the presence of a streambed, which is a linear 15 

depression where water flows between discernible banks. The upstream 16 

boundary of a stream is called a channel head.Abstract: Headwater streams, 17 

which are small streams at the top of a watershed, account for the majority of 18 

the total length of streams, yet their exact locations are still not well known. 19 

For years, many algorithms were used to produce hydrographic networks that 20 

represent headwater streams with varying degrees of accuracy. Although 21 

digital elevation models derived from LiDAR have significantly improved 22 

headwater stream detection, the performance of the algorithms on landscapes 23 

with different geomorphicgeomorphologic characteristics remains unclear. 24 

Here, we address this issue by testing different combinations of algorithms 25 

using classification trees. Homogeneous hydrological processes were 26 

identified through hydrological classification.Quaternary deposits. The results 27 

showed that in shallow soil that mainly consists of till deposits, the use of 28 

algorithms that recreatesimulate the surface runoff process provide the best 29 

explanation for the presence of a streambed. In contrast, streambeds in thick 30 

soil with high infiltration rates were primarily explained by a small -scale 31 

incision algorithm. Furthermore, the use of an iterative process that 32 

recreatessimulate water diffusion made it possible to more accurately detect 33 

streambeds more accurately than all other methods tested, regardless of the 34 

hydrological classification. The method developed in this paper shows the 35 

importance of considering hydrological processes when aiming to identify 36 

headwater streams. 37 
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1. Introduction 40 

Streams are characterized by the presence of natural linear depressions, called streambeds. 41 

Streambeds, which are mostly formed by fluvial processes, consist of a bed floor and banks, 42 

and are identified morphologically. The upstream location of a streambed is generally 43 

recognized as being the beginning of a stream and is referred as the channel head. At times, 44 

streambeds can be discontinuous or diffuse, leading to subjective identification of 45 

streambeds in the field and influence the determined location of the surveyed channel head 46 

(Dietrich and Dunne, 1993; Wohl, 2018). On a large scale, headwater streams are 47 

extremely important to maintain natural hydrological processes. Indeed, they are 48 

representing about two-thirds of the total length of streams in a large watershed (Leopold 49 

et al., 1964). Because they have varied ecosystems that include ecotones, headwater 50 

streams support rich and diverse fauna and flora (Meyer et al., 2007). In addition, 51 

headwater streams provide many ecological services to humans, including good quality 52 

drinking water (Alexander et al., 2007; Freeman et al., 2007) and flood control (St-Hilaire 53 

et al., 2016). Creed et al. (2017) estimated that for 2.9 million km of headwater streams in 54 

the United States, 15.7 trillion US $ in ecological services are provided annually. 55 

Cartographic information on headwater streams at national or provincial scales are largely 56 

derived from photointerpretation of stereoscopic aerial photography. This is the main 57 

method used for the Géobase du réseau hydrographique du Québec (GRHQ) in Quebec 58 

province, Canada. This geodatabase combines and standardizes several sources of 59 

hydrographic data, covering an area of 154 million hectares and representing millions of 60 
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hydrographic features identified from aerial photos. Unfortunately, this method, as other 61 

National Hydrography Dataset (NHD) underestimates the true length of streams and is 62 

especially inaccurate when identifying where streams begin and where they become 63 

permanent.perennial (Hafen et al., 2020). Streambeds are often imperceptible on 64 

stereoscopic images where only the wide valleys are evident (Montgomery and Dietrich, 65 

1994). 66 

Other methods based on a digital elevation model (DEM) have been used for several years 67 

to detect streams. These methods, used to produce hydrographic networks, can be divided 68 

into two main categories: channel initiation and valley recognition (Lindsay, 2006). The 69 

channel initiation method can be used to identify the potential locations of streambeds by 70 

thresholding a flow accumulation raster by a minimum drainage area (Band, 1986; Fairfield 71 

and Leymarie, 1991; Jenson and Dominque, 1988; O’Callaghan and Mark, 1984). Valley 72 

recognition can be used to detect streambeds locally through a moving window that 73 

identifies specific pattern depending on the algorithm used (Passalacqua et al., 2012; 74 

Peucker and Douglas, 1975; Tribe, 1992). Other authors have attempted to include the 75 

slope to a flow accumulation raster in order to produce more explicit models (Elmore et 76 

al., 2013; Henkle et al., 2011; James et al., 2010; Montgomery and Foufoula-Georgiou, 77 

1993). These methods have been widely used with coarse resolution DEMs (greater than 78 

10 m) that have generally been derived from aerial photos. 79 

High resolution geospatial data from Light Detection and Ranging (LiDAR) technology 80 

allows for more accurate detection of headwater streams. These data have recently been 81 

made available over large areas, by providing topographic data on the microtopography 82 

under the forest canopy and allowing the creation of DEMs with unprecedented accuracy 83 
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(Murphy et al., 2008; Wulder et al., 2008). The hydrographic networks generated with 84 

these new DEMs are much more accurate than those derived from photointerpretation or 85 

those produced from DEMs with a coarser resolution (Goulden et al., 2014). These DEMs 86 

allow for the subdivision of a larger number of small, previously undetected watersheds, 87 

thus generating multiple headwater streams, and consequently, many branches. Various 88 

authors have attempted to use these DEMs to improve the accuracy of hydrographic 89 

networks and the position of channel heads. LiDAR-derived DEMs have been used to 90 

detect streams both locally (Cho et al., 2011; James et al., 2007) and through channel 91 

initiation using a drainage area threshold (Murphy et al., 2008; Persendt and Gomez, 2016). 92 

Other authors have attempted to include the slope to a flow accumulation raster in order to 93 

produce more explicit models (Elmore et al., 2013; Henkle et al., 2011; James et al., 2010; 94 

Montgomery and Foufoula-Georgiou, 1993). While these methodsLiDAR-derived DEMs 95 

are more representative of the local impact of water, they still ignore the heterogeneity of 96 

an area and the many other elementsQuaternary deposits that can affect bedstreambed 97 

formation. Among other things, some authors noted the sensitivity of local flow direction 98 

to the elevation error of the DEM (Hengl et al., 2010; O’Neil and Shortridge, 2013; 99 

Schwanghart and Heckmann, 2012). DEMs derived from LiDAR data were also used to 100 

quantify the variability of permanentperennial stream flow lengths, although those studies 101 

did not specify where the streambed begins (Jensen et al., 2018, 2019; Van Meerveld et al., 102 

2019). To the best of our knowledge, no study has addressed streambed detection using 103 

LiDAR data while considering both channel initiation and valley recognition methods 104 

(Heine et al., 2004) on a territory with heterogeneous territory at the geomorphological 105 

levelgeomorphologic characteristics, such as slope or Quaternary deposits (Wu et al., 106 
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2021). Also, no study uses such a large validationcalibration database from real 107 

observations acquired in the field. 108 

The main objective of ourthis study is to detect headwater streambeds at a provincial scale. 109 

OurSpecific objectives are to consider hydrological processes through Quaternary deposits 110 

and to use simple, well-documented streambed detection methods that can be exported to 111 

different geomorphologic contexts with local calibration data. The proposed method 112 

overcomes the many challenges that have limited this informationefficient streambed 113 

detection in the past. These challenges include highly heterogeneous 114 

geomorphologicalgeomorphologic characteristics (such as surfaceQuaternary deposits) 115 

and strong anthropization of the land., as observed in numerous agricultural watersheds 116 

where headwater streams have been linearized and deepened (Couture, 2023; Sanders et 117 

al., 2020).  118 
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2. Study areas 119 

The study areas were located in the Appalachian Mountains, St. Lawrence Lowlands, 120 

Southern Laurentides Highlands and Abitibi Lowlands natural provinces, according to the 121 

Quebec Ecological Reference Framework (Fig. 1). This reference framework divides the 122 

territory of Quebec into spatially homogeneous units at various, intertwined levels. The 123 

different levels describe homogeneous units in terms of landform, spatial organization, and 124 

hydrographic network configuration (Direction de l’expertise en biodiversité, 2018). The 125 

diversity of the natural provinces thus selected provides a general descriptionrepresentation 126 

of the headwater streams in Quebec. These natural provinces have distinct hydrological 127 

processes resulting from geological structure and Quaternary deposits. 128 

The Southern Laurentides Highlands is mostly covered by till, the most widespread 129 

surfaceQuaternary deposit in the province of Quebec (Blouin and Berger, 2004; Gosselin, 130 

2002). This natural province is mountainous, with altitudes varying from 200 to 1200 m. 131 

The bedrock mainly consists of gneiss. SurfaceQuaternary deposits are generally thin on 132 

summits and steep slopes and thicker on valley bottoms and gentle slopes. The land in the 133 

Southern Laurentides Highlands is largely forested. In the Appalachian Mountains, the 134 

surfaceQuaternary deposits are somewhat similar in distribution to those in the Southern 135 

Laurentides Highlands, although they are thicker in certain areas. However, the bedrock in 136 

the Appalachian Mountains is sedimentary and therefore very different from the Southern 137 

Laurentides Highlands. The altitude here varies from 0 to 1200 m. Unlike the Southern 138 

Laurentides Highlands, there is high anthropization of this natural province due to 139 

urbanization and agriculture (Gosselin, 2005a). In the St. Lawrence Lowlands, agricultural 140 

activity is also widespread. The surfaceQuaternary deposits in this region are highly 141 
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heterogeneous and are mainly derived from marine and glaciolacustrine 142 

geomorphicgeomorphologic processes. These processes lead to thick soils of sorted 143 

material, including clay and sand. These, in turn, create deposits that range from 144 

impermeable to very permeable. In addition to clay and sand, organic deposits are also 145 

present. The elevation of the St. Lawrence Lowlands is generally less than 100 m, as it was 146 

formed from the Champlain Sea during deglaciation (Gosselin, 2005b). In the Abitibi 147 

Lowlands, the surfaceQuaternary deposits are rather thick and consist of silt and clay. 148 

These deposits were produced by marine and lacustrine invasions and are conducive to the 149 

formation of large peatlands. Therefore, the area is relatively flat with altitudes varying 150 

from 0 to 350 m. Where present, the bedrock is made of basalt and gneiss (Blouin and 151 

Berger, 2002).  152 

Precipitation is not seasonal, but rather constant throughout the year in all study areas. 153 

Precipitation amounts are quite homogeneous and range from 900 mm/year to 1100 154 

mm/year, except in Southern Laurentides Highlands where it can reach 1450 mm/year. 155 

Approximately 20 % of the precipitation falls as snow during the cold season, except in the 156 

coldest regions such as the Abitibi Lowlands and the higher altitude areas of the Southern 157 

Laurentides Highlands where the proportion of snow can reach 30%. Indeed, the average 158 

annual temperature of all the study areas is 3° C to 5° C, except for these two regions where 159 

it is 0° C (MELCC, 2022). 160 
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 162 

Figure 1 : Study areas in the Appalachian Mountains, St. Lawrence Lowlands, Southern 163 

Laurentides Highlands and Abitibi Lowlands natural provinces. Red polygons represent 164 

watersheds where field surveys were carried out. [Color is not required for this figure. 165 

Single column fitting figure.] 166 

 167 

3. Methods 168 

3.1. Field surveys 169 

Field based data collection is essential to fully understand stream flow patterns. Field 170 

surveys were conducted from 2017 to 2021 during summer periods using an EOS GNSS 171 

Arrow 100 sub-meter precision GPS. The horizontal accuracy of these devices is  172 
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± 0.6 m in open areas and ± 1.2 m in forested areas (Estrada, 2017). These devices were 173 

connected to rugged cell phones in order to use the ArcGIS Field Maps application to 174 

integrate data collection forms as well as relevant background maps. 175 

The positions of streams were recorded from downstream at drainage area generally under 176 

10001 000 ha to upstream until the streambed completely disappeared. The flow regime, 177 

the width of the streambed, the extent of the water occupation in the streambed and the 178 

presence or the absence of a water flow were collected along de stream path to establish a 179 

high level of understanding. A position was taken on the streams every 50 m or so where 180 

a streambed was present, i.e. where the stream had a bed floor and banks formed by a 181 

fluvial process. Other positions were also taken to identify where there was no streambed. 182 

TheseThis information werewas essential for consistent calibration and validation of 183 

streambeds. 184 

To ensure consistent data collection, a 50 m x 50 m grid was used to determine which areas 185 

should be fully surveyed. These areas were mostly located at headwater streams in order 186 

to be able to include channel heads. This procedure was essential to properly assess the 187 

upstream boundary of the headwater streams and precisely record where the streambeds 188 

begin, where they flow from the watershed to the permanentperennial stream, and where 189 

they are absent. 190 

3.2. Variables used for analysis 191 

The geomatic manipulations were mainly performed with the ArcGIS Desktop 10.7 192 

software package, including the Spatial Analyst and 3D Analysis extensions. The open -193 

source SAGA-GIS (Conrad et al., 2015) and WhiteboxTools (Lindsay, 2016a) 194 

software’ssoftware were also used. 195 
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The variables used for analysis were produced from 1 m resolution DEMs of the different 196 

areas. These were generated from LiDAR data fromby the MFFP (Ministère des Forêts, de 197 

la Faune et des Parcs), with a density of around 2.5 points/m². LiDAR acquisitions were 198 

conducted from 2016 to 2019 (Leboeuf and Pomerleau, 2015), with the exception ofexcept 199 

for a few areas. The road network was carefully examined in order to include and burn all 200 

culverts that could affect the flow direction (Lessard et al., 2023). HydrographicIndeed, 201 

hydrographic networks are greatly affected by deviations caused by the embankment of the 202 

roads. This type of anthropic influence must therefore be minimized in order to generate 203 

coherent flow direction (Li et al., 2013). Furthermore, the use of a breaching algorithm 204 

allowed to generate hydrologically coherent DEMs prior to hydrographic modeling 205 

(Lindsay, 2016b; Lindsay and Dhun, 2015). Physiographic factors must also be considered 206 

during the modeling process as they significantly influence the location of channel heads 207 

and the flow regime along streams. On the local scale, where the precipitation regime is 208 

uniform (Tucker and Slingerland, 1996), slope, hydraulic force and sediment cohesion 209 

generally dictates streambed formation (Dietrich and Dunne, 1978). The influence of these 210 

factors is variable depending on the type of surfaceQuaternary deposit (Dietrich and 211 

Dunne, 1993; Dunne and Black, 1970; Montgomery and Dietrich, 1994).  212 

SurfaceQuaternary deposits can be used to assess which processes are involved in the 213 

formation of a streambed. Indeed, thereThere are two major types of streambed formation 214 

processes. The first type involves surface processes, which occurs when soil that has low 215 

permeability is exposed to rainfall amounts that exceed the infiltration capacity of the 216 

ground, causing surface runoff (Horton, 1945). Then, when the power of the water exceeds 217 

the cohesion of the sediments, usually in concavities, a streambed forms (Dietrich and 218 
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Dunne, 1978). The second type involves subsurface processes that occur when the 219 

surfaceQuaternary deposits are thick and infiltrative. Water vertically infiltrates into the 220 

ground and eventually reaches saturation at a junction with the water table, the bedrock, or 221 

an inferior and less infiltrating deposit. Then, lateral movement of the groundwater occurs. 222 

Water emerges from the ground when there is a change in slope or soil permeability. 223 

Streambeds formed in this way tend to be heavily incised, with flow regimes that are more 224 

stable than those formed through surface processes. Thus, the hydrological response of the 225 

streams from subsurface processes is slightly affected by the intensity of rainfall (Dunne 226 

and Black, 1970; Jensen et al., 2019; Wohl, 2018). Furthermore, it should be noted that 227 

there is a gradient between these two processes for each stream. In order to properly detect 228 

streambeds, it is essential to distinguish these processes through hydrological classification 229 

according to surfaceQuaternary deposit type and land use.  230 

SurfaceQuaternary deposit mapping has been standardized across the province, including 231 

our study area. Information of Quebec and information was collected through 232 

photointerpretation conducted several years ago. Since photointerpretation was mainly 233 

used to distinguish forest structures and land use, the true boundaries of the 234 

surfaceQuaternary deposits are imprecise, in some cases. SurfaceQuaternary deposit 235 

boundaries in agricultural areas are more accurate than those in forested areas because no 236 

other information was mapped during the process. Regardless of these drawbacks, 237 

standardized mapping provides a rough description of the nature and thickness of 238 

surfaceQuaternary deposits.  239 

Spatially heterogeneous surfaceQuaternary deposits in Quebec have been classified into 240 

three categories and are described in Table 1 (Saucier et al., 1994). The purpose of this 241 
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classification step is to differentiate the two types of hydrological processes for headwater 242 

stream formation that were previously described (Dietrich and Dunne, 1993; Lessard, 243 

2020). These classifications consider the infiltration capacity and the water storage 244 

capacity of the ground (Dunne and Black, 1970). The two main variables considered were 245 

the potential thickness and the granulometry of the surfaceQuaternary deposits (Dietrich 246 

and Dunne, 1993; Wohl, 2018). Thus, the hydrological classes in Table 1 allow us to group 247 

together streams whose formation is driven by similar, and therefore theoretically 248 

homogeneous, hydrological processes. 249 

 250 

Table 1 : Hydrological classification according to surfaceQuaternary deposit types and land 251 

use 252 

Hydrological class 

SurfaceQuaternary deposits and land 

use involved 

Shallow soil 
Glacial deposits without morphology such 

as till, frequent rock outcrops. 

Thick soil with 

high infiltration 

rate (including 

anthropogenic land 

use) 

Glacial deposits with morphology such as 

moraines, glaciofluvial deposits, fluvial 

deposits, coarse lacustrine and marine 

deposits, slope deposits and eolian 

deposits; 

AnthropogenicAgricultural land use were, 

regardless of anthropic modifications due 

to linearization and deepening of 

streambeds, has been included in this class 
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(Treeless areas including agricultural 

fields, roads, urbanized areas and 

powerlines)as agriculture is mainly carried 

out on the above deposits. 

Thick soil with low 

infiltration rate 

Lacustrine and fine marine deposits, 

organic deposits. 

 253 

The first analysis variable, called ‘D8’, refers to the D8 flow accumulation (O’Callaghan 254 

and Mark, 1984) produced with a 1 m resolution DEM. This variable was selected as it is 255 

the most common algorithm used to produce hydrographic networks. For meaningful 256 

correspondence analysis between this variable and field surveyed streams, the flow 257 

accumulation raster was aggregated at 3 m resolution according to the maximum value. 258 

Then, a maximum focal statistic of two pixels was applied. The purpose of this treatment 259 

was to ensure a 6 m analysis distance between the D8 and the edge of a real stream, 260 

represented in the database by a geospatialvector line feature. This prevents the omission 261 

error from being overestimated. 262 

The second analysis variable uses the D8 flow accumulation algorithm while considering 263 

flow direction error due to the elevation uncertainty of the LiDAR-derived DEM (Hengl et 264 

al., 2010; O’Callaghan and Mark, 1984). This variable, called ‘PROB’, quantifies the 265 

uncertainty associated with the position of the drainage network. This variable allows water 266 

diffusion processes to be simulated more adequately than the multiple flow direction 267 

algorithms that have been developed for this purpose (Freeman, 1991). Murphy et al., 268 

(2009) noted a convergence of results between the single and multiple flow direction 269 

algorithms using high-resolution DEMs derived from LiDAR data. The use of a multiple 270 
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direction algorithm did not provide better results for simulating soil moisture. Indeed, the 271 

dendritic flow pattern still appeared visible in the wetlands, even with the use of a multiple 272 

flow direction algorithm, probably due to the microtopography present in these DEMs. The 273 

elevation error in the DEM is directly related to the uncertainty of the LiDAR data 274 

(Wechsler, 2007) and impacts the position of the hydrographic network (Lindsay, 2006). 275 

This type of error is affected by the landform, and mainly occurs on gentle slopes and 276 

slightly convex terrain (Hengl et al., 2010). Since this type of error is inherent to the shape 277 

of the land, it is not affected by the size of the drainage area implied. The iterative method 278 

described in Hengl et al. (2010) was reproduced in order to create the PROB variable. The 279 

method is based on repeatedly computing a flow accumulation raster from an initial DEM 280 

and several altered versions of the DEM. These altered versions are created by adding 281 

random elevation errors to the initial DEM in order to reproduce the elevation errors from 282 

the LiDAR data. The elevationAs describe by Richardson and Millard (2018) the typical 283 

ground return elevations errors therefore had a standard deviation of 0.08 m, randomly 284 

distributed over the DEM. A focal statistic of 3 m was used on the error raster to ensure 285 

the spatial autocorrelation of errors. Based on the convergence observed by (Lindsay,  286 

(2006), 50 iterations were carried out. Then, each of the flow accumulation rasters were 287 

thresholded to a 1.5 ha drainage area to sum the resulting binary stream network, where a 288 

value of 1 indicated the presence of a streambed and a 0 indicated the absence of a 289 

streambed. The matrix of the cumulative value was then normalized as a percentage to be 290 

used as an analysis variable. This PROB variable revealed the extent of the diffusion 291 

process of the water in hillsidesin valley bottoms, small wetland or riparian areas, where 292 

the slope is relatively uniform.low or the topography slightly convex. The PROB variable 293 
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was produced with a 3  m resolution DEM from a 1 m resolution DEM that was aggregated 294 

using the mean values. An average flow accumulation raster that corresponded to the 295 

average of the 50 flow accumulations raster without thresholding was also produced. This 296 

raster was used to create the analysis database and to calculate the drainage area of the 297 

channel heads. To ensure a 6 m analysis distance as well as the D8 variable, a maximum 298 

focal statistic of two cells was performed before summing or averaging the iterated 299 

rasterrasters. 300 

The third variable used for analysis is morphometric and allows for the complementary 301 

detection of headwater streams (Lindsay, 2006; Tribe, 1992). The morphometric algorithm 302 

used was the topographic position index, referred to as ‘TPI’. This algorithm allowed for 303 

the local detection of small incisions that might represent streambeds (Tribe, 1992). The 304 

scale at which this variable is calculated strongly influences the morphometric feature that 305 

is identified. When the scale is large, the variable will tend to identify valleys, while it 306 

tends towards streambeds when the scale is small (Montgomery and Dietrich, 1992, 1994). 307 

For the purposes of this paper, a relatively small scale of 6 to 30 m was used. This scale is 308 

consistent with the width of the majority of inventoried streambeds. The DEM used to 309 

calculate this variable had a resolution of 2 m and was derived from aggregating a 1 m 310 

resolution DEM with the minimum values. The tool named ‘Topographic Position Index’ 311 

in SAGA-GIS software was used to produce this variable (Guisan et al., 1999; Weiss, 312 

2001). The TPI variable has not been normalized to keep the homogeneityallow 313 

comparison of the values between the different study areas. 314 

3.3. Analysis database 315 
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In order to perform the subsequent analyses, all actual streambeds were vectorized and geo-316 

interpreted according to the stream positions recorded in the field. It should be noted that 317 

information on the flow regime was not used in this database. Instead, the presence of a 318 

streambed was used to describe the presence or absence of a stream. Although some 319 

bedsstreambeds have been excavatedlinearized and channelizeddeepened, particularly in 320 

anthropogenicanthropic lands, a bedstreambed was considered to be present only when 321 

natural fluvial processes allow it to be maintained. The geospatialThe presence of geo-322 

interpreted vector lines indicatingfeatures indicated the exact location of the streambeds 323 

and were complemented by a 50 m x 50 m grid to represent the complete surveyed area. 324 

Thus, areas without a geospatialvector line feature have been assumed toas not 325 

containcontaining streambeds. 326 

Positions representing the presence of streamsstreambeds were systematically located 327 

every 20 m along geospatialvector lines features that described real streams. Then, 328 

positions representing the absence of a streambed were located according to a sampling 329 

principle based on minimum flow accumulation where it was still possiblecoherent to 330 

observe the presence of a streamstreambed. First, within the grid of the surveyed area, the 331 

average flow accumulation raster was thresholded at 0.11 ha. This threshold represents the 332 

lowest drainage area for initiation of a channel head according to (Lessard,  (2020). Then, 333 

the resulting raster was converted to a polygon. Following that step, a 20 m buffer zone 334 

was removed around the geospatialvector lines features that represent real streams. Finally, 335 

absence positions were systematically located according to a hexagonal distribution in the 336 

final resulting polygon. Thus, polygons identifying absence positions were located only in 337 

areas with a minimum 1100 m2of 0.11 ha mean drainage area and a minimum distance of 338 
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20 m from any real streams. Finally, absence positions were systematically located 339 

according to a hexagonal distribution in the final resulting polygon. The number of absence 340 

positions was equalized with the number of presence positions for each natural region 341 

within the Quebec ecological reference framework. 342 

The analysis database was therefore composed of positions describing both the presence 343 

and the absence of streambeds (Fig. 2). The values for the three variables described in the 344 

previous section (D8, PROB and TPI) were extracted for all presence and absence 345 

positions. 346 
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 348 

Figure 2 : Analysis database of positions indicating the presence and absence of 349 

streambeds (Aerial images from continuous imagery of the Government of Quebec; 350 

MRNF). [Color is not required for this figure. Single column fitting figure.] 351 

 352 

3.4. Statistical analysis 353 

A total of nine logistic regression models were produced, one for each explanatory variable 354 

and hydrologic class combination. Response variable was the presence (1) or the absence 355 

(0) of a streambed. The area under the ROC (Receiver Operating Characteristic) curve was 356 

used to evaluate model performance (Fawcett, 2006). The ROC curve plots the true positive 357 
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rate (1 minus omission) relative to the false positive rate (commission). This curve shows 358 

the performance of a given variable by determining the Area Under the Curve (AUC) and 359 

how the increase in the true positive rate will lead to an increase in the false positive rate. 360 

A model with a high AUC will provide a better balance between these two measurements 361 

and will produce better results. Thus, the AUC provides a measure of the ability of the 362 

individual variables to detect a streambed. 363 

Next, four streambed models were compared to each other. Detection performance was 364 

calculated according to hydrological class and using Cohen's kappa, which is a measure of 365 

agreement between the true positive rate and the false positive rate (Cohen, 1960).  366 

The first model examined was the GRHQ. An analysis distance of 6 m was used in order 367 

to compare properly the performance of the GRHQ with the other models. Two of the other 368 

three models corresponded to two different thresholds that were applied to the D8 variable, 369 

which is one of the most commonly used variables for generating stream networks. The 370 

first threshold was the median of the average drainage area of the channel heads surveyed 371 

in the field (referred to as Channel head; Fig. 3). The second threshold was the one that 372 

maximized Cohen's kappa for the variable D8 (referred to as Max Kappa). The last model 373 

that was compared is based on a supervised classification approach. This approach groups 374 

observations according to explanatory variables based on previously determined groups, 375 

also known as the response variable. In this case, the response variable was the presence 376 

or absence of a streambed. Classification And Regression Tree (CART) approach was used 377 

because it is simple to applyof its ease of understanding the results and applying them over 378 

a large territorywide area (Breiman et al., 1984). This model was called CART. One tree 379 

was produced for each hydrologic class in order to describe the formation of headwater 380 
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streams from homogeneous hydrologic processes. Based on the literature, different 381 

variables were used for each hydrological class. The PROB variable was the only one that 382 

was used to detect streambeds in shallow soil, as the bedrock is usually close to the surface 383 

of the ground and not very suitable for incisions (Jensen et al., 2018). For the other two 384 

hydrological classes in thick soils, the TPI and PROB variables were used. The surface 385 

deposits in these classes are not consolidated, allowing the ground to be incised. This can 386 

then be detected by different morphometric indices (Montgomery and Dietrich, 1994). The 387 

depth and number of branches in the classification trees have been limited in order to 388 

prevent overfitting (Fürnkranz, 1997).  389 

The TPI and PROB variables were used for each hydrological class to produce trees. A 390 

flow chart of the general method is shown in Figure 3. The depth and number of branches 391 

in the classification trees have been pruned in order to prevent overfitting and it was 392 

therefore not necessary to split the data into a training and a testing set (Fürnkranz, 1997).  393 

 394 
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Figure 3 : Flowchart showing the methodology used to produce a raster describing the 395 

presence of a streambed using classification trees [Color is not required for this figure. 396 

2 column fitting figure.] 397 

 398 

4. Results 399 

A total of 464.7 km of streams were surveyed over a known territoryan area of 161.5 km2. 400 

The positions for 1033of 1 033 channel heads indicating the beginnings of streambeds were 401 

determined. The average drainage areas of the channel headheads are presented in Fig. 34 402 

using whisker boxes according to hydrological class. Figure 34 shows that for shallow soil, 403 

the average drainage area is less variable than for thick soils. For thick soilssoil with low 404 

infiltration ratesrate, the average drainage area tends to be higher. Slope-drainage area 405 

curves and a visualization of different streambeds for each hydrological class are presented 406 

in Supplementary Materials. 407 

 408 
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 409 
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 410 

Figure 34 : Distribution of mean drainage areas of channel heads according to hydrological 411 

class. Median values are shown. [Color is not required for this figure. Single column 412 

fitting figure.] 413 

 414 

The analysis database contains a total of 40 354 positions describing streambeds (20 177 415 
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with streambeds present and 20 177 with streambeds absent) located in the entire surveyed 416 

area.). A correlation matrix between the analysis variables showed that PROB is negatively 417 

correlated with TPI, with an R of -0.57. This variable therefore identifies where the water 418 

converges, which usually corresponds with the locations of incisions. The other variables 419 

wereD8 variable was not correlated with each other ones. 420 

ThreeThe classification trees according to hydrological class are presented in Fig. 45. The 421 

tree for shallow soil shows that when PROB exceeds a threshold of 0.33, a streambed is 422 

generally present. At the left side of the tree, when the PROB is very low, below 0.05, the 423 

streambed is generally absent. Otherwise, the TPI indicates whether a streambed is present 424 

or absent. For thick soil with a high infiltration rate, the incision indicated by the TPI first 425 

explains the presence of a streambed. When the incision is greater or equal to -0.41, 426 

indicating a small incision, PROB must be very high in order to indicate the presence of a 427 

streambed, at 0.99. When there is a larger incision, a lower value for PROB can identify 428 

the presence of a streambed. Thus, when the ground is relatively well incised with a TPI 429 

value smaller than -0.41, PROB only needs to be higher than 0.39 to detect a streambed. 430 

In thick soil with a low infiltration rate, PROB provides the initial information regarding 431 

the presence or absence of a streambed. Depending on the different PROB thresholds, TPI 432 

then determines the presence or absence of a streambed. 433 

 434 
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 435 

 436 

Figure 45 : Classification trees to detect the presence of streambeds according to variables 437 

D8, PROB and TPI and hydrological class. The colors red, orange, yellow and green 438 

represent very low, low, medium, and high probability respectively. [Color is not required 439 

for this figure. 2 column fitting figure.] 440 

 441 

Figure 56 compares the AUC of individual variables, thus their potential to detect a 442 

streambed. The performance of the four streambed models is also presented. This figure 443 

shows that for the three hydrological classes, PROB performs more effectively than D8 444 

a mis en forme : Police :Non Gras
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when it comes to detecting streambeds. For thick soil classes, the incision variable TPI has 445 

a higher AUC than D8. For shallow soil, the opposite is true. Compared to the other models, 446 

the GRHQ has a very low true positive rate, meaning it omits many streams regardless of 447 

the hydrologic class. However, the performance of GRHQ is higher for thick soilssoil than 448 

for shallow soilssoil. For shallow soilssoil, although the false positive rate is slightly lower 449 

for D8 thresholded with channel heads (Channel head), the Cohen’s kappa of the 450 

classification tree (CART) is still higher. The performance of the maximum Kappa of D8 451 

(Max Kappa) is still very similar to the one of the classification tree (CART). Figure 5 also 452 

shows that the performance of the classification tree (CART) for shallow soil is not in the 453 

upper left part of the ROC curve of the variable PROB. This observation is consistent with 454 

the fact that only this variable was used to calibrate this model. Nevertheless, for both thick 455 

soil classesFigure 6 also shows that for each class, the performance of the classification 456 

trees (CART) is in the upper left part of the ROC curve of the variable PROB.variables 457 

used alone. This means that the additioncombination of the incision variable TPI with the 458 

PROB variable improves the detection of streambeds. For thick soilssoil with high 459 

infiltration ratesrate, the two thresholding methods (Channel head and Max Kappa) yielded 460 

similar performances, although they did not perform as well as the classification tree 461 

(CART). The performance of the classification tree (CART) is also higher than both D8 462 

thresholding methods for thick soilssoil with low infiltration ratesrate. However, the 463 

method using the maximum Kappa (Max Kappa) yields a higher rate of true positives than 464 

the thresholding method using the channel heads (Channel head). 465 

 466 
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 467 

 468 

Figure 56 : ROC curve and AUC values from the logistic regressions of the three variables 469 

according to hydrological class. The performance of the streambed models using Cohen’s 470 

kappa is also presented. [Figure 5 about here. [Color is not required for this figure. 2 471 

column fitting figure.] 472 

 473 

5. Discussion 474 



 

31 
 

The results suggest that the classification tree (CART) can detect streambeds more 475 

accurately than the other methods tested. By integrating different topographic indices and 476 

ground information such as surfaceQuaternary deposits, the detection of headwater 477 

streambeds is much more efficient in large watersheds, despite the high anthropization of 478 

the ground as agricultural fields that isare sometimes present. In addition, as the results of 479 

the classification trees are rasters (Fig. 6 a)),7a), they can be easily integrated within 480 

attribute table of a drainage network by calculating the mean using a zonal statistic to assess 481 

the probability presence of a streambed (Fig. 6 b)).7b). This integration can be done without 482 

altering the course or thresholds of the hydrographic network. Each segment can therefore 483 

be truncated according to the presence or absence of the stream predicted by the model. 484 

 485 
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486 

 487 

 488 

Figure 67 : Classification tree that has been integrated into the segments of a hydrographic 489 

network to assess the probability presence of a streambed (b) (Aerial images from 490 

continuous imagery of the Government of Quebec; MRNF).  [Color is not required for 491 
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this figure. 1.5 column fitting figure.] 492 

 493 

The classification tree (CART) drastically increases the true positive rate compared to the 494 

GRHQ. This is because the GRHQ was based on aerial photographs that were primarily 495 

used to characterize vegetation and forest structure. Photointerpretation of these images 496 

did not allow for the detection of streambeds formed by local fluvial processes under the 497 

forest cover (Lessard, 2020). At most, photointerpretation enables the identification of 498 

valleys, for example, on thick soilssoil (Montgomery and Dietrich, 1994). For this reason, 499 

the GRHQ omits fewer streams in thick soil than in shallow soil. 500 

The PROB variable improved the detection of streambeds compared to the conventional 501 

use of only the D8 variable, since it has been thresholded to accurately match the lowest 502 

drainage areas of the channel heads. According to Fig. 34, the 1.5 ha threshold accounts 503 

for the majoritymost of the channel heads. However, the drainage areas of the channel 504 

heads are generally higher for thick soilssoil with low infiltration rates. The majorityrate 505 

and could therefore lead to higher false positive rate. Most of the surveyed streams in this 506 

hydrologic class are located in the Abitibi Lowlands natural province. SomeFurthermore, 507 

it is important to note that some of the drainage areas of the channel heads in shallow soil 508 

are smaller than 1.5 ha. 509 

For the shallow soil hydrological class, the PROB variable improves streambed detection 510 

only when a false positive rate of at least 0.12 is specified. Figure 56 shows that for a false 511 

positive rate of 0.25, for example, PROB has a higher true positive rate than the D8 512 

variable. Streambeds that were not omitted with a PROB threshold greater than 0.12 were 513 

mostly small streams with highly variable positions due to the slightly upstream convex 514 
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topography (Hengl et al., 2010). It seems that these streambed presence positions have very 515 

low PROB values (48% of these positions have a probability below the 0.33 threshold used; 516 

Fig. 45). The 0.33 PROB threshold enabled a false positive rate that is much lower than 517 

0.25. In fact, the false positive rate was only 0.12. With this 0.33 threshold, the performance 518 

of PROB was almost identical to D8. This is indicated on the figure by the two ROC curves 519 

that were at their closest to each other at approximately the same place as the classification 520 

tree model (CART) (Fig. 5). In order to (Fig. 6). To increase the true positive rate while 521 

using the PROB variable, the threshold could be decreased to allow the smallest streams to 522 

be identified. However, this modification would increase the false positive rate. 523 

The poor performance of the TPI variable for shallow soil is due to the fact that the 524 

surfaceQuaternary deposits are generally thin and the slopes are frequently steep. The 525 

ground is therefore less prone to erosion and incision than for the other two hydrological 526 

classes (Jensen et al., 2018; Montgomery and Dietrich, 1994). Indeed, the parameters used 527 

to compute TPI do not enable the detection of small streambeds if they are not located in a 528 

valley or in a larger incision. Furthermore, the hydrological processes involved in this class 529 

are mostly surface flow and not subsurface flow. It is for this reason that D8 and PROB, 530 

which tend to be able to quite precisely recreate surface flow quite precisely, are the best 531 

performing variables in this hydrological class (Julian et al., 2012; Wohl, 2018).  532 

The incision variable TPI performed better in thick soilssoil with high infiltration ratesrate. 533 

This seems to be due to the fact that unlike shallow soilssoil which are generally thin, 534 

infiltrative soilssoil are thick and unconsolidated. Thus, the main hydrological process for 535 

this hydrological class is a subsurface process, where the water table plays an important 536 

role in the initiation of streambeds. Water infiltrates vertically into the permeable surface 537 
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depositsdeposit and recharges the groundwater (Dunne and Black, 1970). The locations of 538 

the channel heads do not correspond to specific drainage areas that can be identified by 539 

flow accumulation variables, but rather to local incisions formed by gullying processes 540 

where groundwater intersects the ground surface (Dietrich and Dunne, 1993; Wohl, 2018). 541 

This process occurs where there is a significant change in slope or soil permeability. The 542 

emergence of water from the ground leads to progressive gullying that can be detected by 543 

incision variables (Montgomery and Dietrich, 1994). In this context, groundwater depth 544 

variables such as depth-to-water (DTW; (White et al., 2012)) could be used to explain the 545 

presence of streams in areas where a water table is present. It is important to mention that 546 

the DTW is very sensitive to parameterization and more research is needed for its proper 547 

use (Drolet, 2020). 548 

Streambeds were better detected using solely PROB instead of D8 for thick soilssoil with 549 

low infiltration ratesrate, which occur in territories where there is a high proportion of 550 

wetlands and gentle slopes. The PROB variable mostly reduces the number of commission 551 

cases. For example, in Fig. 56, PROB had a much lower false positive rate than D8 for the 552 

same true positive rate of 0.75. This large reduction in the false positive rate achieved with 553 

PROB reflects the ability of this variable to reproduce a diffuse flow on very flat or slightly 554 

convex terrains (Hengl et al., 2010). Indeed, in 78 % of cases, the positions that correspond 555 

to an absence of a streambed and that are corrected with PROB are wetlands. This is 556 

noteworthy because wetlands represent only 64 % of these positions in this hydrological 557 

class. Thus, the PROB variable, using uncertain DEM elevation information, can recreate 558 

more realistic behavior of the water, especially in thick soilssoil with low infiltration 559 

ratesrate. By using both PROB and TPI variables (Fig. 45), streambed detection for this 560 
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hydrological class can be improved compared to the use of a single variable. Because the 561 

deposits are unconsolidated and the ground can be incised (Dietrich and Dunne, 1993), the 562 

classification tree is in the upper left part of the ROC curve for the PROB variable as well 563 

as for the hydrological class with the high infiltration. The use of the TPI variable therefore 564 

provides an advantage. 565 

A limitation of the classification tree method is that the surfaceQuaternary deposit mapping 566 

is not accurate enough for all local hydrological issues. A visual inspection revealed some 567 

inconsistencies in the surfaceQuaternary deposit mapping within the same hydrological 568 

class. 569 

Another limitation is associated with the anthropization and linearization of natural 570 

streams. While a streambed is the result of a natural fluvial formation process that leads to 571 

ground erosion, an anthropogenicanthropic ditch is an artificial bed that is formed by 572 

mechanized digging. However, it is common for naturally formed streambeds to have been 573 

excavated and linearized in agricultural areas. In these cases, it becomes very difficult to 574 

distinguish a streambed from an anthropogenicanthropic ditch, even in the field. 575 

Excavation concentrates the flow of water in the artificial bed (Moussa et al., 2002). Thus, 576 

an area with previously no water flow could now be considered a streamstreambed 577 

(Roelens et al., 2018). Automated detection methods are therefore likely to be much less 578 

reliable in these situations. 579 

We believe that the method described for calibrating the classification tree model is simple 580 

and robust enough to be applied in a different climatic and geomorphicgeomorphologic 581 

context with local data describing headwater streambeds. An accurate LiDAR derived 582 
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headwater streambed mapping is a powerful tool for government and local organizations 583 

involved in water management and protection. 584 

 585 

6. Conclusion 586 

The classification tree method presented in this paper has improved the detection of 587 

headwater streambeds for different hydrological contextsprocesses over large watersheds. 588 

Reliable and consistent results were obtained by developing a comprehensive field 589 

database. The variable PROB, which describes the probability of occurrence of a 590 

streambed, was used to correct errors associated with the positioning of streambeds. This 591 

variable allowed for marginal corrections of streambeds in shallow soil, particularly when 592 

a high threshold was used. In order to more precisely explain where streams initiate in 593 

shallow soil, variables characterizing the composition of the upstream watershed such as 594 

the average upstream slope or the composition of deposits should be explored. The variable 595 

TPI, which characterized small-scale incisions, significantly improved the detection of 596 

streambeds in both thick soil hydrological classes when combined with the PROB variable. 597 

The small-scale incision variable worked better in soilssoil with high infiltration ratesrate 598 

and the probability of occurrence worked better in soilssoil with low infiltration ratesrate. 599 

The increased complexity of the methods (inputs and parameterization) makes the 600 

optimizations more difficult for very large and complex territories. It is difficult to integrate 601 

the influence of The integration of all physiographic variables into a single model and 602 

improvements requirerequires multiple iterations which leads to high complexity. The 603 

integration of caseCase studies could improve models by directly focusing on some of the 604 

identified limitations. It is also important to consider that the input data may sometimes be 605 
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unreliable, such as those for the road network, culverts, surfaceQuaternary deposits, and 606 

land use. Thus, future developments, such as those integrating surfaceQuaternary deposits, 607 

will nothardly be improvepossible if the quality of the raw data remains unchanged. Visual 608 

interpretation of map products and verification by an expert with a good knowledge of the 609 

area is an essential step that should not be neglected under any circumstances. 610 
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