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Abstract. Numerical weather prediction and climate models encounter challenges in accurately representing
flow regimes in the stably stratified atmospheric boundary layer and the transitions between them, leading to
an inadequate depiction of regime occupation statistics. As a consequence, existing models exhibit significant
biases in near-surface temperatures at high latitudes. To explore inherent uncertainties in modeling regime tran-
sitions, the response of the near-surface temperature inversion to transient small-scale phenomena is analyzed
based on a stochastic modeling approach. A sensitivity analysis is conducted by augmenting a conceptual model
for near-surface temperature inversions with randomizations that account for different types of model uncer-
tainty. The stochastic conceptual model serves as a tool to systematically investigate which types of unsteady
flow features may trigger abrupt transitions in the mean boundary layer state. The findings show that the incor-
poration of enhanced mixing, a common practice in numerical weather prediction models, blurs the two regime
characteristic of the stably stratified atmospheric boundary layer. Simulating intermittent turbulence is shown to
provide a potential workaround for this issue. Including key uncertainty in models could lead to a better statisti-
cal representation of the regimes in long-term climate simulation. This would help to improve our understanding
and the forecasting of climate change in high-latitude regions.

1 Introduction

The polar and nocturnal stably stratified boundary layer
(SBL) is typically classified into two distinct regimes: a weak
(wSBL) one and a very stable (vSBL) one. The wSBL is
characterized by a well-defined boundary layer with rela-5

tively continuous turbulence in both space and time, and it
typically occurs with either cloud cover or moderate to strong
winds (Mahrt, 2014). On the other hand, the vSBL is de-
fined by strong stratification and weak winds. A sharp tran-
sition is found between those two regimes, occurring in a10

narrow range of wind speeds. The existence of the two dis-
tinct regimes has been shown in many studies, ranging from
observational studies (Mahrt, 1998; Vignon et al., 2017) to
conceptual modeling (McNider, 1995; van de Wiel et al.,
2017) and turbulence-resolving numerical simulations (An-15

sorge and Mellado, 2014; Donda et al., 2015).

Conceptual models have been used to understand regime
transitions and to explore the relevant feedback processes
which can explain the existence of the two regimes. Using
a two-layer numerical model that represents the exchanges 20

between the surface and the SBL, McNider (1995) demon-
strated the presence of bistable equilibria within the system.
Specifically, they showed that both wSBL and vSBL could
be possible solutions for a given forcing of the SBL. Conse-
quently, the system has the capability to undergo transitions 25

between the two regimes due to the effects of random pertur-
bations of the equilibrium state. As another example, the con-
ceptual model suggested by van de Wiel et al. (2017) uses a
surface energy balance model combined with a bulk parame-
terization of the turbulent heat transport and a simple parame- 30

terization of the soil and radiative transfer to explore the non-
linear feedback process related to the energy fluxes coupling
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at the land–atmosphere interface. The system represented in
the conceptual model can lead to a bistable system; i.e., in
some cases, for the same wind forcing, both the vSBL and
wSBL are possible solutions. The authors showed that the
system is bistable for a range of different parameters. More-5

over, they found that the scatter seen in the bistable region of
observational data can be explained by the fact that perturba-
tions away from the equilibrium are largely undamped. In our
study, we investigate when perturbations of the dynamics or
their forcing parameters lead to a nonlinear feedback that in-10

duces a regime transition. For this study, we will use model
parameters which were estimated based on polar measure-
ments as bistability is especially relevant in the polar context
(van de Wiel et al., 2017). The existence of multi-valued so-
lutions has strong implications for the predictability of the15

SBL since small perturbations or uncertainty in initial and
forcing conditions may lead to very different outcomes of the
mean state of the SBL. In particular, for NWPs, the forecast
uncertainty is significantly impacted by the spread of possi-
ble outcomes related to the before-mentioned bistability. In20

addition, for Earth system models, it is of high relevance to
have a correct statistical representation of the two regimes
to accurately model seasonal heat fluxes between the surface
and the atmosphere.

Several observational studies have shown the abrupt char-25

acter of transitions between the two stable states (Baas et al.,
2019; Vignon et al., 2017). These transitions can be con-
trolled by changes in the large-scale forcing. Based on obser-
vational data, Acevedo et al. (2019) connected regime tran-
sitions from vSBL to wSBL with a change in wind direc-30

tion first from the ocean and then from land. They postulated
that the transition is related to a change in horizontal ad-
vection patterns. Moreover, Abraham and Monahan (2019)
showed, by applying a hidden Markov model to cluster ob-
servational data from multiple locations in two regimes, that35

transitions from wSBL to vSBL most likely occur shortly
after sunset, hence relating them to the onset of nocturnal ra-
diative cooling. The statistical study highlighted no regular-
ity for vSBL-to-wSBL transitions, which points to possibly
small-scale random features at the origin of transitions. In-40

deed, transient phenomena can in some cases be sufficient
to induce a large-scale change in the SBL. Our hypothesis is
that transitions can be due to noise-induced tipping, for ex-
ample following the influence of an isolated turbulent burst
that can trigger a nonlinear feedback process where turbu-45

lence is eventually regenerated in the entire boundary layer.
Direct numerical simulations have shown that, after a local-
ized, random perturbation of the flow, transitions from vSBL
to wSBL states can occur (Donda et al., 2015). Field stud-
ies have also revealed examples of transitions triggered by50

small-scale perturbations (Sun et al., 2012; Lan et al., 2022).
The following numerical study analyzes the sensitivity of the
SBL to small-scale variability in the forcing and in the turbu-
lent fluxes.

To analyze which small-scale perturbations can nonlin- 55

early amplify and lead to regime transitions, a sensitivity
study is designed based on a stochastic extension of the con-
ceptual model by van de Wiel et al. (2017). In a bistable sys-
tem, abrupt transitions or tipping points can be noise induced,
meaning that a transient perturbation can be enough to trig- 60

ger a regime transition (Ashwin et al., 2012). These noise-
induced transitions occur without passing a critical value of
the control bifurcation parameter, here the ambient wind ve-
locity. Different types of noise are added to the model to
represent transient phenomena. With this randomized model, 65

we study the sensitivity of regime transitions to perturba-
tions of the temperature dynamics and wind speed. Kaiser
et al. (2020) successfully tested a statistical indicator for the
dynamical stability with a similarly randomized version of
the model by van de Wiel et al. (2017). Moreover, Abraham 70

et al. (2019) developed a stochastic model with stratification-
dependent transition probabilities, and Ramsey and Monahan
(2022) defined a data-driven stochastic differential equation
model for temperature inversion variability. Here, the goal
is not to derive a stochastic model but rather to analyze the 75

sensitivity of the boundary layer dynamics to inform future
model developments. The focus hereby is on the polar night,
and therefore, the model parameter values are chosen such
that they represent a polar context.

Among the small-scale phenomena that have been shown 80

to be relevant for regime transitions, turbulence is described
by a model closure. This model structure typically relies on
Monin–Obhukov similarity theory (MOST), which assumes
stationarity of the turbulent statistics and hence does not rep-
resent intermittency and turbulent bursts (Foken, 2006). This 85

assumption is known not to hold in the vSBL (Liang et al.,
2014; Mahrt and Bou-Zeid, 2020). In MOST, the closure
makes use of a stability function that scales the mixing length
scale, adjusting the amount of turbulent mixing to the di-
mensionless static stability of the flow (Cuxart et al., 2005). 90

Numerical weather prediction models (NWPs) use different
types of stability functions, and several works have shown
that the choice impacts the representation of SBL regimes.
Commonly, NWPs are formulated such that they include en-
hanced mixing to prevent excessive surface cooling (Sandu 95

et al., 2013), also called runaway cooling. This is imple-
mented through the use of a stability function which ensures
that turbulence is artificially sustained even under very stable
conditions. This type of stability function is called a long-
tail stability function. Its use is often justified by the need to 100

account for contributions to vertical mixing associated with
surface heterogeneity, gravity waves, or mesoscale variabil-
ity that are not explicitly represented in models (Sandu et al.,
2013). However, these types of stability functions smooth
transitions; i.e., they prevent abrupt transitions (Baas et al., 105

2017; van de Wiel et al., 2017). On the other hand, Käh-
nert (2022) showed that, when a short-tail stability func-
tion, which suppresses turbulence in very stable conditions,
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is used, models can become locked in a vSBL state until suf-
ficiently strong forcing induces a transition.

In their paper, van de Wiel et al. (2017) considered three
types of stability functions, namely the cutoff, short-tail, and
long-tail forms. In all cases, the bistability of the SBL was5

observed for some parameter values, but the structure of the
bifurcation diagram varied significantly depending on the
stability function. To include model uncertainty related to the
stability function, wind forcing, or unresolved processes, the
conceptual model by van de Wiel et al. (2017) is transformed10

from a deterministic model to a stochastic one. This stochas-
tic model can then be reinterpreted as a stochastic gradient
flow in which the temperature inversion evolves according
to an underlying energy potential, and the equilibrium points
correspond to minima of this potential. If several minima ex-15

ist, then the different equilibria are separated by a local max-
imum that can be interpreted as a potential barrier that needs
to be crossed if the system is to transition between the dif-
ferent equilibria. We highlight that the choice of the stabil-
ity function has a large impact on the height of the potential20

barrier and hence on the energy input needed to undergo a
regime transition. Therefore, the likelihood of noise-induced
regime transitions in a model is highly sensitive to the choice
of stability function. Although this is motivated in this study
in a highly simplified, conceptual model, this may have con-25

sequences in NWPs as the variability of unresolved degrees
of freedom can induce abrupt regime transitions. This effect
is lost with a long-tail stability function where the potential
barrier is shallow. We hypothesize that the combination of
the variability of unresolved scales, through stochastic mod-30

eling, with a short-tail stability function may be necessary to
enable sharp transitions. This is particularly relevant in polar
regions where the long-lived polar night can lead to a flow
that possibly evolves in the vicinity of the transition region
for a long time. Enabling sharp transitions may be relevant35

for correctly estimating long-term statistics of surface fluxes.
One way of including the variability of unresolved degrees of
freedom is by exploring stochastic parameterizations (Berner
et al., 2017). An example of a stochastic parameterization of
turbulence is the stochastic stability function which is defined40

by Boyko and Vercauteren (2023b). The authors proposed
a stochastic extension and implemented it in MOST for a
single-column model that can represent unsteady and inter-
mittent turbulence. Similarly, to qualitatively reproduce tem-
porally localized bursts of turbulence in the vSBL regime,45

we use a stochastic parameterization of the short-tail stabil-
ity function in the form used by van de Wiel et al. (2017).
This model randomization is used to study to what extent
localized events can trigger regime transitions in the stable
boundary layer.50

In summary, we want to study the sensitivity of the SBL
to perturbations that represent model uncertainty. Model un-
certainty arises, among other things, due to unresolved pro-
cesses in the model and forcing uncertainty. In addition,
surface heterogeneity and non-stationary turbulent variables55

contradict the assumptions of MOST, leading to uncertainty
in the turbulence parameterization. We utilize a randomized
version of the nonlinear model suggested by van de Wiel
et al. (2017) with model parameters representing a polar con-
text to address the following research questions: 60

– To what extent does the choice of stability function af-
fect the likelihood of a transition?

– How sensitive are regime transitions to different types
of model uncertainty?

– How does the inclusion of turbulent bursts in the vSBL 65

regime affect the timing of regime transition?

To tackle these questions, in Sect. 2.1, the model by van de
Wiel et al. (2017) is introduced in detail. Section 2.2.1 dis-
cusses the impact of the choice of stability function on the
representation of regimes and regime transitions. Follow- 70

ing that, Sect. 2.2.2 presents a sensitivity analysis of regime
transitions, analyzing the impact of model uncertainty due
to small-scale fluctuations of unresolved processes. Addi-
tional randomization is then investigated in Sect. 2.2.3, where
the dynamical forcing variable, i.e., the geostrophic wind, is 75

treated as a random variable. As the simplest scenario, we
use an Ornstein–Uhlenbeck process to represent the random
geostrophic wind forcing. Lastly, Sect. 2.2.4 studies the im-
pact of a randomized stability function. For this, the short-
tail stability function by van de Wiel et al. (2017) is extended 80

with multiplicative noise. We study how the timing of transi-
tions changes in relation to the wind forcing with a random-
ized stability function.

2 Conceptual model for near-surface temperature
inversions 85

2.1 Model description

In their study, van de Wiel et al. (2017) developed a con-
ceptual model that describes the evolution of near-surface in-
version strength over time. To achieve this, they combined a
surface energy budget with a bulk model of the lower atmo- 90

sphere and investigated near-surface temperature inversion
transitions in the polar and nocturnal atmospheric boundary
layer. The model highlights a nonlinear relationship between
the stability of temperature inversion and ambient wind speed
by employing a first-order ordinary differential equation to 95

represent the time evolution of the temperature differences,
1T , between a reference height (Tr) and the surface temper-
ature (Ts). This temperature difference is referred to as tem-
perature inversion in the rest of the paper. Based on the ob-
servation that the wind speed was constant at a certain height 100

(Hooijdonk et al., 2015), the model assumes that the wind
speed and temperature are constant at this reference height,
zr. A brief summary of the model is given below, with more
details available in van de Wiel et al. (2017). Assuming a
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symmetry between the bulk temperature differences in the
atmosphere and soil, the evolution of the temperature inver-
sion is governed by a surface energy balance:

d1T
dt
=

1
cv

(Qn−G−H ), (1)

where cv TS1 is the heat capacity of the surface, Qn is the net5

longwave radiative flux, G is the soil heat flux, and H is the
turbulent sensible heat flux. After parameterizing the fluxes,
the model takes the following form:

d1T
dt
=

1
cv

(Qi− λ1T − ρcpcDU1T fstab(Rb)) ,

Rb = zr
g1T

TrU2 , (2)10

where Rb is the bulk Richardson number, Qi represents the
isothermal net radiation, λ is the net linear effect of all feed-
backs from soil heat conduction and radiative cooling rep-
resented with a lumped parameter, ρ stands for the density
of air at constant pressure, and cp is the heat capacity of15

air at constant pressure. Additionally, cD = ( κ
ln(zr/z0) )2 is re-

ferred to as the neutral drag coefficient where κ is approxi-
mately equal to 0.4 and the von Kármán constant, z0 is the
roughness length, and zr is the reference height. Moreover,
U represents the wind speed at height zr. The sensible heat20

flux H is parameterized with the Monin–Obukhov similarity
theory, which uses a stability function, fstab(Rb), to describe
how much turbulence is present in relation to the strength of
the stratification. The same values as in van de Wiel et al.
(2017) (Table 1, Dome C) are used for all parameters un-25

less stated otherwise. The focus is on parameters represent-
ing a polar context as studies have shown that, in these re-
gions, bistability exists (Ramsey and Monahan, 2022; van de
Wiel et al., 2017), and hence, transitions can be more abrupt.
Therefore, in this context, the impact of small-scale perturba-30

tions on regime transitions is especially relevant. For conve-
nience, all parameter values are summarized in Table 1. The
Dome C data were collected at the Concordia Research Sta-
tion located on the Antarctica Plateau. This French–Italian
research facility, situated at an elevation of 3233 m a.s.l., is35

described in detail by Genthon et al. (2010). The data from
2017, consisting of 10 min averaged meteorological data, are,
for example, analyzed by Vignon et al. (2017) and Baas et al.
(2019). In our study, the focus lies on the polar night, which
lasts from March to September, and the following parameters40

are crucial: the temperature at 9.4 m height and the surface,
the wind speed (m s−1) at 8 m height, and the radiation in the
polar night. Following van de Wiel et al. (2017), only the data
where the radiative forcing (R+ = SW↓−SW↑+LW↓) is
less than 80 W m−2 are considered when the data are studied.45

SW↓ is the incoming shortwave radiation, SW↑ is the outgo-
ing shortwave radiation, and LW↓ is the incoming longwave
radiation. For R+ < 80W m−2, the sky is very clear (Vignon
et al., 2017), and radiative cooling is pronounced.

Table 1. Default parameter values for the model (i.e., Eq. 2).

Parameter Value Unit

Qi 50.0 W m−2

λ 2.0 W m−2 K−1

κ 0.4 –
cv 1000 J m−2 K−1

ρ 1.0 kg m−3

cp 1005.0 J kg−1 K−1

z0 0.01 m
zr 10.0 m
U 5.2 m s−1

g 9.81 m s−2

Tr 243.0 K

α 5.0 –

The designers of the model (Eq. 2) provide an in-depth 50

analysis of the model’s equilibrium states and their stabil-
ity against perturbations. For the purpose of this study, the
most important features of the model are that the solution is
bistable with the above-mentioned parameters. This means
that, for specific wind speeds (U ), the model has two sta- 55

ble equilibrium solutions and an unstable one. Transitions
between stable states can be triggered by large-enough per-
turbations that force the system to cross the potential bar-
rier. Figure 1c shows the locations of the stable states for
the discussed model driven by the parameters given in Ta- 60

ble 1. The blue line is a plot of the equilibrium solutions of
the parameterized model by van de Wiel et al. (2017) (i.e.,
Eq. 2). For low wind speeds and high temperature differ-
ences, there is one single equilibrium. The same is true for
high U and small 1T . The two corresponding equilibrium 65

branches are marked with a solid line. In between those two
stable regimes, there is a range ofU values highlighted in red
with two stable equilibria (solid lines) separated by an unsta-
ble equilibrium (dotted line). Connecting this to the SBL con-
text, the first stable regime is one with very stable stratifica- 70

tion, while the other one is weakly stable. As noted by van de
Wiel et al. (2017), a similar behavior is apparent in observa-
tional data, for example, measured at Dome C. When plotting
the difference between temperature measured at 9.4 m and
the surface, i.e., 1T = T9.4 m− Ts, against the wind speed 75

measured at 8 m, U8 m, a back-folding of the points becomes
discernible when R+ < 80 W m−2 (as shown in Fig. 6 in
van de Wiel et al. (2017) and less clearly in our Fig. 1c).
In Fig. 1c, the orange dots are the described 10 min averaged
observational data from Dome C. In the data, a weakly sta- 80

ble regime is clearly observable, but the very stable regime is
not as distinct. As shown by van de Wiel et al. (2017) and in
Fig. 1c, the model provides a qualitative representation of the
data at Dome C, particularly regarding the existence of two
limiting states. Based on that, the model is chosen to study 85

transitions in the polar SBL.
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Figure 1. Equilibrium points of the model with a (a) short-tail and (b) long-tail stability function plotted over wind speed. The dotted lines
mark unstable equilibria, while the solid lines correspond to stable ones. The red region is the region with two possible solutions for the
same forcing conditions. In plot (c), the orange dots are observational data from Dome C, and the blue line corresponds to the equilibrium
solutions of the model with a short-tail stability function.

2.2 Randomization strategies

Three strategies are employed to address model uncertainty
in the conceptual model proposed by van de Wiel et al.
(2017) (Eq. 2). Firstly, to account for uncertainty arising from
unresolved processes within the model, a stochastic differ-5

ential equation (SDE) version of the model is presented in
Sect. 2.2.2. Moreover, uncertainty related to the wind forc-
ing is addressed in Sect. 2.2.3 by modeling the wind with an
Ornstein–Uhlenbeck process. This section also investigates
the combined effect of randomizing the wind forcing and the10

model itself. Lastly, the study explores a randomized stabil-
ity function as a potential solution to account for uncertainty
in the parameterization of turbulence. A stochastic stability
function allows the inclusion of turbulent bursts even in very
stable stratification. In all cases, the aim is to account for15

small-scale fluctuations rather than large-scale changes. As
van de Wiel et al. (2017) showed that their model, in its de-
terministic form, is highly sensitive to a change in the lumped
parameter λ, which represents soil and radiation feedbacks,
and the surface roughness, z0, both parameters are not fur-20

ther investigated in this study. Stochastic parameterizations
have the merit to provide uncertainty estimations, but beyond
that, they have the potential to induce regime transitions if
the physical system has multiple coexisting equilibria. In that
sense, they may be necessary for better representing the mean25

state of the system (Berner et al., 2017). Here, the stochas-
tic modeling will be used to study the effect of small-scale
fluctuations of an unresolved process in the model and of the
forcing wind speed or to include localized turbulent bursts.
The small-scale fluctuations of an unresolved process are, for30

example, included in the model by the addition of noise. This
new randomized model is defined as

d1T =
1
cv

(Qi− λ1T − ρcpcDU1T fstab(Rb))dt

+ σi dWi ,

1T0 = x0, (3) 35

where Wi is a Wiener process. In Sect. 2.2.2, a sensitivity
analysis will be carried out to comprehend and discern the
impacts of the aforementioned model uncertainties. Through
the utilization of the sensitivity analysis, we aim to en-
hance our comprehension of which of these model uncer- 40

tainties have a large impact on the statistical representation of
regimes and transitions between them. Due to the presence of
noise, the equilibrium points of the deterministic and random
models will not be exactly the same, but the dominant effects
will be. The simulation time for every model run should be 45

long enough to reach a quasi-equilibrium state. To achieve
this, rather than simulating until a temporal statistical equi-
librium is reached, the Monte Carlo sampling study is per-
formed. As the idealized model is forced by a constant wind
speed which would vary with synoptic conditions and not be 50

constant for more than a few hours, we deemed a simulation
time of 24 h with time steps of 1 s to be a decent compromise.
In addition, this choice was also for practical reasons as the
focus in the following sections is on a grid search combined
with Monte Carlo simulations, which requires a significant 55

amount of computing power. The Monte Carlo simulations
are run with 500 realizations. A comparison with 1000 sim-
ulations showed similar results. Hence, 500 realizations are
deemed to be sufficient for the rest of the sensitivity analysis.
The model parameters are the same as in Table 1. All SDEs 60

are solved using the function itoint from the Python library
sdeint by Aburn (2017). This function applies the stochastic
Runge–Kutta algorithm of order 1.0 (Rößler, 2010).

2.2.1 Impact of the choice of the stability function

In MOST, the strength of turbulence is scaled by the mix- 65

ing length, which is itself adjusted through a stability func-
tion (Foken, 2006). This stability function corrects the tur-
bulence strength depending on the dimensionless stability of
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the flow. The choice of stability function has a large impact
on the parameterization of turbulence. Under strong stratifi-
cation, long-tail stability functions allow turbulence to exist,
while with a short-tail stability function, turbulence is largely
suppressed after a critical Richardson number. Long-tail sta-5

bility functions are typically utilized in NWPs to avoid ex-
cessive cooling in highly stable conditions within the SBL
(Sandu et al., 2013; van de Wiel et al., 2002). The use of such
stability functions, however, has broader consequences and
strongly influences the representation of transitions between10

SBL regimes. By artificially sustaining turbulence, even un-
der very stable conditions, the transitions become less abrupt
(Baas et al., 2017). Further impacts of the stability function
on the representation of the bistability of the system are an-
alyzed here, focusing on the likelihood of regime transitions15

when model uncertainty is present. Analogously to van de
Wiel et al. (2017), we use fstab(Rb)= exp(−2αRb) as a long-
tail stability function and fstab(Rb)= exp(−2αRb− (αRb)2)
as a short-tail one, with α = 5. Both short-tail and long-tail
stability functions are plotted in Fig. 2. For a Richardson20

number larger than 0.35, the short-tail stability function ap-
proaches zero. Not all degrees of freedom are represented in
the conceptual model by van de Wiel et al. (2017), leading
to inherent model uncertainty. To account for this, the model
is transformed from a deterministic one to a stochastic one25

using three different types of randomization, which are de-
scribed in detail in Sect. 2.2.2, 2.2.3, and 2.2.4. The likeli-
hood of transitioning between the two stable states, in the
context of noise-induced tipping, is very dependent on the
choice of stability function. There are two main reasons for30

that. Firstly, the bistable range of wind speeds is much nar-
rower when using the long-tail stability function. This can
be seen in Fig. 1. The bistable range is the region in which
the model can have two stable solutions for the same forcing,
i.e.,U . For the short-tail stability function, the bistable region35

spans from U = 5.31 to 5.89 m s−1 (Fig. 1a), while for the
long-tail stability function, it is between 4.87 and 4.9 m s−1

(Fig. 1b). That means that the bistable region for the long-tail
stability function has only 6 % of the width of the one for the
short-tail stability function. Therefore, with a long-tail sta-40

bility function, it is significantly less likely to transition from
one stable regime to the other. This agrees with the findings
of Baas et al. (2017) that enhanced mixing, which is the effect
of a long-tail stability function, is detrimental for modeling
the SBL. For example, near-surface cooling and wind shear45

are systematically underestimated with the enhanced mixing
model. Secondly, to explain why the likelihood of transition
is very dependent on the choice of stability function, we in-
troduce the concept of a potential. For this, Eq. (2) can be
rewritten as a gradient system:50

d1T
dt
=−V ′(1T ), 1T (t0)=1T0,

where V : R→ R is an underlying energy potential influenc-
ing the dynamics of the temperature inversion. The extrema

of the potential V correspond to the equilibria of 1T ; i.e.,
for an equilibrium point 1Te, it holds V ′(1Te)= 0. In gen- 55

eral, the dynamics of 1T will evolve towards the nearest lo-
cal minimum of the potential. If it resides there, signifying
a stable equilibrium, it would require the addition of signif-
icant random fluctuations to exit this state. Indeed, if a lo-
cal maximum separates two local minima, i.e., two possible 60

stable equilibria, the difference between the potential’s min-
imum and maximum is an energy depth that the dynamics
have to overcome in order to transition to a second stable
equilibrium. This is called a potential barrier. In our con-
text, that means that, if the wind forcing is such that both 65

vSBL and wSBL are supported solutions, the potential bar-
rier describes the intensity of the fluctuations of 1T that
are needed to transition between the two states, assuming
no other changes in the forcing or dynamics. Using Fig. 3,
we can compare the potentials for a short-tail stability func- 70

tion (Fig. 3a) and a long-tail one (Fig. 3b). The lines cor-
respond to potentials for different wind speeds which are in
the bistable region. The green histograms are the results of
1000 simulations of the model, where the model itself is ran-
domized (Eq. 3). For a detailed description of the random- 75

ization, see Sect. 2.2.2. All simulations were started in the
very stable regime, i.e.,1T0 = 24 K, and the simulation time
was 24 h for all simulations. In the short-tail stability function
histogram, the two stable equilibria (1T = 4 and 24 K) dis-
tinctively show up, and there are clearly multiple transitions 80

between both regimes. In contrast, for the long-tail stability
function, the very stable regime is not distinctively separated
from the unstable one (located at1T = 12 K). This is related
to the fact that the potential barrier is much shallower with
the long-tail stability function, which can be seen by com- 85

paring the histograms of the two stability functions (Fig. 3a
and b). Even though there are multiple transitions between
the two stable regimes with the long-tail stability function,
the system rarely stays in the very stable regime. Based on
these results, we hypothesize that, by using a short-tail stabil- 90

ity function augmented by random fluctuations with locally
enhanced mixing instead of the averaged enhanced mixing
of the long-tail stability function, transitions are better repre-
sented. In Sect. 2.2.4, the stochastic stability function is intro-
duced. This randomized parameterization accommodates the 95

representation of transient bursts of turbulent mixing, which
could force the system to transition.

2.2.2 Model sensitivity to internal variability

Many processes are not resolved in the simplified conceptual
model by van de Wiel et al. (2017) (Eq. 2). In a first random- 100

ization strategy, a stochastic term is added to the model to
represent small-scale fluctuations of the dynamics of the tem-
perature inversion due to unresolved processes. The goal is
to quantify the impact of model uncertainties as an additive-
noise component on the statistical representation of regimes 105

in the SBL. The model has been defined in Sect. 2.2, but as a
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Figure 2. Long-tail and short-tail stability functions considered for
the model plotted over the Richardson number.

recap, the equations are repeated here:

d1T =
1
cv

(Qi− λ1T − ρcpcDU1T fstab(Rb))dt

+ σi dWi ,

1T0 = x0, (4)

where Wi is a Wiener process (i.e., stochastic process), σi5

scales the fluctuation intensity, and x0 is either equal to 4 K
(wSBL) or 24 K (vSBL).

To assess the model’s response to this randomization, a
sensitivity analysis is conducted, and the focus is placed on
the representation of regime transitions (see Fig. 4). The10

adapted Eq. (4) of the model Eq. (2) is run 500 times for
each combination of a range of different U and σi values. To
distinguish the effect of the randomization on the two transi-
tion types, the simulations are started in the vSBL state, i.e.,
1T0 = 24 K, and in the wSBL one,1T0 = 4 K. Then, for ev-15

ery U , the minimal σi, for which at least 80 % of all 24 h sim-
ulations include at least one transition, is identified. For con-
venience, this minimal σi is abbreviated as σi,min. As antici-
pated, the value of σi,min required to achieve transitions from
wSBL to vSBL is lower for low wind speeds and higher for20

high winds. Conversely, for transitions from vSBL to wSBL,
the opposite trend is observed. This phenomenon can be ex-
plained by examining the plot of the equilibrium points for
the deterministic model (Eq. 2) (see the dotted red line in
Fig. 4). At low wind speeds, the system has a single equi-25

librium state, which is the vSBL. Consequently, no noise is
necessary to transition from wSBL to vSBL, while a higher
noise amplitude is required to exit vSBL and transition to

wSBL. In the bistable region, two stable equilibrium states
are present for the same U value. In the first segment of the 30

bistable region, the wSBL and vSBL σi,min converge until
they are nearly identical for U = 5.6 m s−1. At this point, the
unstable equilibrium state is positioned approximately mid-
way between the two stable states. Consequently, the same
noise magnitude is required for transitions in both directions. 35

Subsequently, as the wind speed increases, the two σi,min di-
verge again. Here, the reverse argument can be made in com-
parison to low wind speeds: no noise is necessary to transi-
tion to the wSBL state since it represents the sole equilibrium
state of the system, and higher noise values are required to 40

exit this state and transition to the vSBL state. As the bifur-
cation diagram is not exactly symmetric, higher noise levels
are required for wSBL-to-vSBL transitions and high U val-
ues than for vSBL-to-wSBL transitions and low U values.
This rationale is justified as small-scale turbulent bursts may 45

introduce enough mixing to force a transition to the wSBL
state, whereas the inverse scenario does not hold true. As ex-
pected, no noise is required for the system to transition to
its equilibrium state (vSBL for low wind speeds and wSBL
for high wind speeds). However, to depart from the equilib- 50

rium state, higher noise amplitudes are necessary. Within the
bistable region, the introduction of noise with small ampli-
tudes allows transitions in both directions.

To illustrate the effect of the randomization in the model,
an example is shown for the symmetry wind speed U = 55

5.6 m s−1. In this case, σi,min is equal to 0.18 Ks−1/2 for tran-
sitions from vSBL to wSBL, which is slightly larger than for
transitions in the other direction. The simulation is started
in the vSBL regime. Figure 5 displays an instance of one
model run with σi = 0.18 K s−1/2 and U = 5.6 m s−1. The 60

stable equilibria of the deterministic model are indicated by
two solid red lines, while the location of the unstable equilib-
rium is marked by a dotted line. This specific model run ex-
hibits two transitions between the vSBL and wSBL regimes.
It is important to note that, in the absence of noise, the sys- 65

tem would remain in the very stable regime and not undergo
any transitions.

Lastly, to give an example of how the randomization af-
fects the model result statistically, the histogram of 1T for
500 model runs for U = 5.6 m s−1 is shown in Fig. 6. For 70

plot (a), all the simulations are started in the vSBL, and for
plot (b), all the simulations are started in the wSBL. The σi
are the corresponding σi,min from Fig. 4. For both simula-
tion types, the histogram shows a higher probability of being
in the regime where the simulation started. This effect is es- 75

pecially pronounced for the simulations which started in the
wSBL state.

2.2.3 Model sensitivity to fluctuating wind speed

A narrow wind speed range exists in which a sudden change
in the temperature inversion can be observed (e.g., Baas et al., 80

2019; see also Fig. 1c). To investigate when small varia-
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Figure 3. Potentials with a (a) short-tail and (b) long-tail stability functions for several wind speeds (U ) and histograms of the results of
1000 simulations of the model with additive noise. In plot (a), the mean of the random wind speed used to produce the histograms is equal
to 5.6 m s−1, and in plot (b), it is equal to 4.89 m s−1.

Figure 4. Results of the sensitivity study of the model (Eq. 4). For every U , the minimal σi (σi,min), for which at least 80 % of the 500
simulations have at least one transition of the indicated type, is marked. Simulations with an initial condition 1T0 = 24 K are plotted in
green, and simulations with an initial condition 1T0 = 4 K are plotted in blue. The red line is the bifurcation diagram of the deterministic
model (Eq. 2), and its bifurcation region is the red-shaded area.

tions of forcing wind speed can lead to sharp transitions,
the conceptual model is modified by randomizing U such
that it fluctuates around a wind speed for which the sys-
tem is bistable. To simulate the fluctuating wind speed, an
Ornstein–Uhlenbeck process is incorporated into the model.5

This process is a widely used stochastic process in various
applications (Pavliotis, 2014). The randomized model is de-
fined as follows:

d1T =
1
cv

(Qi− λ1T − ρcpcDU1T fstab(Rb))dt , 1T0 = x0 ,

dU =−r(U −U )dt + σUdWU , U0 = 5.6 , (5)

where WU is a Wiener process, and r is a relaxation or mean10

reversion term. The value of r is chosen to be 0.005 s−1 for

all simulations to achieve a mean reversion time of 200 s,
which is roughly the order of a submesoscale motion (Ver-
cauteren et al., 2016). The value of x0 is equal to either
4 K (wSBL) or 24 K (vSBL). The asymptotic mean of the 15

Ornstein–Uhlenbeck process, U , is set to 5.6 m s−1 as this is
the middle of the bistable region (see Sect. 2.2.1). Different
parameter values may give a different quantitative result, but
we expect them to be qualitatively the same. The asymptotic

variance of the Ornstein–Uhlenbeck process is V(U )= σ 2
U

2r 20

(Pavliotis, 2014). The value for σU is chosen based on 30 min
averaged observational data from Dome C (Genthon et al.,
2021). In their study, Baas et al. (2019) defined the bistable
region for Dome C as 4 m s−1

≤ U ≤ 7 m s−1. The same
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Figure 5. Plot of one solution of Eq. (4) with U = 5.6 m s−1 and σi = 0.18 K s−1/2. The dotted red line marks the unstable equilibria of the
deterministic model, while the solid lines correspond to stable ones.

Figure 6. Histogram of all solutions of Eq. (4) with U = 5.6 m s−1 and (a) σi = 0.18 K s−1/2, 1T0 = 24 K and (b) σi = 0.16 K s−1/2,
1T0 = 4 K. The horizontal dotted red line marks the unstable equilibria of the deterministic model, while the solid lines correspond to stable
ones.

thresholds and data from the year 2013, which has a mean
value for the wind speed of 5.6 m s−1, are used to get an es-
timate of σU . To exclude mesoscale and longer timescales,
the data are filtered with moving-average filtering, with a
window length of 60 min. For this dataset, σU is equal to5

0.03 m s−3/2. Choosing σU this big leads to high variations
in U and not to the small-scale perturbations we are inter-
ested in. In fact, while 97 % of all simulations of a Monte
Carlo run with 500 simulations include a transition, 34 % of
the wind velocity values are, on average, outside the bifurca-10

tion region, which contradicts the assumption of small-scale
perturbations. One example of a run with σU = 0.03 m s−3/2

is shown in Fig. 7b. Additionally, σU = 0.01 m s−3/2 is con-
sidered as this is the smallest value for which hardly any of
the wind velocity values are outside of the bifurcation region,15

i.e., on average, less than 1 %. But for this σU , none of the
500 simulations include a transition (see Fig. 7a).

As a next step, a model with both additive noise for inter-
nal variability and an Ornstein–Uhlenbeck process for wind
velocity is considered. The Ornstein–Uhlenbeck process in- 20

cludes multiplicative noise. The model is defined as follows:

d1T =
1
cv

(Qi− λ1T − ρcpcDU1T fstab(Rb))dt + σi dWi , 1T0 = x ,

dU =−r(U −U )dt + σUdWU , U0 = 5.6 . (6)

The relaxation parameter r is the same as before. To quan-
tify the impact of this model randomization, in terms of
regime transitions, a sensitivity analysis is performed (see 25

Fig. 8). The model (Eq. 6) is run 500 times for a combi-
nation of σi, σU , and U values. For σU , the values 0, 0.01,
and 0.03 m s−3/2 are chosen to allow a comparison of the
results with the ones of the model where only the wind ve-
locity is randomized (see Eq. 5). It will be noted that, when 30

σU = 0 m s−3/2, the model (Eq. 6) is behaviorally equal to
the model (Eq. 4). The simulations are started in the vSBL
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Figure 7. Plot of one solution of Eq. (5) (blue) and the corresponding wind speed U (green), including its 10 min average (thick green line)
for σU = 0.01 m s−3/2 (a) and σU = 0.03 m s−3/2 (b). The dotted red line marks the unstable equilibria of the deterministic model, while
the solid lines correspond to the stable ones. The green-shaded area is the bistable region for U .

state,1T0 = 24 K (blue lines), and in the wSBL state,1T0 =

4 K (green lines), to distinguish the effects on the two transi-
tion types separately. Then the minimal σi, for which at least
80 % of all simulations with the given σU and U values in-
clude at least one transition, is identified. This σi is abbrevi-5

ated as σi,min.
It will be noted that the model with multiplicative noise

may have different equilibrium points than the determinis-
tic model (see Chap. 5.4 Pavliotis, 2014). This, for exam-
ple, has been seen in Bashkirtseva et al. (2015) and Mon-10

ahan (2002). Nonetheless, comparably with the results of
the model (Eq. 4), where solely unresolved processes were
considered while disregarding fluctuating wind speed, Fig. 8
shows that no noise is required for the system to transition
to the equilibrium state of the deterministic model (vSBL for15

low wind speeds and wSBL for high wind speeds). However,
to depart from the equilibrium state, higher noise amplitudes
are necessary. In the bistable region, the introduction of noise
with small amplitudes enables transitions in both directions,
irrespective of the three different σU values. Notably, larger20

σU values permit smaller σi values to induce transitions. The
values of σi,min are identical or nearly identical for σU = 0
and 0.01.

Additionally, to provide a statistical representation of the
model’s randomization effects on the results, histograms25

of 1T for 500 model runs with U = 5.6 m s−1 and σU =
0.01 m s−3/2 are presented in Fig. 9. For plot (a), all the sim-
ulations are started in the vSBL, and for plot (b), all the simu-
lations are started in the wSBL. The σi are the corresponding
σi,min from Fig. 8. The histograms reveal a higher probabil- 30

ity of remaining within the initial regime for both simulation
types, with a more pronounced effect observed for simula-
tions starting in the wSBL state.

2.2.4 Model sensitivity to randomized stability function

In the conceptual model by van de Wiel et al. (2017) (Eq. 1), 35

the sensible heat flux is parameterized using MOST, which
uses the assumption that turbulence is stationary. In the vSBL
regime, this assumption does not hold, and turbulence is
rather intermittent and unsteady (Liang et al., 2014; Mahrt
and Bou-Zeid, 2020). Therefore, in this section, the impact 40

of uncertainties on the turbulence parameterization is stud-
ied. This is particularly significant as localized turbulent
events can trigger regime transitions in the stable boundary
layer (Lan et al., 2022). To qualitatively reproduce contin-
uous bursts of turbulence, a model is introduced which en- 45

ables temporally localized enhancement of turbulence. This
is achieved by enhancing the mixing length. In MOST, the
mixing length is adjusted through a stability correction func-
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Figure 8. Results of the sensitivity study of the model (Eq. 6). For every U the minimal σi (σi,min), for which at least 80 % of the 500
simulations have at least one transition of the indicated type, is marked. Simulations with an initial condition1T0 = 24 K are plotted in green,
and simulations with an initial condition 1T0 = 4 K are plotted in blue. The dotted red line is the bifurcation diagram of the deterministic
model (Eq. 2), and its bifurcation region is the red-shaded area.

Figure 9. Histogram of all solutions of Eq. (6) withU = 5.6 m s−1, σU = 0.01 and (a) σi = 0.18,1T0 = 24 K and (b) σi = 0.14,1T0 = 4 K.
The horizontal dotted red line marks the unstable equilibria of the deterministic model, while the solid lines correspond to stable ones.

tion. Therefore, a model is suggested where localized turbu-
lence bursts are represented with a stochastic stability func-
tion. As the stability functions are the data-driven component
of the MOST parameterization, they are a natural choice for
making part of the model random.5

To account for localized bursts of turbulence, the before-
mentioned short-tail stability function is extended with mul-
tiplicative noise. Using multiplicative noise ensures that the
turbulent bursts are temporally localized, allowing the solu-
tion to relax towards that of the deterministic model after10

each burst. Additionally, unlike additive noise, the magni-
tude of the multiplicative noise depends on the current sys-
tem state. Moreover, employing multiplicative noise instead
of additive noise prevents the stability function from yielding
negative values. Lastly, the model for the randomized stabil-15

ity function is chosen such that it includes a time memory
to ensure that bursts of turbulence are not dispelled after one

time step. The coupled system has the form

d1T =
1
cv

(Qi− λ1T − ρcpcDU1T φ)dt , 1T0 = x0 ,

dφ =−r(φ− fstab(Rb))dt + σφφdWφ , φ0 = fstab(Rb(1T0)) , (7)

with 20

σφ =

{
0 Rb ≤ Ric
cφ otherwise ,

where Wφ is a Wiener process, Rb is the bulk Richardson
number, Ric = 0.25 is the critical Richardson number, and cφ
is some constant which impacts the noise intensity. The noise
is only non-zero for higher Richardson numbers as especially 25

intermittent turbulence in the vSBL regime will be accounted
for in the model. The initial condition φ0 is the value of the
short-tail stability function corresponding to 1T0. Again, to
evaluate how the model reacts to this type of randomization,
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in relation to regime transitions, a sensitivity analysis is per-
formed. The setup for the sensitivity analysis is similar to
the one in Sect. 2.2.2. That means the model (Eq. 7) is run
500TS2 times for a combination of U and cφ values, and the
initial condition1T0 is equal to 4 orTS3 24 K. Then, for each5

U , the minimum value of cφ is identified, which ensures that
at least 80 % of all 24 h simulations include at least one tran-
sition. This minimum value is abbreviated as cφ,min.TS4

A similar sensitivity study to that in Sect. 2.2.2 and 2.2.3
was performed with 1000 model runs instead of 500 and for10

transitions from vSBL to wSBL.TS5 The results of this study
are not shown here as, for wind speeds less than 5.3 m s−1,
even for high noise levels, e.g., cφ = 3, hardly any of the sim-
ulations included a transition. Our hypothesis is that this is
due to the fact that the model does not have enough degrees15

of freedom to nonlinearly enhance the effect of the noise. We
expect this to be different in a single-column model.

Lastly, the bifurcation-driven transitions of the determin-
istic model are compared with the noise-induced transitions
of the randomized model in Fig. 10. To achieve this, the ran-20

domized model (Eq. 7) is run 500 times with an incorporated
time-varying wind forcing. The wind speed is modeled as a
deterministic step function which increases (left column) or
decreases (right column) by 0.1 m s−1 roughly every 30 min,
as shown by the green curve in panels (a) and (d). The ef-25

fect of the randomization is studied for both transition types.
Hence, the simulations either start in the vSBL state (left col-
umn) or the wSBL state (right column). Panels (a) and (d)
show the time evolution of the forcing parameter U in green.
The black line is the evolution of the bulk Richardson num-30

ber for one simulation. The gray-shaded area is the region
where Rb > Ric. This is the region where noise is added to
the stability function. Panels (b) and (e) display the time evo-
lution of 1T , with the forcing given in panel (a) or (d). The
gray lines correspond to 500 realizations of 1T . The black35

line is one realization of 1T with Rb, as in panel (a) or (d).
The mean of all 500 simulations is given by the blue line.
The orange line is the solution of the deterministic model
(see Eq. 2) with U as given in panel (a) or (d). Panels (c) and
(f) have the same color coding as panels (b) and (e), only for40

φ instead of 1T .
On average, the deterministic model and the random sim-

ulations have the same transition time for transitions from
vSBL to wSBL. However, with a randomized stability func-
tion, the transition time is no longer dependent on a specific45

wind velocity but allows for transitions to occur over a range
of velocities before and after the transition of the determin-
istic model occurs. Therefore, the transition time becomes a
range of roughly 4 h instead of a fixed time point. The transi-
tions start within the wind speed range of 5.5 to 6.25 m s−1.50

This observation aligns with the findings presented by (Baas
et al., 2019), who demonstrated, through their analysis of ob-
servational data from Dome C, that wind speeds below ap-
proximately 4 m s−1 are associated with highly pronounced
inversions ranging from 20 to 25 K. Conversely, wind speeds55

exceeding approximately 7 m s−1 correspond to compara-
tively weaker inversions on the order of 5 K. In contrast to
vSBL-to-wSBL transitions, transitions from wSBL to vSBL
are delayed compared to the deterministic model and occur
over a narrow period. Combining the results, it follows that 60

the probability of transitions significantly increases with the
use of a randomized short-tail stability function. Therefore,
we suggest a modeling compromise where, instead of the
conventionally used long-tail stability function, a stochas-
tic parameterization, which includes random bursty features, 65

is used. Further research should assess if this alternative
methodology has the potential to enhance the accuracy of
large-scale statistics.

3 Summary and conclusions

This study expands upon prior research on SBL regime tran- 70

sitions by providing an explanation for the constraints en-
countered when depicting regime transitions in NWPs. This
is achieved by examining the significance of transient phe-
nomena as triggers for abrupt transitions. We used a random-
ized version of the conceptual model defined by van de Wiel 75

et al. (2017) as an exemplary model to study the sensitivity of
the polar SBL to small-scale perturbations and to investigate
how related model uncertainty can impact the mean state of
the boundary layer. The conceptual model by van de Wiel
et al. (2017) is capable of accommodating scenarios with 80

multiple stable equilibria. Therefore, in relation to our ob-
jectives, it provides an ideal model for which the theoretical
dynamical stability is well understood.

In the first part, we studied the impact of the stability func-
tion used in the model on the likelihood of regime transi- 85

tions in the context of noise-induced tipping. We showed
that, for a short-tail stability function, in comparison to a
long-tail one, the bistable region is significantly wider. In ad-
dition, the potential barrier for the long-tail stability function
is shallower, which decreases the chance for abrupt transi- 90

tions. Combining both results, we concluded that the stability
function highly impacts the likelihood of transitions and that,
with a short-tail one, the bistability of the system and abrupt
transitions are better represented in the model. If NWPs ex-
hibit the regime bistability, the usage of a long-tail stability 95

function would lead to a smaller range of wind speeds for
which transitions can occur due to the narrower bistable re-
gion. Moreover, the transitions would be smoothed out as a
consequence of the shallower potential barrier. In contrast,
a randomized short-tail stability function allows for noise- 100

induced abrupt tipping.
In the second part, we analyzed how model uncertainty can

be addressed in the conceptual model. We focused on model
uncertainty related to unresolved processes, wind forcing,
and turbulence parameterization. Firstly, to include small- 105

scale perturbations of an unresolved process in the model,
it is extended with additive noise. To assess the model’s re-
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Figure 10. Solution of the model with perturbed stability function and variable forcing parameter U (wind velocity). In the left column,
the simulations were started in the vSBL state, and U increased. In the right column, the simulations were started in the wSBL state, and U
decreased. Panels (a) and (d) show the time evolution of the forcing, panels (b) and (e) show the time evolution of 1T , and panels (c) and
(f) show the time evolution of the stability function.

sponse to this randomization, in terms of regime transitions,
a sensitivity analysis was conducted. A Monte Carlo sim-
ulation with 500 runs and a combination of different wind
speeds and noise strengths was performed. Transitions from
wSBL to vSBL and vice versa were studied separately. The5

sensitivity analysis showed that no noise is required for the
system to transition to its equilibrium state (vSBL for low
wind speeds and wSBL for high wind speeds). However, to
depart from the equilibrium state, higher noise amplitudes
are necessary. Within the bistable region, the introduction10

of noise with small amplitudes allows transitions in both
directions. From this, we deduced that the model is highly
sensitive to small-scale fluctuations of unresolved processes.
Secondly, we studied the effect of including forcing uncer-
tainty in the model by modeling the wind with an Ornstein–15

Uhlenbeck process. We showed that including randomized
wind velocities which seldom exceed the bistable range was
not sufficient to induce regime transitions. Therefore, we an-
alyzed the impacts of including randomizations for unre-
solved processes and wind forcing together. Again, a sen-20

sitivity analysis was performed. For low noise amplitudes
of the randomized wind velocity, the results were nearly
identical to the ones of the model where solely unresolved
processes were considered. Lastly, to particularly address
model uncertainty related to MOST, we investigated how a25

commonly used stability function can be modified to repre-
sent unsteady turbulence often present in the SBL. MOST is
based on the assumptions of surface homogeneity and turbu-
lence stationarity, which have both been shown to not always
be valid. To relax this assumption and allow the representa- 30

tion of unsteady turbulence, we modified the short-tail stabil-
ity function by van de Wiel et al. (2017) with a time memory
and multiplicative noise. This is one way to represent local-
ized turbulence bursts through a stochastic model. Moving
forward, a natural progression would be designing a more 35

sophisticated framework where the noise level is linked to
the stratification level since unsteady turbulence is known to
mainly occur in high stratification. Such an approach has, for
example, been pursued by Boyko and Vercauteren (2023b).
The authors proposed a stochastic extension to MOST which 40

scales with the Richardson number and implemented it in a
single-column model (Boyko and Vercauteren, 2023a). The
parameters of the stability correction were estimated based
on observational data. A similar approach could be done for
NWPs or Earth system models to include localized turbulent 45

bursts. The inclusion of localized turbulence bursts is partic-
ularly significant as localized events can trigger regime tran-
sitions in the stable boundary layer. A randomized stability
function offers an alternative way to mitigate excessive mix-
ing resulting from a long-tail stability function (Baas et al., 50
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2017) while preventing the system from being trapped in a
highly stable state when using a short-tail stability function
(Kähnert, 2022). Moreover, the usage of a randomized sta-
bility function increases the variability of turbulent mixing,
potentially similarly to what an increase in resolution in a5

NWP would do by resolving more small-scale heterogene-
ity. Therefore, we hypothesize that a lower resolution could
be used for NWP runs but possibly with a higher number
of ensemble members. This hypothesis is, for example, sup-
ported by the research of Davini et al. (2017) on evaluat-10

ing the impact of stochastic physics parameterizations. The
authors used multiplicative noise to represent model uncer-
tainty due to the parameterization process in the EC-Earth
global climate model. For their study, they ran a maximum of
10 ensemble members. The authors demonstrated that the in-15

clusion of stochasticity in the physics parameterizations can
be as effective as resolution, and in some cases, it can be even
more effective. The need for higher ensemble numbers when
the stability function is randomized may be circumvented by
its time stochasticity. We showed that, by using a randomized20

stability function, transitions from wSBL to vSBL are de-
layed. In contrast, transitions from vSBL to wSBL occurred
both before and after the one from the purely deterministic
model, thereby increasing the transition period to 4 h. Sun
et al. (2012) separate the vSBL and wSBL regimes with25

a sharp wind speed threshold. With our finding, this sharp
threshold is extended to a range of wind speeds for which
transitions are possible. Future research will entail studying
the inclusion of the same and additional model uncertainties
in a higher-order model like a single-column model.30
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