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Abstract. Reliance on infrastructure by individuals, businesses, and institutions creates additional vulnerabilities to the dis-

ruptions posed by natural hazards. In order to assess the impacts of natural hazards on the performance of infrastructure, a

framework for quantifying resilience is presented. This framework expands upon prior work in the literature to improve the

comparability of the resilience metric by proposing a standardized assessment period. With recovery a central component of

assessing resilience, especially in cases of extreme hazards, we develop a recovery model based upon an application of the re-5

source constrained project scheduling problem (RCPSP). This recovery model offers the opportunity to assess flood resilience

across different events and also, theoretically, between different study areas. The resilience framework and recovery model

have been applied in a case study to assess the resilience of buildings infrastructure to flooding hazards in Alajo, a neighbor-

hood in Accra, Ghana. For the three flood events investigated (5, 50 and 500-year return periods) and the chosen standardized

assessment period (300 days), the "300-day resilience" successfully shows a meaningful decreasing trend (0.94, 0.82 and 0.69)10

with increasing hazard magnitude. This information is most valuable for identifying the vulnerabilities of buildings infrastruc-

ture, assessing the impacts resulting in reduced performance, coordinating responses to flooding events, and preparing for the

subsequent recovery. This framework expands upon prior work in the literature to improve the comparability of the resilience

metric by proposing a standardized assessment period, the "n-time resilience".

1 Introduction15

Since the adoption of the European Floods Directive (European Commission, 2007), risk-based hazards management has

become the dominant strategy for reducing the impacts of natural hazards throughout Europe and much of the world. While this

strategy has proven effective at reducing the impacts, preventing the loss of life, and easing the economic burden to communities

and regions following some hazard events, it generally employs a singular decision-making variable: costs resulting from

damages (Merz et al., 2010; Disse et al., 2020). On its own, damage reduction captures only a single dimension of the impact20

from natural hazards. Therefore, the management strategies developed from a risk-based approach are similarly limited.

In recent literature, the potential for a more evolved strategy has emerged, referred to as resilience management. This man-

agement strategy not only considers the costs associated with direct damages, but instead considers the performance of the

infrastructure system over time, including through both the event and recovery phases of the hazards management cycle (Chen
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and Leandro, 2019; Leandro et al., 2020). Rather than singularly seeking to reduce the damages caused by natural hazards,25

resilience management is focused on the ability to resist, recover and adapt to the hazard. Inbuilt in this strategy is an emphasis

on maintaining a high performance of the infrastructure vital to everyday life. This paradigm shift represents the evolution of

management strategies from viewing hazards as foes which must be defeated to viewing them as opportunities to adapt. While

this strategy shows promise for improving upon the present management methods, it currently lacks clarity in its definition

and implementation, leading to diverging themes in the literature. This work therefore lays out a framework for implementing30

resilience to support hazards management by demonstrating a robust method to model recovery based on an application of the

resource constrained project scheduling problem (RCPSP).

1.1 Defining Hazards Resilience

Before resilience can be effectively quantified, it must first be well defined. Conceptualizations of resilience as they relate to

hazards management can be categorized into three primary groups of increasingly complex interpretations of system dynamics35

(Disse et al., 2020): engineering resilience, ecological resilience, and social-ecological or evolutionary resilience.

Engineering resilience is a relatively simplified conceptualization which is derived from engineered systems rather than

natural systems. According to this definition, the system experiences some reduction in functionality due to the hazard while

at the same time resisting its effects. The system then begins to recover once the hazard subsides, returning some period of

time later to its original level of functionality. This definition assumes that the system exists in a stationary ideal state prior to40

the hazard event and always seeks to return to this same ideal state after the hazard subsides (Disse et al., 2020; Liao, 2012;

Rodina, 2019).

The conceptualization of ecological resilience is relatively more complex than that of engineering resilience. While this

definition is similar to that of engineering resilience in some regards, the primary difference is that the initial and final states

of the system are not considered ideal. Rather, the system has the ability to change state by finding a new equilibrium or "new45

normal" following the hazard event through adaptation (Disse et al., 2020; Liao, 2012; Rodina, 2019).

A third conceptualization of resilience is the most complex interpretation of the three. Social-ecological resilience (or evo-

lutionary resilience) considers that the composition of a system is more dynamic than the previous definitions allow. In this

interpretation, the system has no equilibrium state, but is rather in a perpetual state of change and adaptation, becoming more

or less resilient as it reacts to hazards (Disse et al., 2020; Davoudi, 2012).50

While it can be tempting to conclude that because social-ecological resilience considers the most complex interpretation

of system resilience, that it must be the most appropriate definition for hazards management. Indeed, numerous articles in

the literature support this interpretation (Liao, 2012; Rodina, 2019). However, the selection of a definition should reflect the

targeted complexity of and consequently be reflected in the uncertainty associated with the results of assessment. For example,

in cases where data scarcity exists, it can be unrealistic to apply a highly complex model with the assumption of higher55

accuracy. Rather, a simplified model of system interactions and individual decisions is perhaps a more appropriate model in this

case with a proportionately large uncertainty included to reflect the potential inaccuracies associated with the aforementioned

simplifications.
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To this end, resilience is defined in this framework as the ability of a system to maintain functionality while absorbing the

effects of a hazard and recovering to a state of equilibrium in a timely manner through restoration of its critical infrastruc-60

ture. This interpretation is based largely upon the definition proposed by Field et al. (2012) and corresponds to an ecological

conceptualization.

1.2 Assessing Hazards Resilience

Numerous frameworks for assessing and quantifying resilience have been presented in the literature. Distinctions can be made,

however, by narrowing the scope to the resilience of the urban environment to natural hazards. In this branch of the literature,65

some common themes have emerged. One major commonality among the frameworks focused on the urban environment is the

idea of persistent change. The panarchy model of adaptive cycle is one such illustration of the dynamics of urban resilience

(Holling, 2001; Davoudi, 2012). This temporal attribute of urban systems demonstrates the necessity of assessing resilience as

a time series (Chen and Leandro, 2019; Leandro et al., 2020).

It is generally accepted that resilience, being an abstract concept, cannot be directly measured, but rather must be estimated70

using indirect measurements via indicators of system performance (Hinkel, 2011; Schipper and Langston, 2015). A composite

index of normalized indicators is generally the most commonly utilized method for achieving this goal. Through careful

selection and weighting of the indicators, a proxy metric of system performance can be developed, by which an assessment of

resilience can be derived (Cutter et al., 2010, 2014).

In the context of infrastructure resilience, the value of performance is assessed over some reference period, generally a75

period of time encompassing the effects of a disrupting event. Cimellaro et al. (2010) quantifies resilience of infrastructure

as the normalized integral of the performance function over the reference period (Cimellaro et al., 2016). Due to its commu-

nicable nature and unambiguous calculation, this method for quantifying resilience provides a clear metric for assessing the

benefits associated with various interventions or mitigation strategies (Cimellaro et al., 2011, 2015), a necessary attribute for

operationalizing resilience in hazards management.80

1.3 Modeling Disaster Recovery

The work by Kates and Pijawka (1977) is one of the earliest attempts to understand the post-disaster recovery process and to

create a conceptual model (Miles and Chang, 2003; Miles et al., 2019). In their research, a four-stage model was presented,

composed of sequential but partially overlapping stages. According to the model, disaster recovery begins with an emergency

period, then a restoration period, followed by a replacement reconstruction period, and ends with a commemorative, betterment85

and development reconstruction period. However, this conceptualization of recovery as an orderly progression of distinct

periods has been criticized, with most arguing that recovery is instead highly uncertain due to the influences of decision

making and social attributes (Chang, 2010; Nejat and Damnjanovic, 2012b; Miles et al., 2019).

Since this early work, many attempts have been made to better replicate the complex interactions involved in disaster re-

covery through various modeling techniques. Cimellaro (2016) categorizes disaster recovery models into two broad groups:90

analytical and empirical. In this context, empirical recovery models are those derived from observed data or based on expert
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input. According to Miles et al. (2019), machine learning has recently been utilized in the development of empirical models

of housing recovery (Zhang and Peacock, 2009; Nejat and Ghosh, 2016). This approach requires sufficient empirical data for

training or development, which may not be available in all cases. Analytical recovery models on the other hand, are defined as

those which have been derived from numerical simulations of system responses (Cimellaro, 2016). Agent-based models have95

been utilized as analytical models of housing recovery (Nejat and Damnjanovic, 2012a; Eid and El-adaway, 2017). However,

agent-based models are criticized by some for having a lack of transparency, being difficult to evaluate or assess, and needing

to strike a balance between being overly simple or overly complicated, for which there is little consensus (Sun et al., 2016;

Chen, 2012). Extensive work has been conducted in way of developing discrete-event and stochastic simulation models of

recovery (Miles and Chang, 2006, 2011; Burton et al., 2018; Miles, 2018; Burton et al., 2019; Longman and Miles, 2019).100

Development of these models requires a thorough understanding of the specific processes directing the system responses. As a

potential alternative to the current approaches, we propose to model buildings infrastructure recovery as an application of the

RCPSP due to its physically-based parameters (like availability of required resources and time needed for completing tasks)

and the straightforward nature of its implementation.

The only known mention in the literature of applying the RCPSP to model disaster recovery is in the work by Miles et al.105

(2019). However, only the potential for applying the method for modeling lifeline infrastructure recovery is presented, for which

an example from Isumi et al. (1985) is provided. To the best of our knowledge, applying the RCPSP to model infrastructure

recovery in general, and specifically for modeling the recovery of buildings infrastructure, is a completely novel approach.

2 Methods

The following methods are divided into two distinct parts. The first, Section 2, provides a generalized description of the methods110

for setting up the model to simulate the recovery of infrastructure from a natural hazard. This is intended to demonstrate the

broad applicability of the model to a wider context than any singular case study would otherwise allow. The second part,

Section 3, demonstrates the specific methods used to develop a model for a case study of the recovery of buildings following

flooding in Accra, Ghana.

2.1 Quantifying Hazards Resilience115

The quantification of infrastructural resilience requires a means for assessing the performance of the system on a component-

level basis. These component-level measurements serve as proxy indicators of the overall system function. Indicators X are

normalized according to Eq. 1, where x(t) is a measurement indicating the performance of a particular component of in-

frastructure at time t. The values xmin and xmax correspond to the minimum and maximum values of the measured variable,

respectively. The minimum and maximum values can refer to either the range which is possible for the value, or rather the range120

which is considered acceptable. Additionally, indicators which increase with improved system performance (positively corre-

lated) are deemed positive indicators and indicators which decrease with improved system performance (negatively correlated)
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are deemed negative indicators. The two types of indicators are normalized differently so to produce a positive correlation with

system performance (Cutter et al., 2010, 2014; Scherzer et al., 2019).

X(t) =


x(t)−xmin

xmax −xmin
, positive;

xmax −x(t)

xmax −xmin
, negative.

X ∈ [0,1] (1)125

In order to assess the system performance as a whole, the individual indicators are combined using a composite index, as

in Eq. 2, where wi is a weighting factor applied to indicator Xi. The magnitude of the weighting factor reflects the relative

importance of the indicator (Cutter et al., 2010, 2014; Scherzer et al., 2019).

P (t) =

n∑
i=1

Xi(t) ·wi

n∑
i=1

wi

(2)

Hazard models are used to simulate the impacts to infrastructure for a particular scenario or event e. The performance P (t) is130

assessed over a period of time encompassing the influences of the hazard on the system. This time interval is referred to as the

assessment period ∆ta and begins at the onset of the hazard event tei . The resilience Re of the infrastructure to hazard event e

is then quantified as the normalized integral of the performance over the assessment period (Cimellaro et al., 2010, 2016). Eq.

3 presents a mathematical formulation of the described framework.

Re=
1

∆ta
·

tei+∆ta∫
tei

P (t) · dt (3)135

While constructing a thorough measure of P (t) through careful selection of indicators and their respective weights is im-

portant for accurately describing the performance of the infrastructure system (Cutter et al., 2010, 2014), systematic selection

of the assessment period ∆ta is just as important. Inspection of Eq. 3 demonstrates that the resulting value of Re is strongly

dependent on this parameter. The following sections present a framework for determining ∆ta.

2.1.1 Assessment Period140

The timeline of the direct influences of the hazard event on the infrastructure system can be broken into two periods conceptu-

ally: an event phase and a recovery phase (Chen and Leandro, 2019; Leandro et al., 2020). The event phase is characterized by
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the physical impacts of the hazard. This phase is enveloped by the time at which the event begins, tei , until the direct effects of

the hazard have subsided tef . The event phase interval ∆te is therefore formalized by Eq. 4.

∆te =
[
tei , tef

]
(4)145

Immediately following the event phase, recovery in various capacities can begin. The recovery phase encompasses the period

from subsidence of the hazard tef until a steady state is achieved ts, provided that the dynamics of the system are conceptualized

using either an engineering or ecological definition of resilience. Activities supporting a return to a high quality of performance

and all potential adaptations to the system are contained in this phase. When assessing the resilience of the system to multiple

hazards, the equilibrium time is taken as the maximum of the recovery times tsmax , which generally corresponds to the scenario150

with the largest magnitude hazard. The recovery phase interval ∆tr is therefore formalized by Eq. 5.

∆tr =
(
tef , tsmax

]
(5)

According to the definitions presented, the assessment period ∆ta encompasses both the event and recovery phases. There-

fore, the interval can be formalized by Eq. 6.

∆ta =∆te +∆tr = [tei , tsmax
] (6)155

While these definitions of the time parameters are accepted in the literature, the specifics of this approach present an issue for

comparability. Consider that as the recovery time is reduced, the assessment interval is likewise reduced by an equal amount of

time. Reduction in recovery time is, by definition, indicative of an increase in system resilience. However, the resulting value

of resilience according to these equations does not react proportionally.

Consider also, that two different systems might recover at dramatically different rates from the same hazard scenario. Ac-160

cording to the current convention, it is possible that both systems are evaluated as being equally resilient. As achieving a timely

recovery is likewise indicative of higher system resilience, the metric should rather produce different results for these two

systems. Therefore, an alternative approach for selection of the time parameters is proposed.

2.1.2 Standardized Assessment Period

Rather than utilizing the maximum recovery time tsmax
, which is specific to each system and dependent on the set of hazard165

scenarios applied in the investigation, we propose to standardize the assessment interval. In practice, this alternative method re-

quires selection of an appropriate constant interval which envelopes the target responses of the system. The updated assessment

period is given by Eq. 7.
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∆ta = const. (7)

This alternative approach allows for direct quantitative comparison of the resilience across systems and hazards, for assess-170

ments utilizing the same ∆ta. The interval applied in the investigation is to be communicated alongside the value of resilience

for clarity. This framework expands upon prior work in the literature to improve the comparability of the resilience metric by

proposing a standardized assessment period, the "n-time resilience". For example, the system resilience quantified using an

assessment period of 100 days is reported as "100-day resilience" or Re100-day.

It can be deduced that an assessment utilizing a reference period significantly larger than the recovery time has the effect175

of increasing the magnitude of the calculated value and reducing the sensitivity of the resilience metric. Therefore, it can be

necessary to apply different assessment periods between studies, depending on the sensitivity required. However, it remains

necessary to use the same assessment period for two studies in order to compare them. It is for this reason that we propose

reporting the assessment period alongside the metric for clarity.

2.1.3 Assessment Period for Extreme Events180

Extensive impacts to infrastructure can occur either during extreme events or even during moderate events if the system is

highly vulnerable. Longer recovery times are generally expected in cases with extensive impacts. In the case that the recovery

phase is much longer than the event phase, measurement of the reduction in performance over the event phase is largely

insignificant and therefore unnecessary if quantification of resilience is the primary objective of the investigation. Thereby, it

is hypothesized that resilience to extreme hazards can be estimated with a similar accuracy by assessing system performance185

over the recovery phase only. Therefore, Eq. 3 can be modified to reflect this change, resulting in Eq. 8.

Re≈ 1

∆ta
·

tef +∆ta∫
tef

P (t) · dt if ∆te <<∆tr. (8)

2.2 Infrastructure Recovery Model

Following the proposal of an assessment period for extreme events in which it is hypothesized that the event phase is largely

insignificant for the quantification of resilience, the emphasis is rather placed on the recovery phase. Therefore, it is necessary190

to develop a model of infrastructure recovery which can be used to measure the performance of the system over the assessment

period. The following section outlines the general case of the model.
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Table 1. Database of recovery scenarios (R) resulting from the discretization of damages (Di) and the classification of structures (Si).

Si Si+1 · · · Sn

Di R (Si,Di) R (Si+1,Di) · · · R (Sn,Di)

Di+1 R (Si,Di+1) R (Si+1,Di+1) · · · R (Sn,Di+1)

...
...

...
. . .

...

Dn R (Si,Dn) R (Si+1,Dn) · · · R (Sn,Dn)

2.2.1 Infrastructure Recovery Concept and Assumptions

In the framework of this model, infrastructure recovery is conceptualized as a project having a beginning and an end, which

is composed of a collection of smaller tasks. Provided that the damages to the infrastructure resulting from a hazard are either195

known or well estimated, the individual tasks of the larger project can be inferred.

The individual components of an infrastructure system can be categorized into structural classes according to a predeter-

mined criteria, so to capture the range of required recovery pathways. Applying prior knowledge of the susceptibility of the

various infrastructure components, the potential damage states due to a hazard acting on each component can be categorized or

discretized. These damage classes can then be used to determine which actions or tasks must be carried out in order to recover200

the component, as well as how the tasks relate to one another. We will refer to the collection of tasks corresponding to a single

component and a single damage class as a recovery scenario. Upon thorough investigation of the components, the produced

recovery scenarios are collected and stored into a database. An example of this database is shown in Table 1.

When the system is subjected to a hazard, a damage assessment is carried out on a component-level basis. Two important

pieces of information about each component can then be identified: the structural class to which the component belongs and205

the damage class which has resulted from the effects of the hazard. Using these two classifications, we can then collect the

corresponding recovery scenario from the database. After all components have been assessed in this way, the collected recovery

scenarios are grouped together according to the precedence relationships between tasks to form the larger project, referred to as

a recovery plan. At this point, all tasks which must be completed in order to recover the infrastructure system are known. The

processing time of each task must then be determined by the recovery model. This model is primarily based upon the following210

four assumptions regarding the recovery process.

Assumption 1. It is assumed that recovery is prolonged by the time required to complete each individual task of the overall

process. In this context, tasks are defined as the specific, smaller actions undertaken by the responsible persons or authorities,

in progression toward returning the infrastructure to a functional state. For example, for a given structure, there are many tasks

which must be completed in order to recover the structure to its pre-hazard condition. Each of the tasks will require some finite215

amount of time to complete. While it may be possible that the duration is either longer or shorter due to a variety of factors,

the duration of each individual task remains an important factor in the overall expedience of recovery.

Assumption 2. Just as the duration of each task affects the rate of recovery, so too is the effect compounded when considering

the possibility that one or more tasks may not begin until one or more preceding tasks have ended. Although some tasks can
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Figure 1. (a) A basic example of an RCPSP represented by an AON directed graph and having only a single constraining resource r.
Each node of the graph is a task or job j with a corresponding duration dj and resource requirement ur,j . Arcs represent the precedence
relationship between jobs. (b) A solution to the presented problem when the capacity of resource r is 4 and makespan minimization is the
objective. Adapted from Kolisch and Hartmann (1999).

be conducted in parallel with other tasks, it is also possible that one or more tasks must first be completed in order to begin the220

next step in a recovery process. Therefore the precedence relationships between tasks affect the expedience of recovery.

Assumption 3. Critical resources can be defined as the items or services required to carry out the tasks of the recovery. It

can be assumed that there exists only a finite amount of each critical resource which is available to the tasks at any given time.

This limited quantity is the resource’s capacity. If there is not enough of a resource, or the resource capacity is less than the

demand, then tasks must be delayed until the necessary resources become available. Therefore, each resource capacity is also225

a potential limiting factor for recovery.

Assumption 4. The final assumption is that recovery is, to some degree, naturally optimized. This optimization is due to the

cumulative result of each affected entity seeking a speedy recovery for itself. For example, if a component of infrastructure is

damaged by a hazard and the repairs are considered feasible, then there will be a desire for the recovery of the component to

be carried out in a timely manner.230

2.2.2 Resource Constrained Project Scheduling Problem

The four model assumptions simplify the problem of infrastructural recovery, creating the opportunity to formulate the problem

as an application of the RCPSP. The base case of the RCPSP consists of tasks (the individual, discrete components of a

larger project) which should be optimally scheduled according to the objective of makespan minimization. This problem is

generally illustrated using activity-on-node (AON) directed graphs, where each node represents a task and each arc represents235

a precedence relationship between two tasks. Two additional nodes having no duration are appended to the start and end to

demarcate the beginning and completion of a project. Resources are treated as renewable in the base case. That is, each resource

has a fixed capacity which is renewed at each time interval. Unused resources from a previous time interval do not carry over

to the next. An example of a simple RCPSP is shown in Fig. 1.

This base case of the RCPSP is of the NP-hard variety (Kolisch and Hartmann, 1999). Therefore, an optimal solution can240

generally be found in a reasonable time when the search space is limited to relatively few tasks and constraining resources.
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Figure 2. Left: Map showing the location of the neighborhood Alajo within the greater Accra Metropolitan Area (Engstrom et al., 2013).
Right: An enlarged map of the study area including the buildings considered in the model. Adapted from OpenStreetMap data acquired from
Geofabrik GmbH, © OpenStreetMap contributors 2020. Distributed under the Open Data Commons Open Database License (ODbL) v1.0.

However, when scheduling many tasks or including many resource constraints, the problem grows larger and requires much

more computational time to solve. In this case, finding an optimal solution can become infeasible within a reasonable solve

time and a heuristic algorithm must be implemented to approximate the solution.

3 Case Study: Recovery of Buildings from Flooding in Accra, Ghana245

In order to demonstrate an application of the described framework, the recovery model was tested in a case study of Alajo,

a district within the greater Accra Metropolitan Area, Ghana (Fig. 2). Alajo is of particular interest because it is composed

of a dense mix of building types and is situated at the confluence of two major storm-water drainage canals. This district is

thereby prone to flooding hazards. Further compounding the issue of flooding, much of the floodplain is occupied by informal

residential development, making the consequences of flooding particularly severe.250

3.1 Quantifying Flood Resilience of Buildings Infrastructure

This case study is focused solely on the recovery of buildings following flooding events. Therefore, only an indicator of the

state of buildings is necessary for quantifying resilience in this scope. The state of each building b is considered from the

point of view of the occupant of the building. Thereby, a building is considered to exist in a binomial state at any time t:

either occupied (1) or unoccupied (0). In the occupied state, the building can currently be used by its occupant for its intended255
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purpose, whether for shelter in a residential building or for economic activity in a commercial building. In the unoccupied

state, a building is damaged to an extent that it cannot be used for its intended function and must be repaired before a return to

occupancy is possible. The indicator is provided in Eq. 9.

Xb(t) =

0, if b unoccupied at t;

1, if b occupied at t.
(9)

The relative importance of each building b is determined by its footprint area Ab. It is assumed that recovering a building with260

a larger footprint area indicates a greater increase in performance than a building with a smaller area. The final performance

metric is then calculated as the total area of buildings which are occupied at time t versus the total area of all buildings in the

set B. Eq. 2 therefore becomes Eq. 10.

P (t) =

∑
b∈B

Xb(t) ·Ab∑
b∈B

Ab
(10)

The event phase for the flooding hazard is conceptualized as the onset of inundation at tei until the flood waters recede and265

inundation ends at tef . Due to the severity of prior flood damages in Alajo, the extreme event assessment period is applied

for quantifying resilience in this case study. Therefore, the event phase is neglected. We will also utilize a relatively large

assessment period of 300 days by setting ∆ta = 300 in Eq. 8, to capture the lengthy duration of the recovery.

3.2 Buildings Infrastructure Recovery Model

In the recovery model, recovery plans take the place of projects in the RCPSP. A recovery plan includes all of the tasks which270

must be completed by individuals in order to bring their building to a safe and functional state following damages from a flood.

First we assess each building to determine into which structural classification and which damage class it falls. Knowledge

of these two classifications allow us to infer the tasks which must be completed to recover that particular building. The set of

tasks corresponding to a single structural class and damage class is a recovery scenario. We collect all of the identified recovery

scenarios into a database, provided in Table 2.275

Upon assessment of the structural type and damage state of all buildings following a hazard event, the corresponding recovery

scenarios are collected and grouped together to form the recovery plan. In the case of the buildings in Alajo, it is assumed that

there is no precedence relationship between buildings. That is, the processing of any task is not directly dependent on the

processing status of the tasks of other buildings, only on the precedence relationships between other tasks of the same recovery

scenario and the availability of critical resources. Therefore, all recovery scenarios are placed in parallel with one another in280

the recovery plan, as shown in Fig. 3. The resulting recovery plan is then solved using optimization.
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Figure 3. Left: An example of a single recovery scenario R corresponding to structure class S and damage state D. Right: A recovery plan
for a single hazard event with all buildings in parallel.

Table 2. Recovery scenarios resulting from the discretization of damages and the categorization of buildings.

IR: Informal FR: Formal CI: Commercial
Residential Residential & Industrial

D0: Insignificant IR-D0 FR-D0 CI-D0

D1: Moderate IR-D1 FR-D1 CI-D1

D2: Heavy IR-D2 FR-D2 CI-D2

D3: Complete IR-D3 FR-D3 CI-D3

While many algorithms already exist which provide an exact solution to the mathematical formulation of the RCPSP in

small scale, expanding the search space makes finding an exact solution potentially infeasible (Kolisch and Hartmann, 1999).

Therefore, approximating this problem on a larger scale required an alternative optimization method. A review of the literature

pointed to a few capable heuristic strategies. Among the best performers are simulated annealing, tabu search and genetic285

algorithms (Kolisch and Hartmann, 1999). Ultimately, the genetic algorithm described by Hartmann (2002) was chosen due to

its benchmark performance compared with other heuristics, in terms of ability to find optimal or best known solutions and the

associated computation times when solving standard test sets.

3.3 Building Classes

Three classes of buildings were established in order to capture both the vulnerability of the structure itself, as well as the290

likely economic capability of the building’s occupants. These are informal residential, formal residential, and commercial

and industrial. Each of the building types were classified according to four indicators, adapted from the methods used by the

World Bank (2017) to classify buildings in Accra. The first indicator is a quantitative assessment of the footprint area of each

building. The next indicator is the quantitative measurement of the density of neighboring buildings. Both of these quantitative

measurements were calculated using a shapefile of the building footprints adapted from OpenStreetMap data acquired from295
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Geofabrik GmbH. The third and fourth indicators are the apparent quality of the roofing material and the apparent use of the

surrounding property near each building. These qualitative indicators were assessed using visual inspection of Google Earth

imagery, an example of which is provided in Fig. 5.

Informal residential buildings are likely built without approval of the responsible authorities. Therefore they may not follow

established construction practices and are generally constructed of low-quality materials. These buildings are also likely to be300

located in areas where official approval would not normally be granted (flood plains, for example). It is assumed that residents

of these buildings have limited financial means to secure quality building materials when repairing damages from a flood. They

are also less able to afford the costs of skilled workers to aid in the repairs, instead relying on either unskilled workers or

their own abilities. Informal residential buildings are generally among the smallest and most dense of the three building types

considered in this study. Footprint areas of less than 100 m2 and building densities of greater than 20 buildings in a 50-m radius305

were considered indicative of this class. Viewed from satellite imagery, these buildings have characteristic patchwork roofs

composed of heterogeneous, low-quality materials with little or no green space in the immediate vicinity. While a footprint

area of 100 m2 might be considered by some readers as a high threshold for informal buildings, we did not seek to adjust the

thresholds utilized by the World Bank (2017) in the scope of this work.

Formal residential buildings are considered more likely to be built with government approval following established construc-310

tion methods and composed of high-quality building materials. Because there are higher costs associated with the approval and

construction of formal residential buildings, it is assumed that residents of these buildings likewise have greater financial means

available for repairs or reconstruction following flood damages, lending to a relatively expedient recovery. Formal residential

buildings fall into a middle range of footprint areas (100 to 300 m2) and building densities (10 to 20 buildings in a 50-m ra-

dius). Views of quality homogeneous roofing materials, driveways, and green yards surrounded by walls or fences are typically315

visible in satellite images of these buildings.

Commercial and industrial buildings serve the purpose of providing space for economic activity. Such buildings are typically

built of robust construction and high-quality materials. Because of the economic nature of these buildings, it is generally

assumed that owners of commercial and industrial buildings have a greater financial means for buying materials and hiring

skilled labors to repair damages due to floods. These buildings are generally larger in size than the other two building types320

and utilize large spaces for business activities. A footprint area or greater than 300 m2 and a building density of less than 10

buildings in a 50-m radius are indicative of commercial and industrial buildings. Satellite imagery often reveals machinery and

material storage in the area surrounding the building. The indicators and a description of their values for each building class

are outlined in Table 3.

3.4 Damage Classes325

Damages to the buildings were determined using a simple correlation between the inundation water depth hw and a vulnera-

bility function specific to the building class. The generalized version of the vulnerability function is given by Eq. 11.
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Table 3. Description of indicators used for classifying buildings. Adapted from World Bank (2017).

Building Class

Indicator IR: Informal Residential FR: Formal Residential CI: Commercial & Industrial

Building Size <100 m2 100-300 m2 >300 m2

Building Density >20 buildings in 50-m radius 10-20 buildings in 50-m radius <10 buildings in 50-m radius

Roof Material heterogeneous, low-quality homogeneous, high-quality homogeneous, high-quality

Property Use typically very little surrounding
property; little to no green
space

open yards and driveways;
often surrounded by walls or
fences

vast open space; often used for
storage of commercial goods;
can be paved for driving and
parking vehicles or machinery

Table 4. Damage curve parameters corresponding to each building class. Derived from regression of the work presented in Englhardt et al.
(2019).

Building Class c k dmax

IR: Informal Residential 1.074 2.516 1.00

FR: Formal Residential 0.856 2.918 0.81

CI: Commercial & Industrial 0.694 2.793 0.65

d(hw) =−c · exp
[
−k · hw

hb

]
+ c d ∈ [0,dmax] (11)

The height of the flood water above the base of the building hw is determined by taking the mean water depth within the area

of the building’s footprint. The height of the building hb is assumed to be 2.5 meters for all buildings simply due to insufficient330

data indicating otherwise. Each building is assumed to have a maximum possible damage dmax based on the potential to

reuse aspects of the structure even after complete inundation. Finally, c and k are constants relating the materials used to

construct each building with vulnerability to flood damage. The constants corresponding to each building class were derived

from regression of the work presented in Englhardt et al. (2019), an analysis of materials-based vulnerability to flooding for

buildings in Ethiopia, and are presented in Table 4.335

The damage function was then discretized into four finite categories based generally on the tasks which are required to

recover the building at each level of damage. The damage classes are summarized in Table 5. Insignificant damage corresponds

to the very lowest damage level. At this damage level, it is assumed that either nothing needs to be done to repair the building, or

the damages are only cosmetic. Therefore, any cosmetic repairs are neglected from the recovery plan and the building remains

occupied from the start of the recovery. The damage factor associated with insignificant damage is in the range 0.00 to less340

than 0.01.
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Table 5. The discretization of damages into finite classes as applied in the model. Adapted from Bai et al. (2009) and Kreibich et al. (2009).

Damage Class Damage Factor Description

D0: Insignificant 0.00≤ d < 0.01 Unaffected or requiring only cosmetic repair.

D1: Moderate 0.01≤ d < 0.30 Repairable structural damage has occurred.

D2: Heavy 0.30≤ d < 0.80 Structural damage requires major repairs.

D3: Complete 0.80≤ d≤ 1.00 Extensive damage. Repair of most elements not feasible.

The next damage level is moderate damage. Buildings experiencing moderate damage require structural repairs. However,

the repairs are simple enough that they can be carried out in a relatively short time and without a significant amount of human

and material resources. The range of damage factors categorized as moderate is from 0.01 to less than 0.30.

Heavy damage is characterized by major structural damage. Repairs in this category require extensive work, some of which345

requires skilled labor. There is a high requirement for critical human and material resources in order to bring buildings with

heavy damage back to a state of occupancy. The damage factor range for this category is from 0.30 to less than 0.80.

The final damage level is complete damage. In this class, buildings will have experienced extensive damages to the point that

repair of most of the building elements are no longer feasible. Therefore, the building must be demolished and a new structure

built in its place. Because of the heavy financial burden and the long delay associated with reconstruction, these buildings are350

considered less likely to attempt repair than in other classes. The damage factor range for this category is from 0.80 to 1.00.

3.5 Parameter Uncertainty

A Beta-PERT distribution was utilized to model the uncertainty associated with the model parameters. This distribution was

chosen for this purpose because it offers a method for translating expert input into a probability density function based on

three parameters: a minimum possible value (α), a maximum possible value (β), and a most-likely value (m). The Beta-PERT355

distribution was applied to the capacities of each of the resources and to the duration of each of the tasks.

3.6 Task Durations and Resource Requirements

The resources deemed critical to recovery in Alajo can be broken into two general categories: basic materials and human

capital. Among the basic materials are cement, waterproof cement, sandcrete blocks, steel reinforcement bar, lumber, bitumen,

and epoxy paint. The human capital critical to recovery includes common or unskilled workers, construction workers, and360

utilities workers. All resources are treated as renewable resources in the model. Therefore, there is a renewed daily capacity for

each.

Durations of tasks were estimated in units of "time per area" to represent the increase in duration with increasing building

size. This time scaling was assumed to be linear. Because a large portion of the buildings falls under the 100 m2 size, this was

chosen to be the reference value by which estimates would be made. As duration changes, the amount of resources required365

during each day of the task remains the same. Therefore, as the building size increases, the duration increases and so does the
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Table 6. Description of the resources applied in the model and their capacities. Units for capacity are "unit/day/100 buildings" and the
provided parameters (α, m, β) correspond to a Beta-PERT distribution.

Capacity

No. Description Unit α m β

R1 Cement 50 kg 50 70 100
R2 Sandcrete Block piece 50 70 100
R3 Steel Reinforcement Bar piece 50 70 100
R4 Construction Worker daily wage/person 10 15 30
R5 Utilities Worker daily wage/person 10 15 30
R6 Common Worker daily wage/person 20 30 50
R7 Waterproof Cement 1 kg 20 30 50
R8 Epoxy Paint 5 liters 20 30 50
R9 Bitumen drum (220 liters) 10 15 30

R10 Lumber piece 50 70 100

Table 7. An example of the task parameters for the Formal Residential, Complete Damage (FR-D3) scenario. Units of duration are "days/100
m2" and the provided parameters (α, m, β) correspond to a Beta-PERT distribution. Units of resource requirements are "unit/day" according
to the unit associated with the particular resource.

Duration Resource Requirements

No. Description α m β R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

T1 Seek financial assistance. 5 10 20 0 0 0 0 0 0 0 0 0 0
T2 Professionally demolish exist-

ing structure.
2 5 10 0 0 0 0 0 3 0 0 0 0

T3 Professionally prepare and lay
new foundation.

5 8 15 20 0 10 1 0 3 5 0 0 0

T4 Professionally build walls. 8 10 20 10 20 10 2 0 2 5 0 0 0
T5 Professionally build roof. 8 10 20 0 0 0 2 0 2 0 0 2 10
T6 Professionally install plumbing. 5 8 15 0 0 0 0 2 0 0 0 0 0
T7 Professionally install electrical. 5 8 15 0 0 0 0 2 0 0 0 0 0
T8 Professionally finish interior. 8 10 20 0 0 0 1 0 2 0 2 0 4
T9 Reoccupy structure. 0 0 0 0 0 0 0 0 0 0 0 0 0

resource requirement. This is the desired effect because the assumption is that a larger building will require more time and

resource to be repaired.

3.7 Building Abandonment

In order to incorporate individual decision analysis into the proposed recovery model, an additional parameter termed the370

probability of building abandonment was included, allowing each of the building owners to decide not to seek to recover the

structure. A probability was assigned to each of the nine recovery scenarios. Generally, the probability of building abandonment

was assumed to increase with higher damage extents. Alternatively, the probability was assumed to decrease along with the
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Table 8. Probability of building abandonment for each of the recovery scenarios presented in Table 2 resulting from the discretization of
damages and the categorization of buildings.

IR: Informal FR: Formal CI: Commercial
Residential Residential & Industrial

D0: Insignificant 0.00 0.00 0.00

D1: Moderate 0.05 0.02 0.01

D2: Heavy 0.20 0.10 0.05

D3: Complete 0.50 0.20 0.10

assumption of available monetary resources. For example, formal residential buildings are assumed to have greater financial

capacity than informal residential buildings. Therefore, the probability of abandonment is lower for formal residential buildings375

than informal residential buildings for same damage level. Table 8 provides the probability of abandonment for each of the

recovery scenarios.

3.8 Stratified Random Sampling and Monte Carlo Simulation

If each of the recovery scenarios were to involve five to ten individual tasks, as initial investigation suggested, then recovery

plans would be made up of approximately 50,000-100,000 tasks given that there are approximately 10,000 buildings in Alajo.380

Such a large sample space would not be feasible for the optimization algorithm to approximate in a reasonable amount of

computational time. Therefore, it was necessary to take smaller, random samples of buildings and apply these to the model.

To this end, a stratified random sampling scheme was devised. For each flooding event assessed, buildings were divided into

groups according to their classification into the nine recovery scenarios. A target sample size was randomly selected from

among the groups according to the relative size of each group to the whole population of buildings. A Monte-Carlo Simulation385

(MCS) was then conducted with a new stratified random sample drawn at each iteration and replacement of drawn samples

back to the population.

3.9 Flood Inundation

The Parallel Diffusive Wave Model (P-DWave) was applied to model flood inundation (Leandro et al., 2014). This model

applies a first-order finite volume explicit discretization scheme on a regular grid to solve the diffusive form of the 2-D shallow390

water equations, as shown in Eq. 12, where g is the acceleration due to gravity, h is the water depth, z is the bed elevation, u

is the depth-averaged flow velocity vector, vt is the turbulent eddy viscosity, R is the source-sink term relating to rainfall or

inflow, and Sf is the bed friction factor. This is accomplished by neglecting all forces in the momentum equations except the

gravity term and bed friction, resulting in the simplified momentum equation given by Eq. 13.

dh

dt
+∇(uh) =R (12)395
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g∇(h+ z) = gSf (13)

The water-level surface gradient vector term is given by Eq. 14, where Swx and Swy are the water-level surface components

in the x- and y-directions, respectively.

∇(h+ z) =

Swx

Swy

=


d(h+ z)

dx

d(h+ z)

dy

 (14)

Manning’s formula, shown in Eq. 15, is used to approximate the bed friction Sf , where n is the Manning’s roughness400

coefficient, ux and uy are the velocity components in the x- and y-directions, respectively, and |u| is the modulus of the

depth-averaged flow velocity vector, given by Eq. 16.

Sf =

Sfx

Sfy

=


n2 |u|ux

h
4
3

n2 |u|uy

h
4
3

 (15)
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) 1
4

n
(16)

As input, P-DWave minimally requires an elevation raster, a surface roughness raster, a rainfall hyetograph, and initial405

and boundary condition rasters. For the case study, a digital elevation model (DEM) was sourced from the Advanced Land

Observing Satellite (ALOS) mission of the Japanese Aerospace Exploration Agency (JAXA). The DEM was altered for use

in the simulation by removing sinks and other anomalies and burning-in waterway and street networks. The surface roughness

raster was produced by classifying land use into six categories based on a combination of data from the World Bank (2017),

OpenStreetMap, and additional manual mapping of relevant features. The land use classes and their corresponding Manning’s n410

roughness coefficients were: informal residential (0.30 s/m1/3), formal residential (0.20 s/m1/3), industrial (0.15 s/m1/3), natural

(0.05 s/m1/3), roads (0.03 s/m1/3), and waterways (0.02 s/m1/3). No inflow boundary conditions were necessary because the

entire watershed was applied in the simulation. Likewise, no initial water depths were applied, rather the rainfall duration was

extended in order to allow for filling of drainage canals. A triangular design rainfall was applied in the model with a storm

advancement coefficient of 0.4 (unitless). The rainfall durations and intensities were sampled from intensity-duration-frequency415

(IDF) curves derived from historical rainfall data sourced from the Ghana Meteorological Agency (GMet). Infiltration was
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modeled using the SCS Curve Number method as described in Technical Report 55 (TR-55) from USDA-NRCS (1986). Curve

numbers are determined by land use and hydrologic soil groups (HSG). HSG are primarily associated with infiltration rates

and textures of soils. According to the UN-FAO’s Digital Soil Map of the World, the watershed is composed primarily of two

soil types, Ferric Acrisols and Chromic Vertisols, both of which correspond to HSG B due to their drainage properties (Batjes,420

1997). For each of the land use classes used to build the roughness raster, a corresponding low, high and mean curve number

was assigned from the tables in the TR-55 manual according to HSG B. An area-weighted composite of the curve numbers

was calculated for each case to produce a low, high, and mean composite of 69, 72, and 75 (unitless), respectively. The mean

composite curve number of 72 was used to calculate the excess rainfall hyetographs applied in P-DWave.

4 Results and Discussion425

4.1 Recovery Model and Resilience Quantification

For each of the hazard scenarios investigated (5, 50, and 500-year floods), the recovery model was applied using an MCS

with 500 iterations, drawing a stratified random sample of 100 buildings at each iteration. For the optimization, the genetic

algorithm utilized a population size of 50, a probability of gene mutation of 5% (P = 0.05), and was limited to a maximum of

10 generations. The model produced a database for each scenario containing the scheduled start and end times for each task in430

the recovery plan for every MCS iteration. It is from these databases that the following results are derived.

The scheduled tasks produced by the recovery model can be used to determine the building states (either occupied or

unoccupied) at time t over the assessment period. Combining this information with the known footprint areas of each building,

Eq. 10 can be applied to produce a timeline of the performance of the buildings infrastructure. From the MCS, the mean and

95% confidence intervals of the performance curves were derived. The resulting performance curves for the three investigated435

scenarios are shown in Fig. 4. It is apparent from the figure that the performance is generally reduced as the return period of

the scenario increases. One can also see that the shape of the curve becomes more flat with the increasing return period.

From the generated performance curves, the resilience of the buildings infrastructure to the simulated flooding hazards was

quantified according to Eq. 8. This resulted in a 300-day resilience assessment of 0.94 for the 5-year event, 0.82 for the 50-year

event, and 0.69 for the 500-year event. In practical terms, each value reflects the ability or inability of the system to maintain440

its function during the reference period for the given flood event, with zero corresponding to a complete loss of function and

one when unaffected. These values and their respective confidence intervals are provided in Table 9.

A 300-day resilience value of 0.69 is to be interpreted as the infrastructure system providing 69% of its intended performance

for the 300 days following the hazard event. In regions were infrastructure is generally more resilient and recovery more

expedient, the 300-day resilience may be very high for all events, and therefore the targets can be made more ambitious. For445

example, managers may set a goal of maintaining 80% functionality for the 10 days following a particular hazard event, or a

10-day resilience of 0.80. By applying this assessment framework, remediation options can be compared in order to select for

decisions supporting a particular resilience outcome.
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Table 9. Assessed mean recovery times and mean 300-day resilience values for each of the investigated flooding events. The 95% confidence
intervals are provided for each value.

Recovery [days] Resilience, 300-Day [-]

Event Mean 95% Conf. Mean 95% Conf.

5-year Flood 77 [37, 253] 0.94 [0.85, 0.98]

50-year Flood 165 [103, 444] 0.82 [0.70, 0.91]

500-year Flood 225 [155, 537] 0.69 [0.55, 0.81]

Compared with existing models, like those derived from agent-based models (Nejat and Damnjanovic, 2012a; Eid and El-

adaway, 2017), the presented model offers relatively more clarity for communicating uncertainty to support decision making450

because it is more linear and therefore more transparent. Even if it shares some similarities to agent-based models (e.g., the

rules and values are still based on assumptions about individual decisions), the model simplifies the understanding of specific

actions that policy makers, individuals and business owners can undertake to return their damaged buildings to a safe and

usable condition following damaging events.

Planners and decision makers could, in future applications, take advantage of the task schedules produced as output by the455

recovery model by adding markers for other time dependent actions not considered in this study. For example, it could be

possible to monitor the demand on emergency services like shelters by adding tasks which mark the return to occupancy of

residential buildings.

Because there is an amount of each resource associated with every task, it is therefore possible to produce a timeline of

resource utilization for each MCS iteration from the task schedules. Similarly, the MCS iterations were combined to derive460

the mean and 95% confidence intervals for resource usage. Fig. 4 shows the results of this calculation for cement (R1) usage.

The figure shows the probability density function (PDF) of the Beta-PERT distribution used to apply the uncertainty associated

with the resource capacity. Therefore, we can notice that cement usage remains below the available capacity for the 5-year

scenario, but increasingly enters the range of the capacity limitation for the 50 and 500-year events, respectively.

We will define recovery completion time trec as the amount of time required for the system to reach an equilibrium state,465

or "new normal." Estimation of trec was carried out by creating an empirical cumulative distribution (CDF) of the scheduled

times of the end nodes for each iteration of the MCS as the percentage of recovery completions at time t. Through regression,

it was determined that the empirical CDF was exponentially distributed. Fitting distributions to the empirical CDFs allowed for

estimation of the mean and 95% confidence interval. The results of this regression are presented in Table 9. For the flood with

return period of 5-years, the mean recovery time over the 500 MCS iterations was 77 days. The mean recovery time increases470

with the return period to 165 days and 225 days for the 50-year and 500-year flooding hazards, respectively.
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Figure 4. Results of the modeled impacts, recovery and resource utilization. Each column correspond to the three hazard scenarios modeled:
5-year, 50-year, and 500-year flooding events, respectively. For each scenario, the first row presents the damage states of the buildings
immediately following the event phase. The second row visualizes the recovery as the performance of the buildings infrastructure over the
assessment period. The third row shows the daily usage of cement (one of the 10 resources included in the model) during the recovery process
as well as the distribution of the resource capacity.

4.2 Inundation and Building Damages

Buildings in the study area were manually classified into the three categories according to the outlined methodology. While

this classification involves making a certain level of assumptions, all efforts were taken to follow the guidelines laid out by the
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Figure 5. Typical areal views of the three building classes (a) IR: Informal Residential [© Google Earth 2023], (b) FR: Formal Residential
[© Google Earth 2023], (c) CI: Commercial and Industrial [© Google Earth 2023], and (d) the final building classifications according to the
indicators described in the methods section.

four indicators. A final classification is displayed in Fig. 5. Generally, it can be observed from the figure that informal buildings475

are tightly grouped and often located close to the drainage canals. Other building types appear more mixed.

Through testing of rainfall durations, a 60-hour rainfall was found to maximize the peak of the generated hydrograph.

However, in order to reduce computation time, a 48-hour duration was instead chosen because the hydrograph peak of this

duration was within 2% of the 60-hour value. Sampling the mean flood depth in cells occupied by each building footprint

provided the information needed to calculate building damage factors according to Eq. 11 and the corresponding building480

class. Fig. 4 shows the damage states for each building in the study area due to flooding for the three hazard scenarios. There

are significant damages resulting from even the high probability event, especially for buildings close to the drainage canals.

Damages increase with increasing return period, with a high number of buildings falling into the D3 classification in the

500-year return period flood.

No actual events were simulated in the course of this study. Instead, design storms were applied in the flood model. Therefore,485

there were no actual flooding impacts to compare to the simulated events, which prevented direct validation of the damage and

recovery model results. The magnitude and severity of recently observed floods in the region (Ahadzie et al., 2022; Amoako

and Boamah, 2015) are well within the ranges presented in this work. Future applications of the model may simulate historical

events in order to perform a validation. This, however, was beyond the scope of this study.
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Figure 6. Depictions of recovery curves serving as a comparison of two potential recovery outcomes. Although both (a) and (b) have the
same recovery time trec, curve (a) depicts a more desirable recovery path than (b) because (a) maintains a higher system performance over
the reference period ∆ta than (b). The proposed resilience metric reflects this discrepancy and quantifies it (Re1 >Re2); assessing recovery
time alone does not.

4.3 Standardized Assessment Period490

The standardized assessment period presented in this work and applied in the case study, makes it possible for resilience values

to be compared across different events (and theoretically between different study areas as well). The sole condition is that

the reference period of the assessments remains the same. The resilience metric applied in this study, quantifies the system

performance during the reference period. This provides a more insightful metric compared with other resilience indicators

(e.g., time to recovery). Fig. 6 demonstrates the usefulness of the metric by comparing two potential recovery outcomes.495

Consider that the two scenarios shown in the figure both have the same recovery time trec. However, scenario (a) depicts a

more desirable recovery path than scenario (b) because it maintains a higher system performance during the reference period

∆ta. The resilience metric presented in this study quantifies this difference, whereas assessing recovery time alone does not.

In the case study, 300 days was chosen as the assessment period, which is a constant chosen to envelope the target responses

of the system and is related to the magnitude of the event only to the extent that utilizing an assessment period significantly500

larger than the recovery time has the effect of increasing the magnitude of the calculated value and reducing the sensitivity

of the resilience metric. However, the assessment period should remain constant for the purpose of comparison. The intent

is that managers and decision makers should determine an appropriate value for their particular application, but reporting the

assessment period along with the metric (e.g., "300-day resilience") is both novel and necessary for understanding the metric.

The adaptation of the standardized assessment period for extreme events relies on the correctness of the assumption that505

neglecting the event phase does not significantly affect the resilience metric as long as the recovery phase is significantly

longer. In order to test and validate this assumption in the current case study, let us consider the 50-year flooding event, with

recovery phase performance shown in Fig. 4. Excluding the event phase, the mean 300-day resilience was quantified as 0.82

(Table 9). According to investigation of the hydrographs produced by the flood model for the 48-hour rainfall, inundation
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lasted approximately 100 hours. A maximum and minimum effect of the event phase can be calculated by assuming that the510

functionality was either 1.0 or 0.0 throughout the duration of the inundation, respectively. Recalculating the resilience with

the addition of the event phase returns a maximum 0.52% difference between including it and excluding it in this case. This

is a relatively insignificant amount given the uncertainty already present in the results. This example adds evidence for the

assumption that inclusion of the event phase may not be necessary in cases when the recovery phase is significantly longer than

the event phase and quantification of resilience is the primary goal.515

5 Conclusions

Resilience management has emerged as a potentially more evolved management strategy than that of risk management, the

currently employed standard. In this work, we successfully implement a resilience framework, demonstrating the capabilities

of the strategy to produce quantitative estimates of the performance of buildings infrastructure. The methods presented in this

work outline a framework for assessing the hazards resilience of infrastructure by modeling recovery as a resource constrained520

project scheduling problem in a manner that allows for direct comparison between scenarios and potentially across regions and

scales.

The results of the case study demonstrate the capabilities of the approach for quantifying the flood resilience of buildings

infrastructure. For three flood events with 5, 50 and 500-year return periods, the 300-day resilience of the buildings infrastruc-

ture in Alajo was quantified as 0.94, 0.82 and 0.69, respectively. The recovery model also provides an insight into the expected525

duration of the recovery process. For the 5-year return period event, there was a mean recovery time of the buildings of 77

days, which increased to 165 and 225 days for the the 50-year and 500-year events, respectively. This information is valuable

for identifying the susceptibility of buildings infrastructure to impacts resulting in reduced performance. It is also important

information for coordinating responses to flooding events and preparing for the subsequent recovery.

The presented buildings recovery model relies on the optimization of the RCPSP. Therefore, the largest portion of the530

computational load is carried by the optimization algorithm. According to the literature, genetic algorithms are an especially

capable heuristic approach for estimating the RCPSP (Hartmann and Kolisch, 2000). For this work, we have chosen to apply

the self-adapting genetic algorithm described in Hartmann (2002) because of its performance in comparison with other similar

algorithms. Due to the relatively large scale of the damages and the resolution of the tasks composing the recovery scenarios, the

use of stratified random sampling as described in the methods was necessary in order to keep the computation time reasonably535

low with the available hardware. Instead of testing a wide range of optimization algorithms and seeking out additional hardware,

this work rather serves to present a framework for modeling recovery based on a novel application of the method.

Many extensions beyond the base RCPSP exist (Hartmann and Briskorn, 2010, 2022) which merit investigation for their

applicability for recovery modeling. For instance, all resources are treated as renewable in the case study presented in this work.

While that might be an appropriate assumption for some resources (human capital, for example), other resource treatments540

may be required to better represent the situations being modeled. Future work in the area of recovery modeling using project

scheduling methods should explore these additional aspects.
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As a strategy for managing the effects of natural hazards on infrastructure, resilience management poses many benefits in

comparison with the established practices. While significant work remains before resilience management can be fully opera-

tionalized, this approach offers greater insight into the effects of natural hazards on communities beyond the immediate, direct545

impacts. By focusing on the broader effects, which a resilience-based management strategy considers, managers may discover

previously-unknown benefits to applying established interventions and hopefully open the door to new interventions entirely.
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