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Abstract. Numerical weather prediction and climate models encounter challenges in accurately representing flow regimes in

the stably stratified atmospheric boundary layer and the transitions between them, leading to an inadequate depiction of regime

occupation statistics. As a consequence, existing models exhibit significant biases in near-surface temperatures at high latitudes.

To explore inherent uncertainties in modeling regime transitions, the response of the near-surface temperature inversion to

transient small-scale phenomena is analyzed based on a stochastic modeling approach. A sensitivity analysis is conducted by5

augmenting a conceptual model for near-surface temperature inversions with randomizations that account for different types

of model uncertainty. The stochastic conceptual model serves as a tool to systematically investigate what types of unsteady

flow features, and in what contexts, may trigger abrupt transitions in the mean boundary layer state. The findings show that

the incorporation of enhanced mixing, a common practice in numerical weather prediction models, blurs the two regime

characteristic of the stably stratified atmospheric boundary layer. Simulating intermittent turbulence is shown to provide a10

potential workaround for this issue. Including key uncertainty in models could lead to a better statistical representation of the

regimes in long-term climate simulation. This would help to improve our understanding and the forecasting of climate change

especially in high-latitude regions.

1 Introduction

The polar and nocturnal stably stratified boundary layer (SBL) is typically classified into two distinct regimes: a weakly15

(wSBL) and a very stable (vSBL) one. The wSBL is characterized by a well-defined boundary layer with relatively continuous

turbulence in both space and time and it typically occurs with either cloud cover or moderate to strong winds (Mahrt, 2014).

On the other hand, the vSBL is defined by strong stratification and weak winds. A sharp transition is found between those

two regimes, occurring on a narrow range of wind speeds. The existence of the two distinct regimes has been shown in many

studies ranging from observational studies (Mahrt, 1998; Vignon et al., 2017) to conceptual modeling (McNider, 1995; van de20

Wiel et al., 2017) and turbulence resolving numerical simulations (Ansorge and Mellado, 2014; Donda et al., 2015).

Conceptual models have been used to understand regime transitions and explore the relevant feedback processes which

can explain the existence of the two regimes. Using a two-layer numerical model that represents the exchanges between the

surface and the SBL, McNider (1995) demonstrated the presence of bistable equilibria within the system. Specifically, they
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showed that both wSBL and vSBL could be possible solutions for a given forcing of the SBL. Consequently, the system has25

the capability to undergo transitions between the two regimes due to the effects of random perturbations of the equilibrium

state. As another example, the conceptual model suggested by van de Wiel et al. (2017) uses a surface energy balance model

combined with a bulk parameterization of the turbulent heat transport and a simple parameterization of the soil and radiative

transfer to explore the nonlinear feedback process related to the energy fluxes coupling at the land-atmosphere interface. The

system as represented in the conceptual model leads
:::
can

::::
lead to a bistable system, i.e. for example

:
in

:::::
some

::::::
cases, for the30

same wind forcing both the vSBL and wSBL are possible solutions. The authors showed that the system is bistable for a

range of different parameters. Moreover, they found that the scatter seen in the bistable region of observational data can be

explained by the fact that perturbations away from the equilibrium are only weakly dampened
::::::
largely

:::::::::
undamped. In our study,

we investigate when these perturbations
::::::::::
perturbations

::
of

:::
the

::::::::
dynamics

:::
or

::
its

::::::
forcing

::::::::::
parameters lead to a numerical

::::::::
nonlinear

feedback that induces a regime transition.
:::
For

:::
this

:::::
study

:::
we

::::
will

:::
use

::::::
model

:::::::::
parameters

::::::
which

::::
were

::::::::
estimated

:::::
based

:::
on

:::::
Polar35

:::::::::::
measurements

:::
as

::::::::
bistability

::
is

::::::::
especially

:::::::
relevant

::
in

:::
the

:::::
Polar

::::::
context

:::::::::::::::::::::
(van de Wiel et al., 2017).

:
The existence of multi-valued

solutions has strong implications on the predictability of the SBL, since small perturbations or uncertainty in initial and forcing

conditions may lead to very different outcomes of the mean state of the SBL. In particular, for NWPs the forecast uncertainty

is significantly impacted by the spread of possible outcomes related to the before mentioned bistability. In addition, for Earth

system models it is of high relevance to have a correct statistical representation of the two regimes to accurately model seasonal40

heat fluxes between the surface and the atmosphere.

Several observational studies have shown the abrupt character of transitions between the two stable states (Baas et al.,

2019; Vignon et al., 2017). These transitions can be controlled by changes in the large-scale forcing. Based on observational

data, Acevedo et al. (2019) connected regime transitions from vSBL to wSBL with a change of wind direction from first the

ocean and then land. They postulated that the transition is related to a change of horizontal advection patterns. Moreover,45

Abraham and Monahan (2019) showed, by applying a Hidden Markov model to cluster observational data from multiple

locations into two regimes, that transitions from wSBL to vSBL most likely occur shortly after sunset, hence relating them to

the onset of nocturnal radiative cooling. The statistical study highlighted no regularity for vSBL to wSBL transitions, which

points to possibly small-scale random features at the origin of transitions. Indeed, transient phenomena can in some cases be

sufficient to induce a large-scale change in the SBL. Our hypothesis is that transitions can be due to noise-induced tipping, for50

example following the influence of an isolated turbulent burst that can trigger a nonlinear feedback process where turbulence

is eventually regenerated in the entire boundary layer. Direct numerical simulations have shown that after a localized, random

perturbation of the flow, transitions from vSBL to wSBL states can occur (Donda et al., 2015). Field studies have also revealed

examples of transitions triggered by small-scale perturbations (Sun et al., 2012; Lan et al., 2022). The following numerical

study analyses the sensitivity of the SBL to small-scale variability in the forcing and
:
in
:::
the

:
turbulent fluxes.55

To analyze which small-scale perturbations can non-linearly amplify and lead to regime transitions, a sensitivity study is

designed based on a stochastic extension of the conceptual model by van de Wiel et al. (2017). In a bistable system, abrupt

transitions or tipping points can be noise-induced, meaning that a transient perturbation can be enough to trigger a regime tran-

sition (Ashwin et al., 2012). These noise-induced transitions occur without passing a critical value of the control bifurcation
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parameter, here the
::::::
ambient

:
wind velocity. Different types of noise are added to the model to represent transient phenomena.60

With this randomized model, we study the sensitivity of regime transitions to perturbations of the temperature dynamics and

wind speed. Kaiser et al. (2020) successfully tested a statistical indicator for the dynamical stability with a similarly random-

ized version of the model by van de Wiel et al. (2017). Moreover, Abraham et al. (2019) developed a stochastic model with

stratification-dependent transition probabilities and Ramsey and Monahan (2022) defined a data-driven stochastic differential

equation model for temperature inversion variability.
:::::
Here,

:::
the

::::
goal

::
is

:::
not

::
to

:::::
derive

:
a
:::::::::
stochastic

:::::
model

:::
but

:::::
rather

::
to

:::::::
analyse

:::
the65

::::::::
sensitivity

::
of

:::
the

:::::::::
boundary

::::
layer

::::::::
dynamics

:::
to

::::::
inform

:::::
future

::::::
model

::::::::::::
developments.

:::
The

:::::
focus

::::::
hereby

::
is
:::
on

:::
the

:::::
Polar

::::
night

::::
and

:::::::
therefore

:::
the

::::::
model

::::::::
parameter

::::::
values

:::
are

::::::
chosen

::::
such

:::
that

::::
they

::::::::
represent

::
a

::::
Polar

:::::::
context.

:

Among the small-scale phenomena that have been shown to be relevant for regime transitions, turbulence is described by a

model closure. This model structure typically relies on Monin Obhukov Similarity Theory (MOST) which assumes stationarity

of the turbulent statistics and hence does not represent intermittency and turbulent bursts (Foken, 2006). This assumption is70

known not to hold in the vSBL (Liang et al., 2014; Mahrt and Bou-Zeid, 2020). In MOST, the closure makes use of a stability

function that scales the mixing lengthscale, adjusting the amount of turbulent mixing to the dimensionless static stability of the

flow (Cuxart et al., 2005). Numerical weather prediction models (NWPs) use different types of stability functions, and several

works have shown that the choice impacts the representation of SBL regimes. Commonly, NWPs are formulated such that

they include enhanced mixing to prevent excessive surface cooling (Sandu et al., 2013), also called ’runaway cooling’. This75

is implemented through the use of a stability function which ensures that turbulence is artificially sustained even under very

stable conditions. This type of stability function is called a long-tail stability function.
::
Its

:::
use

::
is

:::::
often

:::::::
justified

::
by

:::
the

:::::
need

::
to

::::::
account

:::
for

:::::::::::
contributions

::
to

:::::::
vertical

::::::
mixing

:::::::::
associated

::::
with

::::::
surface

::::::::::::
heterogeneity,

::::::
gravity

::::::
waves,

::
or

:::::::::
mesoscale

::::::::
variability

::::
that

::
are

:::
not

::::::::
explicitly

::::::::::
represented

::
in

::::::
models

::::::::::::::::
(Sandu et al., 2013)

:
. However, these types of stability functions smooth transitions, i.e.

they prevent abrupt transitions (Baas et al., 2017; van de Wiel et al., 2017). On the other hand, Kähnert (2022) showed that80

when a short-tail stability function
::
is

::::
used, which suppresses turbulence in very stable conditions, is used models can become

locked in a vSBL
::::
state

:
until sufficiently strong forcing induces a transition.

In their paper van de Wiel et al. (2017) considered three types of stability functions, namely the cutoff, short-tail, and long-

tail forms. In all cases, the bistability of the SBL was observed for some parameter values, but the structure of the bifurcation

diagram varied significantly depending on the stability function. To include model uncertainty related to the stability function,85

wind forcing or unresolved processes the conceptual model by van de Wiel et al. (2017) is transformed from a deterministic

model to a stochastic one. This stochastic model can then be reinterpreted as a
:::::::
stochastic

:
gradient flow, in which the temperature

inversion evolves according to an underlying energy potential
:::
and

:::
the

:::::::::
equilibrium

::::::
points

:::::::::
correspond

::
to

::::::
minima

:::
of

:::
this

::::::::
potential.

:
If
:::::::
several

::::::
minima

:::::
exist,

::::
then

:::
the

::::::::
different

::::::::
equilibria

:::
are

::::::::
separated

:::
by

:
a
:::::
local

:::::::::
maximum

:::
that

::::
can

::
be

:::::::::
interpreted

:::
as

:
a
::::::::
potential

:::::
barrier

::::
that

:::::
needs

::
to

::
be

:::::::
crossed

:
if
:::
the

::::::
system

::
is

::
to

::::::::
transition

:::::::
between

:::
the

:::::::
different

::::::::
equilibria. We highlight that the choice of the90

stability function has a large impact on the height of the potential barrier that the system has to cross
:::
and

:::::
hence

:::
on

:::
the

::::::
energy

::::
input

::::::
needed

:
to undergo a regime transition. Hence

::::::::
Therefore, the likelihood of noise-induced regime transitions in a model is

highly sensitive to the choice of stability function. Although this is shown here
::::::::
motivated

::
in

::::
this

::::
study

:
in a highly simplified,

conceptual model, this may have consequences in NWPs, as the variability of unresolved degrees of freedom can induce abrupt

3



regime transitions. This effect is lost with a long-tail stability function . Hence, we
:::::
where

:::
the

::::::::
potential

::::::
barrier

:
is
::::::::

shallow.
:::
We95

hypothesize that the combination of the variability of unresolved scales
:
,
:::::::
through

::::::::
stochastic

:::::::::
modelling, with a short-tail stability

function may be necessary to enable sharp transitions. This is particularly relevant in Polar regions where the long-lived polar

night can lead to a flow possibly evolving in the vicinity of the transition region for a long time. Therefore, enabling
:::::::
Enabling

sharp transitions may be relevant for correctly estimating long-term statistics of surface fluxes. One way of including the

variability of unresolved degrees of freedom is by exploring stochastic parameterizations (Berner et al., 2017). An example100

::
of

:
a
:::::::::
stochastic

::::::::::::::
parameterization

::
of

:::::::::
turbulence

:
is the stochastic stability function which is defined by Boyko and Vercauteren

(2023b). The authors proposed a stochastic extension to
:::
and

:::::::::::
implemented

::
it

::
in

:
MOST for a single-column model that can

represent unsteady and intermittent turbulence. Similarly, to qualitatively reproduce temporally localized bursts of turbulence

in the vSBL regime, we use a stochastic parameterization of the short-tail stability function in the form used by van de Wiel

et al. (2017). This model randomization is used to study to what extent localized events can trigger regime transitions in the105

stable boundary layer.

In summary, we want to study the sensitivity of the SBL to perturbations that represent model uncertainty. Model uncertainty

arises among other things due to unresolved processes in the model and forcing uncertainty. In addition, surface heterogeneity

and non-stationary turbulent variables contradict the assumptions of MOST leading to uncertainty in the turbulence parameter-

ization. We utilize a randomized version of the nonlinear model suggested by van de Wiel et al. (2017)
::::
with

:::::
model

::::::::::
parameters110

::::::::::
representing

:
a
:::::
Polar

::::::
context

:
to address the following research questions:

– To what extent does the choice of stability function affect the likelihood of a transition?

– How sensitive are regime transitions to different types of model uncertainty?

– How does the inclusion of turbulent bursts in the vSBL regime effect the timing of regime transition?

To tackle these questions, in section 2.1 the model by van de Wiel et al. (2017) is introduced in detail. Section 2.2.1 discusses115

the impact of the choice of stability function on the representation of regimes and regime transitions. Following that, section

2.2.1 presents a sensitivity analysis of regime transitions, analyzing the impact of model uncertainty due to small-scale fluc-

tuations of unresolved processes. Additional randomization is then investigated in section 2.2.2, where the dynamical forcing

variable, i.e. the geostrophic wind, is treated as a random variable. As the simplest scenario, we use an Ornstein-Uhlenbeck

process to represent the random geostrophic wind forcing. Lastly, section 2.2.3 studies the impact of a randomized stability120

function. For this, the short-tail stability function by van de Wiel et al. (2017) is extended with multiplicative noise. We study

how the timing of transitions changes related to the wind forcing with a randomized stability function.
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2 Conceptual model for near-surface temperature inversions

2.1 Model description

In their study, van de Wiel et al. (2017) developed a conceptual model that describes the evolution of near-surface inversion125

strength over time. To achieve this, they combined a surface energy budget with a bulk model of the lower atmosphere and

investigated near-surface temperature inversion transitions in the polar and nocturnal atmospheric boundary layer. The model

highlights a nonlinear relationship between the stability of temperature inversion and ambient wind speed by employing a

first-order ODE
:::::::
ordinary

::::::::::
differential

:::::::
equation

:
to represent the time evolution of the temperature differences, ∆T , between a

reference height (Tr) and the surface temperature (Ts).
::::
This

::::::::::
temperature

::::::::
difference

::
is
:::::::
referred

::
to

:::
as

::::::::::
temperature

::::::::
inversion

::
in130

::
the

::::
rest

::
of

:::
the

:::::
paper.

:::::
Based

:::
on

:::
the

::::::::::
observation

:::
that

:::
the

::::
wind

:::::
speed

::::
was

:::::::
constant

::
at

:
a
::::::
certain

::::::
height

:::::::::::::::::::
(Hooijdonk et al., 2015)

:
,
:::
the

:::::
model

:::::::
assumes

::::
that

:::
the

::::
wind

:::::
speed

::::
and

::::::::::
temperature

:::
are

:::::::
constant

::
at

:::
this

::::::::
reference

::::::
height,

:::
zr.

:
A brief summary of the model is

given below, with more details available in van de Wiel et al. (2017).

Assuming a symmetry between the bulk temperature differences in the atmosphere and soil, the evolution of the temperature

inversion is governed by a surface energy balance:135

d∆T

dt
=

1

cv
(Qn −G−H) (1)

where ∆T = Tr −Ts is the inversion strength, cv :
is
:
the heat capacity of the surface, Qn the net longwave radiative flux, G the

soil heat flux and H the turbulent sensible hat
:::
heat

:
flux.

After parameterizing the fluxes, the model takes the form:

d∆T

dt
=

1

cv
(Qi −λ∆T − ρcpcDU∆Tfstab(Rb)) , Rb = zr

g∆T

TrU2
(2)140

where Rb is the bulk Richardson number, Qi represents the isothermal net radiation, λ the net linear effect of all feedbacks

from soil heat conduction and radiative cooling represented with a lumped parameter, ρ stands for the density of air at constant

pressure and cp is the heat capacity of air at constant pressure. Additionally, cD = ( κ
ln(zr/z0)

)2 is referred to as the neutral drag

coefficient where κ is approximately equal to 0.4 and the von Kármán constant, z0 the roughness length and zr the reference

height. Moreover, U represents the wind speed at height zr. The sensible heat flux H is parameterized with Monin-Obukhov145

similarity theory which is using a stability function, fstab(Rb), to describe how much turbulence is present in relation to the

strength of the stratification.

Based on the observation that the wind speed was constant at a certain height (Hooijdonk et al., 2015), the model assumes that

the wind speed and temperature are constant at reference height zr. The same values as in van de Wiel et al. (2017) (Table

1, Dome C) are used for all parameters unless stated otherwise.
:::
The

:::::
focus

::
is

::
on

::::::::::
parameters

::::::::::
representing

::
a
:::::
Polar

::::::
context

:::
as150

::::::
studies

::::
have

::::::
shown

::::
that

::
in

:::::
these

::::::
regions

:::::::::
bistability

:::::
exists

:::::::::::::::::::::::::::::::::::::::::::::
(Ramsey and Monahan, 2022; van de Wiel et al., 2017)

:::
and

::::::
hence

::::::::
transitions

::::
can

::
be

:::::
more

:::::::
abrupt.

:::::::::
Therefore,

::
in

::::
this

::::::
context

::::
the

::::::
impact

::
of

::::::::::
small-scale

:::::::::::
perturbations

:::
for

:::::::
regime

:::::::::
transitions

::
is

::::::::
especially

:::::::
relevant.

:
For convenience, all parameter values are summarized in Table 1. The Dome C data was collected at the

Concordia Research Station located on the Antarctica Plateau. This French-Italian research facility, situated at an elevation of
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3,233m above sea level, is described in detail by Genthon et al. (2010). The data from 2017, consisting of 10-minute averaged155

meteorological data, is for example analyzed by Vignon et al. (2017) and Baas et al. (2019). In our study the focus lies on the

polar night, which lasts from March to September, and the following parameters are crucial: the temperature at 9.4m height

and the surface, the wind speed (ms−1) at 8m height, and the radiation in the polar night. Following van de Wiel et al. (2017),

only the data where the radiative forcing (R+ = SW ↓ −SW ↑ +LW ↓) is less than 80 Wm−2 is considered when the data

is studied. SW ↓ is the incoming and SW ↑ the outgoing shortwave radiation and LW ↓ the incoming longwave radiation. For160

R+ < 80Wm−2 the sky is very clear (Vignon et al., 2017) and
:::::::
radiative cooling is pronounced.

parameter value unit

Qi 50.0 Wm−2
:::::
Wm−2

:

λ 2.0 Wm−2K−1
:::::::::
Wm−2K−1

κ 0.4 -

cv 1000 Jm−2K−1?
::::::::
Jm−2K−1

ρ 1.0 kgm−3
:::::
kgm−3

:

cp 1005.0 Jkg−1K−1
::::::::
Jkg−1K−1

:

z0 0.01 m

zr 10.0 m

U 5.2 ms−1
::::
ms−1

g 9.81 ms−2
::::
ms−2

Tr 243.0 K

α 5.0 -

Table 1. Default parameter values for the model (i.e. eq. 2).

The authors
::::::::
designers

:
of the model (2) provide an in-depth analysis of the model’s equilibrium states and their stability

against perturbations. For the purpose of this study, the most important features of the model are that the solution is bistable

with the above-mentioned parameters. This means that, for specific wind speeds U , the model has two stable equilibrium

solutions and an unstable one. Transitions between stable states can be triggered by large enough perturbations
:::
that

:::::
force

:::
the165

::::::
system

::
to

::::
cross

:::
the

::::::::
potential

::::::
barrier. Figure 1 c) shows the locations of the stable states for the discussed model driven by the

parameters given in table 1. The blue line is a plot of the equilibrium solutions of the parameterized model by van de Wiel

et al. (2017) (i.e. equation 2). For low wind speeds and high-temperature difference, there is one regime of stable equilibria

and an additional one
::::
single

:::::::::::
equilibrium.

:::
The

:::::
same

::
is

:::
true

:
for high U and small ∆T . They

::::
The

:::
two

::::::::::::
corresponding

::::::::::
equilibrium

:::::::
branches

:
are marked with a solid line. In between those two stable regimes,

:
there is a

:::::
range

::
of U regime with unstable equilibria170

(
:::::
values

:::::::::
highlighted

::
in

:::
red

::::
with

::::
two

:::::
stable

::::::::
equilibria

:::::
(solid

:::::
lines)

::::::::
separated

::
by

::
an

::::::::
unstable

:::::::::
equilibrium

:
(dotted line). Connecting

this to the SBL context the first stable regime is one with very stable stratification while the other one is weakly stable. As

noted by van de Wiel et al. (2017), a similar behavior is apparent in observational data for example measured at Dome C.
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Figure 1. Equilibrium points of the model with a a) short-tail and b) long-tail stability function plotted over wind speed. The dotted lines

mark unstable equilibria while the solid lines correspond to stable ones. The red region is the region with two possible solutions for the same

forcing conditions. In plot c) the orange dotes are observational data from Dome C and the blue line corresponds to the equilibrium solutions

of the model with a short-tail stability function.

When plotting
::
the

:::::::::
difference

:::::::
between

::::::::::
temperature

::::::::
measured

::
at
:::
9.4

::
m
::::
and

:::
the

:::::::
surface,

:::
i.e. ∆T = T9.4m −Ts,

:
against the wind

speed
::::::::
measured

::
at

::
8

::
m,

:
U8m,

:
a back-folding of the points becomes discernible when R+ < 80Wm−2 (as shown in van de175

Wiel et al. (2017), Fig. 6 and less clearly in our figure 1 c)). In figure 1 c) the orange dots are the described 10-minute averaged

observational data from Dome C. In the data, a weakly stable regime is clearly observable but the very stable regime is not as

distinct. As shown by van de Wiel et al. (2017) and in figure 1 c), the model provides a qualitative representation of the data at

Dome C, particularly regarding the existence of two limiting states. Based on that, the model is chosen to study transitions in

the polar SBL.180

2.2 Impact of the choice of the stability function
:::::::::::::
Randomization

:::::::::
strategies

:::::
Three

::::::::
strategies

:::
are

::::::::
employed

::
to

::::::
address

::::::
model

:::::::::
uncertainty

::
in

:::
the

:::::::::
conceptual

::::::
model

::::::::
proposed

::
by

:::::::::::::::::::::
van de Wiel et al. (2017)

:::
(eq.

::
2).

::::::
Firstly,

:::
to

:::::::
account

:::
for

:::::::::
uncertainty

::::::
arising

:::::
from

:::::::::
unresolved

:::::::::
processes

:::::
within

:::
the

:::::::
model,

:
a
:::::::::
stochastic

:::::::::
differential

::::::::
equation

:::::
(SDE)

:::::::
version

::
of

:::
the

::::::
model

::
is

::::::::
presented

::
in

:::::::
section

:::::
2.2.1.

:::::::::
Moreover,

:::::::::
uncertainty

::::::
related

:::
to

:::
the

:::::
wind

::::::
forcing

::
is

::::::::
addressed

:::
in

::::::
section

::::
2.2.2

:::
by

::::::::
modeling

:::
the

:::::
wind

::::
with

:::
an

::::::::::::::::
Ornstein-Uhlenbeck

::::::::
process.

::::
This

::::::
section

::::
also

::::::::::
investigates

:::
the

:::::::::
combined

:::::
effect185

::
of

::::::::::
randomizing

:::
the

:::::
wind

::::::
forcing

::::
and

::
the

::::::
model

:::::
itself.

::::::
Lastly,

:::
the

:::::
study

:::::::
explores

:
a
::::::::::
randomized

:::::::
stability

::::::::
function

::
as

:
a
::::::::
potential

::::::
solution

:::
to

::::::
account

:::
for

::::::::::
uncertainty

::
in

:::
the

::::::::::::::
parameterization

:::
of

:::::::::
turbulence.

::
A

:::::::::
stochastic

:::::::
stability

:::::::
function

::::::
allows

:::
the

::::::::
inclusion

::
of

::::::::
turbulent

:::::
bursts

:::::
even

::
in

::::
very

::::::
stable

:::::::::::
stratification.

::
In
:::

all
::::::

cases,
:::
the

::::
aim

::
is

::
to

:::::::
account

:::
for

::::::::::
small-scale

::::::::::
fluctuations

::::::
rather

:::
than

::::::::::
large-scale

:::::::
changes.

:::
As

:::::::::::::::::::::
van de Wiel et al. (2017)

::::::
showed

::::
that

::::
their

::::::
model,

:::
in

::
its

:::::::::::
deterministic

:::::
form,

::
is
::::::

highly
::::::::
sensitive

::
to

:
a
::::::
change

:::
in

:::
the

:::::::
lumped

:::::::::
parameter,

::
λ,

::::::
which

::::::::
represents

::::
soil

::::
and

:::::::
radiation

:::::::::
feedbacks

::::
and

:::
the

::::::
surface

:::::::::
roughness,

:::
z0,

:::::
both190

:::::::::
parameters

:::
are

:::
not

::::::
further

::::::::::
investigated

::
in

:::
this

:::::
study.
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::::::::
Stochastic

:::::::::::::::
parameterizations

:::::
have

:::
the

:::::
merit

::
to

:::::::
provide

::::::::::
uncertainty

::::::::::
estimations,

:::
but

:::::::
beyond

::::
that

::::
they

::::
have

::::
the

:::::::
potential

:::
to

:::::
induce

:::::::
regime

::::::::
transitions

::
if
:::
the

::::::::
physical

::::::
system

:::
has

::::::::
multiple

::::::::
coexisting

:::::::::
equilibria.

:::
In

:::
that

::::::
sense,

::::
they

::::
may

::
be

:::::::::
necessary

:::
for

:::::
better

::::::::::
representing

:::
the

:::::
mean

::::
state

:::
of

:::
the

::::::
system

::::::::::::::::
(Berner et al., 2017)

:
.
::::
Here

::::
the

::::::::
stochastic

::::::::
modeling

::::
will

::
be

:::::
used

::
to

:::::
study

:::
the

:::::
effect

::
of

::::::::::
small-scale

::::::::::
fluctuations

::
of

:::
an

:::::::::
unresolved

:::::::
process

::
in

:::
the

::::::
model,

:::
of

:::
the

::::::
forcing

:::::
wind

::::::
speed,

::
or

::
to

:::::::
include

::::::::
localized195

:::::::
turbulent

::::::
bursts.

::::
The

:::::::::
small-scale

::::::::::
fluctuations

::
of

:::
an

:::::::::
unresolved

:::::::
process

:::
are

:::
for

:::::::
example

:::::::
included

::
in
:::

the
::::::

model
:::
by

:::
the

:::::::
addition

::
of

:::::
noise.

::::
This

::::
new

::::::::::
randomized

:::::
model

::
is

::::::
defined

:::
as

d∆T =
1

cv
(Qi −λ∆T − ρcpcDU∆Tfstab(Rb))dt+σi dWi , ∆T0 = x0

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(3)

:::::
where

:::
Wi::

is
:
a
::::::
Wiener

:::::::
process.

::
In

::::::
section

:::::
2.2.1,

::
a
::::::::
sensitivity

:::::::
analysis

::::
will

::
be

::::::
carried

:::
out

::
to

:::::::::::
comprehend

:::
and

::::::
discern

:::
the

:::::::
impacts

::
of

:::
the

:::::::::::::
aforementioned

:::::
model

:::::::::::
uncertainties.

:
200

:::::::
Through

:::
the

::::::::
utilization

::
of
:::
the

:::::::::
sensitivity

:::::::
analysis,

:::
we

::::
aim

::
to

:::::::
enhance

:::
our

::::::::::::
comprehension

:::
of

:::::
which

::
of

:::::
these

:::::
model

:::::::::::
uncertainties

::::
have

:
a
:::::
large

::::::
impact

:::
on

:::
the

::::::::
statistical

::::::::::::
representation

::
of

:::::::
regimes

::::
and

:::::::::
transitions

:::::::
between

:::::
them.

::::
Due

::
to

:::
the

::::::::
presence

::
of

::::::
noise,

::
the

::::::::::
equilibrium

::::::
points

::
of

:::
the

:::::::::::
deterministic

::::
and

:::::::
random

:::::
model

::::
will

:::
not

::::::
exactly

:::
be

:::
the

:::::
same

:::
but

:::
the

::::::::
dominant

::::::
effects

::::
will

:::
be.

:::
The

:::::::::
simulation

::::
time

:::
for

:::::
every

:::::
model

::::
run

:::::
should

:::
be

::::
long

::::::
enough

::
to
:::::
reach

::
a

::::::::::::::
quasi-equilibrium

:::::
state.

:::
To

::::::
achieve

::::
this

:::::
rather

::::
than

::::::::
simulating

:::::
until

:
a
::::::::
temporal

::::::::
statistical

::::::::::
equilibrium

::
is

:::::::
reached

:::
the

:::::::::::
Monte-Carlo

::::::::
sampling

:::::
study

::
is

:::::::::
performed.

:::
As

:::
the

::::::::
idealized205

:::::
model

::
is

::::::
forced

::
by

::
a
:::::::
constant

:::::
wind

:::::
speed

::::::
which

::::::
would

::::
vary

::::
with

:::::::
synoptic

:::::::::
conditions

::::
and

:::
not

:::
be

:::::::
constant

:::
for

:::::
more

::::
than

::
a

:::
few

:::::
hours

:::
we

:::::::
deemed

::
a

:::::::::
simulation

::::
time

::
of

:::
24

:::::
hours

::::
with

:::::
time

::::
steps

:::
of

:
1
::::::
second

::::::
length

::
a

::::::
decent

:::::::::::
compromise.

::
In

::::::::
addition,

:::
this

::::::
choice

::::
was

::::
also

:::
for

:::::::
practical

:::::::
reasons

::
as

::::
the

:::::
focus

::
in

:::
the

:::::::::
following

:::::::
sections

::
is

::
on

::
a
::::
grid

::::::
search

::::::::
combined

:::::
with

::::::
Monte

::::
Carlo

::::::::::
simulations

::::::
which

:::::::
requires

::
a

:::::::::
significant

::::::
amount

:::
of

:::::::::
computing

::::::
power.

::::
The

:::::
Monte

::::::
Carlo

:::::::::
simulations

::::
are

:::
run

::::
with

::::
500

::::::::::
realizations.

::
A

:::::::::
comparison

::::
with

:::::
1000

::::::::::
simulations

::::::
showed

::::::
similar

::::::
results.

::::::
Hence,

::::
500

::::::::::
realizations

::
are

:::::::
deemed

::::::::
sufficient

:::
for

:::
the210

:::
rest

::
of

:::
the

:::::::::
sensitivity

:::::::
analysis.

:::
The

::::::
model

:::::::::
parameters

:::
are

:::
the

:::::
same

::
as

::
in

::::
table

::
1.
:::
All

::::::
SDEs

:::
are

:::::
solved

:::::
using

:::
the

:::::::
function

:::::
itoint

::::
from

:::
the

:::::::
python

:::::
library

::::::
sdeint

::
by

:::::::::::
Aburn (2017)

:
.
::::
This

:::::::
function

::::::
applies

:::
the

:::::::::
stochastic

::::::::::
Runge-Kutta

:::::::::
algorithm

::
of

:::::
order

:::
1.0

::::::::::::
(Rößler, 2010).

:

2.2.1
::::::
Impact

::
of

:::
the

::::::
choice

::
of

::::
the

:::::::
stability

::::::::
function

In MOST the strength of turbulence, depending on the dimensionless stability of the flow, is given
:
In

::::::
MOST

:::
the

:::::::
strength

:::
of215

::::::::
turbulence

::
is
::::::

scaled
:
by the mixing length which is

::::
itself

:
adjusted through a stability function (Foken, 2006).

::::
This

:::::::
stability

:::::::
function

:::::::
corrects

::
the

:::::::::
turbulence

:::::::
strength

:::::::::
depending

:::
on

:::
the

::::::::::::
dimensionless

::::::
stability

:::
of

:::
the

::::
flow.

:
The choice of stability function

has a large impact on the parameterization of turbulence. Under strong stratification, long-tail stability functions allow tur-

bulence to exist while with a short-tail stability function, turbulence is largely suppressed after a critical Richardson number.

Long-tail stability functions are typically utilized in NWPs to avoid excessive cooling in highly stable conditions within the220

SBL (Sandu et al., 2013; van de Wiel et al., 2002). The use of such stability functions however has broader consequences

and strongly influences the representation of transitions between SBL regimes. By artificially sustaining turbulence even under

very stable conditions the transitions become less abrupt (Baas et al., 2017). Further impacts of the stability function on the

representation of the bistability of the system are analyzed here, focusing on the likelihood of regime transitions when model
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uncertainty is present. Analogous to van de Wiel et al. (2017) we use fstab(Rb) = exp(−2αRb) as a long-tail stability function225

and fstab(Rb) = exp(−2αRb − (αRb)
2) as a short-tail one with α= 5. Both short-tail and long-tail stability functions are

plotted in Figure 2. For a Richardson number larger than 0.35 the short-tail stability function is approaching zero.

As we assume that not
:::
Not

:
all degrees of freedom are represented in the conceptual model by van de Wiel et al. (2017), which

leads
::::::
leading to inherent model uncertaintythe model, .

:::
To

::::::
account

:::
for

::::
this,

:::
the

::::::
model is transformed from a deterministic one

to a stochastic one . The
::::
using

:::::
three different types of randomization are given

::::
which

:::
are

:::::::::
described in detail in sections 2.2.1,230

2.2.2 and 2.2.3. The likelihood of transitioning between the two stable states, in the context of noise-induced tipping, is very

dependent on the choice of stability function. There are two main reasons for that. Firstly, the bistable range of wind speed

is much narrower when using the long-tail stability function. This can be seen in figure 1. The bistable range is the region in

which the model can have two stable solutions for the same forcing, i.e. U . For the short-tail stability function the bistable

region spans from U = 5.31 to 5.89
:::::
ms−1 (figure 1 a) while for the long-tail stability function it is between 4.87 and 4.9

:::::
ms−1235

(figure 1 b). That means that the bistable region for the long-tail stability function has only 6% of the width of the one for

the short-tail stability function. Therefore, with a long-tail stability function it is significantly less likely to transition from one

stable regime to the other. This agrees with the findings of Baas et al. (2017) . They show that enhanced mixing, which is the

effect of a long-tail stability function, is detrimental for modeling the SBL. For example, near-surface cooling and wind shear

are systematically underestimated with the enhanced mixing model. Secondly, to explain why the likelihood of transition is240

very dependent on the choice of stability function we introduce the concept of a potential. For this equation (2) can be rewritten

as a stochastic gradient system

d∆T

dt
=−V ′(∆T ), ∆T (t0) = ∆T0

where V : R→ R is an underlying
:::::
energy

:
potential influencing the dynamics of the temperature inversion. The extrema of

the potential V correspond to the equilibria of ∆T , i.e. for an equilibrium point ∆Te it holds V ′(∆Te) = 0.
::
In

:::::::
general,245

::
the

:::::::::
dynamics

::
of

::::
∆T

::::
will

::::::
evolve

:::::::
towards

:::
the

::::::
nearest

:::::
local

::::::::
minimum

::
of

::::
the

::::::::
potential.

::
If

::
it

::::::
resides

:::::
there,

:::::::::
signifying

:
a
::::::

stable

::::::::::
equilibrium,

::
it

:::::
would

:::::::
require

:::
the

:::::::
addition

:::
of

:::::::::
significant

:::::::
random

::::::::::
fluctuations

::
to

::::
exit

:::
this

:::::
state.

:::::::
Indeed,

::
if

:
a
:::::
local

:::::::::
maximum

:::::::
separates

::::
two

::::
local

:::::::
minima,

:::
i.e.

::::
two

:::::::
possible

:::::
stable

:::::::::
equilibria,

:::
the

::::::::
difference

::::::::
between

:::
the

::::::::
potential’s

:::::::::
minimum

:::
and

:::::::::
maximum

:
is
:::
an

::::::
energy

:::::
depth

::::
that

:::
the

::::::::
dynamics

:::
has

:::
to

::::::::
overcome

::
in
:::::

order
:::
to

::::::::
transition

::
to

:
a
:::::::

second
:::::
stable

:::::::::::
equilibrium.

::::
This

::
is

:::::
called

::
a

:::::::
potential

::::::
barrier.

::
In

::::
our

::::::
context,

::::
that

::::::
means

:::
that

::
if

:::
the

::::
wind

::::::
forcing

::
is
::::
such

::::
that

::::
both

:::::
vSBL

::::
and

:::::
wSBL

:::
are

:::::::::
supported

::::::::
solutions,250

::
the

::::::::
potential

::::::
barrier

::::::::
describes

::
the

::::::::
intensity

::
of

::::::::::
fluctuations

::
of

:::
∆T

::::
that

:::
are

::::::
needed

::
to

::::::::
transition

:::::::
between

:::
the

:::
two

::::::
states,

::::::::
assuming

::
no

:::::
other

:::::::
changes

::
in

:::
the

::::::
forcing

::
or

:::::::::
dynamics.

Using figure 3 we can compare the potentials for a short-tail stability function (figure 3 a) and a long-tail one (figure 3 b). The

lines correspond to potentials for different wind speeds which are in the bistable region. The green histograms are the results

of 1000 simulations of the model where the model itself is randomized similarly to Kaiser et al. (2020) (for
:::::::
(equation

:::
3).

:::
For

:
a255

detailed description of the randomization see section 2.2.1). All simulations were started in the very stable regime, i.e. ∆T0 =

24 K
:
,
:::
and

:::
the

:::::::::
simulation

:::::
time

:::
was

:::
24

:::::
hours

:::
for

:::
all

::::::::::
simulations. In the short-tail stability function histogram the two stable

equilibria (∆T = 4 and 24 K) distinctively show up and there are clearly multiple transitions between both regimes. In contrast,
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for the long-tail stability function the very stable regime is not distinctively separated from the unstable one (located at ∆T =

12K). This is related to the fact that the potential barrier is much shallower with the long-tail stability function . The potential260

barrier is the difference between the minima and maxima of the potential. Hence, this barrier needs to be overcome to transition

to the second stable equilibrium
:::::
which

:::
can

::
be

:::::
seen

::
by

:::::::::
comparing

:::
the

::::::::::
histograms

::
of

:::
the

:::
two

:::::::
stability

::::::::
functions

::::::
(figure

::
3
:
a
::::
and

::
b). Even though there are multiple transitions between the two stable regimes with the long-tail stability function, the system

rarely stays in the very stable regimeleading to an under-representation of very stable stratification cases in the model. Based

on these results we hypothesize that by using a randomized short-tail stability function
:::::::::
augmented

:::
by

:::::::
random

::::::::::
fluctuations265

::::
with

::::::
locally

::::::::
enhanced

::::::
mixing instead of the

:::::::
averaged enhanced mixing of the long-tail stability function transitions are better

represented. In section 2.2.3 the stochastic stability function is introduced. This randomized parameterization accommodates

the representation of transient bursts of turbulent mixing, which could force the system to transition.

0.0 0.1 0.2 0.3 0.4 0.5
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0.0

0.2

0.4
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f s
ta
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Figure 2. Long-tail and short-tail stability functions considered for the model plotted over the Richardson number.

2.3 Randomization strategies

Three strategies are employed to address model uncertainty in the conceptual model proposed by van de Wiel et al. (2017) (eq.270

2). Firstly, to account for uncertainty arising from unresolved processes within the model, a stochastic differential equation

(SDE) version of the model is presented in section 2.2.1. Moreover, uncertainty related to the wind forcing is addressed

in section 2.2.2 by modeling the wind with an Ornstein-Uhlenbeck process. This section also investigates the combined

effect of randomizing the wind forcing and the model itself. Lastly, the study explores a randomized stability function as a

10



Figure 3. Potentials with a a) short-tail and b) long-tail stability function for several wind speeds U and histograms of the results of 1000

simulations of the model with randomized wind speeds
:::::
additive

:::::
noise. In plot a) the mean of the random wind speed

::::
used

::
to

::::::
produce

:::
the

::::::::
histograms is equal to 5.6 ms−1 and in plot b) to 4.89

:::::
ms−1.

potential solution to account for uncertainty in the parameterization of turbulence. A stochastic stability function allows the275

inclusion of turbulent bursts even in very stable stratification. In all cases, the aim is to account for small-scale fluctuations

rather than large-scale changes. As van de Wiel et al. (2017) showed that their model, in its deterministic form, is highly

sensitive to a change in the lumped parameter, λ, which represents soil and radiation feedbacks and the surface roughness,

z0, both parameters are not further investigated in this study.Stochastic parameterizations have the merit to provide uncertainty

estimations, but beyond that they have the potential to induce regime transitions if the physical system has multiple coexisting280

equilibria. In that sense, they may be necessary for better representing the mean state of the system (Berner et al., 2017). Here

the stochastic modeling will be used to study the effect of small-scale fluctuations of an unresolved process in the model, the

wind speed or to include localized turbulent bursts. A sensitivity analysis will be carried out to comprehend and discern the

impacts of the aforementioned model uncertainties. Through the utilization of this tool, we aim to enhance our comprehension

of which of these model uncertainties have a large impact on the statistical representation of regimes and transitions between285

them. Due to the presence of noise, the equilibrium points of the deterministic and random model will not exactly be the same

but the dominant effects will be. The impact of noise in the model is quantified based on a Monte Carlo simulation with 500

realizations. A comparison with 1000 simulations showed similar results. Hence, 500 realizations are deemed sufficient for the
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rest of the sensitivity analysis. For all simulations the simulation time is 24 hours and time steps have a length of 1 second.

Moreover, model parameters are the same as in table 1. All SDEs are solved using the function itoint from the python library290

sdeint by ?. This function applies the stochastic Runge-Kutta algorithm of order 1.0 (Rößler, 2010).

2.2.1 Internal
::::::
Model

:::::::::
sensitivity

::
to

:::::::
internal

:
variability

Many processes are not resolved in the simplified conceptual model by van de Wiel et al. (2017) (eq. 2). In a first randomization

strategy, a stochastic term is added to the model to represent small-scale fluctuations of the dynamics of the temperature

inversion due to unresolved processes. The goal is to quantify the impact of model uncertainties as an additive noise component295

on the statistical representation of regimes in the SBL. The model is defined as
:::
has

::::
been

:::::::
defined

::
in

::::::
section

:::
2.2

:::
but

::
as

::
a
:::::
recap

::
the

:::::::::
equations

:::
are

:::::::
repeated

::::
here:

:

d∆T =
1

cv
(Qi −λ∆T − ρcpcDU∆Tfstab(Rb))dt+σi dWi , ∆T0 = x0 (4)

where Wi is a Wiener process (i.e. stochastic process), σi scales the fluctuation intensity, and x0 is either equal to 4K (wSBL)

or 24K (vSBL).300
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Figure 4. Results of the sensitivity study of model (4). For every U the minimal σi (σi,min) for which at least 80% of the 500 simulations

have at least one transition of the indicated type is marked. Simulations with an initial condition ∆T0 = 24K are plotted in green and with

∆T0 = 4K in blue. The red line is the bifurcation diagram of the deterministic model (eq. 2) and its bifurcation region is the red shaded area.

To assess the model’s response to this randomization, a sensitivity analysis is conducted and the focus is placed on the

representation of regime transitions (see figure 4). The adapted equation (4) of the model (2) is run 500 times for each com-
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bination of a range of different U and σi values. To distinguish the effect of the randomization on the two transition types the

simulations are started in the vSBL state, i.e. ∆T0 = 24K, and in the wSBL one, ∆T0 = 4K. Then for every U the minimal σi,

for which at least 80% of all 24-hour simulations include at least one transition, is identified. For convenience, this minimal305

σi is abbreviated as σi,min. As anticipated, the value of σi,min to achieve transitions from wSBL to vSBL is low
:::::
lower for

low wind speeds and higher for high winds. Conversely, for transitions from vSBL to wSBL, the opposite trend is observed.

This phenomenon can be explained by examining the plot of the equilibrium points for the deterministic model (eq. 2) (see the

dotted red line in figure 4). At low wind speeds the system has a single equilibrium state which is the vSBL. Consequently,

only a small amplitude of
::
no noise is necessary to transition from wSBL to vSBL, while a higher

::::
noise

:
amplitude is required to310

exit vSBL and transition to wSBL. In the bistable region two stable equilibrium states are present for the same U value. In the

first segment of the bistable region the wSBL and vSBL σi,min converge until they are nearly identical for U = 5.6ms−1. At

this point, the unstable equilibrium state is positioned approximately midway between the two stable states. Consequently, the

same noise magnitude is required for transitions in both directions. Subsequently, as the wind speed increases, the two σi,min

diverge again. Here, the reverse argument can be made in comparison to low wind speeds: only a small amplitude of
::
no

:
noise315

is necessary to transition to the wSBL state since it represents the sole equilibrium state of the system and higher noise values

are required to exit this state and transition to the vSBL state. As the bifurcation diagram is not exactly symmetric higher noise

levels for wSBL to vSBL transitions and high U values are required than for vSBL to wSBL transitions and low U values.

This rationale is justified as small-scale turbulent bursts may introduce enough mixing to force a transition to the wSBL state,

whereas the inverse scenario does not hold true. Based on this discussion, it can be deduced that only a small noise amplitude320

::
As

::::::::
expected

::
no

:::::
noise

:
is required for the system to transition to its equilibrium state (vSBL for low wind speeds and wSBL for

high wind speeds). However, to depart from the equilibrium state, higher noise amplitudes are necessary. Within the bistable

region, the introduction of noise with small amplitudes allows transitions in both directions.

To illustrate the effect of the randomization in the model an example is shown for the symmetry wind speed U = 5.6ms−1.

In this case, σi,min is equal to 0.18
::::::
Ks−1/2 for transitions from vSBL to wSBL which is slightly larger than for transitions325

in the other direction. The simulation is started in the vSBL regime. Figure 5 displays an instance of one model run with

σi = 0.18
:::::::::::::::
σi = 0.18Ks−1/2 and U = 5.6ms−1. The stable equilibria of the deterministic model are indicated by two solid red

lines, while the location of the unstable equilibrium is marked by a dotted line. This specific model run exhibits two transitions

between the vSBL and wSBL regimes. It is important to note that, in the absence of noise, the system would remain in the very

stable regime and not undergo any transitions.330

Lastly, to give an example of how the randomization affects the model result statistically the histogram of ∆T for 500 model

runs for U = 5.6ms−1 is shown in figure 6. For plot a) all the simulations are started in the vSBL and for plot b) in the wSBL.

The σi are the corresponding σi,min from figure 4. For both simulation types the histogram shows a higher probability to be

in the regime where the simulation started. This effect is especially pronounced for the simulations which started in the wSBL

state.335
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Figure 5. Plot of one solution of equation 4 with U = 5.6ms−1 and σi = 0.18
:::::::::::::
σi = 0.18Ks−1/2. The red dotted line marks the unstable

equilibria of the deterministic model while the solid lines correspond to stable ones.

Figure 6. Histogram of all solutions of equation 4 with U = 5.6ms−1 and a) σi = 0.18
:::::::::::::
σi = 0.18Ks−1/2, ∆T0 = 24K and b)

σi = 0.16
:::::::::::::
σi = 0.16Ks−1/2, ∆T0 = 4K. The red horizontal dotted line marks the unstable equilibria of the deterministic model while the

solid lines correspond to stable ones.

14



2.2.2 Fluctuating
::::::
Model

:::::::::
sensitivity

::
to

::::::::::
fluctuating wind speed

A narrow wind speed range exists in which a sudden change in the temperature inversion can be observed (e.g. Baas et al.

(2019), see also Fig. 1 c)). To investigate when small variations of forcing wind speed can lead to sharp transitions, the

conceptual model is modified by randomizing U such that it fluctuates around a wind speed for which the system is bistable.

To simulate the fluctuating wind speed, an Ornstein-Uhlenbeck process is incorporated into the model. This process is a widely340

used stochastic process in various applications (Pavliotis, 2014). The randomized model is defined as follows:

d∆T =
1

cv
(Qi −λ∆T − ρcpcDU∆Tfstab(Rb))dt , ∆T0 = x0 ,

dU =−r(U − Ū)dt+σUdWU , U0 = 5.6 ,

(5)

where
::::
WU ::

is
:
a
::::::
Wiener

:::::::
process

:::
and

:
r is a relaxation or mean reversion term. The value of r is chosen to be 0.005

:::
s−1

:
for all

simulations to achieve a mean reversion time of 200 s which is roughly the order of a submesoscale motion (Vercauteren et al.,

2016). The value of x0 is either equal to 4K (wSBL) or 24K (vSBL). The asymptotic mean of the Ornstein-Uhlenbeck process,345

Ū , is set to 5.6 ms−1 as this is the middle of the bistable region (see section 2.2.1). Different parameter values may give a

different quantitative result but we expect them to be qualitative the same. The asymptotic variance of the Ornstein-Uhlenbeck

process is V(U) =
σ2
U

2r (Pavliotis, 2014). The value for σU is chosen based on 30-minute averaged observational data from

Dome C (Genthon et al., 2021). In their study Baas et al. (2019) defined the bistable region for Dome C as 4ms−1 ≤ U ≤
7ms−1. By using the

:::
The same thresholds and using data from the year 2013, which has a mean value for the wind speed of350

5.6 ms−1, it can be deduced that
:
is

::::
used

::
to
:::

get
:::

an
:::::::
estimate

:::
of σU should be equal to 0.08.

:::
To

:::::::
exclude

:::::::::
mesoscale

:::
and

::::::
longer

::::::::
timescales

:::
the

::::
data

::
is

::::::
filtered

::::
with

:::::::
moving

:::::::
average

:::::::
filtering

::::
with

:
a
:::::::
window

::::::
length

::
of

:::
60

:::::::
minutes.

:::
For

::::
this

::::::
dataset

:::
σU ::

is
:::::
equal

::
to

::::
0.03

::::::
ms−3/2. Choosing σU this big leads to high variations in U and not to the small-scale perturbations we are interested

in. Therefore, the value extrapolated from the Dome C data is only used as an indication of the order of magnitude of σU

and additional values are tested. Figure 7 a ) shows that while for σU = 0.01 the fluctuations of U are of small amplitude and355

seldomly pass through a bifurcation point the time series does not transition. In fact, no simulation of all
:
In

::::
fact,

:::::
while

:::::
97%

::
of

::
all

::::::::::
simulations

::
of

::
a
::::::
Monte

:::::
Carlo

:::
run

::::
with

:
500 includes a transition.In contrast, for σU = 0.04 at least 80%of

::::::::::
simulations

::::::
include

::
a

::::::::
transition

::::
34%

:::
of

:::
the

:::::
wind

:::::::
velocity

::::::
values

:::
are

:::
on

:::::::
average

:::::::
outside

:::
the

:::::::::
bifurcation

::::::
region

::::::
which

:::::::::
contradicts

::::
the

:::::::::
assumption

::
of

::::::::::
small-scale

::::::::::::
perturbations.

::::
One

:::::::
example

::
of

::
a

:::
run

::::
with

:::::::::::::::
σU = 0.03ms−3/2

::
is
::::::
shown

::
in

:::::
figure

::
7
:::
b).

:::::::::::
Additionally,

:::::::::::::::
σU = 0.01ms−3/2

::
is

:::::::::
considered

::
as
::::

this
::
is

:::
the

:::::::
smallest

:::::
value

:::
for

:::::
which

::::::
hardly

::::
any

::
of

:::
the

::::
wind

:::::::
velocity

::::::
values

:::
are

::::::
outside

:::
of360

the
:::::::::
bifurcation

::::::
region,

:::
i.e.

:::
on

::::::
average

::::
less

::::
than

::::
1%.

:::
But

:::
for

:::
this

:::
σU:::::

none
::
of

:::
the

::::
500 simulations include a transition . This is

the smallest σU which fulfills this condition. But in this case U no longer stays in the bistable region (see figure 7 b)
:
a).

As a next step, a model with both additive noise for internal variability and an Ornstein-Uhlenbeck process for wind velocity

is considered. This
:::
The

::::::::::::::::
Ornstein-Uhlenbeck

:::::::
process

:::::::
includes

::::::::::::
multiplicative

:::::
noise.

:::
The

:
model is defined as:

d∆T =
1

cv
(Qi −λ∆T − ρcpcDU∆Tfstab(Rb))dt+σi dWi , ∆T0 = x ,

dU =−r(U − Ū)dt+σUdWU , U0 = 5.6 .

(6)365
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Figure 7. Plot of one solution of equation 5 (blue) and the corresponding wind speed U (green) including its 10-minute average (thick green

line) for σU = 0.01
::::::::::::::
σU = 0.01ms−3/2 (a) and σU = 0.04

::::::::::::::
σU = 0.03ms−3/2

:
(b). The red dotted line marks the unstable equilibria of the

deterministic model while the solid lines correspond to the stable ones. The shaded green area is the bistable region for U .

The relaxation parameter r is the same as before. To quantify the impact of this model randomization, in terms of regime

transitions, a sensitivity analysis is performed (see figure 8). The model (6) is run 500 times for a combination of σi, σU

and U values. For σU the values 0
:::::::
ms−3/2, 0.01 and 0.04

:::::::
ms−3/2

:::
and

::::
0.03

:::::::
ms−3/2 are chosen to allow a comparison of the

results with the ones with the model where only the wind velocity is randomized (see eq. 5). It shall be noted that when σU = 0

::::::::::::
σU = 0ms−3/2

:
model (6) is behaviourally equal to model (4). The simulations are started in the vSBL state, ∆T0 = 24K, (blue370

lines) and in the wSBL one, ∆T0 = 4K, (green lines) to distinguish the effects on the two transition types separately. Then the

minimal σi for which at least 80% of all simulations with the given σU and U value include at least one transition is identified.

This σi is abbreviated as σi,min.
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Figure 8. Results of the sensitivity study of model (6). For every U the minimal σi (σi,min) for which at least 80% of the 500 simulations

have at least one transition of the indicated type is marked. Simulations with an initial condition ∆T0 = 24K are plotted in green and with

∆T0 = 4K in blue. The red
:::::
dotted line is the bifurcation diagram of the deterministic model (eq. 2) and its bifurcation region is the red

shaded area.

Comparable
:
It

::::
shall

:::
be

:::::
noted

::::
that

::::
the

:::::
model

:::::
with

::::::::::::
multiplicative

:::::
noise

::::
may

:::::
have

:::::::
different

::::::::::
equilibrium

::::::
points

::::
than

::::
the

::::::::::
deterministic

::::::
model

:::
(see

:::::::
chapter

:::
5.4

:::::::::::::
Pavliotis (2014)

:
).

::::
This

:::
for

:::::::
example

:::
has

::::
been

::::
seen

::
in

:::::::::::::::::::::
Bashkirtseva et al. (2015)

:::
and

::::::::::::::
Monahan (2002)375

:
.
::::::::::
Nonetheless,

::::::::::
comparable

:
with the results of model (4), where solely unresolved processes were considered while disregard-

ing fluctuating wind speed, figure 8 shows that no noise is required for the system to transition to its equilibrium state
:::
the

:::::::::
equilibrium

:::::
state

::
of

:::
the

:::::::::::
deterministic

:::::
model

:
(vSBL for low wind speeds and wSBL for high wind speeds). However, to depart

from the equilibrium state, higher noise amplitudes are necessary. In the bistable region, the introduction of noise with small

amplitudes enables transitions in both directions, irrespective of the three different σU values. Notably, larger σU values permit380

smaller σi values to induce transitions. This is especially pronounced when U = 5.6ms−1 and σU = 0.04. In this case σi,min

is equal to zero for both transition directions. The values of σi,min are identical or nearly identical for σU = 0 and 0.01.

Additionally, to provide a statistical representation of the model’s randomization effects on the results, histograms of ∆T for

500 model runs with U = 5.6ms−1 and σU = 0.01
:::::::::::::::
σU = 0.01ms−3/2 is presented in figure 9. For plot a) all the simulations

are started in the vSBL and for plot b) in the wSBL. The σi are the corresponding σi,min from figure 8. The histograms reveal385

a higher probability of remaining within the initial regime for both simulation types, with a more pronounced effect observed

for simulations starting in the wSBL state.

2.2.3 Randomized
::::::
Model

:::::::::
sensitivity

::
to

:::::::::::
randomized stability function

In the conceptual model by van de Wiel et al. (2017) (eq. 1) the sensible heat flux is parameterized using MOST which

uses the assumption that turbulence is stationary. In the vSBL regime, this assumption does not hold and turbulence is rather390

intermittent and unsteady (Liang et al., 2014; Mahrt and Bou-Zeid, 2020). Therefore, in this section the impact of uncertainties
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Figure 9. Histogram of all solutions of equation 6 with U = 5.6ms−1, σU = 0.01 and a) σi = 0.18, ∆T0 = 24K and b) σi = 0.14, ∆T0 =

4K. The red horizontal dotted line marks the unstable equilibria of the deterministic model while the solid lines correspond to stable ones.

in the turbulence parameterization is studied. This is particularly significant as localized turbulent events can trigger regime

transitions in the stable boundary layer (Lan et al., 2022). To qualitatively reproduce continuous bursts of turbulence a model

is introduced which enables temporally localized enhancement of turbulence. This is achieved by enhancing the mixing length.

In MOST the mixing length is adjusted through a stability correction function. Therefore, a model is suggested where localized395

turbulence bursts are represented with a stochastic stability function. As the stability functions are the data-driven component

of the MOST parameterization they are a natural choice for making part of the model random.

To account for localized bursts of turbulence the before mentioned short-tail stability function is extended with multiplicative

noise. Using multiplicative noise ensures that the turbulent bursts are temporally localized, allowing the solution to relax

towards that of the deterministic model after each burst. Additionally, unlike additive noise, the magnitude of the multiplicative400

noise depends on the current system state. Moreover, employing multiplicative noise instead of additive noise prevents the

stability function from yielding negative values. Lastly, the model for the randomized stability function is chosen such that it

includes a time memory to ensure that bursts of turbulence are not dispelled after one time step. The coupled system has the

form

d∆T =
1

cv
(Qi −λ∆T − ρcpcDU∆Tϕ)dt , ∆T0 = x0 ,

dϕ=−r(ϕ− fstab(Rb))dt+σϕϕdWϕ , ϕ0 = fstab(Rb(∆T0)) ,

(7)405
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with

σϕ =

0 Rb ≤Ric

cϕ otherwise ,

:::
Wϕ::

is
:
a
:::::::
Wiener

:::::::
process, Rb is the bulk Richardson number, Ric = 0.25 the critical Richardson number and cϕ some constant

which impacts the noise intensity. The noise is only non-zero for higher Richardson numbers as especially intermittent turbu-

lence in the vSBL regime shall be accounted for in the model. The initial condition ϕ0 is the value of the short-tail stability410

function corresponding to ∆T0. Again, to evaluate how the model reacts to this type of randomization, in relation to regime

transitions, a sensitivity analysis is performed. The setup for the sensitivity analysis is the same as in section (2.2.1). That

means, the model (7) is run 500 times for a combination of U and cϕ values and the initial condition ∆T0 is equal to 4 or 24K.

Then, for each U, the minimum value of cϕ is identified, which ensures that at least 80% of all 24-hour simulations include at

least one transition. This minimum value is abbreviated as cϕ,min.415

A similar sensitivity study as in section 2.2.1 and 2.2.2 was performed with 1000 model runs instead of 500 and for transitions

from vSBL to wSBL. The results of this study are not shown here as for wind speeds less than 5.3 ms−1 even for high noise

levels, e.g. cϕ = 3, hardly any of the simulations included a transition. Our hypothesis is that this is due to that the model has

not enough degrees of freedom to non-linearly enhance the effect of the noise. We expect this to be different in a single-column

model.420

Lastly, the bifurcation driven transitions of the deterministic model are compared with the noise-induced transitions of the

randomized model in figure 10. To achieve this the randomized model (7) is run 500 times with an incorporated time-varying

wind forcing. The wind speed
:
is
::::::::
modelled

:::
as

:
a
:::::::::::
deterministic

::::
step

:::::::
function

::::::
which

:
increases (left column) or decreases (right

column) by 0.1 ms−1 roughly every 30 minutes as shown by the green curve in panel a)
:::
and

::
d). The effect of the randomization

is studied for both transition types. Hence, the simulations either start in the vSBL state (left column) or the wSBL one (right425

column). Panel a) shows
:::
and

::
d)

:::::
show the time evolution of the forcing parameter U in green. The black line is the evolution of

the bulk Richardson number for one simulation. The gray shaded area is the region where Rb >Ric. This is the region where

noise is added to the stability function. Panel b) displays
:::
and

::
e)

::::::
display

:
the time evolution of ∆T with the forcing given in

panel a)
:
or

:::
d). The gray lines correspond to 500 realizations of ∆T . The black line is one realization of ∆T with Rb as in panel

a)
::
or

::
d). The mean of all 500 simulations is given by the blue line. The orange line is the solution of the deterministic model430

(see equation 2) with U as given in panel a)
::
or

::
d). Panel c) has

:::
and

::
f)
::::
have

:
the same color coding as panel b)

:::
and

::
e)

:
only for ϕ

instead of ∆T .

On average the deterministic model and the random simulations have the same transition time for transitions from vSBL to

wSBL. However, with a randomized stability function, the transition time is no longer dependent on a specific wind velocity

but allows for transitions to occur over a range of velocities before and after the transition of the deterministic model occurs.435

Therefore, the transition time becomes a range of roughly four hours instead of a fixed time point. The transitions start within

the wind speed range of 5.5 to 6.25 ms−1. This observation aligns with the findings presented by (Baas et al., 2019), who

demonstrated, through their analysis of observational data from Dome C, that wind speeds below approximately 4 ms−1 are

19



4

6

8

u
[m

/s
]

a)

perturbation region

forcing

Rb: 500 model runs

Rb: 1 model run

Rb: mean

d)

perturbation region

forcing

Rb: 500 model runs

Rb: 1 model run

Rb: mean

10

20

∆
T

[K
]

b)

500 model runs

1 model run

mean

deterministic model
(eq. 2)

e)

500 model runs

1 model run

mean

deterministic model
(eq. 2)

0 5 10 15 20 25

time [h]

0.00

0.25

0.50

0.75

φ

c)

500 model runs

1 model run

mean

0 5 10 15 20 25

time [h]

f)

500 model runs

1 model run

mean

0.0

0.5

1.0

R
b

Figure 10. Solution of the model with perturbed stability function with
::
and

:
variable forcing parameter U (wind velocity).

:
In
:::
the

:::
left

::::::
column

::
the

:::::::::
simulations

::::
were

:::::
started

::
in
:::
the

:::::
vSBL

::::
state

:::
and

::
U

:::::::
increases.

::
In
:::

the
::::
right

::::::
column

:::
the

:::::::::
simulations

::::
were

:::::
started

::
in

:::
the

:::::
wSBL

::::
state

:::
and

::
U

:::::::
decreases.

:
Panel a) shows

:::
and

::
d)

::::
show the time evolution of the forcing, panel b)

::
and

::
e)

:
of ∆T , and c)

:::
and

:
f)
:
of the stability function.

associated with highly pronounced inversions ranging from 20 to 25 K. Conversely, wind speeds exceeding approximately 7

ms−1 correspond to comparatively weaker inversions on the order of 5 K. In contrast to vSBL to wSBL transitions, transitions440

from wSBL to vSBL are delayed compared to the deterministic model and occur over a narrow period.

Combining the results, it follows that the probability of transitions significantly increases with the use of a randomized short-tail

stability function. Therefore, we suggest a modeling compromise where instead of the conventionally used long-tail stability

function a stochastic parameterization, which includes random bursty features, is used. This
:::::
Further

::::::::
research

::::::
should

:::::
assess

::
if

:::
this alternative methodology has the potential to enhance the accuracy of large-scale statistics.445
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3 Summary and Conclusions

This study expands upon prior research
::
on

::::
SBL

::::::
regime

:::::::::
transitions by providing an explanation for the constraints encountered

when depicting regime transitions in NWPs. This is achieved by examining the significance of transient phenomena as triggers

for abrupt transitions.

We used a randomized version of the conceptual model defined by van de Wiel et al. (2017) as an exemplary model to study450

the sensitivity of the nocturnal or polar SBL to small-scale perturbations, and to investigate how related model uncertainty can

impact the mean state of the boundary layer. The conceptual model by van de Wiel et al. (2017) is capable of accommodating

scenarios with multiple stable equilibria. Therefore, in relation to our objectives, it provides an ideal model for which the

theoretical dynamical stability is well understood.

In the first part, we studied the impact of the stability function used in the model on the likelihood of regime transitions in the455

context of noise-induced tipping. We showed that for a short-tail stability function, in comparison to a long-tail one, the bistable

region is significantly wider. In addition, the potential barrier for the long-tail stability function is shallower which decreases

the chance for abrupt transitions. Combining both results we concluded that the stability function highly impacts the likelihood

of transitions and that with a short-tail one the bistability of the system and abrupt transitions are better represented in the

model. If NWPs exhibit the regime bistability the usage of a long-tail stability function would lead to a smaller range of wind460

speeds for which transitions can occur due to the narrower bistable region. Moreover, the transitions would be smoothed out as

a consequence of the shallower potential barrier. In contrast, a randomized short-tail stability function allows for noise-induced

abrupt tipping.

In the second part, we analyzed how model uncertainty can be addressed in the conceptual model. We focused on model

uncertainty related to unresolved processes, wind forcing, and turbulence parameterization. Firstly, to include small-scale per-465

turbations of an unresolved process in the model it is extended with additive noise. To assess the model’s response to this

randomization, in terms of regime transitions, a sensitivity analysis was conducted. A Monte Carlo simulation with 500 runs

and a combination of different wind speeds and noise strength was performed. Transitions from wSBL to vSBL and vice versa

were studied separately. The sensitivity analysis showed that only a small noise amplitude
::
no

:::::
noise is required for the system

to transition to its equilibrium state (vSBL for low wind speeds and wSBL for high wind speeds). However, to depart from470

the equilibrium state, higher noise amplitudes are necessary. Within the bistable region, the introduction of noise with small

amplitudes allows transitions in both directions. From this, we deduced that the model is highly sensitive to small-scale fluctu-

ations of unresolved processes. Secondly, we studied the effect of including forcing uncertainty in the model by modeling the

wind with an Ornstein-Uhlenbeck process. We showed that including randomized wind velocities which seldom exceed the

bistable range was not sufficient to induce regime transitions. Therefore, we analyzed the impacts of including randomizations475

for unresolved processes and wind forcing together. Again a sensitivity analysis was performed. For low noise amplitudes of

the randomized wind velocity, the results were nearly identical to the ones of the model where solely unresolved processes

were considered. Lastly, to particularly address model uncertainty related to MOST we investigated how a commonly used

stability function can be modified to represent unsteady turbulence often present in the SBL. MOST is based on the assump-
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tions of surface homogeneity and turbulence stationarity which both have been shown to not always be valid. To relax this480

assumption and allow the representation of unsteady turbulence, we modified the short-tail stability function by van de Wiel

et al. (2017) with a time memory and multiplicative noise. This is one way to represent localized turbulence bursts through a

stochastic model. Moving forward, a natural progression would be designing a more sophisticated framework where the noise

level is linked to the stratification level, since unsteady turbulence is known to mainly occur in high stratification. Such an

approach has for example been pursued by Boyko and Vercauteren (2023a)
:::::::::::::::::::::::::
Boyko and Vercauteren (2023b). The authors pro-485

posed a stochastic extension to MOST for a single-column model which scales with the Richardson number
:::
and

:::::::::::
implemented

:
it
::
in

::
a

::::::::::::
single-column

:::::
model

:::::::::::::::::::::::::::
(Boyko and Vercauteren, 2023a). The parameters of the stability correction were estimated based

on observational data. A similar approach could be done for NWPs or Earth system models to include localized turbulent

bursts. The inclusion of localized turbulence bursts is particularly significant as localized events can trigger regime transitions

in the stable boundary layer. A randomized stability function offers an alternative way to mitigate excessive mixing resulting490

from a long-tail stability function (Baas et al., 2017), while preventing the system from being trapped in a highly stable state

when using a short-tail stability function (Kähnert, 2022).
::::::::
Moreover,

:::
the

:::::
usage

:::
of

:
a
::::::::::
randomized

:::::::
stability

::::::::
function

::::::::
increases

::
the

:::::::::
variability

:::
of

:::::::
turbulent

:::::::
mixing,

::::::::::
potentially

:::::::
similarly

:::
to

::::
what

:::
an

:::::::
increase

::
in

:::::::::
resolution

::
in

::
a

:::::
NWP

:::::
would

:::
do

:::
by

::::::::
resolving

::::
more

::::::::::
small-scale

::::::::::::
heterogeneity.

::::::::
Therefore,

:::
we

:::::::::::
hypothesize

:::
that

::
a

:::::
lower

::::::::
resolution

:::::
could

:::
be

::::
used

:::
for

:::::
NWP

::::
runs,

:::
but

::::::::
possibly

::::
with

:
a
:::::
higher

:::::::
number

::
of

::::::::
ensemble

::::::::
members.

::::
This

:::::::::
hypothesis

:::
is,

:::
for

:::::::
example,

:::::::::
supported

::
by

:::
the

:::::::
research

::
of

:::::::::::::::::
Davini et al. (2017)495

::
on

:::::::::
evaluating

:::
the

::::::
impact

:::
of

::::::::
stochastic

:::::::
physics

:::::::::::::::
parameterizations.

::::
The

:::::::
authors

::::
used

::::::::::::
multiplicative

:::::
noise

::
to

::::::::
represent

::::::
model

:::::::::
uncertainty

::::
due

::
to

:::
the

::::::::::::::
parameterization

::::::
process

:::
in

:::
the

::::::::
EC-Earth

::::::
global

::::::
climate

::::::
model.

::::
For

::::
their

:::::
study,

::::
they

:::
ran

::
a
:::::::::
maximum

::
of

::
10

::::::::
ensemble

:::::::::
members.

:::
The

:::::::
authors

:::::::::::
demonstrated

:::
that

:::
the

::::::::
inclusion

::
of

:::::::::::
stochasticity

::
in

:::
the

::::::
physics

:::::::::::::::
parameterizations

:::
can

:::
be

::
as

:::::::
effective

::
as

:::::::::
resolution,

::::
and

::
in

:::::
some

:::::
cases

::::
even

:::::
more

::::::::
effective.

:::
The

:::::
need

:::
for

:::::
higher

:::::::::
ensembles

::::::::
numbers

:::::
when

:::
the

:::::::
stability

:::::::
function

:
is
::::::::::

randomized
::::
may

:::
be

:::::::::::
circumvented

:::
by

::
its

::::
time

:::::::::::
stochasticity.500

We showed that by using a randomized stability function transitions from wSBL to vSBL are delayed. In contrast, transitions

from vSBL to wSBL occurred both before and after the one from the purely deterministic model increasing thereby the transi-

tion period to four hours. Sun et al. (2012) separate the vSBL and wSBL regimes with a sharp wind speed threshold. With our

finding this sharp threshold is extended to a range of wind speeds for which transitions are possible. Future research will entail

studying the inclusion of the same and additional model uncertainties in a higher order model like a single-column model.505
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