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Abstract

Petit-spot volcanoes, occurring due to plate flexure, have been reported globally. As the petit-
spot melts ascend from the asthenosphere, they provide crucial information of the lithosphere—
asthenosphere boundary. Herein, we examined the lava outcrops of six monogenetic volcanoes formed
by petit-spot volcanism in the western Pacific. We then analyzed the “°Ar/**Ar ages, major and trace
element compositions, and Sr, Nd, and Pb isotopic ratios of the petit-spot basalts. The “°Ar/**Ar ages
of two monogenetic volcanoes were ca. 2.6 Ma (million years ago) and ca. 0 Ma. The isotopic
compositions of the western Pacific petit-spot basalts suggest geochemically similar melting sources.
They were likely derived from a mixture of high-p (HIMU) mantle-like and enriched mantle (EM)-1-
like components related to carbonatitic/carbonated materials and recycled crustal components. The
characteristic trace element composition (i.e., Zr, Hf, and Ti depletions) of the western Pacific petit-
spot magmas could be explained by the partial melting of ~5% crust-bearing garnet lherzolite with
10% carbonatite flux to a given mass of the source, as implied by a mass balance-based melting model.
This result confirms the involvement of carbonatite melt and recycled crust in the source of petit-spot
melts. It provides insights into the genesis of tectonic-induced volcanoes, including Hawaiian North
Arch and Samoan petit-spot-like rejuvenated volcanoes, that have similar trace element composition

to petit-spot basalts.

Short Summary

Plate tectonics theory is the motion of rocky plates (lithosphere) over ductile zones
(asthenosphere). The causes of the lithosphere—asthenosphere boundary (LAB) are controversial;
however, petit-spot volcanism supports the presence of melt at the LAB. We conducted geochemistry,
geochronology, and geochemical modeling of petit-spot volcanoes on the western Pacific Plate, and
the results suggested that carbonatite melt and recycled oceanic crust induced the partial melting at

the LAB.

1 Introduction

Among the upper mantle-derived alkali basaltic lavas in oceanic settings, those on thicker plates
away from the mid-ocean ridge, could be divided into plume-related and non-plume-related volcanoes.
Plume-related North Arch and post-erosional (rejuvenated-stage) volcanoes have been reported in

Hawaii and Samoa (Bianco et al., 2005; Bizimis et al., 2013; Clague and Frey, 1982; Clague and
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Moore, 2002; Dixon et al., 2008; Frey et al., 2000; Garcia et al., 2016; Hart et al., 2004; Konter and
Jackson, 2012; Koppers et al., 2008; Reinhard et al., 2019; Yang et al., 2003). Nonplume-related
intraoceanic alkali volcanoes, known as petit-spot volcanoes, probably originate where nearby plate
subduction causes plate flexures and upwelling of asthenospheric magma (Hirano et al., 2006; Hirano
and Machida, 2022; Machida et al., 2015, 2017; Yamamoto et al., 2014, 2018, 2020). The occurrence
of petit-spot volcanisms supports the presence of melt at the lithosphere—asthenosphere boundary
(LAB) below the area at least.

The occurrence of melt in the uppermost asthenosphere could be attributed to small-scale
convection, the presence of hydrous or carbonatitic components, or the uplift of the lithosphere in
response to plate flexure; however, the possibility of such an occurrence remains ambiguous (e.g.,
Bianco et al., 2005; Hua et al., 2023; Korenaga, 2020). The presence of CO: and
carbonated/carbonatitic materials is a significant factor in the formation of alkaline, silica-
undersaturated melt in the upper mantle (Dasgupta and Hirschmann, 2006; Dasgupta et al., 2007,
2013; Kiseeva et al., 2013; Novella et al., 2014). Experimental studies have shown that the solidus of
carbonate-bearing peridotite is lower than that of CO»-free peridotite (Falloon and Green, 1989. 1990;
Foley et al., 2009; Ghosh et al., 2009). Moreover, carbonatites and Si-undersaturated melts are
generated through the partial melting of CO»-bearing or carbonated peridotite. The produced melts
can exhibit continuous chemical variations depending on pressure (i.e., depth). Carbonatitic melts are
produced in the deep asthenosphere (300-110 km), while carbonated or alkali silicate melts are
generated in the shallower upper mantle (from ~110 to ~75 or 60 km) (Keshav and Gudfinnsson, 2013;
Massuyeau et al., 2015, 2021). Primary carbonated silicate magma and evolved alkali basalts have
been simultaneously observed at the post-spreading ridge in the South China Sea (Zhang et al., 2017,
Zhong et al., 2021). The occurrence of Hawaiian rejuvenated volcanoes can be attributed to a
carbonatite-metasomatized source with or without silicate metasomatism (Borisova and Tilhac, 2021;
Dixon et al., 2008; Zhang et al., 2022).

Submarine petit-spot volcanoes on the subducting northwestern (NW) Pacific Plate may have
originated from carbonate-bearing materials and crustal components (pyroxenite/eclogite) based on
characteristic trace elements, enriched mantle (EM)-1-like Sr, Nd, and Pb isotopic, and relatively low
Mg isotopic compositions (Liu et al., 2020; Machida et al., 2009, 2015). Particularly, the depletion of
specific high-field-strength elements (HFSEs) (i.e., Zr, Hf, and Ti) and the abundance of CO; in petit-
spot basalts imply that their melting sources are related to carbonated materials (Hirano and Machida,
2022; Okumura and Hirano, 2013). The nature of the uppermost part of the asthenosphere beneath the
oldest Pacific Plate aged 160 Ma was characterized using the eruptive ages and geochemical properties
of six newly observed petit-spot volcanoes and lava outcrops. We verified the contribution of
carbonatitic components and crustal materials to the melting source of petit-spot volcanoes to

understand the nature of the underlying lithosphere—asthenosphere system and model the geodynamic
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evolution of the region.

2 Background

Over the last 20 years, there has been an increase in the understanding of petit-spot volcanic
settings, providing valuable insights into the nature of the lithosphere—asthenosphere system,
particularly in the NW Pacific region (Hirano et al., 2006; Hirano and Machida, 2022). As other
implications, subducted petit-spot volcanic fields with geological disturbances on the seafloor play a
role in controlling the hypocentral regions of megathrust earthquakes (Fujiwara et al., 2007; Fujie et
al., 2020; Akizawa et al., 2022). Additionally, the vestige of hydrothermal activity due to petit-spot
magmatism has recently been reported (Azami et al., 2023).

Petit-spot melts emerging from the asthenosphere, which are unrelated to mantle plume, could
play a crucial role in clarifying the nature of the LAB (Hirano and Machida, 2022). Their
asthenospheric origin was supported by MORB-like noble-gas isotopic ratios, multi-phase saturation
experiment, and geochemistry (Hirano et al., 2006; Hirano and Machida, 2022; Machida et al., 2015,
2017; Yamamoto et al., 2018). The LAB is recognized as a discontinuous transition in seismic
velocities at the base of the lithosphere, and its causes are attributed to hydration, melting, and mineral
anisotropy with considerations for the unique characteristics in each tectonic setting (e.g., Rychert and
Shearer, 2009). The occurrence of petit-spot volcanoes confirms the existence of melt at the LAB
beneath the area at least (Hirano et al., 2006). Recently, similar volcanic activities have been observed
globally, including in Java (Sunda) Trench, Tonga Trench, Chile Trench, Mariana Trench, Costa Rica,
North American Basin and Range, and the southern offshore of Greenland, implying the universal
occurrence of petit-spot and similar magmatisms (Axen et al., 2018; Buchs et al., 2013; Falloon et al.,
2022; Hirano et al., 2013, 2016, 2019; Reinhard et al., 2019; Taneja et al., 2016; Uenzelmann-Neben
et al., 2012; Yamamoto et al., 2018, 2020; Zhang et al., 2019). Although the question of whether the
LAB discontinuity is due to the differences in the physical properties of minerals (e.g., Hirth and
Kohlstedt, 1996; Kang and Karato, 2023; Karato and Jung, 1998; Katsura and Fei, 2021; Stixrude and
Lithgow-Bertelloni, 2005; Wang et al., 2006) or the presence of partial melts remains open (e.g.,
Audhkhasi and Singh, 2022; Chantel et al., 2016; Conrad et al., 2011; Debayle et al., 2020; Herath et
al., 2022; Hua et al., 2023; Kawakatsu et al., 2009; Mierdel et al., 2007; Sakamaki et al., 2013; Yoshino
et al., 2006), the occurrence of petit-spot volcanism indicates the partial melting of the asthenospheric
mantle in the region because they erupted on the seafloor without hotspot and ridge activities (Hirano
et al., 2006; Hirano and Machida, 2022; Machida et al., 2015, 2017; Yamamoto et al., 2014, 2018,
2020).

The petit-spot volcanic province on the abyssal plain of the western Pacific is surrounded by

Cretaceous seamounts and oceanic islands of the Western Pacific Seamount Province (Koppers et al.,
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2003) and is located ~100 km southeast of the Minamitorishima (Marcus) Island (Fig. 1a). The study
area corresponds to the oldest portion of the Pacific Plate, aged at 160 Ma, and the foot of the outer-
rise bulge related to the Mariana subduction system (Hirano et al., 2019; Fig. 1b). Despite several
seamounts crosscutting, subduction-related fore-bulge in front of the Mariana Trench was detected in
satellite gravity maps and has been numerically modeled (Bellas et al., 2022; Hirano et al., 2019;
Zhang et al., 2014, 2020). Petrography, geochemistry, and geochronology of petit-spot basalts and
zircons in peperites collected from a knoll suggest that petit-spot magmas in this region ascend from
the asthenosphere along the concavely flexed plate in response to subduction into the Mariana Trench
at younger than ~3 Ma (Yamamoto et al., 2018; Hirano et al., 2019). Below the study area, a low
seismic velocity zone is observed under the lithosphere (Li et al., 2019; Fig. 1¢). Notwithstanding the
low-velocity anomalies crosscutting the lower mantle (Fig. 1¢), no active hotspots (i.e., heat supplies)
have been reported around the western Pacific petit-spot province , which is surrounded by Cretaceous
Wake seamount chains including Minamitorishima Island and Paleogene intraplate volcanoes
(Koppers et al., 2003; Aftabuzzaman et al., 2021; Hirano et al., 2021). Other petit-spot lava outcrops
were observed in a volcanic cluster during three research cruises using the research vessel (RV)
Yokosuka (YK16-01, YK18-08, and YK19-05S) with five dives using the submersible, Shinkai 6500
(6K#1466, 6K#1521, 6K#1522, 6K#1542, and 6K#1544; Fig. 2); and here, fresh basalts were collected.
Information related to the sampling point, depth, and thickness of palagonite rind and manganese-crust

as well as the age of the western Pacific petit-spot basalts are provided in Table 1.



-10000 -8000 -5000 -2000 -2000 [} 2000 2000 -1.0 —05 0.0 05 1.0

1 67 Depth, m P wave velocity anomaly dviv, %

168  Fig. 1. Geological and geophysical information of the study area. (a) Bathymetry of the western Pacific near the

169 Mariana Trench. The red box shows the study areaf to the southeast of Minamitorishima (Marcus)
170 Island (Fig. 2). The bathymetric data are adopted from ETOPO1 (NOAA National Geophysical Data
171 Center; http://www.ngdc.noaa.gov/). (b) Seafloor age map of the same area as (a). This study area is on
172 a 160-170 Ma Pacific Plate, called the Jurassic Quiet Zone (JQZ) (Tivey et al. 2006). The present

173 absolute motion of the Pacific Plate and the seafloor age are derived from studies by Gripp and Gordon
174 (1990) and Miiller et al. (2008), respectively. (c) The cross-section P-wave tomography beneath the
175 thick yellow line including the study area on the ETOPO1 bathymetry map (left). The bathymetric
176 images were drawn using the Generic Mapping Tool (GMT6: Wessel et al., 2019). The tomographic
177 image (right) was drawn using the SubMachine (Hosseini et al., 2018;

178 http://www.earth.ox.ac.uk/~smachine/cgi/index.php) on applying the data of Lu et al. (2019).
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Table. 1

Information of the collected western Pacific petit-spot basalts

Cruise __ Dive Sample name Latitude (N) Longitude (E)  Depth, m __ Palagonite rind, mm ** Manganese crust, mm ** Ar-Ar age, Ma

YK16-01 6K#1466 R3-001 23° 19.1009 154° 15.0950 5453 4.45 7.155
R3-04 23° 19.1009 154° 15.0950 5453 3.005 5.805
R6-001 23° 19.4475 154° 15.0367 5300 6.61 5.205 2.56+0.34
R7-001 23°19.4713 154° 15.0000 5267 5.54 431
R7-003 23°19.4713 154° 15.0000 5267 - -

YK18-08 6K#1521 R04 23° 5.0880 154° 23.7360 5546 1.045 5.935
RO5 23° 5.0880 154° 23.7360 5546 - 5.625

6K#1522 RO1 23° 27.6420 153° 58.3140 5300 6.015 5.78 -0.11+0.23*2

R02 23° 27.6420 153° 58.3140 5300 4.505 2.66
RO3 23° 27.6420 153° 58.3140 5300 5.44 4.04
RO5 23° 27.6360 153° 58.3080 5294 2.92 4.785
R12 23° 27.4920 153° 58.0620 5189 6.05 5.56
R13 23° 27.4920 153° 58.0620 5189 4.545 5.895
R14 23° 27.3540 153° 57.8160 5303 2.04 5.475
R16 23° 27.4680 153° 57.1200 5182 3.825 3.845
R17 23° 27.4680 153° 57.1200 5182 5.19 5.67

YK19-05S 6K#1542 RO3 23° 44.1926 154° 45.6900 5359 3.43 4.26
R0O5 23° 44.1926 154° 45.6900 5359 3.245 4.355
RO6 23° 44.7064 154° 44.1200 5190 - -
R09 23° 44.7064 154° 44.1200 5190 - -

6K#1544 R04 23° 43.9555 154° 49.4277 5488 4.39 4.955

RO5 23° 43.9555 154° 49.4277 5488 2.965 497
RO6 23° 43.9555 154° 49.4277 5488 3.425 5.82

* 1: The samples which have no data of palagonite and/or Mn-crust thickness are due to the lack of them or crumbled.

*2: This is a reference value due to the lack of radiogenic “°Ar in this sample.
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Fig. 2. Detailed bathymetry of the study area. The onboard multibeam data were surveyed during the YK10-05 and

the YK18-08 cruises by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). The

petit-spot knolls and outcrops were investigated during several dives as 6K#1466, 6K#1521, 6K#1522,

6K#1542, and 6K#1544. The pink-colored stars represent the sampling points. The age information was

obtained in the present study and Hirano et al. (2019). The bathymetric image was drawn using the GMT

(Wessel et al., 2019).
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3 Field observations, sample locations, and petrography

Here, the eruption sites of monogenetic volcanoes or lava outcrops are approximately aligned
with each dive site numbered 6K#1466, #1521, #1522, #1542, and #1544 conducted using the Shinkai
6500. The 6K#1466 dive was conducted at two types of monogenetic volcanoes, categorized as glassy
type (R3) and crystalline and vesicular type (R6 and R7) based on the geochemical and petrographic

descriptions and occurrence of basaltic samples.

3.1 YK16-01 cruise and 6K#1466 dive

During the YK16-01 cruise, a small conical knoll (ca. 0.04 km?) was investigated by a
submersible dive, 6K#1466 (Figs. 2 and 3a). The lava flows, which were observed in a hollow lava
tube resulting in sediment-rolling/disturbing eruption, were located ~600 m south of the top of the
knoll, featuring extremely fresh and glassy samples (6K#1466R3-001 and R3-004 basalts) (Fig. 3a).
Vesicular pillow basalts were collected on the western slope of the knoll (samples 6K#1466R6-001,
R7-001, and R7-003; Fig. 3a). While the strong acoustic reflection could not entirely distinguish the
petit-spot lava fields in ferromanganese nodule fields, the 6K#1466 dive revealed lava outcrops using
a sub-bottom profiler (SBP) and a multinarrow-beam echo sounder (MBES). Specifically, the petit-
spot lava field, as an acoustically opaque layer, exhibited a vigorous backscattering intensity in the
MBES, along with the distributions of the basement and sediment layers in the SBP.

The 6K#1466R3-001 and R3-004 samples were extremely fresh glassy basalts. The samples
exhibited similar petrographic features (Fig. 3a). These samples were enveloped by a 3.0—4.5-mm-
thick palagonite layer (hydrated quenched glass), with their outermost parts being surrounded by a
5.8-7.2-mm-thick ferromanganese crust (Fig. 3a). They were less vesicular (<3 vol.%) and were
dominantly composed of basaltic glass, euhedral-subhedral olivine microphenocrysts (~100-500 um
in size), ferrotitanium oxide (<50 um in size), and minor plagioclase (~500 pum in size) (Fig. 3a). No
secondary phases such as clay minerals were observed.

The 6K#1466R6-001, R7-001, and R7-003 basalts, which were covered with a 4.3-5.2-mm-
thick ferromanganese crust over 5.5-6.6-mm-thick palagonite rinds, exhibited high vesicularity (20—
40 vol.%) (Fig. 3a). Mikuni et al. (2022) reported certain pyroxene-dominated xenocrysts and
peridotite xenoliths. The basaltic groundmass was characterized by needle-shaped clinopyroxene (50—
400 pm in size), subhedral olivine partly with aureoles of iddingsite (up to 100 um in size),
ferrotitanium oxide, minor spinel (up to 10 um in size), glass, and crystallite, notably without

remarkable phenocrysts (Fig. 3a). The photomicrograph of R6-001 is shown in Fig. 3a.

3.2 YK18-08 cruise and 6K#1521 and 6K#1522 dives
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Two submersible dives (6K#1521 and #1522) were conducted during the YK18-08 cruise to
investigate petit-spot volcanoes. During the 6K#1521 dive, a small lava outcrop was identified in the
abyssal plain by tracing a strong acoustic reflection, which was expected to originate from intrusive
rock bodies, in the sedimentary layer detected by deep-sea SBP equipped on the Shinkai 6500. The
strong reflective surface gradually became shallow during the navigation, revealing the small lava
outcrop (Figs. 2 and 3b). Fresh and massive (nonvesicular) basalts were collected from this outcrop
(samples 6K#1521R04 and RO5; Fig. 3b). The samples obtained from the 6K#1522 dive at a seamount
exhibited highly irregular shapes, and massive lava flows, pillows, and lava breccia were observed
(Fig. 3c). All the samples were fresh vesicular basalts (6K#1522R01, R02, R05, R12, R13, R16, and
R17; Fig. 3c).

The fresh, massive, and nonvesicular basalts were collected during the 6K#1521 dive (R04 and
ROS5) comprised euhedral olivine microphenocrysts (150-400 pm in size), two types of ferrotitanium
oxide (50-150 pum in size), and crystallite (Fig. 2b). Secondary phases were not observed. They were
covered with a 5.6—5.9-mm-thick ferromanganese crust and a ~1.0-mm-thick palagonite rind (Fig. 3b),
however, R0O5 did not have palagonite rinds. The photomicrograph of R04 is shown in Fig. 3b.

The seven fresh basalts collected during the 6K#1522 dive (6K#1522R01, R02, R05, R12, R13,
R16, and R17), exhibited high vesicularity (20—40 vol.%) with 2.9-6.0-mm-thick palagonite rinds
covered with 2.7-5.9-mm-thick ferromanganese crusts (Fig. 3c). Euhedral-subhedral olivine
microphenocrysts (glomeroporphyritic, 30200 um in size), radial-needle-shaped clinopyroxene,
iddingsite (<200 pum in size), spinel, and glass with minor xenocrystic olivines were observed (Fig.

3c). The photomicrograph of RO1 is shown in Fig. 3c.

3.3 YK19-05S cruise and 6K#1542 and 6K#1544 dives

A petit-spot knoll and associated lava flows were investigated by the 6K#1542 and #1544 dives
during the YK19-05S cruise (Fig. 2). During the 6K#1542 dive, geological survey and rock sampling
were conducted from two points on the eastern slope of the knoll (Figs. 2 and 3d). The 6K#1542R03
and RO5 basalts were collected from the lava-breccia field covered with a thin ferromanganese crust
(Fig. 3d). Additionally, samples R06 and R09 were obtained from the lobate-surface lava between
tubular lavas closer to the summit than R03 and RO5 (Fig. 3d).

High-resolution (one-meter scale) bathymetric mapping was successfully conducted during the
6K#1544 dive, which can contribute to future oceanographic investigations using a human-occupied
vehicle (Kaneko et al., 2022). Several mounds, 10-20 m in height and a few hundred meters in
diameter, were recognized during this acoustic survey (Fig. 3d). We observed these mounds and

collected samples from outcrops during the second half of the dive. Furthermore, pillow lavas, tumuli,
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and lava breccias were observed, and basaltic samples (6K#1544R04, R05, and R06) were collected
(Fig. 3d).

Four vesicular basalts (10-30 vol.% vesicularity; 6K#1542R03, R05, R06, and R09) were
covered with 4.3—4.4-mm-thick ferromanganese crusts. The outer palagonitic rinds were 3.2-3.4-mm-
thick (Fig. 3d). Euhedral-subhedral olivine microlites (up to sizes of 300 pm) and microphenocrysts
were glomeroporphyritic (Fig. 3d). The groundmass was dominated by needled dendritic
clinopyroxenes (~100 pm in size), along with olivine, spinel, glass, and xenocrystic olivine megacrysts.
The photomicrograph of R06 is shown in Fig. 3d.

Basaltic samples from the 6K#1544 dive (6K#1544R04, RO5, and R06) were covered with
ferromanganese crust (5.0-5.8-mm thick) over palagonitic rinds (3.4—4.4-mm thick). All the samples
exhibited high vesicularity in the range of 20-35 vol.% (Fig. 3d). They comprised olivine
microphenocrysts (30-250 pm in size, euhedral-subhedral or columnar), clinopyroxene (<100 pm,
needled, columnar, radial or dendritic shape), spinel, and glass without secondary phases (Fig. 3d).

The photomicrograph of R04 is shown in Fig. 3d. During macroscopic observations, practically
all the basalts from the 6K#1542 and 6K#1544 dives exhibited similar vesicularity and freshness.

Their geochemical features were also similar to each other and are described in Sect. 5-1 and 5-2.
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Fig. 3. Bathymetric map with photos of the outcrop, the collected samples, and their photomicrographs with detailed
bathymetry of the sampling points. (a) The 6K#1466, (b) 6K#1521, (c) 6K#1522, and (d) 6K#1542 and
6K#1544 dives using the Shinkai 6500 by JAMSTEC. The 1-m gridded bathymetry of the 6K#1544 dive

is shown in (d), obtained using an MBES equipped with the Shinkai 6500 over a 100-m resolution map
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obtained using the surface ship, R/V Yokosuka (Kaneko et al., 2022). The photomicrographs of
representative samples are shown for plane-polarized light (PPL), cross-polarized light (XPL), and
backscatter electron (BSE). Ol olivine; Cpx, clinopyroxene; Mgt, magnetite; Spl, spinel. The bathymetric

images were drawn using the GMT (Wessel et al., 2019).

4. Analytical methods

4.1 Major and trace element analysis of volcanic glass, mineral, and whole-rock

Major element compositions of glasses and minerals were determined using an electron probe
micro analyzer (EPMA). JXA-8900R at Atmosphere and Ocean Research Institute (AORI), the
University of Tokyo was used for glass analysis and JXA-iHP200F at GSJ, AIST was used for mineral
analysis. The analyses were performed using an accelerating voltage of 15 kV, a beam current of 12
nA, and a beam diameter of 10 um for glass and 2 pm for mineral. A peak counting time of 20 s and
a background counting time of 10 s were used, except for Ni, for which a peak counting time of 30 s
and a background counting time of 15 s. For Na analysis of glass, the peak counting time was 5 s and
the background counting time was 2 s. Natural and synthetic minerals were used as standards, and data
were corrected using a ZAF online correction program (Akizawa et al., 2021). Major element
composition of glass was determined by the mean value of 10 analytical points.

Trace element compositions of minerals were determined using a laser ablation-inductively
coupled plasma-mass spectrometry (LA-ICP-MS; New Wave Research UP-213 and Agilent 7500s)
at Kanazawa University. The Nd: YAG deep UV (ultraviolet) laser’s wavelength is 213 nm. The
analyses were conducted with 100 um spot size. A repetition frequency of 6 Hz and a laser energy
density of 8 J cm™ were used. NIST612 glass (distributed by National Institute of Standards and
Technology) was employed for calibration, using the preferred values of Pearce et al. (1997). Data
reduction was undertaken with 2°Si as the initial standard, and SiO, concentrations were obtained by
an electron microprobe analysis (Longerich et al., 1996). BCR-2G (distributed by the United States
Geological Survey) was used as a secondary standard to assess the precision of each analytical
session (Jochum and Nohl, 2008).

Whole-rock major and trace element compositions of rock samples were analyzed by Activation
Laboratories Ltd., Canada, using Code 4Lithoresearch Lithogeochemistry and ultratrace5 Exploration
Geochemistry Package. The former package uses lithium metaborate/tetraborate fusion with
inductively coupled plasma optical emission spectrometry (FUS-ICP-OES) and inductively coupled
plasma mass spectroscopy (FUS-ICP-MS) for the major and trace element analyses, respectively. The

latter package uses inductively coupled plasma optical emission spectrometry (ICP-OES) and
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inductively coupled plasma mass spectroscopy (ICP-MS) for the major and trace element analyses,

respectively.

4.2 Sr, Nd, and Pb isotope analysis

4.2.1 Acid leaching

Acid leaching was conducted for the selected basaltic samples on the basis of the procedure of
Weis and Frey (1991, 1996) as follows: [1] About 0.3—-0.4 or 0.6 g of rock powder is weighed into an
acid-washed 15 mL Teflon vial (Savilex®). [2] 10 or 12 mL of 6N (N: normality) HCI were added, and
then heated at 80°C for 20—30 min. [3] After heating, the suspension is ultra-sonicated in 60°C water
for 20 min. [4] The supernatant is decanted. Steps [2] to [4] were repeated more than 4 times (up to 6
times) until the supernatant become clear or pale yellow to colorless. [S] TAMAPURE-AA Ultrapure
water (Tama Chemicals; Co., Ltd.), which includes a lower Pb blank than milli-Q H,O, were added
instead of 6N HCI, and the suspension is ultra-sonicated for 20 min. This step is conducted twice. [6]

The leached rock powder is dried on a hot plate at 120°C. [7] After cooling, the powder is weighed.

4.2.2 Extraction of Pb, Sr, and Nd

The extraction of Pb, Sr, and Nd was performed following the procedures of Tanimizu and
Ishikawa (2006) and Machida et al. (2009). First, from ~50 to ~100 mg of rock powder was weighted
in a 7 mL Teflon vial (designated as “vial A”), and digested using mixed acid composed of HF and
HBr. The separation was conducted by cation exchange resin (AG-1X8; Bio-Rad Laboratories Inc.)
on the basis of procedures described in Tanimizu and ishikawa (2006). All fractions from the first and
second supernatant loading (0.5 M HBr) to the elution of other elements (mixed acid composed of
0.25 M HBr and 0.5 M HNO3) were collected in another 7 mL Teflon vial (designated as “vial B”) for
Sr and Nd separation. Finally, Pb was extracted by 1 mL of 1M HNO3 in another 7 mL Teflon vial
(designated as “vial C”). The procedural blanks for Pb totaled less than 23 pg.

The Sr and Nd-bearing solution in the vial B was transferred into the vial A containing residues
of digested samples. 2 mL of HC1O4 and 2 mL HNOj3 was further added to the vial A, and the residue
was dissolved at 110 °C. Both Sr and Nd were separated by column with a cation exchange resin
(AG50W-8X; Bio-Rad Laboratories Inc.) and a Ln resin (Eichrom Tech- nologies Inc.) on the basis of
procedures described in Machida et al. (2009). The separated Sr and Nd were further purified by
column separation with a cation exchange resin. The total procedural blanks for Sr and Nd were less

than 100 pg.
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4.2.3 Analytical procedure

Pb isotopic ratios were obtained using the multi-collector ICP-MS (MC-ICP-MS; Neptune plus,
Thermo Fisher Scientific), with nine Faraday collectors, at Chiba Institute of Technology (CIT), Japan.
The NIST SRM-981 Pb standard was also analyzed and yielded the average values of 2°Pb/2%4Pb =
16.9303 + 0.0005, 2°7Pb/2Pb = 15.4828 + 0.0006, and 28Pb/>Pb = 36.6710 + 0.0016. These
correspond to previous values determined using MC-ICP-MS with T1 normalization, but they were
slightly lower than values determined by TIMS in Tanimizu and Ishikawa (2006) from the 27Pb—2%Pb
double-spike. Reproducibility was monitored by an analyses of the JB-2 GSJ standard, and the
obtained values were 29°Pb/204Pb = 18.3326 + 0.0005, 207Pb/2%*Pb = 15.5453 + 0.0006, and 2°8Pb/2%Pb
=38.2240 £ 0.0017.

Sr and Nd isotopic analyses for powdered rocks and glasses were conducted using the thermal
ionization mass spectrometry (TIMS; Triton XT, Thermo Fisher Scientific) with nine Faraday
collectors, at CIT. 1.5 pL of 2.5M HCIl and 0.5M HNO3 was used for loading of separated Sr and Nd
of sample on the single and double Re-filament, respectively. The measured isotopic ratios were
corrected for instrumental fractionation by adopting the 3¢Sr/®3Sr value to be 0.1194 and that of
146N d/"**Nd to be 0.7219. The average value for the NIST SRM-987 Sr standard was 0.710239
+0.000005 (20, n =2), and that for the GSJ JNdi-1 Nd standard was 0.512103 £0.000005 (25, n =2).
They agree well with values from the literature for the NIST SRM-987 (¥Sr/*Sr = 0.710252—
0.710256; Weis et al., 2006) and JNdi-1 ("*Nd/"**Nd = 0.512101; Wakaki et al., 2007). Consequently,
we did not correct the values of the unknowns for offsets between the measurements and the values

for the Sr and Nd standards.

4.3 YAr/°Ar dating

Samples for *°Ar/**Ar dating were prepared by separating crystalline groundmass after crushing
them to sizes between 100 and 500 pm. The separated groundmass samples were leached by HNO3 (1
mol/L) for one hour to remove clays and altered materials. All samples were wrapped in aluminum
foil along with JG-1 biotite (Iwata, 1998), K2SO4, and CaF, flux monitors. Any amorphous (e.g.,
quenched glass) was removed because **Ar may move from one phase to another in a process known
as “recoil.” This can create a disturbed age spectrum when 3°Ar is produced from *K in amorphous
material through interaction with fast neutrons during irradiation of the sample. Samples were
irradiated for 6.6 days in the Kyoto University Research Reactor (KUR), Kyoto University. Argon
extraction and isotopic analyses were undertaken at the Graduate School of Arts and Sciences, the
University of Tokyo. The sample gases were extracted by incremental heating of 10 or 11 steps

between 600°C and 1500°C. The analytical methods used are the same as those used by Ebisawa et al.

15



394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429

(2004) and Kobayashi et al. (2021).

5 Results

To describe the geochemical and chronological results, each sample group was denoted by its
dive number, e.g., the sample group obtained from the 6K#1521 dive was labeled “1521 samples or
basalts”. The basalts from the 6K#1466 dive were divided into two groups for R3 (collected from the
seafloor south of the knoll) and R6—R7 (sampled on the knoll) based on their geographical,
petrological, and compositional differences. The mineral compositions of each petit-spot basalt are

shown in Fig. S1 and Table S1, S2 and S3.

5.1 Major and trace element compositions

The major and trace element compositions for the whole rock and glass of the petit-spot basalts
are listed in Table 2 and 3, respectively. The basalt compositions for a petit-spot knoll were reported
by Hirano et al. (2019) (expressed as “1203, 1206 in each figure). The data are discussed along with
the reported NW Pacific petit-spots (Hirano and Machida, 2022). Using a total alkali vs. silica (TAS)
diagram, virtually all the samples were classified as alkalic rocks, but the 1542 and 1544 basalts were
plotted near the boundary between alkalic and non-alkalic (Fig. 4a). Two petit-spot basalts (1466R7-
001 and R7-003) from the petit-spot knoll were notably silica-undersaturated (i.e., SiO> = 39.3-39.4
wt%) and classified as foidite (Mikuni et al., 2022). All the western Pacific petit-spot basalts, except
for the 1466R7 basalts, were sodic (K.O/Na,O = 0.24-0.58) and were notably discriminated to the
potassic NW Pacific petit-spots (Fig. 4b).

Selected major element oxides and trace element ratios vs. MgO plots for the petit-spot basalts
are shown in Figs. 5 and 6, respectively. The MgO concentrations of the 1466R3 and 1521 samples
each exhibiting similar petrographic features (i.e., nonvesicular, and glassy) were characterized by
values (4.0-4.4 wt%) lower than those of other vesicular samples (6.6-9.3 wt%). The K»O, NaxO,
AlOs3, and SiO» contents negatively correlated with MgO (Figs. 5a—d). The CaO, FeOr, and
CaO/Al,Os; abundances exhibited positive correlations with MgO (Figs. 5e—g). The TiO»
concentrations exhibited no correlations with MgO (Fig. 5h), as well as the selected trace element
ratios (Figs. 6a—g) except for the Sm/Hf ratio with positive correlations (Fig. 6h). The Sm/Hf ratio also
negatively correlated with SiO, (Fig. S2). The study samples exhibited whole-rock loss on ignition
(LOJ) in the range of 0.67-1.72 wt%, excluding two relatively altered samples, 1466R7-001 (LOI =
2.68 wt%) and R7-003 basalts (LOI = 6.29 wt%).

The PM-normalized (Sun and McDonough, 1989) trace element patterns for the petit-spot

basalts, including those reported by a previous study (Hirano et al., 2019), were shown for each dive
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compared to the representative ocean island basalt (OIB) in Figs. 7a—f. The petit-spot basalts generally
showed high light rare earth element (LREE)/heavy REE (HREE) ratios. Negative Zr, Hf, Ti, and Y
anomalies were commonly observed in these western Pacific petit-spots as well as those of the NW
Pacific petit-spots (Fig. 7g). The 1466 basalts collected on the seafloor south of the knoll (1466R3-
001 and 1466R3-004 basalts) were compositionally different from those obtained on the knoll
(1466R7-001 and 1466R7-003 samples). The basalts from the 6K#1542 and #1544 dives, collected
from nearby locations, had the same compositions in major and trace element ratios in both whole
rock and glass, respectively (Figs. 4, 5, 6, 7e, and f). These samples in the Ba/Nb and Sm/Hf diagrams
were plotted in the range of “Group 3” in the discrimination of the NW Pacific petit-spot basalts
(Machida et al., 2015), indicating their negative Zr and Hf anomalies without notable U, Th, Nb, and
Ta anomalies in the PM-normalized trace element patterns (Fig. 7h). The Sm/Hf ratio of the
differentiated 1466R3 samples was lower than that of other samples. A positive correlation between
fluid mobile and immobile elements, Ba vs. Nb (Fig. 8a) and U vs. Th (Fig. 8b), respectively, was
observed, excluding the Ba of the 1466R7 samples (Fig. 8a).

Table. 2
Major and trace element of westem Pacific petit-spot basalts.
Cruise YK16-01 YK16-01 YK16-01 YK16-01 YK18-08 YK18-08 YK18-08 YK18-08 YK18-08 YK18-08 YK18-08
Sample name 6K#1466R3-001 6Ki#1466R3-004 6K#1466R7-001 6K##1466R7-003 6Ki#1521R04 6K#1521R05 6Ki#1522R01 6K#1522R1:
Sample type Glass Glass Whole rock Whole rock Glass Glass Glass Whole rock Glass Glass Glass
Method EPMA EPMA * * EPMA EPMA EPMA * EPMA EPMA EPMA
meanofn=10 20 meanofn=10 20 meanofn=10 20 meanofn=10 20 meanof n=10 20 meanofn=10 26 meanofn=10 20 meanofn=10 20
W%
sio, 5156 0.93 5063 0.79 39.40 3927 4842 036 46.78 097 4592 140 4528 4590 079 4538 156 4602 069
Tio, 231 020 219 022 382 368 365 030 332 025 237 017 243 251 020 233 013 245 021
ALOy 1499 057 1510 037 1141 1146 1512 031 1438 045 1274 023 12.48 1282 025 1199 053 1291 014
Cr0; - - - - 003 003 - - - - 001 005 003 002 005 001 005 002 004
FeO" 968 0.30 917 062 15.12 14.90 1065 029 977 079 1172 016 1232 1164 0.42 1077 102 1162 024
MnO 014 0.04 014 005 021 020 016 0.04 014 003 018 0.04 018 016 0.04 015 0.05 017 005
Mgo 404 011 399 011 9.34 7.66 443 008 436 0.10 736 017 7.26 733 010 712 023 7.14 016
(=) 771 011 741 025 1119 10.02 834 068 7.80 029 1072 014 1118 1081 022 1033 068 1079 010
Na,O 461 024 438 050 215 229 384 031 4.05 055 416 021 353 416 029 416 024 401 046
K0 231 0.08 224 012 165 208 225 027 213 012 138 006 142 140 013 131 010 138 004
NiO 001 003 001 003 003 002 - 004 - 005 002 003 002 001 004 002 004 002 004
P05 093 003 091 006 108 112 153 011 151 003 080 0.6 083 080 0.08 082 0.06 077 004
Total 98.28 96.16 98.10 99.02 98.38 9424 97.35 98.67 97.56 94.40 9731
Mg 1264 1368 5242 1782 2257 2433 5283 5124 52.89 5411 5228
Lol 268 629 172
FeO' as total values.
Mg# = 100 X Mg / [Mg+Fe? Jnoa:
- " not detected
*: Analyzed by ActLab
Table. 2 continued
YK18-08 YK18-08 YK18-08 YK19:055 YK19:055 YK19-055 YK19-055 YK19-055 YK19055 YK19-055 YK19:055 YK19:055
B6K#1522R13 B6K#1522R16 BK#1522R17
Glass Glass Glass Glass Whole rock Glass Glass Glass Glass ‘Whole rock Glass Glass
EPMA EPMA EPMA EPMA * EPMA EPMA EPMA EPMA - EPMA EPMA
mean of n=10 20 mean of n=10 20 mean of n=10 20 mean of n=10 20 mean of n=10 20 mean of n=10 20 mean of n=10 20 mean of n=10 20 mean of =10 20 mean of =10 20
47.09 068 4522 073 45.06 0.98 4866 114 49.35 4877 151 4966 111 50.09 0.93 50.54 043 49.08 50.53 061 4959 118
250 020 258 020 267 027 211 019 216 213 018 225 022 224 020 204 023 213 208 025 207 024
13.08 033 1255 017 1255 0.14 1349 018 1252 1338 019 1255 043 12.78 033 1318 012 1325 1294 034 12.94 036
0.02 005 0.01 0.04 0.02 0.08 0.04 005 0.05 003 007 0.02 004 0.04 0.04 0.03 0.05 0.05 003 005 003 004
11.74 049 1194 040 1189 026 10.60 0.30 11.40 10.47 0.36 1022 051 1044  0.34 1046 0.34 1113 1077 037 1053 049
017 0.05 018 0.05 0.18 0.05 015 004 017 014 004 015 0.04 016 0.04 016 0.02 0.16 0.16 005 015 005
663 064 724 025 724 017 729 017 818 729 020 703 013 711 012 700 016 750 710 015 705 015
11.01 025 1117 024 1119 025 1003 0.14 10.74 10.00 0.10 9.90 032 10.03 0.24 1063 0.26 10.67 1036 017 1033 022
416 036 430 033 428 039 330 028 259 336 024 339 019 326 046 354 025 290 352 026 342 028
142 017 152 008 151 006 080 005 077 080 006 089 004 091 006 085 008 085 085 006 083 004
0.01 004 0.01 004 001 004 001 005 0.02 0.02 005 0.02 0.05 0.03 005 0.02 003 0.02 001 004 002 004
083 0.05 095 0.07 095 0.03 048 004 0.50 050 0.04 051 0.04 052 0.06 054 003 0.52 057 005 055 004
98.66 97.67 97.54 96.96 99.12 96.91 96.62 97.60 98.98 99.09 98.91 97.50
5018 5193 52.04 55.07 56.13 55.38 55.07 5483 5439 5457 54.04 54.41
0.67 0.83
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Table 3

Cruise YK16-01 YK16-01 YK16-01 'YK16-01 'YK18-08 YK18-08 'YK18-08 YK18-08 'YK18-08 YK18-08 'YK18-08
Sample name 6K#1466R3-001 6K#1466R3-004 6K#1466R7-001 6K#1466R7-003 6K#1521R04 6K#1521R05 6K#1522R12
Sample type Whole rock ‘Whole rock Glass Glass Glass Whole rock Glass Glass Glass
Method LA-ICPMS LA-ICPMS * * LA-ICPMS LA-ICPMS LA-ICPMS * LA-ICPMS LA-ICPMS LA-ICPMS
valg
L 7.60 7.32 7.39 7.00 8.10 7.69 7.83 771
B 292 317 3.05 3.48 238 234 278 269
Sc 14.9 15.2 25.0 25.0 157 154 201 210 206 212 211
v 159 160 353 324 167 157 204 234 208 207 207
Cr 36.8 37.1 200 190 052 0.48 215 190 218 213 222
Co 29.7 29.9 61.0 57.0 328 312 46.2 49.0 46.8 46.1 47.3
Rb 475 476 26.0 320 341 334 258 28.0 26.9 268 266
Sr 976 991 577 307 1385 1361 848 827 924 943 901
Y 218 222 37.0 58.0 331 322 24.4 25.0 26.0 276 26.7
zr 254 260 259 248 293 286 157 163 168 177 171
Nb 56.4 57.5 65.0 64.0 58.7 57.6 495 52.0 55.3 55.7 54.6
Cs 0.58 0.58 - - 0.35 0.34 0.32 - 0.35 0.37 0.34
Ba 613 623 453 317 577 565 447 479 512 528 500
La 44.1 45.4 65.2 90.8 442 428 428 515 49.6 514 486
Ce 932 95.0 138 164 105 101 88.1 110 101 103 98.3
Pr 106 108 166 238 134 13.0 9.9 124 113 116 112
Nd 425 437 62.6 89.3 59.5 57.6 39.4 474 455 475 45.7
Sm 8.39 8.65 120 176 128 123 8.27 10.1 9.60 9.83 9.60
Eu 278 283 3.76 5.38 417 4.03 272 339 313 319 314
Gd 7.08 7.23 107 15.7 110 106 712 9.20 827 8.93 853
Th 0.89 0.94 150 230 1.40 135 0.93 130 1.08 114 110
Dy 484 4.99 8.00 122 7.55 7.31 5.05 6.60 5.94 6.23 6.05
Ho 0.79 0.81 130 210 124 119 0.82 110 0.97 101 1.00
Er 1.96 204 3.30 5.30 3.01 294 203 260 237 253 241
m 0.23 0.25 0.44 0.69 0.34 0.34 0.22 031 0.26 0.29 0.27
Yb 143 148 2.60 4.10 212 202 1.40 170 164 17 169
Lu 0.19 0.19 0.36 0.60 0.28 0.26 0.18 0.24 0.22 023 0.22
Hf 5.33 5.54 5.80 6.20 6.42 6.12 314 3.90 3.76 401 3.92
Ta 3.04 281 4.80 5.30 334 293 201 2.80 234 235 237
Pb 355 339 - 6.00 282 259 3.06 - 3.68 364 359
Th 487 511 6.90 7.70 352 3.40 4.65 6.40 5.73 6.07 5.69
u 129 129 1.40 7.70 0.97 0.91 1.08 6.40 128 127 126
" -": not detected
* Analyzed by ActLab
Table. 3 continued
YK18-08 'YK18-08 'YK18-08 'YK19-058 YK19-05S YK19-05S8 YK19-058 'YK19-058 'YK19-058 'YK19-058 YK19-05S YK19-05S8
6K#1522R13 6K#1522R16 6K#1522R17 6K#1544R04
Glass Glass Glass Glass ‘Whole rock Glass Glass Glass Glass Whole rock Glass Glass
LA-ICPMS LA-ICPMS LA-ICPMS LA-ICPMS * LA-ICPMS LA-ICPMS LA-ICPMS LA-ICPMS * LA-ICPMS LA-ICPMS
8.06 853 842 5.54 552 6.00 6.19 6.21 6.20 6.16
283 277 294 1.60 188 189 180 228 238 214
215 197 206 225 240 223 227 237 220 220 228 236
217 213 209 189 222 188 200 201 203 215 197 191
231 203 203 334 350 317 269 267 292 330 285 273
44.3 472 46.8 423 49.0 427 421 418 449 47.0 434 420
280 303 29.7 142 140 145 174 174 17.0 17.0 17.0 164
930 1063 1086 565 487 568 622 643 579 519 595 604
270 279 296 228 20.0 224 25 237 229 21.0 240 251
173 184 194 122 120 122 134 140 123 122 128 132
55.7 64.2 65.7 240 230 240 251 259 270 250 273 274
0.36 0.41 0.40 0.18 - 0.20 022 0.21 0.25 - 0.25 023
514 584 590 255 219 254 292 301 286 259 297 297
493 58.1 60.9 26.8 26.1 26.6 286 298 278 28.0 288 295
101 120 122 56.6 62.8 56.5 58.8 60.4 59.8 66 60.9 60.0
15 133 138 6.86 737 6.79 7.10 7.42 7.20 7.60 7.34 741
46.6 533 55.7 293 30.0 29.0 303 317 304 313 313 318
971 108 114 6.65 7.00 6.64 6.82 721 6.79 710 7.10 7.27
321 358 367 224 241 223 228 238 234 242 239 244
8.57 9.42 9.92 6.29 6.80 6.26 6.53 6.82 6.45 6.90 6.75 6.90
112 120 127 0.85 1.00 085 0.87 0.93 0.89 1.00 091 0.96
6.10 6.38 6.81 4.89 5.30 483 488 5.10 491 5.40 517 533
1.00 1.02 110 0.83 0.90 0.82 0.84 0.87 0.84 0.90 0.89 091
246 247 263 212 230 213 210 222 210 230 227 232
0.28 0.28 0.30 0.26 0.28 0.26 0.26 0.26 0.26 0.29 0.28 027
170 167 175 157 1.70 157 152 160 158 170 1.66 171
022 0.21 0.22 0.21 0.23 021 0.20 0.22 0.21 0.22 0.23 023
3.95 4.08 4.36 295 310 295 3.20 339 295 3.00 312 318
240 263 277 1.08 1.30 110 116 123 121 140 123 124
371 4.38 429 1.67 - 176 182 185 194 - 1.98 182
5.69 6.88 7.29 247 2.80 247 278 289 272 3.00 285 295
131 157 158 0.62 2.80 0.63 0.66 0.66 0.71 3.00 0.68 0.65
(@) (b)e
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Fig. 4. Relationships between the SiO2 and alkali contents. (a) Total alkali vs. silica diagram using the platform of Le

Bas et al. (1986). The dividing line of alkaline and sub-alkaline is from Irvine and Baragar (1971). The

data are plotted as the total 100 wt%. The triangles and circles show the whole-rock and quenched-glass

compositions, respectively. The compositions of the NW Pacific petit-spots are represented by gray

triangles (Hirano and Machida, 2022). The data of the 1203 and 1206 basalts are from Hirano et al.

(2019), and those of the 1466R7 basalts are from Mikuni et al. (2022). (b) K20 vs. Na;O diagram. The

maximum K>O/NaxO value of kimberlite is from PetDB database (https://search.earthchem.org/). The

data of OIB and MORB are compiled from Stracke et al. (2022) as “Expert datasets” in GEOROC

database (https://georoc.eu/georoc/new-start.asp).
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Fig. 7. Primitive mantle (PM, Sun and McDonough, 1989)-normalized trace-element patterns (a)—(g) and element

ratios (h). (g) The compositional range of the study samples and NW Pacific petit-spots (Hirano and

Machida, 2022). (h) The Ba/Nb and Sm/Hf ratios of the petit-spot basalts to discriminate the three groups

after Machida et al. (2015). The data of 1203, 1206 basalts and 1466R7 basalts are from Hirano et al.

(2019) and Mikuni et al. (2022), respectively. The symbols and compiled data in the (h) correspond to

those in Fig. 3.
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Fig. 8. Alteration sensitive elements (Ba and U) vs. insensitive elements (Nb and Th). The symbols and compiled data

correspond to those in Fig. 3.

5.2 Sr-Nd-Pb isotopic composition

The Sr, Nd, and Pb isotopic compositions of the leached, unleached whole rock, and fresh glasses
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in this study (presented in Table 4) were in practically identical ranges of ¥Sr/%6Sr (0.703412—
0.704424), 3Nd/"Nd (0.512694-0.512890), 206Pb/2%Pb (18.6582—18.7778), 207Pb/2%Pb (15.5086—
15.5749), and 2°Pb/?**Pb (38.6506-38.8041) despite their different locations (Figs. 9a—d, Table 4).

The isotopic compositions of the quenched glass and whole rock were identical, indicating that the

characteristics of the melting source could be obtained through the geochemistry of the young and

fresh volcanic quenched glass. The leached and unleached materials of the same sample also had

similar isotopic ratios, except for the 1466R7-003 basalt, which had a relatively high LOI (6.29 wt%)

(Figs. 9a—d). The Sr—Nd-Pb isotopic three-dimensional (3D) plot is shown in Fig. 9e.
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Fig. 9. Sr—Nd-Pb isotopic variations of the petit-spot basalts. The mantle endmembers are derived from a study by

Zindler and Hart (1986). The open triangles in (a)—(d) represent the acid-leached samples. Carbonatite

data were compiled from GEOROC (https://georoc.eu/georoc/new-start.asp) with Bizimis et al. (2003).

Carbonatite data with 3Sr/%Sr > 0.706 by GEOROC were eliminated. The northwestern (NW) Pacific

petit-spots and petit-spots off the Tonga Trench are from Hirano and Machida (2022) and Reinhard et al.
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(2019), respectively. The petit-spots off the Java trench are from Taneja et al. (2016) and Falloon et al.
(2022). The data of 1203 and 1206 basalts are from Hirano et al. (2019). The data of the Wake seamounts
are from studies by Konovalov and Martynov (1992), Koppers et al. (2003), Konter et al. (2008), Natland
(1976), Smith et al. (1989), and Staudigel et al. (1991). The northern hemisphere reference line (NHRL)
and Low Nd (LoNd) arrays are from studies by Hart (1984) and Hart et al. (1986), respectively. (¢) The
three-dimensional (3D) plot of the Sr—Nd-Pb isotopic compositions. The compilation and mantle

endmembers correspond to (a)—(d). The color usages of the plots were the same as (a)—(d).

Table. 4

Sr, Nd, and Pb isotopic compositions of western Pacific petit-spot basalts and measured standards.

Cruise Sample name Sample type 'si*sr Ndr*Nd PP *"Pb/**Pb *®Pbi**'Pb
YK16-01 6K#1466 R3-004 Glass 0.703568 (06) 0.512842 (05) 18.6582 (07) 15.5086 (06) 38.6506 (19)
YK16-01 6K#1466 R7-001 Whole rock leached 0.703790 (05) 0.512817 (07) 18.7054 (20) 15.5337 (20) 38.8041 (50)
YK16-01 6K#1466 R7-001 Whole rock unleached 0.703989 (05) 0.512790 (06)

YK16-01 6K#1466 R7-003 Whole rock leached 0.703933 (11) 0.512815 (05)

YK16-01 6K#1466 R7-003 Whole rock unleached 0.704424 (05) 0.512694 (05) 18.7107 (06) 15.5749 (06) 38.7618 (17)
YK18-08 6K#1521 R04 Glass 0.703605 (05) 0.512832 (04) 18.6924 (06) 15.5428 (06) 38.7005 (19)
YK18-08 6K#1522 RO1 Whole rock leached 0.703544 (05) 0.512881 (06) 18.7778 (09) 15.5209 (08) 38.7991 (22)
YK18-08 6K#1522 RO1 Whole rock unleached 0.703590 (05) 0.512866 (06) 18.7705 (07) 15.5248 (07) 38.7905 (22)
YK18-08 6K#1522 RO1 Glass 0.703656 (06) 0.512872 (04) 18.7773 (08) 15.5178 (07) 38.7904 (21)
YK19-05S 6K#1542 R0O3 Whole rock leached 0.703412 (07) 0.512890 (06) 18.7759 (10) 15.5244 (11) 38.7574 (36)
YK19-05S 6K#1542 R05 Glass 0.703517 (06) 0.512847 (04) 18.7653 (08) 15.5224 (07) 38.7345 (19)
YK19-05S 6K#1544 R04 Whole rock leached 0.703480 (04) 0.512883 (05) 18.7413 (14) 15.5262 (14) 38.745 (41)
YK19-05S 6K#1544 R04 Glass 0.703568 (05) 0.512863 (04) 18.7400 (08) 15.5253 (09) 38.7347 (22)
YK10-05 6K#1206 RO4 Glass 0.703492 (05) 0.512890 (04) 18.7074 (06) 15.5109 (07) 38.6970 (19)
YK10-05 6K#1206 R04 duplicate Glass 18.7071 (07) 15.5119 (07) 38.6950 (18)
Type of value _ Standared for each isotope 5sr/%sr “3Nd/A*Nd 26pp/2pp DTpp/2pp 28pp2ppy
Analyzed value JB-2 0.703721 (05) 0.513094 (04) 18.3326 (05) 15.5453 (06) 38.2240 (17)
Reference value JB-2  Sr, Nd: Orihashi et al. (1998), Pb: Tanimizu and Ishikawa (2006) 0.703709 (29) 0.513085 (08) 18.3315 (25) 15.5460 (21) 38.2240 (55)
Analyzed value JNdi-1  (n=2) 0.512103 (05)

Reference value JNdi-1 ~ Wakaki et al. (2007) 0.512101 (11)

Analyzed value SRM987 (n=2) 0.710239 (05)

Reference value SRM987 Weis et al. (2006) 0.710254 (02)

Analyzed value SRM981 16.9303 (05) 15.4828 (06) 36.6710 (16)
Reference value SRM981 Tanimizu and Ishikawa (2006) 16.9308 (10) 15.4839 (11) 36.6743 (30)

Errors shown in parentheses represent 20 and apply to the last two digits.

5.3 Age determination and estimation

The “°Ar/3°Ar ages were determined for two samples (1466R6-001 and 1522R01) (Fig. 10a,
Table S4). The secondary material (e.g., alteration products) plausibly causes the recoil loss and
redistribution of Ar during irradiation of samples, particularly fine-grained groundmass separates of
submarine basalt (Koppers et al., 2000). This effect is negligible for “°Ar/*?Ar dating samples in this
study because the total K/Ca ratios estimated using the irradiated 3°Ark/3” Arc, ratio (0.089 for 1466R6,
0.080 for 1522R01; Table S4) are mostly correspond to the bulk K/Ca ratios calculated using the major
element compositions of Table 2 (0.088 for 1466R6-001, 0.076 for 1522R01). This is supported by

the rock descriptions recognized no secondary materials of crystalline “°Ar/*°Ar specimens. The
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1466R6-001 sample had a plateau age of 3.03 + 0.18 Ma in seven fractions comprising 94.1% released
39Ar. However, the plateau age was recognized as apparently old, owing to excess 4°Ar, as indicated
by the initial “°Ar/3°Ar ratio of 325 + 15, which exceeded the atmospheric ratio (296.0; Nier, 1950) in
the inverse isochron. The inverse isochron age of 2.56 + 0.34 Ma showed the best age estimate for the
1466R6-001 basalt (Fig. 10a). The 1522R01 sample released almost no radiogenic daughter nuclide
of “Ar in the K—Ar age system (Fig. 10a).

The ranges of eruption age were estimated for all the samples using the average thickness (n =
20) of ferromanganese crust and palagonite rind (hydrated quenched glass) with their
deposition/formation rates on the seafloor (ferromanganese crust, 1-10 mm/Myr; Hein et al., 1999;
palagonite, 0.03—0.3 mm/Myr; Moore et al., 1985) (Fig. 10b). Using this approach, the western Pacific
petit-spots were expected to have erupted later than ca. 9 Ma. The ranges of eruption age estimated
from palagonite rind did not overlap with those from ferromanganese crust showing older durations,
although they had general correlations (Fig. 10b). The *°Ar/*?Ar ages of two samples and the U-Pb

age of zircon in the 1203 and 1206 peperites (Hirano et al., 2019) were overlaid within these ranges.
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Fig. 10. Geochronological data. (a) The “°Ar/*’Ar ages of the 6K#1466R6-001 and 6K#1522R01 basalts. The errors
show a 2-sigma confidence level. (b) Estimated relative ages using the thickness of ferromanganese crust
(green bands) and palagonite (hydrated quenched-glass rind; red bands) covered with petit-spot basalts.
These values were estimated using the average for each sample (n = 20). The U-Pb age of zircon in the

6K#1203 and 1206 peperites are from Hirano et al. (2019).
6 Discussion
6.1 Eruptive setting of western Pacific petit-spots
In this study, two crystalline petit-spot basalts were subjected to “°Ar/*°Ar dating. A previously
investigated petit-spot knoll in this region (examined during the 6K#1203 and #1206 dives) was dated

at “younger than 3 Ma” through the U-Pb dating of eight zircons in peperites (Fig. 10b) (Hirano et al.,
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2019). The results revealed that the silica-undersaturated vesicular basalt of 1466R6-001, hosting
ultramafic xenoliths (Mikuni et al., 2022), exhibited a *°Ar/**Ar age of 2.56 + 0.34 Ma (Fig. 10). On
the contrary, the fresh vesicular basalt of 1522R01, which erupted at the foot of the 100-Ma Takuyo-
Daigo seamount (Fig. 2) (Nozaki et al., 2016), did not exhibit radiogenic “°Ar indicating its young age
(~0 Ma) (Fig. 10). The ranges of eruption ages were estimated using the average thickness of
ferromanganese crust and palagonite rind (seawater-hydrated quenched glass) with their
deposition/formation rates on the seafloor. The “°Ar/*°Ar and zircon U-Pb ages were within these
ranges (Fig. 10). The petit-spot volcanic field is surrounded by Cretaceous seamounts (Koppers et al.,
2003) and irregular Paleogene volcanoes (Aftabuzzaman et al., 2021; Hirano et al., 2021). However,
no zero-aged hotspots were observed in this region, and the P-wave tomographic image of the surface
to the core—mantle boundary of the study area did not exhibit a plume-like low-velocity zone (Fig. Ic;
Lu et al., 2019). Furthermore, the MORB-like to more depleted noble-gas isotopic compositions of
the petit-spot knoll (investigated by 6K#1203 and #1206 dives) suggested its upper mantle origin
(Yamamoto et al., 2018). Along with the outer-rise bulge in front of the Mariana Trench detected
through a positive gravitational anomaly (Hirano et al., 2019), these data suggest that the western
Pacific petit-spot volcanoes could have erupted at ~0—3 Ma owing to the flexure of the subducting
Pacific Plate into the Mariana and Ogasawara Trenches.

The petit-spot basalts from the 6K#1542 and #1544 dives could have originated from the same
eruptive source based on their similar petrographic and geochemical features despite a distance of ~6.8
km between both (Figs. 3d, 4, 5, 6, 7, 8, and 9). Contrarily, in terms of their petrography and
geochemistry, the basalts from the 6K#1466 dive are distinguished between the samples from the lava
flows on the abyssal plain (1466R3-001 and 1466R3-004 samples) and the samples from the knoll site
(1466R6-001, 1466R7-001, and 1466R7-003 samples). The 1466R3 basalts were collected at a lava
outcrop 600 m south of the knoll, and the 1466R6 and 1466R7 samples were collected on the western
slope of the knoll (Fig. 3a). The 1466R3 series are glassy with a high SiO content (50.6—51.6 wt%),
including minor plagioclase and fewer vesicles (Figs. 3a and 4a). However, the 1466R6—R7 series
exhibited silica-undersaturated compositions (SiO2 = 39.3-39.4 wt%) and high vesicularities (20—40
vol.%) (Figs. 3b and 4a). Combining these observations with the differences in MgO contents and
trace element compositions, the 1466R3 and 1466R6—R7 basalts are implied to have different parental
magmas (Figs. 6 and 7b). Generally, vesicular samples (1203, 1206, 1466R7, 1522, 1542, and 1544
basalts) are relatively primary (i.e., MgO > 6.63 wt%), whereas nonvesicular samples (1466R3 and
1521 basalts) are evolved (i.e., MgO < 4.43 wt%). This correlates with the compositions of olivine
microphenocrysts in the low forsterite content (Fo# = 100 x Mg/[Mg+Fe?"]cation) of olivine in evolved
basalts and the high Fo# of olivine in the relatively primary basalts (Figs. Sla—c).

The CI chondrite-normalized REE ratios of these samples are within those of OIBs, and the
REE patterns exhibit HREE-depleted patterns (Fig. S3). However, among the western Pacific petit-

25



581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616

spots, each volcano shows distinct REE and trace element ratios (i.e., parental magmas) (Figs. 6 and
S3). Considering the absence of correlation between MgO and the trace element ratios, it is suggested
that each volcano could have originated from isolated sources (i.e., melt ponds) with varying chemical
compositions and degrees of melting (Fig.6). On the contrary, the radiogenic Sr, Nd, and Pb isotopic
ratios of the samples are nearly identical, indicating equivalent components in the source (Fig. 9).

In summarily, (1) the western Pacific petit-spot volcanoes erupted at ~0—3 Ma owing to the plate
flexure related to the subduction of the Pacific Plate into the Mariana Trench (Figs. 1 and 2). (2) The
1542 and 1544 samples originated during the same magmatic event (Fig. 3d). However, the basalts
from the 6K#1466 dive were divided into two parental magmas (1466R3 and 1466R6—R7 basalts)
(Fig. 3a). (3) Each volcano originated from an isolated source and/or ascending processes, as indicated
by independent trace element ratios. Despite this, the geochemical components involved in the source
were similar among the western Pacific petit-spot volcanoes due to the nearly identical Sr, Nd, and Pb
isotopic compositions (Figs. 6 and 9). The variation in trace element compositions among the
volcanoes is plausibly attributed to the degree of contribution of carbonatite flux and/or the recycled

crustal component to the source, as discussed below.

6.2 Petit-spot magma composition and its evaluation

Post-eruption alteration in seawater may have affected the chemical composition of oceanic
basalts. Thus, various approaches, including petrographic observation, geochemical investigation, and
acid leaching, have been employed to evaluate the primary features and the removal of this effect for
isotopic analysis (Hanano et al., 2009; Melson et al., 1968; Miyashiro et al., 1971; Nobre Silva et al.,
2009; Resing and Sansone, 1999; Staudigel and Hart, 1983; Zakharov et al., 2021). The study samples
exhibit whole-rock LOI of <1.72 wt%, except for two relatively altered samples, 1466R7-001 (LOI =
2.68 wt%) and R7-003 (LOI = 6.29 wt%) basalts. Pristine quenched glasses are preserved in most of
the samples, excluding three exceptional samples (1466R6-001, R7-001, and R7-003 basalts). Positive
correlations exist between the alteration-insensitive (e.g., Nb and Th) and -sensitive (e.g., Ba and U)
incompatible elements, indicating that the effect of seawater alteration was not extensive, except for
the 1466R7-001 and R7-003 basalts (Fig. 8). Despite originating from different volcanic edifices, the
positive correlation of all the study samples is attributed to the chemical similarity of source
compositions for certain elements (i.e., the Ba/Nb and U/Th ratios are nearly constant among the
samples) as well as the Sr, Nd, and Pb isotopic compositions (Fig. 9). These findings demonstrate that
most of the petit-spot basalts were largely unaffected by seawater alteration, with a few exceptions,
i.e., 1466R7-001 and R7-003 basalts.

The MgO (4-9 wt%), Ni (<263 ppm), and Cr (<350 ppm) contents in the samples are lower than
the expected values of primary mantle-derived melt (MgO >10 wt%, Ni >400 ppm, Cr >1000 ppm;
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Frey et al., 1978). Similarly, the Mg# (100 x Mg/[Fe*" + Mg]molar) Values range from 41 to 57 (Table
2) against the primary basaltic melt, which is equilibrated with the upper mantle (Mg# = 66—75; Irving
and Green, 1976). No phenocrysts were observed (only microphenocryst), despite such differentiated
compositions as well as most of the NW Pacific petit-spot basalts. This suggests that the western
Pacific petit-spots experienced crystal fractionation in the lithosphere as well as the case in the NW
Pacific petit-spot (Machida et al., 2017; Valentine and Hirano, 2010; Hirano, 2011; Yamamoto et al.,
2014). Consequently, calculating the primary composition of the petit-spot basalts using the mineral
modal composition on the thin section was not possible. However, the major element trends of the
samples indicate the crystal fractionation of the same phases. Negative trends of the A[,O3; content and
the positive trends in CaO and CaO/Al,O3 content with decreasing MgO indicate the occurrence of
olivine, spinel, and clinopyroxene fractionation (Figs. 5c, e, and g). The absence of visible correlations
of K»0, Nax0, Si0, and TiO: contents against MgO suggests insignificant fractionation of plagioclase
and Fe-Ti oxides. The Fe—Ti oxides as minor phases in the groundmasses and plagioclases were only
observed in the most differentiated 1466R3-001 and R3-004 basalts (Figs. 3, 5a, b, d, and h). However,
these major elemental trends should be interpreted as apparent because each petit-spot volcano
originated from an isolated parental magma with a different chemical composition or degree of partial
melting, as discussed above.

The melting source of alkali basalts can be determined more effectively by examining their trace
element composition rather than major elements (Hofmann, 2003; Machida et al., 2014, 2015). Trace
element composition of magma, however, could be modified by crustal and/or mantle assimilation and
fractionation of specific minerals. The relatively primitive basalts (1203, 1206, 1466R6, R7, 1522,
1542, and 1544 samples) contained xenocrystic olivines and partly ultramafic xenoliths, suggesting a
rapid magma ascent (Hirano et al., 2019; Mikuni et al., 2022; Fig. S4). However, since the stagnation
of ascending petit-spot magma could lead to the formation of fertile peridotite and pyroxene-rich veins
in the middle to lower depths of the lithosphere (Mikuni et al., 2022; Pilet et al., 2016), the chemical
composition of the petit-spot magma could be modified through assimilation with ambient lithospheric
peridotite. According to Hirano and Machida (2022), ascending silica-undersaturated melt would
predominantly consume orthopyroxene (+£spinel) and result in a more silicic composition with Zr and
Hf depletion. This is due to the relatively higher Zr—Hf partition of orthopyroxene than compared to
other trace elements (Pilet et al., 2008; Shaw, 1999; Tamura et al., 2019). The orthopyroxenes of fertile
pyroxenites and lherzolite xenoliths metasomatized by petit-spot melts exhibit Zr and Hf enrichment
(Mikuni et al., 2022; Fig. S5). If this silica-enrichment (i.e., melt-rock interaction) was significant, a
positive correlation between SiO, and Sm/Hf is expected as a mantle assimilation trend. However, the
samples exhibited a negative correlation, similar to those of the NW Pacific petit-spots (Hirano and
Machida, 2022) (Fig. S2). Considering the relation between the Sm and Hf partition coefficients of
clinopyroxene (i.e., D' < D5"; McKenzie and O’Nions, 1991; Kelemen et al., 2003), we suggest that
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the negative correlation between the Sm/Hf and SiO» in the petit-spot basalts probably reflects the
crystal fractionation of clinopyroxene rather than mantle assimilation. The Ba/Nb ratios of the samples
are nearly constant and do not correlate with the MgO and SiO> contents (Figs. 6g and S2g). The lack
of correlation between other trace element ratios, excluding Sm/Hf and Ba/Nb (i.e., La/Y, La/Lu,
Sm/Yb, La/Sm, Nb/Ta, Zr/Hf), and the MgO concentration suggests that crystal fractionation may not
have been involved in those of the incipient melt (Fig. 6). However, independently tracking the
evolution of the trace element composition for each volcano is challenging, given that each volcano
originated from isolated sources. Thus, considering the observations above, the fresh and zero-aged
1522 basalts (having the highest Sm/Hf ratios and lowest SiO; contents among the fresh samples and
higher MgO contents) were selected for further analysis with geochemical modeling. Given that the
1522 samples had MgO in the range of 6.63—7.36 wt%, olivine was expected to be the dominant phase
of crystal fractionation (Asimow and Langmuir, 2003; Helz and Thornber, 1987; Herzberg, 2006). By
applying the olivine maximum fractionation model (Takahashi et al., 1986; Tatsumi et al., 1983) to
test two samples, it was noted that 7-9% olivine addition was required to achieve the olivine
composition corresponding to “Mantle olivine array” in the NiO and Fo# spaces (Figs. S6a, b). The
calculated primary trace element contents did not considerably differ from those of the analytical
compositions (Table S5 and Fig. S6). Thus, the 1522 basalts were assumed to be the most primary

petit-spot basalt samples and were used to evaluate the geochemical modeling results.

6.3 Melting source of western Pacific petit-spots

The depletions observed in specific elements (e.g., Ta, Zr, Hf, and Ti) in the petit-spot basalts
potentially demonstrate the involvement of carbonatitic materials in conjunction with a large amount
of CO» and lower Mg isotopic ratio than that of the normal mantle (Bizimis et al., 2003; Dasgupta et
al., 2009; Hirano and Machida, 2022; Hoernle et al., 2002; Liu et al., 2020; Okumura and Hirano,
2013). Other oceanic lavas originating from the asthenosphere (e.g., Hawaiian rejuvenated lavas and
North Arch volcanoes) exhibited characteristic trace element signatures (i.e., Zr and Hf depletion)
similar to those of petit-spot lavas. This implies that their melting sources were involved with
carbonatitic materials with or without plume-derived components (Fig. S7; Borisova and Tilhac, 2021;
Clague and Frey, 1982; Clague et al., 1990; Dixon et al., 2008; Yang et al., 2003). Additionally, the
involvement of recycled crustal components was inferred from the geochemical features of the petit-
spot basalts, and the upper mantle was revealed to be heterogeneous (Liu et al., 2020; Machida et al.,
2009, 2015). Such a scenario of the source for petit-spot magma aligns with the previously suggested
petrogenesis of alkaline rocks explained by the addition of CO»-rich components and/or recycled
crustal materials with or without sediment to the mantle (e.g., Dasgupta et al. 2007; Hofmann, 1997).

Conversely, the melting of an amphibole-rich metasomatic vein explains the major and trace element
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composition of alkali basalts (Pilet et al., 2008; Pilet, 2015). However, the experimentally produced
melts exhibit Pb depletion and a positive Nb-Ti anomaly in the PM-normalized trace element patterns
(Fig. S8), which is inconsistent with the petit-spot basalts (Fig. 7). Moreover, Juricek and Keppler
(2023) demonstrated that amphibole dehydration is not the cause for the oceanic LAB through high-
pressure experiments under the realistic conditions. The fertile pyroxenitic xenoliths and pyroxene
xenocrysts in the 1466R6 and R7 basalts, originating from the metasomatic vein related to prior petit-
spot magmatism, had neither amphiboles nor other hydrous minerals (Mikuni et al., 2022).

To explore the involvement of carbonatitic and crustal components in petit-spot melts, a partial
melting model of the heterogeneous mantle is presented. The involvement of carbonatitic fluids and
recycled materials in the genesis of petit-spot melts has been suggested, and the open-system model
with carbonatite influx from the outer system was employed using “OSM-4" by Ozawa (2001), and
by referring the parameters by Borisova and Tilhac (2021). This model is based on the mass
conservation equations of one-dimensional steady-state melting. In this study, the model asset the
critical melt fraction (a.; mass fraction of melt when melt separation begins = melt connectivity
threshold) at 0.005 or 0.01. The system opens to fluxing at a constant melt-separation rate (y) when
the system reaches the a.. The final trapped melt fraction (ay; mass fraction of melt trapped in the
residue) was fixed at ~0 (it was calculated as 107 owing to mass balance). We calculated the trace
element composition of partial melts at various degrees of melting (F) as well as a few rates of influx
(#) and melt separation (y). We assumed a primitive mantle (PM) source as the lherzolite with or
without a normal (N)-MORB source as the recycled oceanic crust (Sun and McDonough, 1989), such
as pyroxenite and eclogite. The recycled crust (N-MORB component) was mixed in the source as
compositional heterogeneity calculated as “0.0SN-MORB + 0.95PM” for trace element concentration.
The mineral phases and their proportions considered were derived only from garnet lherzolite (i.e.,
olivine, orthopyroxene, clinopyroxene, and garnet). The mineral mode of garnet lherzolite (olivine
55%, orthopyroxene 20%, clinopyroxene 15%, and garnet 10%) and the melting reaction mode
(olivine 8%, orthopyroxene —19%, clinopyroxene 81%, and garnet 30%) are based on studies by
Johnson et al. (1990) and Walter (1998), respectively. The proportion of olivine and garnet was also
changed to assess the effect of the garnet modal ratio on the produced melt composition. In this
situation, the clinopyroxene is consumed at a degree of partial melting of ~ 19%; hence, the system
was calculated up to 18% partial melting. The carbonatite melt used in this model as a influx is
“average carbonatite” from a study by Bizimis et al. (2003). The partition coefficient of trace elements
is generally based on a study by McKenzie and O’Nions (1991, 1995), excluding Ti for clinopyroxene
and garnet (Kelemen et al., 2003). The variables of § (influx rate) and y (melt-separation rate) were
changed during the modeling within the mass balance (y = £+ 1). The modeled melts were outputted
as “total melt,” considering the instantaneous and accumulated melts. For the carbonatite composition,

the value of “average carbonatite” from Bizimis et al. (2003) is applied because the chemical
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composition of carbonatite is largely diverse, and this value is recommended for geochemical
modeling (Bizimis et al., 2003). The parameters are detained in Table S6. Consequently, partial melting
of garnet lherzolite with a 10% carbonatite influx to a given mass of source (i.e., garnet lherzolite) can
provide a rough explanation of the trace element pattern of petit-spot basalts (Figs. 11a—e). The most
plausible for petit-spot magma generation involves the presence of a 5% crustal component in the
source (Figs. 11b and d). In addition, having slightly less garnet in the lherzolite source than the modal
ratio of Johnson et al. (1990) offers a better fit for petit-spot characteristics (Fig. 11b). In both scenarios,
incorporating a crustal component in the source produces more plausible outcomes (Figs. 11a—d). The
higher carbonatite influx (# =1.0) could not explain the trace element composition of the petit-spot
basalts (Fig. 11f). A melt connectivity threshold (a.) of 0.01 is considered plausible, as higher
connectivity of melt (i.e., lower a. value) leads to enrichment of LILEs and LREEs (Fig. 11g). The
results also indicate that the melt-separation ratio has no significant impact on the trace element
composition of the calculated melts (Figs. 11d and e). Thereafter, we concluded that the partial melting
of ~5% crustal component-bearing garnet lherzolite with ~10% carbonatite flux to a given mass of the
source plausibly explains the melting source of petit-spot volcanoes (Figs. 11b and d). Assuming that
the trace element composition of 1203, 1206, 1542, and 1544 basalts are also primitive, they could be
explained by the partial melting of garnet lherzolite with 5% crustal component and lower carbonatite
influx rate (f = 0.03) (Fig. S9). Actually, the 1203, 1206, 1542, and 1544 basalts exhibited similar
MgO contents and Mg# to those of the 1522 basalts (Fig. 4 and Table 2). These results provide
quantitative evidence regarding petit-spots' petrogenesis, i.e., the contribution of carbonatite melt and
recycled oceanic crust.

Although the melting source included small proportions of carbonatite melt and crustal
components, these components could have contributed to isotopic composition owing to their
abundant incompatible elements, as opposed to the ambient mantle. Determination of the Sr, Nd, and
Pb isotopic compositions indicated that they had geochemically identical prevalent mantle (PREMA)-
like sources (Fig. 9). Contrary to those of NW Pacific petit-spots, which exhibit EM-1 isotopic
composition (Machida et al., 2009; Liu et al., 2020), the samples herein did not align with any mantle
isotopic endmembers (i.e., depleted MORB mantle (DMM); EM-1 and EM-2; and HIMU; Fig. 9). In
the Pb isotopic space, the present samples did not correlate with those of the neighboring HIMU-like
Cretaceous seamounts (Fig. 9a) (N-Wake, S-Wake seamounts; Konter et al., 2008; Koppers et al.,
2003; Natland, 1976; Smith et al., 1989; Staudigel et al., 1991). For the melting source of the NW
Pacific petit-spot basalts, the involvement of the eclogite/pyroxenite endmember as recycled oceanic
crust and the carbonated endmember was suggested. This suggestion was based on the major and trace
elements and the Mg, Sr, Nd, and Pb isotopic compositions with Mg diffusion modeling (Liu et al.,
2020). The higher FeO/MnO ratios observed in the present melts (65.9—78.0), compared to those of

partial melts originating from peridotite (50—60), are attributed to the presence of recycled pyroxenite
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(Herzberg, 2011), potentially contributing to crustal components in the melting source. However, the
western Pacific petit-spots in this study uniformly displayed a PREMA-like isotopic signature without
extreme endmember contributions, as described previously (Fig. 9). Such isotopic compositions with
the world’s petit-spots can be possibly explained by the diverse mixing proportion of HIMU and EM-
1 components (Fig. 9¢). The isotopic compositions of the NW Pacific petit-spots (off the Japan Trench),
Samoan petit-spots (off the Tonga Trench), petit-spot dikes in Christmas Island (off the Java trench),
and western Pacific petit-spots (off the Mariana Trench in this study) are roughly along the HIMU—
EM-1 mixing line (Fig. 9e). Furthermore, the isotopic compositions of global carbonatites can
generally be explained by the mixing of HIMU and EM-1 (Bell and Tilton, 2002; Hoernle et al., 2002;
Hulett et al., 2016). The contributions of the carbonated material/carbonatite and crustal components
to the melting source were suggested in relation to the origin of HIMU and EM-1 (Collerson et al.,
2010; Hanyu et al., 2011; Wang et al., 2018; Weiss et al., 2016; Workman et al., 2004; Zindler and
Hart, 1986). However, the determination of EM-1 and HIMU components as carbonated components
and recycled crust, respectively, is challenging due to the varied perspectives on each tectonic setting
for the mantle endmember. The variability of global carbonatite isotopic compositions poses
challenges in determining their representative isotope ratios (Fig. 9). Despite these challenges
hindering a quantitative isotopic mixing model, the HIMU-EM-1-like trend observed in global petit-
spot volcanoes suggests the involvement of carbonatitic and recycled crustal materials. In conclusion,
the mass balance models applied to trace elements and the isotopic variations in the petit-spot
volcanoes confirmed the contribution of carbonatite melt and the recycled oceanic crust to the melting
source of the western Pacific petit-spots (Fig. 12). Experimental studies have revealed the diverse
petrogenesis scenarios of carbonatite and carbonatitic alkali-rich magma under high pressures
(Dasgupta et al., 2006; Ghosh et al., 2009). The geochemistry of petit-spot basalts including Mg
isotopes suggested that the conceivable origin of carbonatite related to the petit-spot melt is subducted
“carbonated” pelite, pyroxenite/eclogite, or peridotite stored as diamond or metal carbide in the
reduced lower portion of the upper mantle (Liu et al., 2020; Rohrbach et al., 2007). For instance,
subducted carbonated pelite would melt under high pressure (>8 GPa) through oxidation at the redox
boundary where the iron-wiistite (IW) buffer changes to the quartz—fayalite—magnetite (QFM) buffer
(i.e., redox melting; Grassi and Schmidt, 2011). Chen et al. (2022) demonstrated that the alkali-rich
carbonatite melt could occur at a pressure exceeding 6 GPa, particularly exhibiting K-rich and Na-rich
carbonatites under 612 and >12 GPa, respectively. This pressure-dependent alkalinity of the resulting
carbonatite melts could potentially account for the differences between potassic NW Pacific petit-spot
lavas and present sodic petit-spot lavas (Fig. 4b). On the other hand, an experimental study highlighted
the presence of a carbonate-rich layer in the LAB owing to the horizontally spread carbonate from
around the wedge mantle rather than upwelling from the deep mantle (Hammouda et al., 2020). Several

high pressure—temperature experiments and modeling revealed that the chemical composition of
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intraplate magmas originating from the upper mantle depends on their original depth. Specifically, the

carbonatitic melt can be generated beneath thick cratonic lithosphere (~250-200 km), kimberlitic melt

could be produced at >120 km in depth, and alkali basalt could occur at 100-60-km depth by the

partial melting of “original” CO, and H>O-bearing mantle (Massuyeau et al., 2021). This depth-

dependent variation in composition, i.e., K-rich kimberlite to alkali basalt, may provide an explanation

for the geochemical gap between K-rich NW Pacific petit-spots and K-poor western Pacific petit-spots

(Fig. 4b). Although the multiple origins of carbonatite are merely suggested and remain unclear,

carbon-rich components play a key role in the partial melting of mantle at the LAB (Sifré et al., 2014),

constituting the source of petit-spot magma.
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Fig. 11. Geochemical modeling for the primitive mantle (PM)-normalized trace-element pattern. The calculated

hypothetical melts are a production of carbonatite influx melting of garnet lherzolite with or without 5%

crustal component. Detailed information of the parameters is described in Section 6-3 and Table S6. F'is

the degree of melting (%). The trace-element composition of the western Pacific petit-spot basalts from

the 6K#1522 dive is shown as black lines for comparison. The PM composition of lherzolite and the N-

MORB composition of recycled crust were based on a study by Sun and McDonough (1989). The influx

carbonatite is the “average carbonatite” of a study by Bizimis et al. (2003). The parameters used in the

open-system melting models were as follows: a is a critical melt fraction, af is a final trapped melt

fraction, [ is a melt influx rate, and y is a melt-separation rate. Model results are compared by varying

each parameter, i.e., garnet modal ratio and presence of crustal material (a—d), melt-separation rate (d and

e), carbonatite influx rate (d and f), and critical melt fraction (d and g). Each figure is expressed based on
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Fig. 12. Schematic illustration of the magmatic processes of the western Pacific petit-spot volcanoes.
Carbonatitic melt and recycled oceanic crust potentially induce partial melting of asthenospheric mantle
beneath the western Pacific region. Carbonatitic melt might have originated from a carbon-rich
component horizontally migrated from a subduction zone (Hammouda et al., 2020), or a redox melting
of reduced carbon in the deep mantle (Chen et al., 2022; Grassi and Schmidt, 2011; Rohrbach et al., 2007).
Petit-spot magma stagnated in the lithosphere with fractional crystallization and melt-rock interaction

(Mikuni et al., 2022), and they have erupted at ~0-3 Ma.
7 Conclusion

The occurrence of petit-spot volcanism supports partial melting at the LAB, carrying significant
implications for the characteristics of this geophysical discontinuity. Numerous instances of petit-spot
magmatism occurred on the western Pacific Plate at ~0—3 Ma, originating from similar PREMA-like
melting sources based on “°Ar/*?Ar dating and the Sr, Nd, and Pb isotopic compositions. The mass
balance-based open-system modeling for trace elements revealed that the western Pacific petit-spot
magma was generated by the partial melting of a small amount (5%) of oceanic crust-bearing garnet
lherzolite with 3%—10% carbonatite influx to a given mass of the source. The isotopic compositions
of Sr, Nd, and Pb of the study samples, in conjunction with those of the NW Pacific petit-spots, petit-
spots off the Tonga and Java Trenches, could be explained by mixing the EM-1-like and HIMU-like
components, contributing to the subducted carbonated/crustal materials. The tectonic-induced

magmatism, such as a petit-spot, may follow a similar melting mechanism.
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