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Abstract.  

Branched alkanes represent a  significant proportion of hydrocarbons emitted in urban environments.  To accurately predict the 

SOA budgets in urban environments, these branched alkanes should be considered as SOA precursors. However, the potential 10 

to form SOA from diverse branched alkanes under varying environmental conditions is currently not well understood. In this 

study, the Unified Partitioning Aerosol Phase Reaction (UNIPAR) model is extended to predict SOA formation via the 

multiphase reactions of various branched alkanes. Simulations with the UNIPAR model, which processes multiphase 

partitioning and aerosol phase reactions to form SOA, require a product distribution predicted from an explicit gas kinetic 

mechanism, whose oxygenated products a re applied to create volatility-reactivity based αi species array. Due to a lack of 15 

practically applicable explicit gas mechanisms, the prediction of the product distributions of various branched alkanes was 

approached with an innovative method that considers carbon lengths and branching structures. The αi array  of each branched 

alkane was primarily constructed using an existing αi array  of the linear alkane with the nearest vapor pressure. Generally, the 

vapor pressures of branched alkanes and their oxidation products are lower than those of linear alkanes with the same carbon 

number. In addition, increasing the number of alkyl branches can also decrease the ability of alkanes to undergo autoxidation 20 

reactions that tend to form low-volatility products and significantly contribute to alkane SOA formation. To account for this, 

an autoxidation reduction factor, as a function of the degree and position of branching, was applied to the lumped groups which 

contain autoxidation products. The resulting product distributions were then applied to the UNIPAR model for predicting 

branched alkane SOA formation. The simulated SOA mass was compared to SOA data generated under varying experimental 

conditions (i.e., NOx levels, seed conditions, and humidity) in an outdoor photochemical smog chamber. Branched alkane SOA 25 

yields were significantly impacted by NOx levels but insignificantly impacted by seed conditions or humidity.  The SOA 

formation from branched and linear alkanes in diesel fuel was simulated to understand the relative importance of branched and 

linear alkanes in a wide range of carbon numbers. Overall, branched alkanes accounted for a higher proportion of SOA mass 

than linear alkanes due to their higher contribution to diesel fuel.    
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1 Introduction 30 

Secondary Organic Aerosol (SOA) in the atmosphere, formed via the atmospheric oxidation of various precursor hydrocarbons 

(HCs), serves a considerable role in climate, cloud formation, and human health  (Nel, 2005; Shrivastava et al., 2017; World 

Health, 2016; Epa, 2019). Precursor HCs found in ambient air are emitted through a variety of both anthropogenic and biogenic 

sources. Alkanes are one of the major classes of precursor HCs typically found in urban environments, emitted from 

anthropogenic sources such fossil fuels, personal care products, paints, and pesticides (Li et al., 2022; Wu et al., 2019). In 35 

addition to anthropogenic sources, plant wax has also been identified to be a significant source of alkanes present in SOA 

(Alves et al., 2012). Alkanes do not represent a large proportion of biogenic emissions relative to other biogenic VOCs but 

they tend to be large, low-volatility compounds which can still significantly contribute to SOA (Männistö et al., 2023; Lyu et 

al., 2017). Several recent gas sampling studies have identified alkanes, alongside aromatics, as one of the two dominant sets 

of HCs measured in urban environments (Massolo et al., 2010; Song et al., 2019; Xuan et al., 2021; Zhao et al., 2020). For 40 

example, Song et al. (2019) reports from their review of various VOC sampling studies that alkanes represent between 40.3% 

to 74.4% of VOCs in a set collected from Houston, Mexico, and various urban cities in China . Within the set of alkanes in 

their study, Song et al. (2019) finds that branched alkanes represented 33% of alkanes sampled in Langfang, China. This is 

consistent with Caplain et al.’s (2006) study which reported that linear and substituted alkanes represent significant proportions 

of both gasoline and diesel fuel exhaust at 6-18% and 18-31%, respectively. Additionally, recent regional modeling studies 45 

have shown that alkanes are also one of the dominant sources of secondary organic aerosol (SOA) formation in urban 

environments (Li et al., 2022; Jo et al., 2023; Yang et al., 2019). Within the set of alkanes, branched alkanes represent larger 

proportions of both gasoline and diesel fuels compared to linear alkanes (Gentner et al., 2012). Furthermore, intermediate-

volatility organic compounds (IVOCs) in the atmosphere are largely composed of an unresolved complex mixture, which is 

likely to consist of a variety of branched alkane isomers (Tkacik et al., 2012).  50 

Currently available mechanisms of branched alkanes are either overly simplistic, with a limited set of oxidation products (Lim 

and Ziemann, 2009), or overly complex, with too many products to be incorporated into an SOA model (i.e. GECKO-A). Some 

studies have managed to model the SOA formation of various branched alkanes using the GECKO-A model (Aumont et al., 

2013; La et al., 2016). However, because the number of oxidation products in the GECKO-A model increases exponentially 

as the number of carbons of the HC precursor increases, these studies had significant limitations as they tried to reduce the  55 

number of products to a manageable value. For example, La et al. (2016) reduced the number of products considered in the 

model by limiting the experimental time to a maximum of 1 hour. Aumont et al. (2013) reduced the number of precursors 

considered by only considering the High NOx condition, a limitation which they acknowledge is a “severe simplification.” For 

application to a regional model, parameters generated from chamber models must be applicable for a variety of NOx conditions 

for the whole range of oxidation products generated throughout a long oxidation time.  60 

In recent chamber study by Madhu et al. (2023), the SOA formation of a series of linear alkanes was simulated for a wide 

range of carbon numbers using the UNIfied Partitioning Aerosol Reaction (UNIPAR) model, which simulate SOA mass via 
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multiphase reactions of HCs.  The UNIPAR model utilizes αi array generated from explicitly predicted gas oxidation products. 

The volatility-reactivity based lumped species in the array are applied to multiphase partitioning and aerosol phase reactions 

to form SOA mass (Choi and Jang, 2022; Han and Jang, 2022; Im et al., 2014; Yu et al., 2021; Zhou et al., 2019).  In order to 65 

predict SOA mass originating from linear alkanes at different carbon lengths, an incremental volatility coefficient (IVC) was 

used to predict the αi arrays of larger linear alkanes without explicit mechanisms (Madhu et al., 2023). In their model 

simulation, the importance of low-volatility autoxidation products in linear alkane SOA formation was demonstrated.  

The molecular structure of an alkane serves an important role in its capability to form SOA mass. Linear and branched alkanes  

tend to have similar oxidation products, with the distinction that branched alkane products tend to be more volatile at the s ame 70 

precursor carbon number (Lim and Ziemann, 2009). Additionally, the presence of some alkyl branches can decrease the ability 

of alkanes to participate in autoxidation reactions and increase the decomposition of intermediate products, which further 

reduces SOA yields by decreasing the amount of low-volatility oxidation products formed. As NOx decreases in polluted urban 

areas, the contribution of lowly volatile autoxidation products becomes relatively more important in SOA formation (Pye 

Havala et al., 2019; Praske et al., 2018). In this study, the UNIPAR model is used to simulate the SOA formation from the 75 

multiphase reactions of branched alkanes. Due to a lack of practically applicable explicit gas mechanisms, the product 

distributions of branched alkanes were constructed primarily using the product distributions of linear alkanes  with the nearest 

vapor pressure. To account for the reduction of probability for autoxidation reactions, an autoxidation reduction factor, which 

is a function of the degree of branching and position, was applied to the construction of lumped groups that include autoxidation 

products. Predicted αi arrays for various branched alkanes (Isododecane, 2,6,10-Trimethyldodecane, 2,2,4,4,6,8,8-80 

Heptamethylnonane, and 2,4,6,10-Tetramethylpentadecane) were used to simulate SOA formation, which was compared to 

chamber generated SOA data. The sensitivity of branched alkane SOA yields to humidity, NOx conditions, seed conditions, 

and branching structure at given simulation conditions was projected. Additionally, a  simulation of SOA formation from 

branched and linear alkanes found in diesel was used to determine their relative significance as SOA precursors.  

2 Experimental section 85 

Alkane SOA was produced from photooxidation of a set of branched alkanes [Isododecane (Sigma-Aldrich; 80%), 

Trimethyldodecane (Sigma-Aldrich; 99%), Heptamethylnonane (Sigma-Aldrich; 98%), Tetramethylpentadecane (Fisher 

Scientific; 95%)] using the UF-APHOR dual chamber (52 m 3 each) located at the University of Florida. The detailed 

description of the operation of the large outdoor smog chamber can be found in a previous study (Im et al., 2014). Table 1 

summarizes the experimental conditions of outdoor chamber experiments. Precursor alkane hydrocarbons (HCs) were injected 90 

into chamber through evaporation via heating. CCl4 (Sigma-Aldrich; ≥99.5%), was introduced into the chamber as a non-

reactive gas which is used to measure chamber dilution. HONO was used as a source of hydroxyl radicals in the chamber. 

HCs, HONO, and NO (2% in N2, Airgas Inc., USA) and inorganic seed were introduced into the smog chamber before sunrise. 

Experiments were performed under two different NOx levels (high NOx: HC/NOx <5 ppbC/ppb; low NOx: HC/NOx >10 
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ppbC/ppb) and three different seed conditions (without seed, sulfuric acid, and ammonium sulfate). Concentrations of gas 95 

phase HCs and CCL4 were measured using a GC-FID (7820A, Agilent Technologies, Inc., USA). Concentrations of ozone and 

NOx within the chamber were measured using a photometric ozone analyzer (400E, Teledyne Technologies, Inc., USA) and a 

chemiluminescence NO/NOx analyzer (T201, Teledyne Technologies, Inc., USA), respectively. Experiments using inorganic 

seed employed a Particle into liquid sampler (ADISO 2081, Applikon Inc., USA) integrated with Ion Chromatography 

(Compact IC 761, Metrohm Inc., Switzerland) (PILS-IC) to measure inorganic ion concentrations within the chamber. The 100 

size distribution of particles within the chamber was measured using a scanning mobility particle sizer (SMPS 3080, TSI Inc., 

USA).  

Previous studies that have measured the density of alkane SOA have found a range from 1 to 1.4 g/cm 3 (Li et al., 2020; Li et 

al., 2022; Lim and Ziemann, 2009; Loza et al., 2014). Aerosols from each alkane experiment in this study were assumed to 

have a density of 1.2 g/cm3. A hygrometer (CR1000 measurement and control system, Campbell Scientific Inc., USA) was 105 

used to measure meteorological factors (temperature, relative humidity (RH) and an ultraviolet radiometer (TUVR, Eppley 

Laboratory Inc., USA) was used to measure sunlight intensity. An organic carbon/elemental carbon analyzer (OC/EC model 

4, Sunset Laboratory Inc., USA) was used to measure the concentration of organic carbon in aerosol every 50 minutes. The 

OC/EC used a non-dispersive infrared detector (NDIR) which measured OC using thermal optical transmittance. The 

concentration of organic matter in aerosol (OM, µg m -3) was then calculated based on the OC concentration predicted by the 110 

UNIPAR model and an OM to OC ratio. The OM to OC ratio of SOA from alkane species decreased as the chain length 

increased. The concentrations of OM measured from the chamber were corrected for chamber dilution using a dilution factor 

and for particle wall loss to the chamber wall using a particle loss factor. An aerosol chemical speciation monitor (ACSM, 

Aerodyne Research Inc., USA) was used to measure the aerosol composition (sulfate, nitrate, ammonium, and OM). The 

compositions obtained from the ACSM were compared with measurements from the OC/EC and the PILS-IC. SOA yields (Y) 115 

were then calculated as the final measured concentration of OM divided by the total consumption of HC precursors. In order 

to characterize the chemical functional distribution of SOA, chamber-generated SOA was collected on a silicon disk (13 × 2 

mm, Sigma-Aldrich, USA) using a home-built impactor and analyzed using the FTIR spectrometer (Nicolet iS50, Thermo 

Fisher Inc., USA) in transmission mode. The FTIR disc was weighed using an analytical balance bef ore and after particle 

impaction to measure particle mass collected. 120 
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Table 1. Summary of experimental conditions and observed data for experiments performed in the UF-APHOR outdoor 

chamber.  

 125 

a Initial concentrations of Tetramethylpentadecane were calculated using a 95% injection efficiency as this compound is too low volatility to 

be measured by the GC-FID. b Experiments were performed with no seed (none) and sulfuric acid seed (SA). c Values for the amount of 

Tetramethylpentadecane consumed in each experiment are reported based on model simulations seen in Fig. S2 as this compound is too low 

volatility to be measured by the GC-FID. d Yield was calculated as the ratio between the concentration of the final measured SOA mass 

(μg/m3) and the concentration of precursor alkane consumed (μg/m3). 130 

  

Label Date HC name Initial 
NOx 
(PPB) 

Initial 
HONO 
(PPB) 

HC
a
 

initial 
(PPB) 

Seed
b
 HC 

Consumed
c
 

(PPB) 

Final 
OC 

(µg/m
3

) 

SOA 
yield

d
 

Comments 

C12A 07/08/22 Isododecane 911 100 220 None 76.5 0.7 0.001 Fig.2 

C12B 06/07/22 N-dodecane 829 97 159 None 173.4 19.0 0.024 Madhu et al. 
(2023) 

Fig. 3 

C12C 06/07/22 N-dodecane 331 200 135 None 131.3 123.2 0.206 Madhu et al. 

(2023) 
FTIR, Fig. 4 

C15A 07/18/22 Trimethyldodecane 936 140 220 None 162.0 103.8 0.110 Fig.2 

C15B 08/04/22 Trimethyldodecane 607 107 262 SA 161.6 141.2 0.150 Fig.2 

C15C 02/17/22 N-pentadecane 665 117 202 None 125.3 117 0.285 Madhu et al. 
(2023) 

Fig. 3 

C16A 09/02/22 Heptamethylnonane 433 80 170 None 60.0 3.5 0.006 Fig.2 

C16B 09/02/22 Heptamethylnonane 205 60 160 None 63.0 1.7 0.003 Fig.2 

C16C 04/14/23 Heptamethylnonane 120 90 100 AS 55.3 26.1 0.051 Fig.2 

C16D 04/14/23 Heptamethylnonane 120 90 100 SA 60.6 25.7 0.046 Fig.2 

C19A 07/29/22 Tetramethylpentadecane 260 110 195 None 147.7 447.5 0.276  Fig.2 
FTIR, Fig. 4 

C19B 08/09/22 Tetramethylpentadecane 251 100 163 SA 141.4 267.5 0.172 Fig.2 
FTIR, Fig. 4 

C19C 08/09/22 Tetramethylpentadecane 232 100 163 NS 140.1 389.7 0.253 Fig.2 

C19D 03/30/23 Tetramethylpentadecane 229 39 39 NS 30.1 79.0 0.239 Fig.2 

C19E 03/30/23 Tetramethylpentadecane 143 73 39 NS 36.1 149.6 0.377 Fig.2 
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3 Model description 

The efficacy of the UNIPAR model has been demonstrated for simulating SOA formation in photochemical chamber 

experiments from a variety of HC classes, including aromatic HCs (Im et al., 2014; Zhou et al., 2019; Han and Jang, 2022), 

monoterpenes (Yu et al., 2021b), and isoprene (Beardsley and Jang, 2016). Furthermore, UNIPAR has been recently integrated 135 

into the CAMx regional scale model and used to demonstrate SOA formation from various HCs including isoprene, terpenes, 

aromatics, and linear alkanes (Jo et al., 2023; Yu et al., 2022). In this study, UNIPAR model parameters were developed for 

the simulation of SOA formation from branched alkanes. The UNIPAR model simulates SOA mass formation via the 

multiphase reactions of HC precursors including gas (g), organic (org) and inorganic (inorg) phases. Typically, the UNIPAR 

model employs a near-explicit gas oxidation mechanism which is used to create a product distribution for each HC precursor 140 

by lumping products into an αi array consisting of 48 groups according to their volatility and reactivity. An approach using 

product structure-based αi array renders the ability to simulate SOA formation via multiphase partitioning and in -particle 

chemistry that forms oligomeric products. In addition to SOA mass, SOA’s chemical and physical characteristics , such as 

oxygen-to-carbon (O:C) and aerosol viscosity were simulated in the model. Detailed descriptions of lumping criteria and the 

mass-based stoichiometric coefficient (αi) of lumped group i as a function of NOx levels and the degree of aging can be found 145 

in previous studies (Madhu et al., 2023; Han and Jang, 2022; Choi and Jang, 2022; Yu et al., 2021b; Zhou et al., 2019). Because 

of a lack of practically applicable gas oxidation mechanisms for the variety of branched alkanes found in the atmosphere, a  

novel method was used to create αi arrays for each branched alkane. Individual branched alkane αi arrays were constructed 

primarily using existing αi arrays, developed by Madhu et al. (2023), of the linear alkanes with the nearest vapor pressures. To 

account for the reduction of autoxidation products created by branched alkanes, an autoxidation reduction factor, which is a 150 

function of the degree and position of branching, was applied to lumped groups which contain autoxidation products. Figure 

1 shows the UNIPAR model frame. In the presence of inorganic seed, the SOA mass is simulated via three paths: OM produced 

via multiphase partitioning of organic products (OMP), aerosol phase reactions of organic species to form OMAR via 

oligomerization in the org phase, and reactions in the wet inorg phase which also form OMAR (acid-catalyzed oligomerization 

and organosulfate (OS) formation). 155 
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Figure 1. A simplified scheme of the UNIPAR model used in this study. [HC]0 represents the initial hydrocarbon (HC) 

concentration. Chamber generated data is used to set initial conditions and the meteorological condition for the gas 

simulation. The CB6 Ozone mechanism is used to simulate the consumption of HC (ΔHC) and the concen trations of 

hydroperoxide radical ([HO2]) and organic peroxyl radical ([RO2]). The dynamic mass-based stoichiometric coefficients 160 

(dynamic αi) of lumped species i are calculated as a function of HC/NOx and the aging factor (fa). fa is represented as a 

function of [HO2], [RO2], and [HC]0 (Zhou et al., 2019). The gas, organic, and inorganic phases are represented by the 

subscripts g, org, and inorg, respectively.  Korg and Kinorg represent the partitioning coefficients of lumped species to the org 

phase and inorg phase, respectively. Corg and Cinorg represent the concentrations of lumped species in the org and inorg 

phases, respectively. OMP,org and OMP,inorg represent the mass of organic matter (OM) present in org and inorg phases, 165 

respectively, due to partitioning. OMAr,org and OMAR,inorg represent the OM formed in the org phase due to in-particle 

chemistry such as oligomerization, and inorg phase due to acid-catalyzed oligomerization and organosulfate formation 

(Beardsley and Jang, 2016; Im et al., 2014; Zhou et al., 2019). OM T represents the total SOA mass formed.  

3.1 UNIPAR model inputs 

The parameter inputs to the UNIPAR model for each precursor HC include the equations for αi and lumped species’ 170 

physicochemical parameters, such as molecular weight (MW), O:C ratios, and hydrogen bonding (HB).  The model inputs 

associated with each individual experiment include the consumption of HC (ΔHC); the concentrations of alkyl peroxide radical 

(RO2) and hydroperoxyl radical (HO2); concentrations of ionic species (sulfate and ammonium ions); temperature, and 

humidity. The measured sunlight profile for each experiment is linked to the gas oxidation of each HC yielding ΔHC, [RO2], 
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and [HO2]. Gas simulation was performed in the box model platform of Dynamically Simple Model of Atmospheric Chemical 175 

Complexity (DSMACC(Emmerson and Evans, 2009)) interfaced with the kinetic pre-processor (KPP). The predetermined 

mathematical equations for stoichiometric coefficients were constructed  for linear alkanes by explicit gas mechanism as 

described in the following section 3.2. For the simulation of SOA mass, HC consumption of branched alkane was simulated 

with Carbon Bond 6 mechanism (CB6r3(Emery et al., 2015)). Further details about the CB6 mechanism used in this study can 

be found in section S1. 180 

3.2 Gas mechanisms 

The atmospheric oxidation of alkanes begins with the reaction with an OH radical, followed by the addition of O2 to form 

peroxyl radicals. In the presence of NOx, these peroxyl radicals can form alkoxy radicals or organonitrate (Finlayson-Pitts and 

Pitts, 2000).  In addition, peroxyl radicals can create hydroperoxides via the reaction with HO2 radicals. In the previous 

literature (Crounse et al., 2013; Bianchi et al., 2019; Roldin et al., 2019), the terpene peroxyl radicals are capable of undergoing 185 

autoxidation reactions to form low volatility products. These reactions have been previously modeled (Pye Havala et al., 2019; 

Xavier et al., 2019). In the recent modelling study, Madhu et al. (2023), applies autoxidation mechanisms to improve the 

prediction of a series of linear alkane SOA. In their study, the product distribution of linear alkanes relatively in small carbon 

lengths (C9-C12) were predicted using explicit gas mechanisms which consisted of their respective Master Chemical 

Mechanism (MCM) and newly added autoxidation mechanisms. The product distributions, associated with stoichiometric 190 

coefficients, of αi  array were extrapolated to larger linear alkanes which do not currently have MCM mechanisms using an 

Incremental Volatility Coefficient (IVC). The feasibility of the αi arrays generated with the IVC approach was demonstrated 

to predict chamber generated SOA data. For branched alkanes, explicit gas mechanisms are not currently available for the 

practical application to the UNIPAR SOA model, as described in the Introduction section. In this study, to produce product 

distributions for the variety of branched alkanes, the pre-existing linear alkane αi arrays are extrapolated to branched alkanes 195 

as seen in section 3.4 below.  

3.3 Lumping structure of UNIPAR model 

As discussed in section 3.2, the αi array of branched alkanes in the UNIPAR model is inherited from linear alkanes.  

The lumping structure of the UNIPAR model, along with a dynamic αi array which considers aging, has been developed in 

previous studies (Zhou et al., 2019; Han and Jang, 2020; Yu et al., 2021b). The αi array is constructed based on products’ 200 

volatility-reactivity characteristics. The αi array consists of 6 different reactivity levels (very fast (VF), fast (F), medium (M), 

slow (S), partitioning only (P), and multi-alcohol (MA)) and 8 different volatility levels (1E-08, 1E-06, 1E-05, 1E-04, 1E-03, 

1E-02, 1E-01, and 1.0 mm Hg) based on vapor pressure which represent 48 species. The 8 volatility levels have enthalpy of 

vaporization values 140E+3, 106E+3, 96E+3, 89E+3, 82E+3, 58E+3, 58E+3, and 58E+3 J/mol, respectively. During the 

process, each non-radical gas oxidation product of a specific precursor is lumped into one of the 48 species. During SOA 205 
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simulations, all oxidation products within a specific lumped group with undergo partitioning, or particle phase rea ctions, as 

single species. By doing so, the UNIPAR model is able to leverage the complexity of a relatively large semi-explicit gas 

oxidation mechanism (generally between 200 to 500 non-radical species per precursor from MCM) while limiting the 

computational load. In the model, autoxidation products are typically allocated to low volatility , and low reactivity groups 

(volatility group 1 in reactivity groups P and S).  210 

Atmospheric aging can augment the product distribution, forming more reactive and less volatile products via oxidation, or 

photolysis products which are more volatile but may be more reactive. The stoichiometric coefficients of the αi array are 

dynamically predicted as a function of NOx and aging as described in previous literature (Zhou et al., 2019; Han and Jang, 

2020; Yu et al., 2021). A weighted aging factor is used to dynamically change αi values based on fresh and highly oxidized 

compositions. The aging factor (fa) at a  time t, as detailed in Zhou et al. (2019), is defined as: 215 

        𝑓𝑎(𝑡) = log
[𝐻𝑂2]+[𝑅𝑂2 ]

[𝐻𝐶]0
                                                            (1) 

where [HO2] and [RO2] and [HC]0 are the concentrations of hydroperoxide radical, organic peroxyl radical, and initial HC, 

respectively. Generally, the amount of oxidation within a given system is correlated with the concentrations radicals within 

the system, with higher concentrations of radicals in more aged systems. Thus, concentrations of major radicals, normalized 

by initial hydrocarbon concentration, are used to represent the amount of aging. Both fresh and highly oxidized αi arrays are 220 

constructed for each NOx level as well as the respective aging factors. fa(t) is also used to generate an aging scale that ranges 

from 0 (fresh composition) to 1 (highly oxidized composition) as follows (Zhou et al., 2019): 

𝑓𝑎
′ (𝑡) = 

𝑓𝑎 (ℎ𝑖𝑔ℎ𝑙𝑦𝑜𝑥𝑖𝑑𝑖𝑧𝑒𝑑 )−𝑓𝑎(𝑡)

𝑓𝑎 (ℎ𝑖𝑔ℎ𝑙𝑦𝑜𝑥𝑖𝑑𝑖𝑧𝑒𝑑)−𝑓𝑎(𝑓𝑟𝑒𝑠ℎ )
                                                      (2) 

𝑓𝑎
′ (𝑡)  is calculated for a given NOx level and used to dynamically calculate the αi values for that same NOx level as follows 

(Zhou et al., 2019): 225 

                       𝛼𝑖 = (1 −𝑓𝑎
′(𝑡))(𝑓𝑟𝑒𝑠ℎ 𝛼𝑖) + (𝑓𝑎

′ (𝑡))(ℎ𝑖𝑔ℎ𝑙𝑦𝑜𝑥𝑖𝑑𝑖𝑧𝑒𝑑 𝛼𝑖)                            (3) 

Essentially, [HO2] and [RO2] are used to scale the oxidation product distribution of a given HC precursor (i.e. αi array) 

between a fresh and aged composition. Physicochemical parameters of lumping species include MW, O:C ratio, and HB and 

are used to calculate multiphase partitioning and in-particle chemistry in the UNIPAR model. Further details about lumping 

criteria and physicochemical parameters can be found in the study by Zhou et al. (2019). 230 

3.4 Construction of branched alkane lumping arrays 

In the current UNIPAR model, the lumping arrays of a variety of linear alkanes can be predicted using the IVC approach 

(Madhu et al., 2023). To extend the lumping array of linear alkane to branched alkane, the volatility drop caused by branched  

alkyl groups was considered by matching each branched alkane to the linear alkane with the nearest vapor pressure. In addition, 

the lumping array in the model simulates the impact of the degree and position of branched alkyl groups on reducing the abili ty 235 

of branched alkanes to undergo autoxidation reactions. Figure S1 illustrates the ability of branched alkyl groups to reduce the 
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ability of branched alkanes to undergo autoxidation reactions. For example, n -heptadecane has fourteen secondary carbons 

which can undergo autoxidation mechanism as seen in Fig. S1 (Left), while 2,2,4,4,6,8,8-heptamethylnonane has only one 

secondary carbon which can process autoxidation due to the seven methyl branches which reduce the number of hydrogens 

available for abstraction. To account for this, an autoxidation reduction factor (ARF) is applied to the lumping array of branched 240 

alkane and calculated as follows:  

𝐴𝑅𝐹 = 
𝐴𝑃 𝑜𝑓𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑑𝑎𝑙𝑘𝑎𝑛𝑒

𝐴𝑃𝑜𝑓 𝑙𝑖𝑛𝑒𝑎𝑟 𝑎𝑙𝑘𝑎𝑛𝑒 𝑤𝑖𝑡ℎ 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑣𝑎𝑝𝑜𝑟𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒
    (4) 

 

where the autoxidation potential (AP) can be calculated as follows:  

a) Terminal, primary, carbons are not included for AP. 245 

b) Carbons that are in the α or β position relative to terminal carbons on the alkane backbone are assigned an AP value of 1 

and this carbon can only undergo autoxidation reactions in one direction. For example, this would apply to carbons 2, 3, 

14, and 15 in Fig. S1A. 

c) Other carbons on the main alkane backbone are assigned an AP value of 2 due to the potential for autoxidation occurring 

in two directions. For example, this would apply to carbons 4 to 13 in Fig. S1A.  250 

d) If 1 alkyl branch is present on a carbon, then the AP value is multiplied by 0.5. 

e) If geminal alkyl branches are present on a  carbon, then the AP value is multiplied by 0. 

f) AP value of each alkane is the sum of all AP values for each carbon. 

Further information on the basis for the calculation of the ARF can be found in Section S2. ARF is Table S1 summarizes the 

physical properties and ARF values for branched alkanes used in the chamber experiments of this study. Physicochemical 255 

parameters, and α-values of lumping arrays of compounds used for chamber experiments can be found in Sections S4 and S5. 

Ultimately, this approach allows for the reduction of SOA formation found in branched alkanes compared to that in linear 

alkanes with same carbon numbers.  

3.5 SOA formation by multiphase partitioning 

The partitioning process of lumping species is fundamental to form SOA and process in -particle chemistry. Partitioning 260 

coefficients for each lumping species, i, between g and org phase (Kor,i) or between the g and wet inorg phase (Kin,i) are 

calculated using the typical gas-particle partitioning model (Pankow, 1994): 

                                                                                 𝐾𝑜𝑟 ,𝑖 = 
7.501𝑅𝑇

109𝑀𝑊𝑜𝑟𝑔  𝑜𝑟𝑔,𝑖𝑝𝐿,𝑖
𝑜               (5) 

𝐾𝑖𝑛 ,𝑖 =
7.501𝑅𝑇

109𝑀𝑊𝑖𝑛𝑜𝑟𝑔𝑖𝑛𝑜𝑟𝑔,𝑖𝑝𝐿,𝑖
𝑜       (6) 

where R is the gas constant (8.314 J mol−1 K −1), and T is temperature (K). MWorg and MWinorg are the average molecular 265 

weights (g mol-1) of the organic and inorganic phases of the aerosol, respectively. 𝑝𝐿 ,𝑖
𝑜  is the subcooled liquid vapor pressure 
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of a species, i. The activity coefficient in or phase for each lumping species, 
𝑜𝑟𝑔 ,𝑖

, is assumed to be unity (Jang and Kamens, 

1998). The activity coefficient in inorg phase for each lumping species, 
𝑖𝑛𝑜𝑟𝑔 ,𝑖

, is predicted by a semi-empirical regression 

equation which was fit to the activity coefficients of various organic compounds as a function of physicochemical parameters 

(MW, O:C ratio, and HB) and sulfate fraction (FS). FS is an indicator for aerosol acidity which is defined as follows: 270 

                                                      𝐹𝑆 = 
[𝑆𝑂4

2−]

[𝑆𝑂4
2−]+[𝑁𝐻4

+]
                                                             (7) 

where [SO4
2− ] and [NH4

+ ] are the concentration of sulfate and ammonium ions, respectively. The semi-empirical equation, 

derived from activity coefficients, estimated using the Aerosol Inorganic-Organic Mixtures Functional Groups Activity 

Coefficients (AIOMFAC) model (Zuend et al., 2011) at a  given RH, is as follows: 

        
𝑖𝑛𝑜𝑟𝑔 ,𝑖

=  𝑒0.035·MW𝑖−2.704·ln(O:C𝑖)−1.121·HB𝑖−0.330 ·FS−0.022·(·RH)     (8)  275 

Further information on the derivation and statistical properties of Eq. (8) can be found in Zhou et al. (2019). The partitioning 

coefficients are used to calculate the concentration of each lumping species in the three phases (Cg,i, Corg,i, and Cinorg,i) from the 

total concentration of each lumping species (CT,i). The total SOA mass formed by partitioning (OMP) in both org and inorg 

phases is predicted by the following equation which was developed by Schell et al. (2001) and reconstructed to consider mass 

formed by particle-phase reactions (OMAR), seen in section 3.6, by Cao and Jang (2010): 280 

𝑂𝑀𝑃  =  ∑ [𝐶𝑇,𝑖 − 𝑂𝑀𝐴𝑅,𝑖 − 𝐶𝑔,𝑖
∗

𝐶𝑜𝑟𝑔,𝑖

𝑀𝑊𝑖

∑ (
𝐶𝑜𝑟𝑔,𝑖

𝑀𝑊𝑖
+

𝑂𝑀𝐴𝑅,𝑖
𝑀𝑊𝑜𝑙𝑖,𝑖

)+
𝑂𝑀0

𝑀𝑊𝑜𝑙𝑖,𝑖
𝑖

]𝑖      (9) 

where Cg* (1/Korg,i) and OM0 (mol m -3) represent the effective saturation concentration and pre-existing OM, respectively. 

MWoli,i and MWi represent the molecular weights of oligomeric products and lumping species, respectively. Eq. (9) is solved 

using Newton-Rapson method, which iterates until a  convergence is reached (Press et al., 1992).  

3.6 SOA formation by particle-phase reactions 285 

OMAR is formed in both the org and inorg phases. The inclusion of particle-phase reactions has been demonstrated to 

significantly improve predictions for aromatic hydrocarbons (Im et al., 2014 ; Zhou et al., 2019). Particle-phase reactions were 

also included in the study by Madhu et al. (2023) which demonstrated a negligible impact on linear alkane SOA. In org phase, 

SOA formation is attributed to oligomerization as organic species undergo self-dimerization reactions (Han and Jang, 2020; 

Im et al., 2014; Yu et al., 2021; Zhou et al., 2019). In inorg phase, oligomerization of organic species can be accelerated by an 290 

acid catalyst (Jang et al., 2002). Oligomerization is expressed as a 2nd-order reaction (Odian, 2004) with rate constants kAR,org,i 

and kAR,inorg,i (L mol−1 s −1) in org and inorg phases, respectively.  𝑘𝐴𝑅,𝑖𝑛𝑜𝑟𝑔 ,𝑖  is described as follows: 

𝑘𝐴𝑅,𝑖𝑛𝑜𝑟𝑔 ,𝑖 =  10
0.25𝑝𝐾𝐵𝐻𝑖

++1.0𝑋+0.95𝑅𝑖+log(𝑎𝑤[𝐻
+])−2.58

      (10) 
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where Ri represents species reactivity, 𝑝𝐾𝐵𝐻+
𝑖
 represents the protonation equilibrium constant, 𝑎𝑤  represents the activity of 

water, X represents excess acidity (Cox and Yates, 1979), and [𝐻+ ] represents the concentration of protons which are estimated 295 

using the extended aerosol inorganic model (E-AIM (Clegg et al., 1998)) kAR,org,i is described as follows: 

𝑘𝐴𝑅,𝑜𝑟𝑔,𝑖 = 10
[0.25𝑝𝐾

𝐵𝐻
𝑖
++0.95𝑅𝑖+1.2(1−

1

1+𝑒
0.005(300−𝑀𝑊𝑜𝑟𝑔)

)+
2.2

1+𝑒6(0.75−𝑂:𝐶)
−10.07]

   (11) 

For the oligomerization in org phase, the terms related to acidity (𝑋, and 𝑎𝑤 [𝐻
+ ]) are excluded. As explained by Zhou et al. 

(2019), a  significant uncertainty remains in the calculation of [𝐻+ ] specifically in low RH and ammonia rich environments 

due to a poor performance of the E-AIM under these conditions (Li and Jang, 2012). Studies have previously demonstrated 300 

that aerosol viscosity can influence the mobility of chemical species and thus, apparent reaction rates, which can be limited  by 

slow bulk diffusion in the particle-phase (De Schrijver and Smets, 1966; Reid et al., 2018). The molecular weight of species 

in the organic phase (MWorg) and the O:C ratio, which are important predictors for viscosity, are considered to calculate kAR,org,i. 

Han and Jang (2022) demonstrate this method which accounts for viscosity in their application to SOA predictions from 

gasoline vapor composed of aromatic hydrocarbons and long-chain alkanes. Sulfuric acid can react with reactive organic 305 

compounds in the wet inorg phase of the aerosol to form dialkyl sulfate (diOS). The formed diOS can contribute to SOA mass 

production and leads to a reduction in [H+] which decreases the rate of SOA mass produced by acid-catalyzed oligomerization 

in inorg phase. The formation of diOS is simulated in the UNIPAR model and reduces [H+] in inorg phase as previously 

reported (Im et al., 2014; Beardsley and Jang, 2016; Zhou et al., 2019).  

3.7 Correction of intermediate organic vapor deposition to walls 310 

Semi-volatile oxidized products derived from precursor HCs can deposit to chamber walls. As described in the previous studies 

by Han and Jang (2020), and Han and Jang (2022) the organic vapor deposition to wall is kinetically treated at the given 

chamber with the deposition (kon,i) and desorption (koff,i) rate constants of each lumping species, i. kon,i is expressed as a 

fractional loss rate (Mcmurry and Grosjean, 1985): 

𝑘𝑜𝑛 ,𝑖 = (
𝐴

𝑉
)

𝛼𝑤,𝑖𝑣 𝑖/4

1+
𝜋𝛼𝑤,𝑖𝑣𝑖

8(𝐾𝑒𝐷)
1/2

       (12) 315 

where 𝐷 (1.0 × 10−6 m2 s–1) and 𝐾𝑒 (0.12 s–1) are the diffusion coefficient and coefficient of eddy diffusion applied as a fixed 

number, respectively. (
𝐴

𝑉
) represents the surface area to volume ratio of the chamber.  𝑣𝑖 and 𝛼𝑤,𝑖 represent the mean thermal 

speed of the gas molecules, and accommodation coefficient of i to the wall, respectively. Further information regarding the 

calculation of  𝑣𝑖 and 𝛼𝑤,𝑖 can be found a previous study (Madhu et al., 2023). Kw,i (𝐾𝑤,𝑖 = 𝑘𝑜𝑛 ,𝑖/𝑘𝑜𝑓𝑓,𝑖 )  is calculated as 

follows:  320 

ln(𝐾𝑤,𝑖) = − ln(γ𝑤,𝑖 )− ln(𝑝𝐿 ,𝑖
𝑜 ) + ln (

7.501𝑅𝑇𝑂𝑀𝑤𝑎𝑙𝑙

109𝑀𝑊𝑂𝑀
)    (13) 
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OMwall (mg m -3) and MWOM are the concentration of organic matter on the wall, and the molecular weight of organic matter on 

the wall, respectively. The activity coefficient (γ𝑤,𝑖) of lumping species, i, in OMwall is calculated using the quantitative 

structure-activity relationship (QSAR) approach with the physicochemical properties Hd,i, Ha,i, and Pi which represent 

hydrogen bond acidity, hydrogen bond basicity, and polarizability of each lumping group i, respectively (Abraham et al., 1991; 325 

Abraham and Mcgowan, 1987; Leahy et al., 1992; Platts et al., 1999; Puzyn et al., 2010). Eq. (13) can be rewritten as: 

ln(𝐾𝑤,𝑖) = −(𝑎𝑝𝐻𝑑,𝑖 + 𝑏𝑝𝐻𝑎,𝑖+ 𝑟𝑝𝑃𝑖 + 𝑐𝑝) − ln(𝑝𝐿 ,𝑖
𝑜 ) + ln (

7.501𝑅𝑇𝑂𝑀𝑤𝑎𝑙𝑙

109𝑀𝑊𝑂𝑀
)     (14) 

The values of Hd,i, Ha,i, and Pi are calculated with the PaDEL-Descriptor, (Yap, 2011). The value of Kw,i is used along with the 

kon,i to predict lumping species’ wall loss using an analytical equation from the study by Han and Jang (2020) as follows: 

𝐶𝑔,𝑖 =
𝐾𝑤,𝑖𝐶𝑇,𝑖

𝐾𝑤,𝑖+1
𝑒
−𝑘𝑜𝑛,𝑖(1+

1

𝐾𝑤,𝑖

)𝑡
+

𝐶𝑇,𝑖

𝐾𝑤,𝑖+1
    (15) 330 

where 𝐶𝑔,𝑖 (µg m -3) is the gas-phase concentration of a lumping species, i, after time step t (360 s). 𝐶𝑇,𝑖 (µg m -3) is the sum of 

𝐶𝑔,𝑖 and the concentration of lumping species i on the chamber wall (𝐶𝑤,𝑖 (µg m -3)). This method for correcting the bias 

originating from gas-wall partitioning has been previously demonstrated for toluene, TMB, α-pinene (Hang and Jang, 2020), 

and linear alkanes (Madhu et al., 2023), as well as a composition of gasoline vapor (Han and Jang, 2022). As explained by 

Hang and Jang (2020), uncertainties in this method are associated with the calculation of physico chemical parameters of 335 

lumped groups. The properties of gas-wall partitioning for branched alkanes were inherited from linear alkanes.  

3.8 UNIPAR procedure for SOA mass production each time step 

At each step, 𝐶𝑇,𝑖  is estimated by using the newly produced ΔHC and αi, and it is combined with the previous step’s 

concentration of lumping species, except those used for the formation of OMAR and organic vapor deposition to walls for the 

simulation of chamber data. Then, the updated 𝐶𝑇,𝑖 is applied to generate Cg,i, Corg,i, and Cinorg,i based on multiphase partitioning 340 

coefficients as seen in Eq. (5) and Eq. (6). Cinorg and Corg are then used to form OMAR via oligomerization in both the inorg and 

org phases with the rate constants calculated in Eq. (10) and Eq. (11), respectively. In the model, the quantity of the sulfate 

associated with OS in the inorg phase is also estimated and applied to recalculate [H+]. After the process to form OMAR, the 

remaining concentration of lumping species is used to estimate the organic vapor deposition to the wall using Eq. (15). OMP 

is calculated using a Newtonian approach (Eq. 9) in the presence of OMAR and the preexisting OM0 at the end of each time 345 

step. For the total SOA mass, OMAR, OMP and OM0 are combined.  

4 Results and Discussion 

4.1 Chamber data vs. model prediction 

The feasibility of the UNIPAR model to predict the SOA formation from various branched alkane s (Table S1) was 

demonstrated by comparing simulations with chamber data collected under various experimental conditions in the UF-APHOR 350 
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chamber. As seen in Fig. 2, the UNIPAR model is reasonably able to predict the SOA formation from 2,6,10-

Trimethyldodecane (C15), 2,2,4,4,6,8,8-Heptamethylnonane (C16), and 2,6,10,14-Tetramethylpentadecane (C19) at both high 

and low NOx conditions under different seed conditions (Table 1). Gas simulations used to predict HC consumption, RO2 

concentrations, and HO2 concentrations performed using the CB6 mechanism can be seen in Fig. S2. As seen in the gas 

simulation, consumption of Isododecane was overpredicted compared to chamber measurements. This is likely due to the 355 

relatively low purity (80%) of commercially available Isododecane that was used for the chamber experiment. However, even 

with an overprediction for the gas consumption, the UNIPAR model SOA showed only a slight overprediction, indicating that 

the relatively low SOA yield of Isododecane is well represented within the model.  

 

Figure 2. Comparison of SOA mass produced between simulations for Isododecane, Trimethyldodecane, Heptamethylnonane, 360 

and Tetramethylpentadecane to chamber data (Table 1). The blue dots represent observed SOA data collected that are corrected 

for particle wall loss to the chamber. Error bars represent a 95% confidence interval for each data point.  

 

Generally, the presence of branching significantly reduced the amount of alkane SOA mass. This impact can be seen when 

comparing chamber data generated for Isododecane (branched C12) to linear C12 and chamber data generated for 365 

Trimethyldodecane (branched C15) to linear C15 as seen in Fig.3. Remarkably, highly branched C16 (Fig. 2) shows a lower 

capability for SOA formation compared to linear C15 (Fig. 3). Overall, the typical impact of NOx levels on SOA formation 

appeared, showing a negative relationship. Unlike SOA generated from aromatics (Im et al., 2014), branched alkane SOA was 

insensitive to seed condition due to the low polarity of the products. A similar result is observed in linear alkane SOA reported 
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by Madhu et al. (2023). Further discussion on the impact of alkyl branches, NOx conditions, humidity, seed, and temperature 370 

can be found in the upcoming sections 4.3 and 4.4. 

 

 

Figure 3. Comparison of the SOA mass produced by two branched alkanes (Isododecane and Trimethyldodecane) to the mass 

produced by linear alkanes (Madhu et al., 2023) of the same carbon number (Table 1). Error bars for C12A and C15A represent 375 

a 95% confidence interval for each data point. Error bars for C12B and C15C are 8% as reported by Madhu et al. (2023).  

4.2 Characterization of aerosol composition 

Figure 4 displays the relative functional group compositions of various alkane SOA constructed using FTIR data . FTIR spectra  

were decoupled into functional groups using the curve fitting method, assuming that a Gaussian distribution governs each peak. 

The decoupled FTIR bend for each functional group was applied to estimate the functional group composition of alkane aerosol 380 

using the relative intensity of the functional group determined from various reference compounds. The fitting parameters are 

the center frequency, the peak absorbance, and the half width at half -height. The relative functional group intensities for −OH, 

−COOH, C=O in ketones and aldehydes, C−O in non-alcohol and non-carboxylic acid groups, and NO3 in organonitrates were 

normalized with that of C−H stretching. The O:C ratios, calculated using functional group distributions from FTIR spectra, are 

also shown in Fig. 4 alongside model predicted O:C ratios. The model is able to reasonably predict O:C ratios for chamber 385 

generated data for both branched and linear alkanes. As expected, alkanes with a larger number of carbons tend to produce less 

oxidized SOA compared to alkanes with a smaller number of carbons. The relatively low O:C ratios found in alkane SOA 

systems support our assumption that organic and wet inorganic phases exist separately as most organic species are unlikely to  
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be soluble in the inorganic phase (Yu et al., 2021a). When comparing the SA-seeded C19 and non-seeded C19 SOA systems, 

the SA system shows smaller amount of C=O functional groups but higher amount of C -O, evidently indicating some acid-390 

catalyzed oligomerization (Jang et al., 2002), although the impact of wet inorganic seed is small (section 4.4). All SOA systems 

shown in Fig. 4 are produced under relatively low NOx conditions (Table 1). Increasing the NOx levels during alkane oxidation 

may increase the amount of nitrate functional groups in SOA.  

 

Figure 4. Relative functional group compositions of different SOA systems constructed using FTIR data. The O:C ratios of 395 

each SOA system, constructed with the functional group composition from FTIR data, are shown along with model-predicted 

O:C ratios displayed in parentheses.  

4.3 Sensitivity of alkane SOA yields to alkyl branches 

Figure 5 illustrates the impact of alkyl branches on the SOA Yields of an alkane with 15 carbons. Information on the structures, 

parameters used to generate lumping arrays, and calculated OH-radical reaction rates for alkanes used in Fig. 5 can be found 400 

in Table S4. Figure 5 clearly demonstrates the decrease in alkane SOA yields as the number of alkyl branches increases  at 

given oxidation conditions. This result qualitatively agrees with previous literature which explore the impact of alkyl branches 

on SOA yields of alkanes (Loza et al., 2014; Lim and Ziemann, 2009; Tkacik et al., 2012). This figure also illustrates the 

relative importance of the ARF in the model compared to the vapor pressure drop due to branching. When the number of 

branches increases, the decrease in vapor pressure may not be large enough such that the linear alkane with the nearest vapor  405 

pressure changes. For example, C15 alkanes with one branch and two branches, at the given structures, both have vapor 

pressures nearest to that of linear C14 (Table S4). In this case, the ARF becomes the only method to decrease SOA yields and 

the decrease in SOA yields due to an increase in alkyl branches is relatively small within the model. This suggests that the 

primary driver in reduction of alkane SOA yields due to branching is the increase in vapor pressure, with the ARF being a 

significantly smaller component. Additionally, when comparing the C15 alkane with one branch to the one with two branches, 410 

the difference in SOA yields for the low NOx condition is slightly larger when compared to the difference in SOA yields for 

the high NOx condition. This indicates that, similarly to linear alkanes (Madhu et al., 2023), the fraction of branched alkane 
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autoxidation products of total SOA mass in low NOx conditions is larger compared to that in high NOx conditions. Further 

discussion on the impact of NOx conditions on the SOA yields of branched alkanes can be found in the upcoming section 4.4.  

 415 

Figure 5. Simulated SOA Yields for 15 carbon alkanes with various number of branches at two different NOx levels. OM0= 5 

μg/m3 , 298 K, RH = 60%, HC consumption = 100 μg/m3
, sunlight profile shown in Fig. S3. 

4.4 Sensitivity of branched alkane SOA formation to NOx levels, temperature, humidity, and seed conditions  

Figure 6 illustrates the SOA yields of three alkanes that each have 3 branched methyl groups (C12, C15, C18) under various 

NOx levels. Information on the structures, parameters used to generate lumping arrays, and calculated OH-radical reaction 420 

rates for alkanes used in Fig. 6 can be found in Table S5. Similarly to most SOA precursors, the simulated SOA yields of all 

three branched alkanes increased as NOx levels decreased. Because gas simulations are conducted in a manner which the HC 

consumption is kept fixed for each condition, the difference between SOA yields at different NOx levels can be attributed to a 

change in product distributions. In high NOx conditions, the paths to form organonitrate products can compete with the paths 

which form low-volatility products via autoxidation. In addition, the formation of organonitrate suppresses the further 425 

oxidation of products. Less oxidized products tend to be less volatile products, which reduce SOA yields. This result is in 

agreement with  Loza et al. (2014) who find a higher yield for Isododecane under low NOx conditions when similar amounts 

of hydrocarbon are consumed in both high and low NOx conditions.  
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Figure 6. Simulated SOA yields for three-branched alkanes of different carbon numbers (C12, C15, C18) at various HC 430 

ppbC/NOx ppb levels. OM0= 5 μg/m3 , 298 K, RH = 60%, HC consumption = 100 μg/m3, sunlight profile shown in Fig. S3. 

 

Figure 7 illustrates the SOA yields of 2,6,10-Trimethyldodecane under 3 different seed conditions (ammonium sulfate  (AS), 

sulfuric acid (SA), and no seed (NS)) and two RH conditions (30% and 60%). Under 60% RH, the AS seed is wet, and under 

30% RH, the AS seed is dry. Similarly to linear alkanes (Madhu et al. 2023), branched alkanes SOA yields were not 435 

significantly impacted by the presence of seed under either humidity condition. Additionally, no significant impact of acidic 

seed on branched alkane appeared, indicating that alkane SOA formation is dominated by partitioning rather than particle phase 

chemistry. This is consistent with the FTIR data (Fig. 4) which shows a lack of reactive aldehydic C=O species which can be 

involved in acid-catalyzed oligomerization. 

 440 

Figure 7. Simulated SOA Yields for 2,6,10-Trimethyldodecane at various seed conditions (10 μg/m3 Ammonium Sulfate (AS), 

10 μg/m3  Sulfuric Acid (SA), and no seed (NS)) and 2 HC ppbC / NOx ppb levels. OM 0= 5 μg/m3 , 298 K, RH = 60%, HC 

consumption = 100 μg/m3, sunlight profile shown in Fig. S3. 
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Figure 8 displays the SOA yields of three different 3-branched alkanes (Table S5) under 3 different temperatures and two 445 

different NOx conditions. As expected, due to the relatively high importance of partitioning, the SOA yield s of all the 3-

branched alkanes are significantly impacted by changes in temperature under both NOx conditions. Additionally, the impact of 

temperature on SOA yields decreases as the number of carbons increase because larger molecules typically produce more low-

volatility products which tend to exist in the particle-phase at various temperatures.  

 450 

 

Figure 8. Simulated SOA Yields from photooxidation of three different 3-branched alkanes (Table S3) at three different 

temperatures (278K, 288K, 298K) and two different NOx levels (HC ppbC/NOx ppb = 3, 7). OM0= 5 μg/m3, RH = 60%, HC 

consumption = 100 μg/m3, sunlight profile shown in Fig. S3. 

4.5 Uncertainty of model rate constants 455 

Figure 9 illustrates the impact of increasing and decreasing the UNIPAR oligomerization rate constant by a factor of 2 on the 

SOA yields of 2,6,10-Trimethyldeodecane at both high and low NOx levels. Unlike aromatic SOA (Im et al., 2014; Zhou et 

al., 2019; Han and Jang, 2022), the SOA yields were not significantly impacted by either change to the oligomerization rate 

constant under both NOx conditions. This reaffirms the previously discussed (Sections 4.2, 4.4) idea that particle-phase 

reactions (oligomerization reactions) serve a relatively small part in branched alkane SOA formation due to the lack of reactive 460 

oxidation products. Thus, within this model, there is a low level of uncertainty which originates from the rate constant for 

particle phase reactions.  
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Figure 9. Impact of increasing and decreasing the UNIPAR oligomerization rate constant by a factor of 2 on the SOA yields 

of 2,6,10-Trimethyldodecane at two different NOx levels (HC ppbC / NOx ppb = 3, 7). OM0= 5 μg/m3, RH = 60%, HC 465 

consumption = 100 μg/m3, sunlight profile shown in Fig. S3. 

 

Vapor pressures related to volatility groups were calculated using a group contribution method that has an estimated uncertainty 

of a factor of 1.45 (Zhao et al., 1999; Myrdal and Yalkowsky, 1997). Fig. 10 displays the impact of uncertainties in the 

estimation of vapor pressure in UNIPAR. Contrary to the oligomerization rate constant, changing the lumping group vapor 470 

pressures causes significant changes in SOA yield which demonstrates the important role of partitioning in branched alkane 

SOA formation.  

 

Figure 10. Impact of increasing/decreasing the UNIPAR lumping group vapor pressures by a factor of 1.45 on the SOA yields 

of 2,6,10-Trimethyldodecane at two different NOx levels (HC ppbC / NOx ppb = 3, 7). OM0= 5 μg/m3, RH = 60%, HC 475 

consumption = 100 μg/m3, sunlight profile shown in Fig. S3 
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4.6 Application of IVC-base product distributions to SOA simulation from diesel linear and branched alkanes 

Diesel fuel is comprised of various linear and branched alkanes dominantly ranging from C9 to C24. The composition of linear 

and branched alkanes in diesel fuel, reported by Gentner et al. (2012), was applied to the UNIPAR model in Fig. 11. The gas 

simulation of diesel fuel was performed using the CB6 Ozone mechanism with relative concentrations of diesel fuel linear and 480 

branched alkanes (100 μg/m3 total), as well as other common diesel constituents, as reported by Sazhin et al. (2014), under 

urban conditions (high NOx level). SOA formation was simulated only from branched and linear alkanes but the inclusion other 

diesel constituents allows for more accurate predictions of concentrations RO2 and HO2, as well as individual HC 

consumptions. It is important to note that the composition of branched and linear alkanes in fuels will vary from the 

composition of those in fuel exhausts. However, literature which reports on the composition of fuel exhaust typically reports  485 

significant proportions of branched alkanes as unspeciated branched alkanes (Lu et al., 2018; Tkacik et al., 2014). Thus, current 

diesel exhaust compositions cannot be used for this analysis. Each branched alkane was assumed to have 3 methyl branches. 

Within the UNIPAR model, SOA formation from all linear and branched alkanes was performed simultaneously, such that the 

SOA mass formed from one precursor can enhance the SOA mass formed from every other precursor. As seen in Fig.11 , 

branched alkanes represent a higher proportion of diesel fuel and also SOA mass formed compared to linear alkanes. Branched 490 

alkanes represented 78% of the alkane HC input and were responsible for 72% of the total SOA mass produced.  

Additionally, long-chain alkanes (≥ C15) are relatively more important for SOA formation compared to  smaller alkanes within 

both the linear and branched subsets. Long-chain linear alkanes represented 59% of the linear alkane composition in diesel and 

was responsible for 73% of the total linear alkane SOA mass production. Similarly, long-chain branched alkanes represented 

56% of the branched alkane composition in diesel fuel and was responsible for 75% of the total branched alkane SOA mass 495 

production. Our conclusion regarding the importance of long-chain alkanes generally agrees with the conclusion presented by 

Madhu et al. (2023). However, the linear alkane SOA formation simulation by Madhu et al. (2023) was performed individually 

for each precursor, which did not allow for SOA mass produced from one precursor to influence the others. Thus, Fig. 11 is a 

better representation of the SOA formation potential from linear and branched alkanes in diesel fuel.  However, the inclusion  

of other diesel constituents (e.g., cyclic alkanes, polyaromatics HCs, and aromatics) may further augment the SOA formation 500 

potential of the various linear and branched alkanes diesel fuel (Gentner et al., 2012). 
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Figure 11. SOA formation from the photooxidation of diesel fuel linear and branched alkanes in the presence of NO x. 

Composition as reported by Gentner et al. (2012). Concentration of initial HC = 993 ppbC, temperature = 298 K, RH = 60%, 

and HC ppbC/ NOx ppb= 3, sunlight profile shown in Fig. S3. 505 

4.7 Summary and Conclusions  

Branched alkanes are one of the major classes of HCs in urban environments, specifically representing significant proportions 

of both gasoline and diesel fuel (Gentner et al., 2012). This study models SOA formation using the UNIPAR model via the 

multiphase reactions of branched alkanes. Due to a lack of practically applicable gas mechanisms available for a  variety of 

branched alkanes, the lumping arrays of branched alkanes were predicted using previously existing lumping arrays of linear 510 

alkanes. To do so, the lumping array of each branched alkane was primarily created using the lumping array of the linear alkane 

with the nearest vapor pressure. In addition to a decrease in vapor pressure, branching present on an alkane chain can reduce  

the ability of the oxidation products to undergo autoxidation (Fig. S1). Autoxidation has been demonstrated in previous studies 

which show that autoxidation products significantly contribute to terpene SOA (Pye et al., 2019; Xavier et al., 2019; Yu et al., 

2021), and linear alkane SOA (Madhu et al., 2023). To account for the reduction of autoxidation products in branched alkane 515 

compared to that in linear alkanes, an ARF value (Eq. 4) was applied to the α-values of lumping groups. Lumping arrays 

generated in this manner were applied within UNIPAR to predict SOA formation from branched alkanes, which was compared 

to chamber data. Notably, the presence of alkyl branches can also significa ntly increase the amount of decomposition reactions 

which produce more volatile products (Loza et al., 2014; Lim and Ziemann, 2009; Tkacik et al., 2012). Whereas the increase 

in decomposition reactions due to alkyl branches is not explicitly accounted for, our application of the ARF implicitly captures 520 

some increase in decomposition. We apply the ARF to reduce the value of stoichiometric coefficient related to the lumped 

groups which yield autoxidation products. The amount of stoichiometric coefficient which is expelled from the α i array via 

this reduction is essentially treated as products which are so highly volatile that they cannot form SOA via gas -particle 

partitioning. The model predicted SOA formation well agreed with chamber data (Fig. 2). Additionally, O:C values of chamber 

generated SOA, which were calculated using FTIR spectra, also were in agreement with model predicted O:C values. Similarly  525 

to linear alkanes (Madhu et al., 2023), branched alkanes showed significant sensitivity to NOx levels as seen in Fig. 6. The 

degree of branching was also shown to significantly impact branched alkane SOA, with yields generally decreasing as the 

number of methyl branches increases (Fig. 5). As branching increases, the vapor pressure increase of the precursor and 

subsequent oxidation products was determined to a more significant factor contributing to branched alkane SOA yields than 

the ARF (section 4.3). The branched alkane SOA formation is dominated by gas-particle partitioning processes, particularly 530 

between the gas and organic phases due to the relatively non-polar, non-reactive oxidation products. Evidently, SOA yields 

are sensitive to temperature (Fig. 8), an environmental factor that is heavily tied to partitioning. Furthermore, branched alkane 

SOA yields are insensitive to changes in particle-phase reaction rates (Fig. 9) and show no significant impacts from changes 

in aerosol acidity or inorganic seed composition (Fig. 7).   
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The conclusions presented have several real-world implications. Firstly, branched alkanes are significant sources of SOA 535 

formation and should be considered as an SOA precursor, especially in urban environments where vehicular emissions 

represent a significant proportion of the emitted reactive organic carbon (Murphy et al., 2023). As shown in Fig. 11, branched 

alkanes within diesel were responsible for a significantly larger proportion of SOA mass production compared to linear alkanes. 

Secondly, the reduction of NOx concentrations in the atmosphere would not be effective to decrease branched alkane SOA 

formation as branched alkane SOA yields tend to increase as NOx levels decrease (Fig. 6). Thirdly, branched alkane SOA 540 

yields would not be significantly affected by the reduction of sulfate because of relatively non-polar, non-reactive oxidative 

products (Section 4.4). Notably, the chamber experiments that are used to validate the model results occur in half -day 

timescales. Further atmospheric aging could change oxidation product compositions and alter SOA mass yields.      

The branched alkane SOA prediction using the UNIPAR model contains several sources of uncertainty. As previously 

explained, the UNIPAR parameters of each branched alkane were primarily inherited from an analogous linear alkane. For 545 

example, vapor pressures of precursor branched alkanes were matched with the linear alkane with the nearest vapor pressure. 

However, the two matched vapor pressures are rarely identical, and this deviation between the two values can yield uncertainty 

in the predicted lumping array. Similarly, physicochemical parameters (e.g. O:C, HB, and MW arrays, and wall loss 

parameters) inherited from linear alkanes can be included as sources of uncertainty in SOA prediction. Additionally, the 

branched alkane lumping arrays also inherited uncertainty associated with the linear alkane oxidation mechanisms that were 550 

originally used to generated linear alkane lumping arrays. As described by Madhu et al. (2023), the linear alkane gas oxidation 

mechanisms used to generate lumping arrays were written in such a way that, if a  precursor has several possible points of 

reaction with a hydroxyl radical, only one path is included. The inclusion of alternative pathways ma y augment the linear 

alkane lumping arrays and have downstream effects on branched alkane lumping arrays. Uncertainties also exist in 

hydrocarbon consumption values simulated by CB6. As described in section S1, the CB6 model overpredicts hydroxyl radical 555 

concentrations for chamber experiments performed with long-chain alkanes. Accordingly, gas simulations had a tendency 

toward overprediction of hydrocarbon consumption. In this study, SOA formation from the photooxidation of linear and 

branched alkanes in diesel fuel was predicted by using UNIPAR model. However, diesel fuels also contain significant amounts 

of cyclic alkanes, which tend to have higher propensities to be SOA precursors (Manavi and Pandis, 2022; Loza et al., 2014; 

Lim and Ziemann, 2009). When considering SOA formation from alkanes in diesel, future studies should include cyclic alkanes 560 

to accurately predict SOA formation potentials.  

 

Code availability 

The code to run the UNIPAR model in this study is available upon request  with appropriate purpose. The model parameters of 

UNIPAR are currently being updated to include more precursors, and the user manual is in preparation. When the manual and 565 

parameters for essential precursors are ready, UNIPAR will be freely available for the public via GitHub. 
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