

Contribution of carbonatite and recycled oceanic crust to petit-spot lavas on the western Pacific Plate

Kazuto Mikuni^{1,2*}, Naoto Hirano^{2,3}, Shiki Machida⁴, Hirochika Sumino⁵, Norikatsu Akizawa⁶, Akihiro Tamura⁷, Tomoaki Morishita⁷, Yasuhiro Kato^{4,8,9}

¹ AIST, Geological Survey of Japan, Research Institute of Geology and Geoinformation, Central 7, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8567, Japan.

² Graduate School of Science, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai 980-8578, Japan.

³ Center for Northeast Asian Studies, Tohoku University, 41 Kawauchi, Aoba-ku, Sendai 980-8576, Japan.

⁴ Ocean Resources Research Center for Next Generation, Chiba Institution of Technology, 2-17-1 Tsudanuma, Narashino 275-0016, Japan.

⁵ Research Center for Advanced Science and Technology, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan

⁶ Atmosphere and Ocean Research Institute, the University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-8564, Japan.

⁷ Earth Science Course, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan.

⁸ Department of Systems Innovation, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

⁹ Submarine Resources Research Center, Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan.

* Correspondence to Kazuto Mikuni (kazuto.mikuni @aist.go.jp)

Authors' e-mail addresses and ORCID numbers

Kazuto Mikuni ^{1,2*}	kazuto.mikuni@aist.go.jp	0000-0001-6939-4333
Naoto Hirano ^{2,3}	nhirano@tohoku.ac.jp	0000-0003-0980-3929
Shiki Machida ⁴	shiki.machida@p.chibakoudai.jp	0000-0002-1069-7214
Hirochika Sumino ⁵	sumino@igcl.c.u-tokyo.ac.jp	0000-0002-4689-6231
Norikatsu Akizawa ⁶	akizawa@g.ecc.u-tokyo.ac.jp	0000-0003-4210-1160
Akihiro Tamura ⁷	aking826@gmail.com	0000-0002-9112-7976
Tomoaki Morishita ⁷	moripta@gmail.com	0000-0002-8724-6868
Yasuhiro Kato ^{4,8,9}	ykato@sys.t.u-tokyo.ac.jp	0000-0002-5711-8304

The manuscript is going to be submitted to *Solid Earth*.

Keywords: Petit-spot volcano, alkali basalt, carbonatite, asthenosphere

40

41 **Abstract**

42

43 Petit-spot volcanoes, occurring due to plate flexure, have been reported globally. As the petit-
44 spot melts ascend from the asthenosphere, they provide crucial information of the lithosphere–
45 asthenosphere boundary. Herein, we examined the lava outcrops of six monogenetic volcanoes formed
46 by petit-spot volcanism in the western Pacific. We then analyzed the $^{40}\text{Ar}/^{39}\text{Ar}$ ages, major and trace
47 element compositions, and Sr, Nd, and Pb isotopic ratios of the petit-spot basalts. The $^{40}\text{Ar}/^{39}\text{Ar}$ ages
48 of two monogenetic volcanoes were ca. 2.6 Ma (million years ago) and ca. 0 Ma. The isotopic
49 compositions of the western Pacific petit-spot basalts suggest geochemically similar melting sources.
50 They were likely derived from a mixture of high- μ (HIMU) mantle-like and enriched mantle (EM)-1-
51 like components related to carbonatitic/carbonated materials and recycled crustal components. The
52 characteristic trace element composition (i.e., Zr, Hf, and Ti depletions) of the western Pacific petit-
53 spot magmas could be explained by the partial melting of ~5% crust-bearing garnet lherzolite with
54 10% carbonatite flux to a given mass of the source, as implied by a mass balance-based melting model.
55 This result confirms the involvement of carbonatite melt and recycled crust in the source of petit-spot
56 melts. It provides insights into the genesis of tectonic-induced volcanoes, including Hawaiian North
57 Arch and Samoan petit-spot-like rejuvenated volcanoes, that have similar trace element composition
58 to petit-spot basalts.

59

60

61 **Short Summary**

62

63 Plate tectonics theory is the motion of rocky plates (lithosphere) over ductile zones
64 (asthenosphere). The causes of the lithosphere–asthenosphere boundary (LAB) are controversial;
65 however, petit-spot volcanism supports the presence of melt at the LAB. We conducted geochemistry,
66 geochronology, and geochemical modeling of petit-spot volcanoes on the western Pacific Plate, and
67 the results suggested that carbonatite melt and recycled oceanic crust induced the partial melting at
68 the LAB.

69

70 **1 Introduction**

71

72 Among the upper mantle-derived alkali basaltic lavas in oceanic settings, those on thicker plates
73 away from the mid-ocean ridge, could be divided into plume-related and non-plume-related volcanoes.
74 Plume-related North Arch and post-erosional (rejuvenated-stage) volcanoes have been reported in
75 Hawaii and Samoa (Bianco et al., 2005; Bizimis et al., 2013; Clague and Frey, 1982; Clague and

76 Moore, 2002; Dixon et al., 2008; Frey et al., 2000; Garcia et al., 2016; Hart et al., 2004; Konter and
77 Jackson, 2012; Koppers et al., 2008; Reinhard et al., 2019; Yang et al., 2003). Nonplume-related
78 intraoceanic alkali volcanoes, known as petit-spot volcanoes, probably originate where nearby plate
79 subduction causes plate flexures and upwelling of asthenospheric magma (Hirano et al., 2006; Hirano
80 and Machida, 2022; Machida et al., 2015, 2017; Yamamoto et al., 2014, 2018, 2020). The occurrence
81 of petit-spot volcanisms supports the presence of melt at the lithosphere–asthenosphere boundary
82 (LAB) below the area at least.

83 The occurrence of melt in the uppermost asthenosphere could be attributed to small-scale
84 convection, the presence of hydrous or carbonatitic components, or the uplift of the lithosphere in
85 response to plate flexure; however, the possibility of such an occurrence remains ambiguous (e.g.,
86 Bianco et al., 2005; Hua et al., 2023; Korenaga, 2020). The presence of CO₂ and
87 carbonated/carbonatitic materials is a significant factor in the formation of alkaline, silica-
88 undersaturated melt in the upper mantle (Dasgupta and Hirschmann, 2006; Dasgupta et al., 2007,
89 2013; Kisieva et al., 2013; Novella et al., 2014). Experimental studies have shown that the solidus of
90 carbonate-bearing peridotite is lower than that of CO₂-free peridotite (Falloon and Green, 1989, 1990;
91 Foley et al., 2009; Ghosh et al., 2009). Moreover, carbonatites and Si-undersaturated melts are
92 generated through the partial melting of CO₂-bearing or carbonated peridotite. The produced melts
93 can exhibit continuous chemical variations depending on pressure (i.e., depth). Carbonatitic melts are
94 produced in the deep asthenosphere (300–110 km), while carbonated or alkali silicate melts are
95 generated in the shallower upper mantle (from ~110 to ~75 or 60 km) (Keshav and Gudfinnsson, 2013;
96 Massuyeau et al., 2015, 2021). Primary carbonated silicate magma and evolved alkali basalts have
97 been simultaneously observed at the post-spreading ridge in the South China Sea (Zhang et al., 2017;
98 Zhong et al., 2021). The occurrence of Hawaiian rejuvenated volcanoes can be attributed to a
99 carbonatite-metasomatized source with or without silicate metasomatism (Borisova and Tilhac, 2021;
100 Dixon et al., 2008; Zhang et al., 2022).

101 Submarine petit-spot volcanoes on the subducting northwestern (NW) Pacific Plate may have
102 originated from carbonate-bearing materials and crustal components (pyroxenite/eclogite) based on
103 characteristic trace elements, enriched mantle (EM)-1-like Sr, Nd, and Pb isotopic, and relatively low
104 Mg isotopic compositions (Liu et al., 2020; Machida et al., 2009, 2015). Particularly, the depletion of
105 specific high-field-strength elements (HFSEs) (i.e., Zr, Hf, and Ti) and the abundance of CO₂ in petit-
106 spot basalts imply that their melting sources are related to carbonated materials (Hirano and Machida,
107 2022; Okumura and Hirano, 2013). The nature of the uppermost part of the asthenosphere beneath the
108 oldest Pacific Plate aged 160 Ma was characterized using the eruptive ages and geochemical properties
109 of six newly observed petit-spot volcanoes and lava outcrops. We verified the contribution of
110 carbonatitic components and crustal materials to the melting source of petit-spot volcanoes to
111 understand the nature of the underlying lithosphere–asthenosphere system and model the geodynamic

112 evolution of the region.

113

114 **2 Background**

115

116 Over the last 20 years, there has been an increase in the understanding of petit-spot volcanic
117 settings, providing valuable insights into the nature of the lithosphere–asthenosphere system,
118 particularly in the NW Pacific region (Hirano et al., 2006; Hirano and Machida, 2022). As other
119 implications, subducted petit-spot volcanic fields with geological disturbances on the seafloor play a
120 role in controlling the hypocentral regions of megathrust earthquakes (Fujiwara et al., 2007; Fujie et
121 al., 2020; Akizawa et al., 2022). Additionally, the vestige of hydrothermal activity due to petit-spot
122 magmatism has recently been reported (Azami et al., 2023).

123 Petit-spot melts emerging from the asthenosphere, which are unrelated to mantle plume, could
124 play a crucial role in clarifying the nature of the LAB (Hirano and Machida, 2022). Their
125 asthenospheric origin was supported by MORB-like noble-gas isotopic ratios, multi-phase saturation
126 experiment, and geochemistry (Hirano et al., 2006; Hirano and Machida, 2022; Machida et al., 2015,
127 2017; Yamamoto et al., 2018). The LAB is recognized as a discontinuous transition in seismic
128 velocities at the base of the lithosphere, and its causes are attributed to hydration, melting, and mineral
129 anisotropy with considerations for the unique characteristics in each tectonic setting (e.g., Rychert and
130 Shearer, 2009). The occurrence of petit-spot volcanoes confirms the existence of melt at the LAB
131 beneath the area at least (Hirano et al., 2006). Recently, similar volcanic activities have been observed
132 globally, including in Java (Sunda) Trench, Tonga Trench, Chile Trench, Mariana Trench, Costa Rica,
133 North American Basin and Range, and the southern offshore of Greenland, implying the universal
134 occurrence of petit-spot and similar magmatism (Axen et al., 2018; Buchs et al., 2013; Falloon et al.,
135 2022; Hirano et al., 2013, 2016, 2019; Reinhard et al., 2019; Taneja et al., 2016; Uenzelmann-Neben
136 et al., 2012; Yamamoto et al., 2018, 2020; Zhang et al., 2019). Although the question of whether the
137 LAB discontinuity is due to the differences in the physical properties of minerals (e.g., Hirth and
138 Kohlstedt, 1996; Kang and Karato, 2023; Karato and Jung, 1998; Katsura and Fei, 2021; Stixrude and
139 Lithgow-Bertelloni, 2005; Wang et al., 2006) or the presence of partial melts remains open (e.g.,
140 Audhkhasi and Singh, 2022; Chantel et al., 2016; Conrad et al., 2011; Debayle et al., 2020; Herath et
141 al., 2022; Hua et al., 2023; Kawakatsu et al., 2009; Mierdel et al., 2007; Sakamaki et al., 2013; Yoshino
142 et al., 2006), the occurrence of petit-spot volcanism indicates the partial melting of the asthenospheric
143 mantle in the region because they erupted on the seafloor without hotspot and ridge activities (Hirano
144 et al., 2006; Hirano and Machida, 2022; Machida et al., 2015, 2017; Yamamoto et al., 2014, 2018,
145 2020).

146 The petit-spot volcanic province on the abyssal plain of the western Pacific is surrounded by
147 Cretaceous seamounts and oceanic islands of the Western Pacific Seamount Province (Koppers et al.,

148 2003) and is located ~100 km southeast of the Minamitorishima (Marcus) Island (Fig. 1a). The study
149 area corresponds to the oldest portion of the Pacific Plate, aged at 160 Ma, and the foot of the outer-
150 rise bulge related to the Mariana subduction system (Hirano et al., 2019; Fig. 1b). Despite several
151 seamounts crosscutting, subduction-related fore-bulge in front of the Mariana Trench was detected in
152 satellite gravity maps and has been numerically modeled (Bellas et al., 2022; Hirano et al., 2019;
153 Zhang et al., 2014, 2020). Petrography, geochemistry, and geochronology of petit-spot basalts and
154 zircons in perperites collected from a knoll suggest that petit-spot magmas in this region ascend from
155 the asthenosphere along the concavely flexed plate in response to subduction into the Mariana Trench
156 at younger than ~3 Ma (Yamamoto et al., 2018; Hirano et al., 2019). Below the study area, a low
157 seismic velocity zone is observed under the lithosphere (Li et al., 2019; Fig. 1c). Notwithstanding the
158 low-velocity anomalies crosscutting the lower mantle (Fig. 1c), no active hotspots (i.e., heat supplies)
159 have been reported around the western Pacific petit-spot province, which is surrounded by Cretaceous
160 Wake seamount chains including Minamitorishima Island and Paleogene intraplate volcanoes
161 (Koppers et al., 2003; Aftabuzzaman et al., 2021; Hirano et al., 2021). Other petit-spot lava outcrops
162 were observed in a volcanic cluster during three research cruises using the research vessel (RV)
163 *Yokosuka* (YK16-01, YK18-08, and YK19-05S) with five dives using the submersible, *Shinkai 6500*
164 (6K#1466, 6K#1521, 6K#1522, 6K#1542, and 6K#1544; Fig. 2); and here, fresh basalts were collected.
165 Information related to the sampling point, depth, and thickness of palagonite rind and manganese-crust
166 as well as the age of the western Pacific petit-spot basalts are provided in Table 1.

167

168 Fig. 1. Geological and geophysical information of the study area. (a) Bathymetry of the western Pacific near the
 169 Mariana Trench. The red box shows the study area to the southeast of Minamitorishima (Marcus)
 170 Island (Fig. 2). The bathymetric data are adopted from ETOPO1 (NOAA National Geophysical Data
 171 Center; <http://www.ngdc.noaa.gov/>). (b) Seafloor age map of the same area as (a). This study area is on
 172 a 160–170 Ma Pacific Plate, called the Jurassic Quiet Zone (JQZ) (Tivey et al. 2006). The present
 173 absolute motion of the Pacific Plate and the seafloor age are derived from studies by Gripp and Gordon
 174 (1990) and Müller et al. (2008), respectively. (c) The cross-section P-wave tomography beneath the
 175 thick yellow line including the study area on the ETOPO1 bathymetry map (left). The bathymetric
 176 images were drawn using the Generic Mapping Tool (GMT6: Wessel et al., 2019). The tomographic
 177 image (right) was drawn using the SubMachine (Hosseini et al., 2018;
 178 <http://www.earth.ox.ac.uk/~smachine/cgi/index.php> on applying the data of Lu et al. (2019).

Table. 1
Information of the collected western Pacific petit-spot basalts

Cruise	Dive	Sample name	Latitude (N)	Longitude (E)	Depth, m	Palagonite rind, mm ^{*1}	Manganese crust, mm ^{*1}	Ar-Ar age, Ma
YK16-01	6K#1466	R3-001	23° 19.1009	154° 15.0950	5453	4.45	7.155	
		R3-04	23° 19.1009	154° 15.0950	5453	3.005	5.805	
		R6-001	23° 19.4475	154° 15.0367	5300	6.61	5.205	2.56±0.34
	6K#1521	R7-001	23° 19.4713	154° 15.0000	5267	5.54	4.31	
		R7-003	23° 19.4713	154° 15.0000	5267	-	-	
		R04	23° 5.0880	154° 23.7360	5546	1.045	5.935	
YK18-08	6K#1521	R05	23° 5.0880	154° 23.7360	5546	-	5.625	
		R01	23° 27.6420	153° 58.3140	5300	6.015	5.78	-0.11±0.23 ^{*2}
		R02	23° 27.6420	153° 58.3140	5300	4.505	2.66	
	6K#1522	R03	23° 27.6420	153° 58.3140	5300	5.44	4.04	
		R05	23° 27.6360	153° 58.3080	5294	2.92	4.785	
		R12	23° 27.4920	153° 58.0620	5189	6.05	5.56	
	6K#1542	R13	23° 27.4920	153° 58.0620	5189	4.545	5.895	
		R14	23° 27.3540	153° 57.8160	5303	2.04	5.475	
		R16	23° 27.4680	153° 57.1200	5182	3.825	3.845	
	6K#1544	R17	23° 27.4680	153° 57.1200	5182	5.19	5.67	
		R03	23° 44.1926	154° 45.6900	5359	3.43	4.26	
		R05	23° 44.1926	154° 45.6900	5359	3.245	4.355	
	6K#1544	R06	23° 44.7064	154° 44.1200	5190	-	-	
		R09	23° 44.7064	154° 44.1200	5190	-	-	
		R04	23° 43.9555	154° 49.4277	5488	4.39	4.955	
		R05	23° 43.9555	154° 49.4277	5488	2.965	4.97	
		R06	23° 43.9555	154° 49.4277	5488	3.425	5.82	

* 1: The samples which have no data of palagonite and/or Mn-crust thickness are due to the lack of them or crumbled.

* 2: This is a reference value due to the lack of radiogenic ^{40}Ar in this sample.

179

180

181 Fig. 2. Detailed bathymetry of the study area. The onboard multibeam data were surveyed during the YK10-05 and
182 the YK18-08 cruises by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). The
183 petit-spot knolls and outcrops were investigated during several dives as 6K#1466, 6K#1521, 6K#1522,
184 6K#1542, and 6K#1544. The pink-colored stars represent the sampling points. The age information was
185 obtained in the present study and Hirano et al. (2019). The bathymetric image was drawn using the GMT
186 (Wessel et al., 2019).
187
188

189 **3 Field observations, sample locations, and petrography**

190

191 Here, the eruption sites of monogenetic volcanoes or lava outcrops are approximately aligned
192 with each dive site numbered 6K#1466, #1521, #1522, #1542, and #1544 conducted using the *Shinkai*
193 6500. The 6K#1466 dive was conducted at two types of monogenetic volcanoes, categorized as glassy
194 type (R3) and crystalline and vesicular type (R6 and R7) based on the geochemical and petrographic
195 descriptions and occurrence of basaltic samples.

196

197 **3.1 YK16-01 cruise and 6K#1466 dive**

198

199 During the YK16-01 cruise, a small conical knoll (ca. 0.04 km³) was investigated by a
200 submersible dive, 6K#1466 (Figs. 2 and 3a). The lava flows, which were observed in a hollow lava
201 tube resulting in sediment-rolling/disturbing eruption, were located ~600 m south of the top of the
202 knoll, featuring extremely fresh and glassy samples (6K#1466R3-001 and R3-004 basalts) (Fig. 3a).
203 Vesicular pillow basalts were collected on the western slope of the knoll (samples 6K#1466R6-001,
204 R7-001, and R7-003; Fig. 3a). While the strong acoustic reflection could not entirely distinguish the
205 petit-spot lava fields in ferromanganese nodule fields, the 6K#1466 dive revealed lava outcrops using
206 a sub-bottom profiler (SBP) and a multinarow-beam echo sounder (MBES). Specifically, the petit-
207 spot lava field, as an acoustically opaque layer, exhibited a vigorous backscattering intensity in the
208 MBES, along with the distributions of the basement and sediment layers in the SBP.

209 The 6K#1466R3-001 and R3-004 samples were extremely fresh glassy basalts. The samples
210 exhibited similar petrographic features (Fig. 3a). These samples were enveloped by a 3.0–4.5-mm-
211 thick palagonite layer (hydrated quenched glass), with their outermost parts being surrounded by a
212 5.8–7.2-mm-thick ferromanganese crust (Fig. 3a). They were less vesicular (<3 vol.%) and were
213 dominantly composed of basaltic glass, euhedral–subhedral olivine microphenocrysts (~100–500 µm
214 in size), ferrotitanium oxide (<50 µm in size), and minor plagioclase (~500 µm in size) (Fig. 3a). No
215 secondary phases such as clay minerals were observed.

216 The 6K#1466R6-001, R7-001, and R7-003 basalts, which were covered with a 4.3–5.2-mm-
217 thick ferromanganese crust over 5.5–6.6-mm-thick palagonite rinds, exhibited high vesicularity (20–
218 40 vol.%) (Fig. 3a). Mikuni et al. (2022) reported certain pyroxene-dominated xenocrysts and
219 peridotite xenoliths. The basaltic groundmass was characterized by needle-shaped clinopyroxene (50–
220 400 µm in size), subhedral olivine partly with aureoles of iddingsite (up to 100 µm in size),
221 ferrotitanium oxide, minor spinel (up to 10 µm in size), glass, and crystallite, notably without
222 remarkable phenocrysts (Fig. 3a). The photomicrograph of R6-001 is shown in Fig. 3a.

223

224 **3.2 YK18-08 cruise and 6K#1521 and 6K#1522 dives**

225
226 Two submersible dives (6K#1521 and #1522) were conducted during the YK18-08 cruise to
227 investigate petit-spot volcanoes. During the 6K#1521 dive, a small lava outcrop was identified in the
228 abyssal plain by tracing a strong acoustic reflection, which was expected to originate from intrusive
229 rock bodies, in the sedimentary layer detected by deep-sea SBP equipped on the *Shinkai* 6500. The
230 strong reflective surface gradually became shallow during the navigation, revealing the small lava
231 outcrop (Figs. 2 and 3b). Fresh and massive (nonvesicular) basalts were collected from this outcrop
232 (samples 6K#1521R04 and R05; Fig. 3b). The samples obtained from the 6K#1522 dive at a seamount
233 exhibited highly irregular shapes, and massive lava flows, pillows, and lava breccia were observed
234 (Fig. 3c). All the samples were fresh vesicular basalts (6K#1522R01, R02, R05, R12, R13, R16, and
235 R17; Fig. 3c).

236 The fresh, massive, and nonvesicular basalts were collected during the 6K#1521 dive (R04 and
237 R05) comprised euhedral olivine microphenocrysts (150–400 μm in size), two types of ferrotitanium
238 oxide (50–150 μm in size), and crystallite (Fig. 2b). Secondary phases were not observed. They were
239 covered with a 5.6–5.9-mm-thick ferromanganese crust and a ~1.0-mm-thick palagonite rind (Fig. 3b),
240 however, R05 did not have palagonite rinds. The photomicrograph of R04 is shown in Fig. 3b.

241 The seven fresh basalts collected during the 6K#1522 dive (6K#1522R01, R02, R05, R12, R13,
242 R16, and R17), exhibited high vesicularity (20–40 vol.%) with 2.9–6.0-mm-thick palagonite rinds
243 covered with 2.7–5.9-mm-thick ferromanganese crusts (Fig. 3c). Euhedral–subhedral olivine
244 microphenocrysts (glomeroporphritic, 30–200 μm in size), radial–needle-shaped clinopyroxene,
245 iddingsite (<200 μm in size), spinel, and glass with minor xenocrystic olivines were observed (Fig.
246 3c). The photomicrograph of R01 is shown in Fig. 3c.

247
248 **3.3 YK19-05S cruise and 6K#1542 and 6K#1544 dives**

249
250 A petit-spot knoll and associated lava flows were investigated by the 6K#1542 and #1544 dives
251 during the YK19-05S cruise (Fig. 2). During the 6K#1542 dive, geological survey and rock sampling
252 were conducted from two points on the eastern slope of the knoll (Figs. 2 and 3d). The 6K#1542R03
253 and R05 basalts were collected from the lava-breccia field covered with a thin ferromanganese crust
254 (Fig. 3d). Additionally, samples R06 and R09 were obtained from the lobate-surface lava between
255 tubular lavas closer to the summit than R03 and R05 (Fig. 3d).

256 High-resolution (one-meter scale) bathymetric mapping was successfully conducted during the
257 6K#1544 dive, which can contribute to future oceanographic investigations using a human-occupied
258 vehicle (Kaneko et al., 2022). Several mounds, 10–20 m in height and a few hundred meters in
259 diameter, were recognized during this acoustic survey (Fig. 3d). We observed these mounds and
260 collected samples from outcrops during the second half of the dive. Furthermore, pillow lavas, tumuli,

261 and lava breccias were observed, and basaltic samples (6K#1544R04, R05, and R06) were collected
 262 (Fig. 3d).

263 Four vesicular basalts (10–30 vol.% vesicularity; 6K#1542R03, R05, R06, and R09) were
 264 covered with 4.3–4.4-mm-thick ferromanganese crusts. The outer palagonitic rinds were 3.2–3.4-mm-
 265 thick (Fig. 3d). Euhedral–subhedral olivine microlites (up to sizes of 300 μm) and microphenocrysts
 266 were glomeroporphyritic (Fig. 3d). The groundmass was dominated by needled dendritic
 267 clinopyroxenes (~100 μm in size), along with olivine, spinel, glass, and xenocrystic olivine megacrysts.
 268 The photomicrograph of R06 is shown in Fig. 3d.

269 Basaltic samples from the 6K#1544 dive (6K#1544R04, R05, and R06) were covered with
 270 ferromanganese crust (5.0–5.8-mm thick) over palagonitic rinds (3.4–4.4-mm thick). All the samples
 271 exhibited high vesicularity in the range of 20–35 vol.% (Fig. 3d). They comprised olivine
 272 microphenocrysts (30–250 μm in size, euhedral–subhedral or columnar), clinopyroxene (<100 μm ,
 273 needled, columnar, radial or dendritic shape), spinel, and glass without secondary phases (Fig. 3d).

274 The photomicrograph of R04 is shown in Fig. 3d. During macroscopic observations, practically
 275 all the basalts from the 6K#1542 and 6K#1544 dives exhibited similar vesicularity and freshness.
 276 Their geochemical features were also similar to each other and are described in Sect. 5-1 and 5-2.

277

278

(b)

279

(c)

280

281

282 Fig. 3. Bathymetric map with photos of the outcrop, the collected samples, and their photomicrographs with detailed
 283 bathymetry of the sampling points. (a) The 6K#1466, (b) 6K#1521, (c) 6K#1522, and (d) 6K#1542 and
 284 6K#1544 dives using the *Shinkai* 6500 by JAMSTEC. The 1-m gridded bathymetry of the 6K#1544 dive
 285 is shown in (d), obtained using an MBES equipped with the *Shinkai* 6500 over a 100-m resolution map

286 obtained using the surface ship, R/V *Yokosuka* (Kaneko et al., 2022). The photomicrographs of
287 representative samples are shown for plane-polarized light (PPL), cross-polarized light (XPL), and
288 backscatter electron (BSE). Ol, olivine; Cpx, clinopyroxene; Mgt, magnetite; Spl, spinel. The bathymetric
289 images were drawn using the GMT (Wessel et al., 2019).

290

291

292 **4. Analytical methods**

293

294 **4.1 Major and trace element analysis of volcanic glass, mineral, and whole-rock**

295

296 Major element compositions of glasses and minerals were determined using an electron probe
297 micro analyzer (EPMA). JXA-8900R at Atmosphere and Ocean Research Institute (AORI), the
298 University of Tokyo was used for glass analysis and JXA-iHP200F at GSJ, AIST was used for mineral
299 analysis. The analyses were performed using an accelerating voltage of 15 kV, a beam current of 12
300 nA, and a beam diameter of 10 μm for glass and 2 μm for mineral. A peak counting time of 20 s and
301 a background counting time of 10 s were used, except for Ni, for which a peak counting time of 30 s
302 and a background counting time of 15 s. For Na analysis of glass, the peak counting time was 5 s and
303 the background counting time was 2 s. Natural and synthetic minerals were used as standards, and data
304 were corrected using a ZAF online correction program (Akizawa et al., 2021). Major element
305 composition of glass was determined by the mean value of 10 analytical points.

306 Trace element compositions of minerals were determined using a laser ablation-inductively
307 coupled plasma-mass spectrometry (LA-ICP-MS; New Wave Research UP-213 and Agilent 7500s)
308 at Kanazawa University. The Nd: YAG deep UV (ultraviolet) laser's wavelength is 213 nm. The
309 analyses were conducted with 100 μm spot size. A repetition frequency of 6 Hz and a laser energy
310 density of 8 J cm^{-2} were used. NIST612 glass (distributed by National Institute of Standards and
311 Technology) was employed for calibration, using the preferred values of Pearce et al. (1997). Data
312 reduction was undertaken with ^{29}Si as the initial standard, and SiO_2 concentrations were obtained by
313 an electron microprobe analysis (Longerich et al., 1996). BCR-2G (distributed by the United States
314 Geological Survey) was used as a secondary standard to assess the precision of each analytical
315 session (Jochum and Nohl, 2008).

316 Whole-rock major and trace element compositions of rock samples were analyzed by Activation
317 Laboratories Ltd., Canada, using Code 4Lithoresearch Lithogeochemistry and ultratrace5 Exploration
318 Geochemistry Package. The former package uses lithium metaborate/tetraborate fusion with
319 inductively coupled plasma optical emission spectrometry (FUS-ICP-OES) and inductively coupled
320 plasma mass spectroscopy (FUS-ICP-MS) for the major and trace element analyses, respectively. The
321 latter package uses inductively coupled plasma optical emission spectrometry (ICP-OES) and

322 inductively coupled plasma mass spectroscopy (ICP-MS) for the major and trace element analyses,
323 respectively.

324

325 **4.2 Sr, Nd, and Pb isotope analysis**

326

327 **4.2.1 Acid leaching**

328

329 Acid leaching was conducted for the selected basaltic samples on the basis of the procedure of
330 Weis and Frey (1991, 1996) as follows: [1] About 0.3–0.4 or 0.6 g of rock powder is weighed into an
331 acid-washed 15 mL Teflon vial (Savilex®). [2] 10 or 12 mL of 6N (N: normality) HCl were added, and
332 then heated at 80°C for 20–30 min. [3] After heating, the suspension is ultra-sonicated in 60°C water
333 for 20 min. [4] The supernatant is decanted. Steps [2] to [4] were repeated more than 4 times (up to 6
334 times) until the supernatant become clear or pale yellow to colorless. [5] TAMAPURE-AA Ultrapure
335 water (Tama Chemicals; Co., Ltd.), which includes a lower Pb blank than milli-Q H₂O, were added
336 instead of 6N HCl, and the suspension is ultra-sonicated for 20 min. This step is conducted twice. [6]
337 The leached rock powder is dried on a hot plate at 120°C. [7] After cooling, the powder is weighed.

338

339 **4.2.2 Extraction of Pb, Sr, and Nd**

340

341 The extraction of Pb, Sr, and Nd was performed following the procedures of Tanimizu and
342 Ishikawa (2006) and Machida et al. (2009). First, from ~50 to ~100 mg of rock powder was weighted
343 in a 7 mL Teflon vial (designated as “vial A”), and digested using mixed acid composed of HF and
344 HBr. The separation was conducted by cation exchange resin (AG-1X8; Bio-Rad Laboratories Inc.)
345 on the basis of procedures described in Tanimizu and ishikawa (2006). All fractions from the first and
346 second supernatant loading (0.5 M HBr) to the elution of other elements (mixed acid composed of
347 0.25 M HBr and 0.5 M HNO₃) were collected in another 7 mL Teflon vial (designated as “vial B”) for
348 Sr and Nd separation. Finally, Pb was extracted by 1 mL of 1M HNO₃ in another 7 mL Teflon vial
349 (designated as “vial C”). The procedural blanks for Pb totaled less than 23 pg.

350 The Sr and Nd-bearing solution in the vial B was transferred into the vial A containing residues
351 of digested samples. 2 mL of HClO₄ and 2 mL HNO₃ was further added to the vial A, and the residue
352 was dissolved at 110 °C. Both Sr and Nd were separated by column with a cation exchange resin
353 (AG50W-8X; Bio-Rad Laboratories Inc.) and a Ln resin (Eichrom Tech- nologies Inc.) on the basis of
354 procedures described in Machida et al. (2009). The separated Sr and Nd were further purified by
355 column separation with a cation exchange resin. The total procedural blanks for Sr and Nd were less
356 than 100 pg.

357

358 **4.2.3 Analytical procedure**

359

360 Pb isotopic ratios were obtained using the multi-collector ICP-MS (MC-ICP-MS; Neptune plus,
361 Thermo Fisher Scientific), with nine Faraday collectors, at Chiba Institute of Technology (CIT), Japan.
362 The NIST SRM-981 Pb standard was also analyzed and yielded the average values of $^{206}\text{Pb}/^{204}\text{Pb} =$
363 16.9303 ± 0.0005 , $^{207}\text{Pb}/^{204}\text{Pb} = 15.4828 \pm 0.0006$, and $^{208}\text{Pb}/^{204}\text{Pb} = 36.6710 \pm 0.0016$. These
364 correspond to previous values determined using MC-ICP-MS with Tl normalization, but they were
365 slightly lower than values determined by TIMS in Tanimizu and Ishikawa (2006) from the ^{207}Pb - ^{204}Pb
366 double-spike. Reproducibility was monitored by an analyses of the JB-2 GSJ standard, and the
367 obtained values were $^{206}\text{Pb}/^{204}\text{Pb} = 18.3326 \pm 0.0005$, $^{207}\text{Pb}/^{204}\text{Pb} = 15.5453 \pm 0.0006$, and $^{208}\text{Pb}/^{204}\text{Pb}$
368 = 38.2240 ± 0.0017 .

369 Sr and Nd isotopic analyses for powdered rocks and glasses were conducted using the thermal
370 ionization mass spectrometry (TIMS; Triton XT, Thermo Fisher Scientific) with nine Faraday
371 collectors, at CIT. 1.5 μL of 2.5M HCl and 0.5M HNO₃ was used for loading of separated Sr and Nd
372 of sample on the single and double Re-filament, respectively. The measured isotopic ratios were
373 corrected for instrumental fractionation by adopting the $^{86}\text{Sr}/^{88}\text{Sr}$ value to be 0.1194 and that of
374 $^{146}\text{Nd}/^{144}\text{Nd}$ to be 0.7219. The average value for the NIST SRM-987 Sr standard was 0.710239
375 ± 0.000005 (2 σ , n = 2), and that for the GSJ JNd-1 Nd standard was 0.512103 ± 0.000005 (2 σ , n = 2).
376 They agree well with values from the literature for the NIST SRM-987 ($^{87}\text{Sr}/^{86}\text{Sr} = 0.710252 -$
377 0.710256; Weis et al., 2006) and JNd-1 ($^{143}\text{Nd}/^{144}\text{Nd} = 0.512101$; Wakaki et al., 2007). Consequently,
378 we did not correct the values of the unknowns for offsets between the measurements and the values
379 for the Sr and Nd standards.

380

381 **4.3 $^{40}\text{Ar}/^{39}\text{Ar}$ dating**

382

383 Samples for $^{40}\text{Ar}/^{39}\text{Ar}$ dating were prepared by separating crystalline groundmass after crushing
384 them to sizes between 100 and 500 μm . The separated groundmass samples were leached by HNO₃ (1
385 mol/L) for one hour to remove clays and altered materials. All samples were wrapped in aluminum
386 foil along with JG-1 biotite (Iwata, 1998), K₂SO₄, and CaF₂ flux monitors. Any amorphous (e.g.,
387 quenched glass) was removed because ^{39}Ar may move from one phase to another in a process known
388 as “recoil.” This can create a disturbed age spectrum when ^{39}Ar is produced from ^{39}K in amorphous
389 material through interaction with fast neutrons during irradiation of the sample. Samples were
390 irradiated for 6.6 days in the Kyoto University Research Reactor (KUR), Kyoto University. Argon
391 extraction and isotopic analyses were undertaken at the Graduate School of Arts and Sciences, the
392 University of Tokyo. The sample gases were extracted by incremental heating of 10 or 11 steps
393 between 600°C and 1500°C. The analytical methods used are the same as those used by Ebisawa et al.

394 (2004) and Kobayashi et al. (2021).

395

396 **5 Results**

397

398 To describe the geochemical and chronological results, each sample group was denoted by its
399 dive number, e.g., the sample group obtained from the 6K#1521 dive was labeled “1521 samples or
400 basalts”. The basalts from the 6K#1466 dive were divided into two groups for R3 (collected from the
401 seafloor south of the knoll) and R6–R7 (sampled on the knoll) based on their geographical,
402 petrological, and compositional differences. The mineral compositions of each petit-spot basalt are
403 shown in Fig. S1 and Table S1, S2 and S3.

404

405 **5.1 Major and trace element compositions**

406

407 The major and trace element compositions for the whole rock and glass of the petit-spot basalts
408 are listed in Table 2 and 3, respectively. The basalt compositions for a petit-spot knoll were reported
409 by Hirano et al. (2019) (expressed as “1203, 1206” in each figure). The data are discussed along with
410 the reported NW Pacific petit-spots (Hirano and Machida, 2022). Using a total alkali vs. silica (TAS)
411 diagram, virtually all the samples were classified as alkalic rocks, but the 1542 and 1544 basalts were
412 plotted near the boundary between alkalic and non-alkalic (Fig. 4a). Two petit-spot basalts (1466R7-
413 001 and R7-003) from the petit-spot knoll were notably silica-undersaturated (i.e., $\text{SiO}_2 = 39.3\text{--}39.4$
414 wt%) and classified as foidite (Mikuni et al., 2022). All the western Pacific petit-spot basalts, except
415 for the 1466R7 basalts, were sodic ($\text{K}_2\text{O}/\text{Na}_2\text{O} = 0.24\text{--}0.58$) and were notably discriminated to the
416 potassic NW Pacific petit-spots (Fig. 4b).

417 Selected major element oxides and trace element ratios vs. MgO plots for the petit-spot basalts
418 are shown in Figs. 5 and 6, respectively. The MgO concentrations of the 1466R3 and 1521 samples
419 each exhibiting similar petrographic features (i.e., nonvesicular, and glassy) were characterized by
420 values (4.0–4.4 wt%) lower than those of other vesicular samples (6.6–9.3 wt%). The K_2O , Na_2O ,
421 Al_2O_3 , and SiO_2 contents negatively correlated with MgO (Figs. 5a–d). The CaO , FeO_{T} , and
422 $\text{CaO}/\text{Al}_2\text{O}_3$ abundances exhibited positive correlations with MgO (Figs. 5e–g). The TiO_2
423 concentrations exhibited no correlations with MgO (Fig. 5h), as well as the selected trace element
424 ratios (Figs. 6a–g) except for the Sm/Hf ratio with positive correlations (Fig. 6h). The Sm/Hf ratio also
425 negatively correlated with SiO_2 (Fig. S2). The study samples exhibited whole-rock loss on ignition
426 (LOI) in the range of 0.67–1.72 wt%, excluding two relatively altered samples, 1466R7-001 (LOI =
427 2.68 wt%) and R7-003 basalts (LOI = 6.29 wt%).

428 The PM-normalized (Sun and McDonough, 1989) trace element patterns for the petit-spot
429 basalts, including those reported by a previous study (Hirano et al., 2019), were shown for each dive

430 compared to the representative ocean island basalt (OIB) in Figs. 7a–f. The petit-spot basalts generally
 431 showed high light rare earth element (LREE)/heavy REE (HREE) ratios. Negative Zr, Hf, Ti, and Y
 432 anomalies were commonly observed in these western Pacific petit-spots as well as those of the NW
 433 Pacific petit-spots (Fig. 7g). The 1466 basalts collected on the seafloor south of the knoll (1466R3-
 434 001 and 1466R3-004 basalts) were compositionally different from those obtained on the knoll
 435 (1466R7-001 and 1466R7-003 samples). The basalts from the 6K#1542 and #1544 dives, collected
 436 from nearby locations, had the same compositions in major and trace element ratios in both whole
 437 rock and glass, respectively (Figs. 4, 5, 6, 7e, and f). These samples in the Ba/Nb and Sm/Hf diagrams
 438 were plotted in the range of “Group 3” in the discrimination of the NW Pacific petit-spot basalts
 439 (Machida et al., 2015), indicating their negative Zr and Hf anomalies without notable U, Th, Nb, and
 440 Ta anomalies in the PM-normalized trace element patterns (Fig. 7h). The Sm/Hf ratio of the
 441 differentiated 1466R3 samples was lower than that of other samples. A positive correlation between
 442 fluid mobile and immobile elements, Ba vs. Nb (Fig. 8a) and U vs. Th (Fig. 8b), respectively, was
 443 observed, excluding the Ba of the 1466R7 samples (Fig. 8a).

444

Table. 2
 Major and trace element compositions of western Pacific petit-spot basalts.

Cruise	YK16-01				YK16-01				YK16-01				YK16-08				YK16-08				YK16-08						
	Sample name	6K#1466R3-001	6K#1466R3-004	6K#1466R7-001	6K#1466R7-003	6K#1521R04	6K#1521R05	6K#1522R01	6K#1522R01	6K#1522R01	6K#1522R02	6K#1522R02	6K#1522R02														
Sample type	Glass	Glass	Glass	Glass	Whole rock	Whole rock	Whole rock	Whole rock	Glass	Glass	Glass																
Method	EPMA	EPMA	EPMA	EPMA	mean of n=10	2 σ	mean of n=10	2 σ	mean of n=10	2 σ	mean of n=10	2 σ	mean of n=10	2 σ	mean of n=10	2 σ	mean of n=10	2 σ	mean of n=10	2 σ	mean of n=10	2 σ	mean of n=10	2 σ	mean of n=10	2 σ	
wt%																											
SiO ₂	51.56	0.93	50.63	0.79	39.40		39.27		48.42	0.36	46.78	0.97	45.92	1.40	45.28		45.90	0.79	45.38	1.56	46.02	0.69					
TiO ₂	2.31	0.20	2.19	0.22	3.82		3.68		3.65	0.30	3.32	0.25	2.37	0.17	2.43		2.51	0.20	2.33	0.13	2.45	0.21					
Al ₂ O ₃	14.99	0.57	15.10	0.37	11.41		11.46		15.12	0.31	14.38	0.45	12.74	0.23	12.48		12.82	0.25	11.99	0.53	12.91	0.14					
Cr ₂ O ₃	-	-	-	-	0.03		0.03		-	-	-	0.01	0.05	0.03	0.02	0.05	0.01	0.05	0.02	0.05	0.01	0.05	0.02	0.04			
FeO ⁺	9.68	0.30	9.17	0.62	15.12		14.90		10.65	0.29	9.77	0.79	11.72	0.16	12.32		11.64	0.42	10.77	1.02	11.62	0.24					
MnO	0.14	0.04	0.14	0.05	0.21		0.20		0.16	0.04	0.14	0.03	0.18	0.04	0.18		0.16	0.04	0.15	0.05	0.17	0.05					
MgO	4.04	0.11	3.99	0.11	9.34		7.66		4.43	0.08	4.36	0.10	7.36	0.17	7.26		7.33	0.10	7.12	0.23	7.14	0.16					
CaO	7.71	0.11	7.41	0.25	11.19		10.02		8.34	0.68	7.80	0.29	10.72	0.14	11.18		10.81	0.22	10.33	0.68	10.79	0.10					
Na ₂ O	4.61	0.24	4.38	0.50	2.15		2.29		3.84	0.31	4.05	0.55	4.16	0.21	3.53		4.16	0.29	4.16	0.24	4.01	0.46					
K ₂ O	2.31	0.08	2.24	0.12	1.65		2.08		2.25	0.27	2.13	0.12	1.38	0.06	1.42		1.40	0.13	1.31	0.10	1.38	0.04					
NiO	0.01	0.03	0.01	0.03	0.03		0.02		-	0.04	-	0.05	0.02	0.03	0.02	0.01	0.04	0.02	0.04	0.02	0.04	0.02	0.04				
P ₂ O ₅	0.93	0.03	0.91	0.06	1.08		1.12		1.53	0.11	1.51	0.03	0.80	0.06	0.83		0.80	0.08	0.82	0.06	0.77	0.04					
Total	98.28		96.16		99.10		99.02		98.38		94.24		97.35		98.67		97.56		94.40		97.31						
Mg#	42.64		43.68		52.42		47.82		42.57		44.33		52.83		51.24		52.89		54.11		52.28						
LOI					2.68		6.29																				

FeO⁺ as total values.

Mg# = 100 × Mg / [Mg+Fe²⁺]_{total}.

- -: not detected

*: Analyzed by ActiLab

Table. 2 continued

YK18-08	YK18-08																									
	6K#1522R13	6K#1522R16	6K#1522R17	6K#1522R03	6K#1542R03	6K#1542R05	6K#1542R06	6K#1542R07	6K#1542R08	6K#1542R09	6K#1542R10	6K#1542R11	6K#1542R12	6K#1542R13	6K#1542R14	6K#1542R15	6K#1542R16	6K#1542R17	6K#1542R18	6K#1542R19	6K#1542R20	6K#1542R21	6K#1542R22	6K#1542R23	6K#1542R24	
Sample type	Glass	Glass	Glass	Glass																						
Method	EPMA	EPMA	EPMA	EPMA																						
mean of n=10	2 σ																									
47.09	0.68	45.22	0.73	45.06	0.98	48.66	1.14	49.35		48.77	1.51	49.66	1.11	50.09	0.93	50.54	0.43	49.08		50.53	0.61	49.59	1.18			
2.50	2.20	2.58	0.20	2.67	0.27	2.11	0.19	2.16		2.13	0.18	2.25	0.22	2.24	0.20	2.04	0.23	2.13		2.08	0.25	2.07	0.24			
13.08	0.33	12.55	0.17	12.55	0.14	13.49	0.18	12.52		13.38	0.19	12.55	0.43	12.78	0.33	13.18	0.12	13.25		12.94	0.34	12.94	0.36			
0.02	0.05	-	-	0.04	-	0.02	0.06	0.04	0.05		0.03	0.07	0.02	0.04	0.04	0.04	0.03	0.05	0.05	0.03	0.05	0.03	0.05	0.03	0.05	
1.74	0.49	11.94	0.40	10.66	0.66	10.05	0.03	11.40		10.47	0.25	10.25	0.31	10.44	0.34	10.44	0.34	11.13		10.77	0.37	10.53	0.49			
0.17	0.05	1.19	0.05	0.18	0.05	0.15	0.04	0.17		0.14	0.04	0.15	0.04	0.16	0.04	0.16	0.04	0.16	0.02	0.16	0.05	0.15	0.05			
6.63	0.64	7.24	0.25	7.24	0.17	7.29	0.17	8.18		7.29	0.20	7.03	0.13	7.11	0.12	7.00	0.16	7.50		7.10	0.15	7.05	0.15			
11.01	0.25	11.17	0.24	11.19	0.25	10.03	0.14	10.74		10.00	0.10	9.90	0.32	10.03	0.24	10.63	0.26	10.67		10.36	0.17	10.33	0.22			
4.16	0.36	4.30	0.33	4.28	0.39	3.30	0.28	2.59		3.36	0.24	3.39	0.19	3.26	0.46	3.54	0.25	2.90		3.52	0.26	3.42	0.28			
1.42	0.17	1.52	0.08	1.51	0.06	0.80	0.05	0.77		0.80	0.06	0.89	0.04	0.91	0.06	0.85	0.08	0.85		0.85	0.06	0.83	0.04			
0.01	0.04	0.01	0.04	0.01	0.04	0.01	0.05	0.02		0.02	0.05	0.02	0.05	0.03	0.05	0.02	0.03	0.02	0.02	0.03	0.02	0.04	0.02			
0.83	0.05	0.95	0.07	0.95	0.03	0.48	0.04	0.50		0.50	0.04	0.51	0.04	0.52	0.06	0.54	0.03	0.52		0.57	0.05	0.55	0.04			
98.66		97.67		97.54		96.96		99.12		96.91		96.														

Case	YK16-01	YK16-01	YK16-01	YK16-01	YK16-01	YK16-08	YK16-08	YK16-08	YK16-08	YK16-08	YK16-08
Sample name	6K#1466R3-001	6K#1466R3-004	6K#1466R7-001	6K#1466R7-003	6K#1521R04	6K#1521R05	6K#1522R01	6K#1522R01	6K#1522R02	6K#1522R05	6K#1522R12
Sample type	Glass	Glass	Whole rock	Whole rock	Glass	Glass	Glass	Whole rock	Glass	Glass	Glass
Method											
μg/g											
Li	7.60	7.32				7.39	7.00	8.10		7.69	7.83
B	2.92	3.17				3.05	3.48	2.38		2.34	2.78
Sc	14.5	15.2	25.0	25.0		15.7	15.4	20.1	21.0	20.6	21.1
V	159	160	353	324		167	157	204	234	208	207
Cr	36.8	37.1	200	190		0.52	0.48	215	190	218	222
Co	29.7	29.9	61.0	57.0		32.8	31.2	46.2	49.0	46.8	47.3
Rb	47.5	47.6	26.0	32.0		34.1	33.4	25.8	28.0	26.9	26.6
Sr	976	991	577	307		1385	1361	848	827	924	943
Y	21.8	22.2	37.0	58.0		33.1	32.2	24.4	25.0	26.0	26.7
Zr	25.6	25.9	248	236		25.6	16.7	163	158	177	171
Nb	56.4	57.5	65.0	64.0		58.7	57.6	49.5	52.0	55.3	55.7
Cs	0.58	0.58				0.35	0.34	0.32		0.35	0.34
Ba	613	623	453	317		577	565	447	479	512	528
La	44.1	45.4	65.2	90.8		44.2	42.8	42.8	51.5	49.6	51.4
Ce	93.2	95.0	138	164		105	101	88.1	110	101	103
Pr	10.6	10.8	16.6	23.8		13.4	13.0	9.9	12.4	11.5	11.2
Nd	42.5	43.7	62.6	69.3		59.5	57.6	59.4	67.4	45.5	45.7
Sm	8.39	8.65	12.0	17.6		12.8	12.3	8.27	10.1	9.60	9.83
Eu	2.78	2.83	3.76	5.38		4.17	4.03	2.72	3.39	3.13	3.14
Gd	7.08	7.23	10.7	15.7		11.0	10.6	7.12	9.20	8.27	8.93
Tb	0.89	0.94	1.50	2.30		1.40	1.35	0.93	1.30	1.08	1.10
Dy	4.84	4.99	8.00	12.2		7.55	7.31	5.05	6.60	5.94	6.05
Er	0.79	0.81	1.30	2.10		1.24	1.19	0.82	1.10	0.97	1.00
Tm	0.23	0.25	0.44	0.69		0.34	0.34	0.22	0.31	0.26	0.27
Yb	1.43	1.48	2.60	4.10		2.12	2.02	1.40	1.70	1.64	1.69
Lu	0.19	0.19	0.36	0.60		0.28	0.26	0.18	0.24	0.22	0.23
Hf	5.33	5.54	5.80	6.20		6.42	6.12	3.14	3.90	3.76	4.01
Ta	3.04	2.81	4.80	5.30		3.34	2.93	2.01	2.80	2.34	2.37
Pb	3.55	3.39	-	6.00		2.82	2.59	3.06	-	3.68	3.59
Th	4.87	5.11	6.9	7.70		3.52	3.40	4.85	6.40	5.73	6.07
U	1.29	1.29	1.40	7.70		0.37	0.91	1.08	6.40	1.28	1.27

*: not detected
*: Analyzed by ActLab

Table 3 continued

YK18-08	YK18-08	YK18-08	YK19-05S								
6K#1522R13	6K#1522R16	6K#1522R17	6K#1522R03	6K#1524R03	6K#1524R05	6K#1524R06	6K#1524R09	6K#1544R04	6K#1544R04	6K#1544R05	6K#1544R06
Glass	Glass	Glass	Glass	Glass	Whole rock	Glass	Glass	Glass	Whole rock	Glass	Glass
LA-ICPMS											
8.06	8.53	8.42	5.54	5.52	6.00	6.19	6.21	6.20	6.20	6.16	6.16
2.83	2.77	2.94	1.60	1.88	1.89	1.80	2.28	2.28	2.38	2.14	2.14
21.5	19.7	20.6	22.5	22.3	22.7	23.7	22.0	22.0	22.8	23.6	23.6
217	213	209	189	188	200	201	203	203	197	191	191
231	203	203	334	350	317	269	292	292	305	295	295
44.3	47.2	46.8	42.3	40.0	42.7	42.1	41.8	44.9	47.0	43.4	42.0
28.0	30.3	28.7	14.2	14.0	14.5	17.4	17.4	17.0	17.0	16.4	16.4
930	1063	1086	565	487	568	622	643	579	519	595	604
27.0	27.9	29.6	22.8	20.0	22.4	22.5	23.7	22.9	21.0	24.0	25.1
173	184	194	122	120	122	134	140	123	122	128	132
55.7	64.2	65.7	24.0	23.0	24.1	25.1	25.9	27.0	25.0	27.3	27.4
0.36	0.41	0.40	0.19	-	0.20	0.22	0.21	0.25	-	0.25	0.23
514	584	590	255	219	254	292	301	286	259	297	297
49.3	58.1	60.9	26.8	26.1	26.6	28.6	29.8	27.8	28.0	28.8	29.5
101	120	122	56.6	62.8	56.5	58.8	60.4	59.8	66	60.9	60.0
11.5	13.3	13.8	6.86	7.37	6.79	7.10	7.42	7.20	7.60	7.34	7.41
46.6	53.3	53.7	29.3	30.0	29.3	30.3	31.7	30.4	31.5	31.3	31.8
9.71	10.8	11.4	6.65	7.00	6.64	8.82	7.21	8.78	7.10	7.10	7.27
3.21	3.58	3.67	2.24	2.41	2.23	2.28	2.38	2.34	2.42	2.39	2.44
8.57	9.42	9.92	6.29	6.80	6.26	6.53	6.82	6.45	6.90	6.75	6.90
1.12	1.20	1.27	0.85	1.00	0.85	0.87	0.93	0.89	1.00	0.91	0.96
6.10	6.38	6.81	4.89	5.30	4.83	4.88	5.10	4.91	5.40	5.17	5.33
1.00	1.02	1.10	0.98	0.90	0.92	0.84	0.97	0.84	0.90	0.89	0.91
2.45	2.47	2.23	2.12	2.30	2.13	2.10	2.22	2.10	2.30	2.27	2.32
0.28	0.28	0.30	0.26	0.28	0.26	0.26	0.26	0.26	0.29	0.28	0.27
1.70	1.67	1.75	1.57	1.70	1.57	1.52	1.60	1.58	1.70	1.66	1.71
0.22	0.21	0.22	0.21	0.23	0.21	0.20	0.22	0.21	0.22	0.23	0.23
3.95	4.08	4.36	2.95	3.10	2.95	3.20	3.39	2.95	3.00	3.12	3.18
2.40	2.63	2.77	1.96	1.30	1.16	1.16	1.23	1.21	1.40	1.23	1.24
3.71	4.38	4.26	1.67	-	1.78	1.82	1.85	1.84	1.98	1.86	1.82
5.69	6.88	7.29	2.47	2.80	2.47	2.78	2.89	2.72	3.00	2.85	2.85
1.31	1.57	1.58	0.62	2.80	0.63	0.66	0.66	0.71	3.00	0.68	0.65

447

449

Fig. 4. Relationships between the SiO₂ and alkali contents. (a) Total alkali vs. silica diagram using the platform of Le Bas et al. (1986). The dividing line of alkaline and sub-alkaline is from Irvine and Baragar (1971). The data are plotted as the total 100 wt%. The triangles and circles show the whole-rock and quenched-glass compositions, respectively. The compositions of the NW Pacific petit-spots are represented by gray triangles (Hirano and Machida, 2022). The data of the 1203 and 1206 basalts are from Hirano et al. (2019), and those of the 1466R7 basalts are from Mikuni et al. (2022). (b) K₂O vs. Na₂O diagram. The maximum K₂O/Na₂O value of kimberlite is from PetDB database (<https://search.earthchem.org/>). The data of OIB and MORB are compiled from Stracke et al. (2022) as “Expert datasets” in GEOROC database (<https://georoc.eu/georoc/new-start.asp>).

Fig. 5. Selected major-element oxides against MgO. The symbols and compiled data correspond to those in Fig. 3.

462

463 Fig. 6. Selected trace-element ratios against MgO. The symbols and compiled data correspond to those in Fig. 3.

464

465
466 Fig. 7. Primitive mantle (PM, Sun and McDonough, 1989)-normalized trace-element patterns (a)–(g) and element
467 ratios (h). (g) The compositional range of the study samples and NW Pacific petit-spots (Hirano and
468 Machida, 2022). (h) The Ba/Nb and Sm/Hf ratios of the petit-spot basalts to discriminate the three groups
469 after Machida et al. (2015). The data of 1203, 1206 basalts and 1466R7 basalts are from Hirano et al.
470 (2019) and Mikuni et al. (2022), respectively. The symbols and compiled data in the (h) correspond to
471 those in Fig. 3.
472

473
474 Fig. 8. Alteration sensitive elements (Ba and U) vs. insensitive elements (Nb and Th). The symbols and compiled data
475 correspond to those in Fig. 3.
476
477

478 5.2 Sr–Nd–Pb isotopic composition

479 The Sr, Nd, and Pb isotopic compositions of the leached, unleached whole rock, and fresh glasses

481 in this study (presented in Table 4) were in practically identical ranges of $^{87}\text{Sr}/^{86}\text{Sr}$ (0.703412–
482 0.704424), $^{143}\text{Nd}/^{144}\text{Nd}$ (0.512694–0.512890), $^{206}\text{Pb}/^{204}\text{Pb}$ (18.6582–18.7778), $^{207}\text{Pb}/^{204}\text{Pb}$ (15.5086–
483 15.5749), and $^{208}\text{Pb}/^{204}\text{Pb}$ (38.6506–38.8041) despite their different locations (Figs. 9a–d, Table 4).
484 The isotopic compositions of the quenched glass and whole rock were identical, indicating that the
485 characteristics of the melting source could be obtained through the geochemistry of the young and
486 fresh volcanic quenched glass. The leached and unleached materials of the same sample also had
487 similar isotopic ratios, except for the 1466R7-003 basalt, which had a relatively high LOI (6.29 wt%)
488 (Figs. 9a–d). The Sr–Nd–Pb isotopic three-dimensional (3D) plot is shown in Fig. 9e.

489

490
491 Fig. 9. Sr–Nd–Pb isotopic variations of the petit-spot basalts. The mantle endmembers are derived from a study by
492 Zindler and Hart (1986). The open triangles in (a)–(d) represent the acid-leached samples. Carbonatite
493 data were compiled from GEOROC (<https://georoc.eu/georoc/new-start.asp>) with Bizimis et al. (2003).
494 Carbonatite data with $^{87}\text{Sr}/^{86}\text{Sr} > 0.706$ by GEOROC were eliminated. The northwestern (NW) Pacific
495 petit-spots and petit-spots off the Tonga Trench are from Hirano and Machida (2022) and Reinhard et al.

496 (2019), respectively. The petit-spots off the Java trench are from Taneja et al. (2016) and Falloon et al.
 497 (2022). The data of 1203 and 1206 basalts are from Hirano et al. (2019). The data of the Wake seamounts
 498 are from studies by Konovalov and Martynov (1992), Koppers et al. (2003), Konter et al. (2008), Natland
 499 (1976), Smith et al. (1989), and Staudigel et al. (1991). The northern hemisphere reference line (NHRL)
 500 and Low Nd (LoNd) arrays are from studies by Hart (1984) and Hart et al. (1986), respectively. (e) The
 501 three-dimensional (3D) plot of the Sr–Nd–Pb isotopic compositions. The compilation and mantle
 502 endmembers correspond to (a)–(d). The color usages of the plots were the same as (a)–(d).

503

Table. 4
 Sr, Nd, and Pb isotopic compositions of western Pacific petit-spot basalts and measured standards.

Cruise	Sample name	Sample type	$^{87}\text{Sr}/^{86}\text{Sr}$	$^{143}\text{Nd}/^{144}\text{Nd}$	$^{206}\text{Pb}/^{204}\text{Pb}$	$^{207}\text{Pb}/^{204}\text{Pb}$	$^{208}\text{Pb}/^{204}\text{Pb}$	
YK16-01	6K#1466 R3-004	Glass	0.703568 (06)	0.512842 (05)	18.6582 (07)	15.5086 (06)	38.6506 (19)	
YK16-01	6K#1466 R7-001	Whole rock leached	0.703790 (05)	0.512817 (07)	18.7054 (20)	15.5337 (20)	38.8041 (50)	
YK16-01	6K#1466 R7-001	Whole rock unleached	0.703989 (05)	0.512790 (06)				
YK16-01	6K#1466 R7-003	Whole rock leached	0.703933 (11)	0.512815 (05)				
YK16-01	6K#1466 R7-003	Whole rock unleached	0.704424 (05)	0.512694 (05)	18.7107 (06)	15.5749 (06)	38.7618 (17)	
YK18-08	6K#1521 R04	Glass	0.703605 (05)	0.512832 (04)	18.6924 (06)	15.5428 (06)	38.7005 (19)	
YK18-08	6K#1522 R01	Whole rock leached	0.703544 (05)	0.512881 (06)	18.7778 (09)	15.5209 (08)	38.7991 (22)	
YK18-08	6K#1522 R01	Whole rock unleached	0.703590 (05)	0.512866 (06)	18.7705 (07)	15.5248 (07)	38.7905 (22)	
YK18-08	6K#1522 R01	Glass	0.703656 (06)	0.512872 (04)	18.7773 (08)	15.5178 (07)	38.7904 (21)	
YK19-05S	6K#1542 R03	Whole rock leached	0.703412 (07)	0.512890 (06)	18.7759 (10)	15.5244 (11)	38.7574 (36)	
YK19-05S	6K#1542 R05	Glass	0.703517 (06)	0.512847 (04)	18.7653 (08)	15.5224 (07)	38.7345 (19)	
YK19-05S	6K#1544 R04	Whole rock leached	0.703480 (04)	0.512883 (05)	18.7413 (14)	15.5262 (14)	38.745 (41)	
YK19-05S	6K#1544 R04	Glass	0.703568 (05)	0.512863 (04)	18.7400 (08)	15.5253 (09)	38.7347 (22)	
YK10-05	6K#1206 R04	Glass	0.703492 (05)	0.512890 (04)	18.7074 (06)	15.5109 (07)	38.6970 (19)	
YK10-05	6K#1206 R04 duplicate	Glass			18.7071 (07)	15.5119 (07)	38.6950 (18)	
Type of value	Standard for each isotope		$^{87}\text{Sr}/^{86}\text{Sr}$	$^{143}\text{Nd}/^{144}\text{Nd}$	$^{206}\text{Pb}/^{204}\text{Pb}$	$^{207}\text{Pb}/^{204}\text{Pb}$	$^{208}\text{Pb}/^{204}\text{Pb}$	
Analyzed value	JB-2			0.703721 (05)	0.513094 (04)	18.3326 (05)	15.5453 (06)	38.2240 (17)
Reference value	JB-2	Sr, Nd: Orihashi et al. (1998), Pb: Tanimizu and Ishikawa (2006)		0.703709 (29)	0.513085 (08)	18.3315 (25)	15.5460 (21)	38.2240 (55)
Analyzed value	JNd-1 (n=2)				0.512103 (05)			
Reference value	JNd-1	Wakaki et al. (2007)			0.512101 (11)			
Analyzed value	SRM987 (n=2)			0.710239 (05)				
Reference value	SRM987	Weis et al. (2006)		0.710254 (02)				
Analyzed value	SRM981					16.9303 (05)	15.4828 (06)	36.6710 (16)
Reference value	SRM981	Tanimizu and Ishikawa (2006)				16.9308 (10)	15.4839 (11)	36.6743 (30)

504 Errors shown in parentheses represent 2σ and apply to the last two digits.

505

506 5.3 Age determination and estimation

507

508 The $^{40}\text{Ar}/^{39}\text{Ar}$ ages were determined for two samples (1466R6-001 and 1522R01) (Fig. 10a,
 509 Table S4). The secondary material (e.g., alteration products) plausibly causes the recoil loss and
 510 redistribution of Ar during irradiation of samples, particularly fine-grained groundmass separates of
 511 submarine basalt (Koppers et al., 2000). This effect is negligible for $^{40}\text{Ar}/^{39}\text{Ar}$ dating samples in this
 512 study because the total K/Ca ratios estimated using the irradiated $^{39}\text{Ar}_\text{K}/^{37}\text{Ar}_\text{Ca}$ ratio (0.089 for 1466R6,
 513 0.080 for 1522R01; Table S4) are mostly correspond to the bulk K/Ca ratios calculated using the major
 514 element compositions of Table 2 (0.088 for 1466R6-001, 0.076 for 1522R01). This is supported by
 515 the rock descriptions recognized no secondary materials of crystalline $^{40}\text{Ar}/^{39}\text{Ar}$ specimens. The

516 1466R6-001 sample had a plateau age of 3.03 ± 0.18 Ma in seven fractions comprising 94.1% released
 517 ^{39}Ar . However, the plateau age was recognized as apparently old, owing to excess ^{40}Ar , as indicated
 518 by the initial $^{40}\text{Ar}/^{36}\text{Ar}$ ratio of 325 ± 15 , which exceeded the atmospheric ratio (296.0; Nier, 1950) in
 519 the inverse isochron. The inverse isochron age of 2.56 ± 0.34 Ma showed the best age estimate for the
 520 1466R6-001 basalt (Fig. 10a). The 1522R01 sample released almost no radiogenic daughter nuclide
 521 of ^{40}Ar in the K–Ar age system (Fig. 10a).

522 The ranges of eruption age were estimated for all the samples using the average thickness ($n =$
 523 20) of ferromanganese crust and palagonite rind (hydrated quenched glass) with their
 524 deposition/formation rates on the seafloor (ferromanganese crust, 1–10 mm/Myr; Hein et al., 1999;
 525 palagonite, 0.03–0.3 mm/Myr; Moore et al., 1985) (Fig. 10b). Using this approach, the western Pacific
 526 petit-spots were expected to have erupted later than ca. 9 Ma. The ranges of eruption age estimated
 527 from palagonite rind did not overlap with those from ferromanganese crust showing older durations,
 528 although they had general correlations (Fig. 10b). The $^{40}\text{Ar}/^{39}\text{Ar}$ ages of two samples and the U-Pb
 529 age of zircon in the 1203 and 1206 peperites (Hirano et al., 2019) were overlaid within these ranges.
 530

531 Fig. 10. Geochronological data. (a) The $^{40}\text{Ar}/^{39}\text{Ar}$ ages of the 6K#1466R6-001 and 6K#1522R01 basalts. The errors
 532 show a 2-sigma confidence level. (b) Estimated relative ages using the thickness of ferromanganese crust
 533 (green bands) and palagonite (hydrated quenched-glass rind; red bands) covered with petit-spot basalts.
 534 These values were estimated using the average for each sample ($n = 20$). The U-Pb age of zircon in the
 535 6K#1203 and 1206 peperites are from Hirano et al. (2019).
 536

537

538 6 Discussion

539

540 6.1 Eruptive setting of western Pacific petit-spots

541

542 In this study, two crystalline petit-spot basalts were subjected to $^{40}\text{Ar}/^{39}\text{Ar}$ dating. A previously
 543 investigated petit-spot knoll in this region (examined during the 6K#1203 and #1206 dives) was dated
 544 at “younger than 3 Ma” through the U–Pb dating of eight zircons in peperites (Fig. 10b) (Hirano et al.,

545 The results revealed that the silica-undersaturated vesicular basalt of 1466R6-001, hosting
546 ultramafic xenoliths (Mikuni et al., 2022), exhibited a $^{40}\text{Ar}/^{39}\text{Ar}$ age of 2.56 ± 0.34 Ma (Fig. 10). On
547 the contrary, the fresh vesicular basalt of 1522R01, which erupted at the foot of the 100-Ma Takuyo-
548 Daigo seamount (Fig. 2) (Nozaki et al., 2016), did not exhibit radiogenic ^{40}Ar indicating its young age
549 (~ 0 Ma) (Fig. 10). The ranges of eruption ages were estimated using the average thickness of
550 ferromanganese crust and palagonite rind (seawater-hydrated quenched glass) with their
551 deposition/formation rates on the seafloor. The $^{40}\text{Ar}/^{39}\text{Ar}$ and zircon U–Pb ages were within these
552 ranges (Fig. 10). The petit-spot volcanic field is surrounded by Cretaceous seamounts (Koppers et al.,
553 2003) and irregular Paleogene volcanoes (Aftabuzzaman et al., 2021; Hirano et al., 2021). However,
554 no zero-aged hotspots were observed in this region, and the P-wave tomographic image of the surface
555 to the core–mantle boundary of the study area did not exhibit a plume-like low-velocity zone (Fig. 1c;
556 Lu et al., 2019). Furthermore, the MORB-like to more depleted noble-gas isotopic compositions of
557 the petit-spot knoll (investigated by 6K#1203 and #1206 dives) suggested its upper mantle origin
558 (Yamamoto et al., 2018). Along with the outer-rise bulge in front of the Mariana Trench detected
559 through a positive gravitational anomaly (Hirano et al., 2019), these data suggest that the western
560 Pacific petit-spot volcanoes could have erupted at ~ 0 –3 Ma owing to the flexure of the subducting
561 Pacific Plate into the Mariana and Ogasawara Trenches.

562 The petit-spot basalts from the 6K#1542 and #1544 dives could have originated from the same
563 eruptive source based on their similar petrographic and geochemical features despite a distance of ~ 6.8
564 km between both (Figs. 3d, 4, 5, 6, 7, 8, and 9). Contrarily, in terms of their petrography and
565 geochemistry, the basalts from the 6K#1466 dive are distinguished between the samples from the lava
566 flows on the abyssal plain (1466R3-001 and 1466R3-004 samples) and the samples from the knoll site
567 (1466R6-001, 1466R7-001, and 1466R7-003 samples). The 1466R3 basalts were collected at a lava
568 outcrop 600 m south of the knoll, and the 1466R6 and 1466R7 samples were collected on the western
569 slope of the knoll (Fig. 3a). The 1466R3 series are glassy with a high SiO_2 content (50.6–51.6 wt%),
570 including minor plagioclase and fewer vesicles (Figs. 3a and 4a). However, the 1466R6–R7 series
571 exhibited silica-undersaturated compositions ($\text{SiO}_2 = 39.3$ –39.4 wt%) and high vesicularities (20–40
572 vol.%) (Figs. 3b and 4a). Combining these observations with the differences in MgO contents and
573 trace element compositions, the 1466R3 and 1466R6–R7 basalts are implied to have different parental
574 magmas (Figs. 6 and 7b). Generally, vesicular samples (1203, 1206, 1466R7, 1522, 1542, and 1544
575 basalts) are relatively primary (i.e., $\text{MgO} > 6.63$ wt%), whereas nonvesicular samples (1466R3 and
576 1521 basalts) are evolved (i.e., $\text{MgO} < 4.43$ wt%). This correlates with the compositions of olivine
577 microphenocrysts in the low forsterite content ($\text{Fo\#} = 100 \times \text{Mg}/[\text{Mg}+\text{Fe}^{2+}]_{\text{cation}}$) of olivine in evolved
578 basalts and the high Fo\# of olivine in the relatively primary basalts (Figs. S1a–c).

579 The CI chondrite-normalized REE ratios of these samples are within those of OIBs, and the
580 REE patterns exhibit HREE-depleted patterns (Fig. S3). However, among the western Pacific petit-

581 spots, each volcano shows distinct REE and trace element ratios (i.e., parental magmas) (Figs. 6 and
582 S3). Considering the absence of correlation between MgO and the trace element ratios, it is suggested
583 that each volcano could have originated from isolated sources (i.e., melt ponds) with varying chemical
584 compositions and degrees of melting (Fig.6). On the contrary, the radiogenic Sr, Nd, and Pb isotopic
585 ratios of the samples are nearly identical, indicating equivalent components in the source (Fig. 9).

586 In summarily, (1) the western Pacific petit-spot volcanoes erupted at ~0–3 Ma owing to the plate
587 flexure related to the subduction of the Pacific Plate into the Mariana Trench (Figs. 1 and 2). (2) The
588 1542 and 1544 samples originated during the same magmatic event (Fig. 3d). However, the basalts
589 from the 6K#1466 dive were divided into two parental magmas (1466R3 and 1466R6–R7 basalts)
590 (Fig. 3a). (3) Each volcano originated from an isolated source and/or ascending processes, as indicated
591 by independent trace element ratios. Despite this, the geochemical components involved in the source
592 were similar among the western Pacific petit-spot volcanoes due to the nearly identical Sr, Nd, and Pb
593 isotopic compositions (Figs. 6 and 9). The variation in trace element compositions among the
594 volcanoes is plausibly attributed to the degree of contribution of carbonatite flux and/or the recycled
595 crustal component to the source, as discussed below.

596

597 **6.2 Petit-spot magma composition and its evaluation**

598

599 Post-eruption alteration in seawater may have affected the chemical composition of oceanic
600 basalts. Thus, various approaches, including petrographic observation, geochemical investigation, and
601 acid leaching, have been employed to evaluate the primary features and the removal of this effect for
602 isotopic analysis (Hanano et al., 2009; Melson et al., 1968; Miyashiro et al., 1971; Nobre Silva et al.,
603 2009; Resing and Sansone, 1999; Staudigel and Hart, 1983; Zakharov et al., 2021). The study samples
604 exhibit whole-rock LOI of <1.72 wt%, except for two relatively altered samples, 1466R7-001 (LOI =
605 2.68 wt%) and R7-003 (LOI = 6.29 wt%) basalts. Pristine quenched glasses are preserved in most of
606 the samples, excluding three exceptional samples (1466R6-001, R7-001, and R7-003 basalts). Positive
607 correlations exist between the alteration-insensitive (e.g., Nb and Th) and -sensitive (e.g., Ba and U)
608 incompatible elements, indicating that the effect of seawater alteration was not extensive, except for
609 the 1466R7-001 and R7-003 basalts (Fig. 8). Despite originating from different volcanic edifices, the
610 positive correlation of all the study samples is attributed to the chemical similarity of source
611 compositions for certain elements (i.e., the Ba/Nb and U/Th ratios are nearly constant among the
612 samples) as well as the Sr, Nd, and Pb isotopic compositions (Fig. 9). These findings demonstrate that
613 most of the petit-spot basalts were largely unaffected by seawater alteration, with a few exceptions,
614 i.e., 1466R7-001 and R7-003 basalts.

615 The MgO (4–9 wt%), Ni (<263 ppm), and Cr (<350 ppm) contents in the samples are lower than
616 the expected values of primary mantle-derived melt (MgO >10 wt%, Ni >400 ppm, Cr >1000 ppm;

617 Frey et al., 1978). Similarly, the Mg# ($100 \times \text{Mg}/[\text{Fe}^{2+} + \text{Mg}]_{\text{molar}}$) values range from 41 to 57 (Table
618 2) against the primary basaltic melt, which is equilibrated with the upper mantle (Mg# = 66–75; Irving
619 and Green, 1976). No phenocrysts were observed (only microphenocryst), despite such differentiated
620 compositions as well as most of the NW Pacific petit-spot basalts. This suggests that the western
621 Pacific petit-spots experienced crystal fractionation in the lithosphere as well as the case in the NW
622 Pacific petit-spot (Machida et al., 2017; Valentine and Hirano, 2010; Hirano, 2011; Yamamoto et al.,
623 2014). Consequently, calculating the primary composition of the petit-spot basalts using the mineral
624 modal composition on the thin section was not possible. However, the major element trends of the
625 samples indicate the crystal fractionation of the same phases. Negative trends of the Al_2O_3 content and
626 the positive trends in CaO and $\text{CaO}/\text{Al}_2\text{O}_3$ content with decreasing MgO indicate the occurrence of
627 olivine, spinel, and clinopyroxene fractionation (Figs. 5c, e, and g). The absence of visible correlations
628 of K_2O , Na_2O , SiO_2 , and TiO_2 contents against MgO suggests insignificant fractionation of plagioclase
629 and Fe–Ti oxides. The Fe–Ti oxides as minor phases in the groundmasses and plagioclases were only
630 observed in the most differentiated 1466R3-001 and R3-004 basalts (Figs. 3, 5a, b, d, and h). However,
631 these major elemental trends should be interpreted as apparent because each petit-spot volcano
632 originated from an isolated parental magma with a different chemical composition or degree of partial
633 melting, as discussed above.

634 The melting source of alkali basalts can be determined more effectively by examining their trace
635 element composition rather than major elements (Hofmann, 2003; Machida et al., 2014, 2015). Trace
636 element composition of magma, however, could be modified by crustal and/or mantle assimilation and
637 fractionation of specific minerals. The relatively primitive basalts (1203, 1206, 1466R6, R7, 1522,
638 1542, and 1544 samples) contained xenocrystic olivines and partly ultramafic xenoliths, suggesting a
639 rapid magma ascent (Hirano et al., 2019; Mikuni et al., 2022; Fig. S4). However, since the stagnation
640 of ascending petit-spot magma could lead to the formation of fertile peridotite and pyroxene-rich veins
641 in the middle to lower depths of the lithosphere (Mikuni et al., 2022; Pilet et al., 2016), the chemical
642 composition of the petit-spot magma could be modified through assimilation with ambient lithospheric
643 peridotite. According to Hirano and Machida (2022), ascending silica-undersaturated melt would
644 predominantly consume orthopyroxene (\pm spinel) and result in a more silicic composition with Zr and
645 Hf depletion. This is due to the relatively higher Zr–Hf partition of orthopyroxene than compared to
646 other trace elements (Pilet et al., 2008; Shaw, 1999; Tamura et al., 2019). The orthopyroxenes of fertile
647 pyroxenites and lherzolite xenoliths metasomatized by petit-spot melts exhibit Zr and Hf enrichment
648 (Mikuni et al., 2022; Fig. S5). If this silica-enrichment (i.e., melt–rock interaction) was significant, a
649 positive correlation between SiO_2 and Sm/Hf is expected as a mantle assimilation trend. However, the
650 samples exhibited a negative correlation, similar to those of the NW Pacific petit-spots (Hirano and
651 Machida, 2022) (Fig. S2). Considering the relation between the Sm and Hf partition coefficients of
652 clinopyroxene (i.e., $D^{\text{Hf}} < D^{\text{Sm}}$; McKenzie and O’Nions, 1991; Kelemen et al., 2003), we suggest that

the negative correlation between the Sm/Hf and SiO₂ in the petit-spot basalts probably reflects the crystal fractionation of clinopyroxene rather than mantle assimilation. The Ba/Nb ratios of the samples are nearly constant and do not correlate with the MgO and SiO₂ contents (Figs. 6g and S2g). The lack of correlation between other trace element ratios, excluding Sm/Hf and Ba/Nb (i.e., La/Y, La/Lu, Sm/Yb, La/Sm, Nb/Ta, Zr/Hf), and the MgO concentration suggests that crystal fractionation may not have been involved in those of the incipient melt (Fig. 6). However, independently tracking the evolution of the trace element composition for each volcano is challenging, given that each volcano originated from isolated sources. Thus, considering the observations above, the fresh and zero-aged 1522 basalts (having the highest Sm/Hf ratios and lowest SiO₂ contents among the fresh samples and higher MgO contents) were selected for further analysis with geochemical modeling. Given that the 1522 samples had MgO in the range of 6.63–7.36 wt%, olivine was expected to be the dominant phase of crystal fractionation (Asimow and Langmuir, 2003; Helz and Thornber, 1987; Herzberg, 2006). By applying the olivine maximum fractionation model (Takahashi et al., 1986; Tatsumi et al., 1983) to test two samples, it was noted that 7–9% olivine addition was required to achieve the olivine composition corresponding to “Mantle olivine array” in the NiO and Fo# spaces (Figs. S6a, b). The calculated primary trace element contents did not considerably differ from those of the analytical compositions (Table S5 and Fig. S6). Thus, the 1522 basalts were assumed to be the most primary petit-spot basalt samples and were used to evaluate the geochemical modeling results.

6.3 Melting source of western Pacific petit-spots

The depletions observed in specific elements (e.g., Ta, Zr, Hf, and Ti) in the petit-spot basalts potentially demonstrate the involvement of carbonatitic materials in conjunction with a large amount of CO₂ and lower Mg isotopic ratio than that of the normal mantle (Bizimis et al., 2003; Dasgupta et al., 2009; Hirano and Machida, 2022; Hoernle et al., 2002; Liu et al., 2020; Okumura and Hirano, 2013). Other oceanic lavas originating from the asthenosphere (e.g., Hawaiian rejuvenated lavas and North Arch volcanoes) exhibited characteristic trace element signatures (i.e., Zr and Hf depletion) similar to those of petit-spot lavas. This implies that their melting sources were involved with carbonatitic materials with or without plume-derived components (Fig. S7; Borisova and Tilhac, 2021; Clague and Frey, 1982; Clague et al., 1990; Dixon et al., 2008; Yang et al., 2003). Additionally, the involvement of recycled crustal components was inferred from the geochemical features of the petit-spot basalts, and the upper mantle was revealed to be heterogeneous (Liu et al., 2020; Machida et al., 2009, 2015). Such a scenario of the source for petit-spot magma aligns with the previously suggested petrogenesis of alkaline rocks explained by the addition of CO₂-rich components and/or recycled crustal materials with or without sediment to the mantle (e.g., Dasgupta et al. 2007; Hofmann, 1997). Conversely, the melting of an amphibole-rich metasomatic vein explains the major and trace element

689 composition of alkali basalts (Pilet et al., 2008; Pilet, 2015). However, the experimentally produced
690 melts exhibit Pb depletion and a positive Nb-Ti anomaly in the PM-normalized trace element patterns
691 (Fig. S8), which is inconsistent with the petit-spot basalts (Fig. 7). Moreover, Juriček and Keppler
692 (2023) demonstrated that amphibole dehydration is not the cause for the oceanic LAB through high-
693 pressure experiments under the realistic conditions. The fertile pyroxenitic xenoliths and pyroxene
694 xenocrysts in the 1466R6 and R7 basalts, originating from the metasomatic vein related to prior petit-
695 spot magmatism, had neither amphiboles nor other hydrous minerals (Mikuni et al., 2022).

696 To explore the involvement of carbonatitic and crustal components in petit-spot melts, a partial
697 melting model of the heterogeneous mantle is presented. The involvement of carbonatitic fluids and
698 recycled materials in the genesis of petit-spot melts has been suggested, and the open-system model
699 with carbonatite influx from the outer system was employed using “OSM-4” by Ozawa (2001), and
700 by referring the parameters by Borisova and Tilhac (2021). This model is based on the mass
701 conservation equations of one-dimensional steady-state melting. In this study, the model asset the
702 critical melt fraction (α_c ; mass fraction of melt when melt separation begins = melt connectivity
703 threshold) at 0.005 or 0.01. The system opens to fluxing at a constant melt-separation rate (γ) when
704 the system reaches the α_c . The final trapped melt fraction (α_f ; mass fraction of melt trapped in the
705 residue) was fixed at ~ 0 (it was calculated as 10^{-6} owing to mass balance). We calculated the trace
706 element composition of partial melts at various degrees of melting (F) as well as a few rates of influx
707 (β) and melt separation (γ). We assumed a primitive mantle (PM) source as the lherzolite with or
708 without a normal (N)-MORB source as the recycled oceanic crust (Sun and McDonough, 1989), such
709 as pyroxenite and eclogite. The recycled crust (N-MORB component) was mixed in the source as
710 compositional heterogeneity calculated as “0.05N-MORB + 0.95PM” for trace element concentration.
711 The mineral phases and their proportions considered were derived only from garnet lherzolite (i.e.,
712 olivine, orthopyroxene, clinopyroxene, and garnet). The mineral mode of garnet lherzolite (olivine
713 55%, orthopyroxene 20%, clinopyroxene 15%, and garnet 10%) and the melting reaction mode
714 (olivine 8%, orthopyroxene 19%, clinopyroxene 81%, and garnet 30%) are based on studies by
715 Johnson et al. (1990) and Walter (1998), respectively. The proportion of olivine and garnet was also
716 changed to assess the effect of the garnet modal ratio on the produced melt composition. In this
717 situation, the clinopyroxene is consumed at a degree of partial melting of $\sim 19\%$; hence, the system
718 was calculated up to 18% partial melting. The carbonatite melt used in this model as a influx is
719 “average carbonatite” from a study by Bizimis et al. (2003). The partition coefficient of trace elements
720 is generally based on a study by McKenzie and O’Nions (1991, 1995), excluding Ti for clinopyroxene
721 and garnet (Kelemen et al., 2003). The variables of β (influx rate) and γ (melt-separation rate) were
722 changed during the modeling within the mass balance ($\gamma \leq \beta + 1$). The modeled melts were outputted
723 as “total melt,” considering the instantaneous and accumulated melts. For the carbonatite composition,
724 the value of “average carbonatite” from Bizimis et al. (2003) is applied because the chemical

composition of carbonatite is largely diverse, and this value is recommended for geochemical modeling (Bizimis et al., 2003). The parameters are detained in Table S6. Consequently, partial melting of garnet lherzolite with a 10% carbonatite influx to a given mass of source (i.e., garnet lherzolite) can provide a rough explanation of the trace element pattern of petit-spot basalts (Figs. 11a–e). The most plausible for petit-spot magma generation involves the presence of a 5% crustal component in the source (Figs. 11b and d). In addition, having slightly less garnet in the lherzolite source than the modal ratio of Johnson et al. (1990) offers a better fit for petit-spot characteristics (Fig. 11b). In both scenarios, incorporating a crustal component in the source produces more plausible outcomes (Figs. 11a–d). The higher carbonatite influx ($\beta = 1.0$) could not explain the trace element composition of the petit-spot basalts (Fig. 11f). A melt connectivity threshold (α_c) of 0.01 is considered plausible, as higher connectivity of melt (i.e., lower α_c value) leads to enrichment of LILEs and LREEs (Fig. 11g). The results also indicate that the melt-separation ratio has no significant impact on the trace element composition of the calculated melts (Figs. 11d and e). Thereafter, we concluded that the partial melting of ~5% crustal component-bearing garnet lherzolite with ~10% carbonatite flux to a given mass of the source plausibly explains the melting source of petit-spot volcanoes (Figs. 11b and d). Assuming that the trace element composition of 1203, 1206, 1542, and 1544 basalts are also primitive, they could be explained by the partial melting of garnet lherzolite with 5% crustal component and lower carbonatite influx rate ($\beta = 0.03$) (Fig. S9). Actually, the 1203, 1206, 1542, and 1544 basalts exhibited similar MgO contents and Mg# to those of the 1522 basalts (Fig. 4 and Table 2). These results provide quantitative evidence regarding petit-spots' petrogenesis, i.e., the contribution of carbonatite melt and recycled oceanic crust.

Although the melting source included small proportions of carbonatite melt and crustal components, these components could have contributed to isotopic composition owing to their abundant incompatible elements, as opposed to the ambient mantle. Determination of the Sr, Nd, and Pb isotopic compositions indicated that they had geochemically identical prevalent mantle (PREMA)-like sources (Fig. 9). Contrary to those of NW Pacific petit-spots, which exhibit EM-1 isotopic composition (Machida et al., 2009; Liu et al., 2020), the samples herein did not align with any mantle isotopic endmembers (i.e., depleted MORB mantle (DMM); EM-1 and EM-2; and HIMU; Fig. 9). In the Pb isotopic space, the present samples did not correlate with those of the neighboring HIMU-like Cretaceous seamounts (Fig. 9a) (N-Wake, S-Wake seamounts; Konter et al., 2008; Koppers et al., 2003; Natland, 1976; Smith et al., 1989; Staudigel et al., 1991). For the melting source of the NW Pacific petit-spot basalts, the involvement of the eclogite/pyroxenite endmember as recycled oceanic crust and the carbonated endmember was suggested. This suggestion was based on the major and trace elements and the Mg, Sr, Nd, and Pb isotopic compositions with Mg diffusion modeling (Liu et al., 2020). The higher FeO/MnO ratios observed in the present melts (65.9–78.0), compared to those of partial melts originating from peridotite (50–60), are attributed to the presence of recycled pyroxenite

(Herzberg, 2011), potentially contributing to crustal components in the melting source. However, the western Pacific petit-spots in this study uniformly displayed a PREMA-like isotopic signature without extreme endmember contributions, as described previously (Fig. 9). Such isotopic compositions with the world's petit-spots can be possibly explained by the diverse mixing proportion of HIMU and EM-1 components (Fig. 9e). The isotopic compositions of the NW Pacific petit-spots (off the Japan Trench), Samoan petit-spots (off the Tonga Trench), petit-spot dikes in Christmas Island (off the Java trench), and western Pacific petit-spots (off the Mariana Trench in this study) are roughly along the HIMU-EM-1 mixing line (Fig. 9e). Furthermore, the isotopic compositions of global carbonatites can generally be explained by the mixing of HIMU and EM-1 (Bell and Tilton, 2002; Hoernle et al., 2002; Hulett et al., 2016). The contributions of the carbonated material/carbonatite and crustal components to the melting source were suggested in relation to the origin of HIMU and EM-1 (Collerson et al., 2010; Hanyu et al., 2011; Wang et al., 2018; Weiss et al., 2016; Workman et al., 2004; Zindler and Hart, 1986). However, the determination of EM-1 and HIMU components as carbonated components and recycled crust, respectively, is challenging due to the varied perspectives on each tectonic setting for the mantle endmember. The variability of global carbonatite isotopic compositions poses challenges in determining their representative isotope ratios (Fig. 9). Despite these challenges hindering a quantitative isotopic mixing model, the HIMU-EM-1-like trend observed in global petit-spot volcanoes suggests the involvement of carbonatitic and recycled crustal materials. In conclusion, the mass balance models applied to trace elements and the isotopic variations in the petit-spot volcanoes confirmed the contribution of carbonatite melt and the recycled oceanic crust to the melting source of the western Pacific petit-spots (Fig. 12). Experimental studies have revealed the diverse petrogenesis scenarios of carbonatite and carbonatitic alkali-rich magma under high pressures (Dasgupta et al., 2006; Ghosh et al., 2009). The geochemistry of petit-spot basalts including Mg isotopes suggested that the conceivable origin of carbonatite related to the petit-spot melt is subducted “carbonated” pelite, pyroxenite/eclogite, or peridotite stored as diamond or metal carbide in the reduced lower portion of the upper mantle (Liu et al., 2020; Rohrbach et al., 2007). For instance, subducted carbonated pelite would melt under high pressure (>8 GPa) through oxidation at the redox boundary where the iron-wüstite (IW) buffer changes to the quartz-fayalite-magnetite (QFM) buffer (i.e., redox melting; Grassi and Schmidt, 2011). Chen et al. (2022) demonstrated that the alkali-rich carbonatite melt could occur at a pressure exceeding 6 GPa, particularly exhibiting K-rich and Na-rich carbonatites under 6–12 and >12 GPa, respectively. This pressure-dependent alkalinity of the resulting carbonatite melts could potentially account for the differences between potassic NW Pacific petit-spot lavas and present sodic petit-spot lavas (Fig. 4b). On the other hand, an experimental study highlighted the presence of a carbonate-rich layer in the LAB owing to the horizontally spread carbonate from around the wedge mantle rather than upwelling from the deep mantle (Hammouda et al., 2020). Several high pressure-temperature experiments and modeling revealed that the chemical composition of

797 intraplate magmas originating from the upper mantle depends on their original depth. Specifically, the
 798 carbonatitic melt can be generated beneath thick cratonic lithosphere (~250–200 km), kimberlitic melt
 799 could be produced at >120 km in depth, and alkali basalt could occur at 100–60-km depth by the
 800 partial melting of “original” CO_2 and H_2O -bearing mantle (Massuyeau et al., 2021). This depth-
 801 dependent variation in composition, i.e., K-rich kimberlite to alkali basalt, may provide an explanation
 802 for the geochemical gap between K-rich NW Pacific petit-spots and K-poor western Pacific petit-spots
 803 (Fig. 4b). Although the multiple origins of carbonatite are merely suggested and remain unclear,
 804 carbon-rich components play a key role in the partial melting of mantle at the LAB (Sifré et al., 2014),
 805 constituting the source of petit-spot magma.

806
 807 Fig. 11. Geochemical modeling for the primitive mantle (PM)-normalized trace-element pattern. The calculated
 808 hypothetical melts are a production of carbonatite influx melting of garnet lherzolite with or without 5%
 809 crustal component. Detailed information of the parameters is described in Section 6-3 and Table S6. F is
 810 the degree of melting (%). The trace-element composition of the western Pacific petit-spot basalts from
 811 the 6K#1522 dive is shown as black lines for comparison. The PM composition of lherzolite and the N-
 812 MORB composition of recycled crust were based on a study by Sun and McDonough (1989). The influx
 813 carbonatite is the “average carbonatite” of a study by Bizimis et al. (2003). The parameters used in the
 814 open-system melting models were as follows: a_c is a critical melt fraction, a_f is a final trapped melt
 815 fraction, β is a melt influx rate, and γ is a melt-separation rate. Model results are compared by varying
 816 each parameter, i.e., garnet modal ratio and presence of crustal material (a-d), melt-separation rate (d and
 817 e), carbonatite influx rate (d and f), and critical melt fraction (d and g). Each figure is expressed based on

818 the difference from the condition in (d).

819

820

821 Fig. 12. Schematic illustration of the magmatic processes of the western Pacific petit-spot volcanoes.

822

Carbonatitic melt and recycled oceanic crust potentially induce partial melting of asthenospheric mantle beneath the western Pacific region. Carbonatitic melt might have originated from a carbon-rich component horizontally migrated from a subduction zone (Hammouda et al., 2020), or a redox melting of reduced carbon in the deep mantle (Chen et al., 2022; Grassi and Schmidt, 2011; Rohrbach et al., 2007). Petit-spot magma stagnated in the lithosphere with fractional crystallization and melt-rock interaction (Mikuni et al., 2022), and they have erupted at ~0–3 Ma.

826

827 7 Conclusion

828

829 The occurrence of petit-spot volcanism supports partial melting at the LAB, carrying significant
830 implications for the characteristics of this geophysical discontinuity. Numerous instances of petit-spot
831 magmatism occurred on the western Pacific Plate at ~0–3 Ma, originating from similar PREMA-like
832 melting sources based on $^{40}\text{Ar}/^{39}\text{Ar}$ dating and the Sr, Nd, and Pb isotopic compositions. The mass
833 balance-based open-system modeling for trace elements revealed that the western Pacific petit-spot
834 magma was generated by the partial melting of a small amount (5%) of oceanic crust-bearing garnet
835 lherzolite with 3%–10% carbonatite influx to a given mass of the source. The isotopic compositions
836 of Sr, Nd, and Pb of the study samples, in conjunction with those of the NW Pacific petit-spots, petit-
837 spots off the Tonga and Java Trenches, could be explained by mixing the EM-1-like and HIMU-like
838 components, contributing to the subducted carbonated/crustal materials. The tectonic-induced
839 magmatism, such as a petit-spot, may follow a similar melting mechanism.

840

841 Authorship contributions

842

845 K. Mikuni and N. Hirano conceived the project and performed all experiments. S. Machida and
846 Y. Kato contributed the Sr, Nd, and Pb isotopic analysis using TIMS and MC-ICP-MS. H. Sumino
847 contributed the $^{40}\text{Ar}/^{39}\text{Ar}$ dating. N. Akizawa, A. Tamura, and T. Morishita helped and performed
848 EPMA and LA-ICP-MS analyses. S. Machida and N. Hirano conducted the research cruises to gain
849 the rock samples. All authors interpreted the data and wrote the manuscript with comments and
850 improvements.

851

852 Competing Interest

853

854 The authors declare that they have no conflict of interest.

855

856 Data availability

857

858 The data newly analyzed in this study and results of geochemical modeling are included in
859 digital format in the online data repository of this paper (Tables 1, 2, 3 and 4, and Supplementary
860 Tables S1 to S6) and the EarthChem online database (DOI will be obtained when it is accepted).

861

862 Acknowledgement

863

864 We would like to thank the captains, crews, and shipboard scientific parties of the R/V *Yokosuka*
865 and the operating team of the submersible *Shinkai* 6500 for their great work during the YK16-01,
866 YK18-08, and YK19-05S cruises. The Kyoto University Research Reactor Institute is greatfully
867 acknowledged in their assistance of undertaking the radiometric dating. We would like to express our
868 great appreciation to Prof. T. Tsujimori (ORCiD: 0000-0001-9202-7312) for his effort in management
869 of the laboratory at Tohoku University. We also thank R. Fukushima (ORCiD: 0000-0003-2683-6757)
870 for improving the wording in the manuscript. We are really grateful Y. Matamura, Y. Shimbo, and Y.
871 Jindo for their help and discussion on scientific matters. The authors would like to thank Enago
872 (www.enago.jp) for the English language review. This research was supported by the Cooperative
873 Program (No. 106, 202) of Atmosphere and Ocean Research Institute, The University of Tokyo. The
874 Japan Society for the Promotion of Science (Grant Numbers 17K05715, 18H03733, 20K04098) also
875 supported this research.

876

877 References

878

879 Aftabuzzaman, M.R., Yomogoda, K., Suzuki, S., Takayanagi, H., Ishigaki, A., Machida, S., Asahara,
880 Y., Yamamoto, K., Hirano, N., Sano, S.-I., Chiyonobu, S., Bassi, D. and Iryu, Y.: Multi-
881 approach characterization of shallow-water carbonates off Minamitorishima and their
882 depositional settings/history, Island Arc, 30, e12400, <https://doi.org/10.1111/iar.12400>, 2021.

883 Akizawa, N., Ozawa, K., Tamura, A., Michibayashi, K. and Arai, S.: Three-dimensional evolution of
884 melting, heat and melt transfer in ascending mantle beneath a fast-spreading ridge segment
885 constrained by trace elements in clinopyroxene from concordant dunites and host
886 harzburgites of the Oman ophiolite, *J. Petrol.*, 57, 777–814,
887 <https://doi.org/10.1093/petrology/egw020>, 2016.

888 Akizawa, N., Ohara, Y., Okino, K., Ishizuka, O., Yamashita, H., Machida, S., Sanfilippo, A., Basch,
889 V., Snow, J.E., Sen, A., Hirauchi, K.-I., Michibayashi, K., Harigane, Y., Fujii, M., Asanuma,
890 H. and Hirata, T.: Geochemical characteristics of back-arc basin lower crust and upper
891 mantle at final spreading stage of Shikoku Basin: an example of Mado Megamullion, *Prog.
892 Earth Planet. Sci.*, 8, 65, <https://doi.org/10.1186/s40645-021-00454-3>, 2021.

893 Akizawa, N., Hirano, N., Matsuzaki, K.M., Machida, S., Tamura, C., Kaneko, J., Iwano, H.,
894 Danhara, T. and Hirata, T.: A direct evidence for disturbance of whole sediment layer in the
895 subducting Pacific plate by petit-spot magma–water/sediment interaction, *Mar. Geol.*, 444,
896 106712, <https://doi.org/10.1016/j.margeo.2021.106712>, 2022.

897 Asimow, P. D. and Langmuir, C. H.: The importance of water to oceanic mantle melting regimes,
898 *Nature*, 421, 815–820, <https://doi.org/10.1038/nature01429>, 2003.

899 Audhkhasi, P. and Singh, S.C.: Discovery of distinct lithosphere–asthenosphere boundary and the
900 Gutenberg discontinuity in the Atlantic Ocean, *Sci. Adv.*, 8, eabn5404,
901 <https://doi.org/10.1126/sciadv.abn5404>, 2022.

902 Axen G.J., van Wijk, J.W. and Currie, C.A.: Basal continental mantle lithosphere displaced by flat-
903 slab subduction, *Nat. Geosci.*, 11, 961–964, <https://doi.org/10.1038/s41561-018-0263-9>,
904 2018.

905 Azami, K., Machida, S., Hirano, N., Nakamura, K., Yasukawa, K., Kogiso, T., Nakanishi, M. and
906 Kato, Y.: Hydrothermal ferromanganese oxides around a petit-spot volcano on old and cold
907 oceanic crust, *Commun. Earth Environ.*, 4, 191, <https://doi.org/10.1038/s43247-023-00832-3>, 2023.

909 Bell, K. and Tilton, G. R.: Probing the mantle: the story from carbonatites, *Eos*, 83, 273–277,
910 <https://doi.org/10.1029/2002EO000190>, 2002.

911 Bellas, A., Zhong, S. and Watts, A.B.: Reconciling lithospheric rheology between laboratory
912 experiments, field observations and different tectonic settings, *Geophys. J. Int.*, 228, 857–
913 875, <https://doi.org/10.1093/gji/ggab382>, 2022.

914 Bianco, T.A., Ito, G., Becker, J.M. and Garcia, M.O.: Secondary Hawaiian volcanism formed by
915 flexural arch decompression, *Geochem. Geophys. Geosyst.* 6, Q08009,
916 <https://doi.org/10.1029/2005GC000945>, 2005.

917 Bizimis, M., Salters, V.J.M. and Dawson, J.B.: The brevity of carbonatite sources in the mantle:
918 evidence from Hf isotopes, *Contrib. to Mineral. Petrol.*, 145, 281–300,

919 <https://doi.org/0.1007/s00410-003-0452-3>, 2003.

920 Bizimis, M., Salters, V.J.M., Garcia, M.O. and Norman, M.D.: The composition and distribution of
921 the rejuvenated component across the Hawaiian plume: Hf-Nd-Sr-Pb isotope systematics of
922 Kaula lavas and pyroxenite xenoliths, *Geochem. Geophys. Geosyst.* 14, 4458–4478,
923 <https://doi.org/10.1002/ggge.20250>, 2013.

924 Borsova, A.Y. and Tilhac, R.: Derivation of Hawaiian rejuvenated magmas from deep carbonated
925 mantle sources: A review of experimental and natural constraints, *Earth. Sci. Rev.*, 222,
926 103819, <https://doi.org/10.1016/j.earscirev.2021.103819>, 2021.

927 Buchs, D.M., Pilet, S., Cosca, M., Flores, K.E., Bandini, A.N. and Baumgartner, P.O.: Low-volume
928 intraplate volcanism in the Early/Middle Jurassic Pacific basin documented by accreted
929 sequences in Costa Rica, *Geochem. Geophys. Geosyst.*, 14, 1552–1568,
930 <https://doi.org/10.1002/ggge.20084>, 2013.

931 Chantel, J., Manthilake, G., Andrault, D., Novella, D., yu, T. and Wang, Y.: Experimental evidence
932 supports mantle partial melting in the asthenosphere, *Sci. Adv.*, 2, e1600246,
933 <https://doi.org/10.1126/sciadv.1600246>, 2016.

934 Chen, X., Wang, M., Inoue, T., Liu, Q., Zhang, L. and Bader, T.: Melting of carbonated pelite at 5.5–
935 15.5 GPa: implications for the origin of alkali-rich carbonatites and the deep water and
936 carbon cycles, *Contrib. to Mineral. Petrol.*, 177, 2, <https://doi.org/10.1007/s00410-021-01867-5>, 2022.

938 Clague, D.A. and Frey, F.A.: Petrology and Trace element Geochemistry of the Honolulu Volcanics,
939 Oahu: Implications for the Oceanic Mantle below Hawaii, *J. Petrol.*, 23, 447–504,
940 <https://doi.org/10.1093/petrology/23.3.447>, 1982.

941 Clague, D.A., Holcomb, R.T., Sinton, J.M., Detrick, R.S. and Torresan, M.E.: Pliocene and
942 Pleistocene alkali flood basalts on the seafloor north of the Hawaiian island, *Earth Planet.
943 Sci. Lett.*, 98, 175–191, [https://doi.org/10.1016/0012-821X\(90\)90058-6](https://doi.org/10.1016/0012-821X(90)90058-6), 1990.

944 Clague, D.A., Moore, J.G.: The proximal part of the giant submarine Wailau landslide, Molokai,
945 Hawaii, *J. Volcanol. Geotherm. Res.*, 113, 259–287, [https://doi.org/10.1016/S0377-0273\(01\)00261-X](https://doi.org/10.1016/S0377-0273(01)00261-X), 2002.

947 Collerson, K.D., Williams, Q., Ewart, A.E. and Murphy, D.T.: Origin of HIMU and EM-1 domains
948 sampled by ocean island basalts, kimberlites and carbonatites: The role of CO₂-fluxed lower
949 mantle melting in thermochemical upwellings, *Phys. Earth Planet. Inter.*, 181, 112–131,
950 <https://doi.org/10.1016/j.pepi.2010.05.008>, 2010.

951 Conrad, C.P., Bianco, T.A., Smith, E.I. and Wessel, P.: Patterns of intraplate volcanism controlled by
952 asthenospheric shear. *Nat. Geosci.*, 4, 317–321, <https://doi.org/10.1038/ngeo1111>, 2011.

953 Cousens, B.L. and Clague, D.A.: Shield to Rejuvenated Stage Volcanism on Kauai and Niihau,
954 Hawaiian Islands, *J. Petrol.*, 56, 1547–1584, <https://doi.org/10.1093/petrology/egv045>,

955 2015.

956 Dasgupta, R. and Hirschmann, M.M.: Melting in the Earth's deep upper mantle caused by carbon
957 dioxide, *Nature*, 440, 659–662, <https://doi.org/10.1038/nature04612>, 2006.

958 Dasgupta, R., Hirschmann, M.M. and Stalker, K.: Immiscible Transition from Carbonate-rich to
959 Silicate-rich Melts in the 3 GPa Melting Interval of Eclogite + CO₂ and Genesis of Silica-
960 undersaturated Ocean Island Lavas, *J. Petrol.*, 47, 647–671,
961 <https://doi.org/10.1093/petrology/egi088>, 2006.

962 Dasgupta, R., Hirschmann, M.M. and Smith, N.D.: Partial Melting Experiments of Peridotite + CO₂
963 at 3 GPa and Genesis of Alkalic Ocean Island Basalts, *J. Petrol.*, 48, 2093–2124,
964 <https://doi.org/10.1093/petrology/egm053>, 2007.

965 Dasgupta, R., Hirschmann, M.M., McDonough, W.F., Spiegelman, M. and Withers, A.: Trace
966 element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa with
967 applications to the geochemistry of the mantle and of mantle-derived melts, *Chem. Geol.*,
968 262, 57–77, <https://doi.org/10.1016/j.chemgeo.2009.02.004>, 2009.

969 Dasgupta, R., Mallik, A., Tsuno, K., Withers, A.C., Hirth, G. and Hirschmann, M.M.: Carbon-
970 dioxide-rich silicate melt in the Earth's upper mantle, *Nature*, 493, 211–215,
971 <https://doi.org/10.1038/nature11731>, 2013.

972 Debayle, E., Bodin, T., Durand, S. and Ricard, Y.: Seismic evidence for partial melt below tectonic
973 plates, *Nature*, 586, 555–559, <https://doi.org/10.1038/s41586-020-2809-4>, 2020.

974 Dixon, J., Clague, D.A., Cousens, B., Monsalve, M.L. and Uhl, J.: Carbonatite and silicate melt
975 metasomatism of the mantle surrounding the Hawaiian plume: evidence from volatiles, trace
976 elements, and radiogenic isotopes in rejuvenated-stage lavas from Niihau, Hawaii,
977 *Geochem. Geophys. Geosyst.*, 9, Q09005, <https://doi.org/10.1029/2008GC002076>, 2008.

978 Ebisawa, N., Sumino, H., Okazaki, R., Takigami, Y., Hirano, N., Nagao, K. and Kaneoka, I.:
979 Construction of I-Xe and ⁴⁰Ar–³⁹Ar dating system using a modified VG3600 noble gas mass
980 spectrometer and the first I-Xe data obtained in Japan, *J. Mass Spectrom. Soc. Jpn.*, 52,
981 219–229, <https://doi.org/10.5702/massspec.52.219>, 2004.

982 Falloon, T. J. and Green, D. H.: The solidus of carbonated, fertile peridotite. *Earth Planet. Sci. Lett.*
983 94, 364–370, [https://doi.org/10.1016/0012-821X\(89\)90153-2](https://doi.org/10.1016/0012-821X(89)90153-2), 1989.

984 Falloon, T. J. and Green, D. H.: Solidus of carbonated fertile peridotite under fluid-saturated
985 conditions. *Geology*, 18, 195–199, [https://doi.org/10.1130/0091-7613\(1990\)018<0195:SOFCPU>2.3.CO;2](https://doi.org/10.1130/0091-7613(1990)018<0195:SOFCPU>2.3.CO;2), 1990.

987 Falloon, T.J. Hoernle, K., Schaefer, B.F., Bindeman, I.N., Hart, S.R., Garbe-Schonberg, D. and
988 Duncan, R.A.: Petrogenesis of Lava from Christmas Island, Northeast Indian Ocean:
989 Implications for the Nature of Recycled Components in Non-Plume Intraplate Settings,
990 *Geosci.*, 12, 118, <https://doi.org/10.3390/geosciences12030118>, 2022.

991 Frey, F.A., Green, D.H. and Roy, S.D.: Integrated Models of Basalt Petrogenesis: A Study of Quartz
992 Tholeiites to Olivine Melilitites from South Eastern Australia Utilizing Geochemical and
993 Experimental Petrological Data, *J. Petrol.*, 19, 463–513,
994 <https://doi.org/10.1093/PETROLOGY/19.3.463>, 1978.

995 Frey, F.A., Clague, D., Mahoney, J.J. and Sinton, J.M.: Volcanism at the edge of the Hawaiian
996 plume: Petrogenesis of submarine alkali lavas from the North Arch volcanic field, *J. Petrol.*,
997 41, 667–691, <https://doi.org/10.1093/petrology/41.5.667>, 2000.

998 Foley, S. F., Yaxley, G. M., Rosenthal, A., Buhre, S., Kiseeva, E. S., Rapp, R. P. and Jacob, D. E.:
999 The composition of near-solidus melts of peridotite in the presence of CO₂ and H₂O
1000 between 40 and 60 kbar. *Lithos*, 112, 274–283, <https://doi.org/10.1016/j.lithos.2009.03.020>,
1001 2009.

1002 Fujie, G., Kodaira, S., Nakamura, Y., Morgan, J.P. Dannowski, A., Thorwart, M., Grevemeyer, I. and
1003 Miura, S.: Spatial variations of incoming sediments at the northeastern Japan arc and their
1004 implications for megathrust earthquakes, *Geology*, 48, 614–619,
1005 <https://doi.org/10.1130/G46757.1>, 2020.

1006 Fujiwara, T., Hirano, N. Abe, N. and Takizawa, K.: Subsurface structure of the “petit-spot”
1007 volcanoes on the northwestern Pacific Plate, *Geophys. Res. Lett.*, 34, L13305,
1008 <https://doi.org/10.1029/2007GL030439>, 2007.

1009 Garcia, M.O., Weis, D., Jicha, B.R., Ito, G. and Hanano, D.: Petrology and geochronology of lavas
1010 from Ka‘ula Volcano: Implications for rejuvenated volcanism of the Hawaiian mantle
1011 plume, *Geochim. Cosmochim. Acta.*, 185, 278–301,
1012 <https://doi.org/10.1016/j.gca.2016.03.025>, 2016.

1013 Ghosh, S., Ohtani, E., Litasov, K.K. and Terasaki, H.: Solidus of carbonated peridotite from 10 to 20
1014 GPa and origin of magnesiocarbonatite melt in the Earth's deep mantle, *Chem. Geol.*, 262,
1015 17–28, <https://doi.org/10.1016/j.chemgeo.2008.12.030>, 2009.

1016 Grassi, D. and Schmidt, M.W.: The Melting of Carbonated Pelites from 70 to 700 km Depth, *J.*
1017 *Petrol.*, 52, 765–789, <https://doi.org/10.1093/petrology/egr002>, 2011.

1018 Gripp, A.E. and Gordon, R.G.: Current plate velocities relative to the hotspots incorporating the
1019 NUVEL-1 global plate motion model, *Geophys. Res. Lett.*, 17, 1109–1112,
1020 <https://doi.org/10.1029/GL017i008p01109>, 1990.

1021 Hammouda, T., Manthilake, G., Goncalves, P., Chantel, J., Guignard, J., Crichton, W. and Gaillard,
1022 F.: Is There a Global Carbonate Layer in the Oceanic Mantle?, *Geophys. Res. Lett.*, 48,
1023 e2020GL089752, <https://doi.org/10.1029/2020GL089752>, 2020.

1024 Hanano, D., Scoates, J.S. and Weis, D: Alteration mineralogy and the effect of acid-leaching on the
1025 Pb-isotope systematics of ocean-island basalts, *Am. Mineral.*, 94, 17–26,
1026 <https://doi.org/10.2138/am.2009.2845>, 2009.

1027 Hanyu, T., Tatsumi, Y., Senda, R., Miyazaki, T., Chang, Q., Hirahara, Y., Takahashi, T., Kawabata, H., Suzuki, K., Kimura, J.-I. and Nakai, S.: Geochemical characteristics and origin of the
1028 HIMU reservoir: A possible mantle plume source in the lower mantle, *Geochem. Geophys.*
1029 *Geosyst.*, 12, Q0AC09, <https://doi.org/10.1029/2010GC003252>, 2011.

1030

1031 Hanyu, T., Shimizu, K., Ushikubo, T., Kimura, J.-I., Chang, Q., Hamada, M., Ito, M., Iwamori, H. and Ishikawa, T.: Tiny droplets of ocean island basalts unveil Earth's deep chlorine cycle, *Nat. Commun.*, 10, 60, <https://doi.org/10.1038/s41467-018-07955-8>, 2019.

1032

1033

1034 Hart, S.R.: A large-scale isotope anomaly in the Southern Hemisphere mantle, *Nature*, 309, 753–757, <https://doi.org/10.1038/309753a0>, 1984.

1035

1036 Hart, S.R., Gerlach, D.C. and White, W.M.: A Possible new Sr-Nd-Pb mantle array and consequences
1037 for mantle mixing, *Geochim. Cosmochim. Acta.*, 50, 1551–1557,
1038 [https://doi.org/10.1016/0016-7037\(86\)90329-7](https://doi.org/10.1016/0016-7037(86)90329-7), 1986.

1039 Hein, J.R., Koschinsky, A., Bau, M., Manheim, F.T., Kang, J.K. and Roberts, L.: Cobalt-rich
1040 ferromanganese crusts in the Pacific, *Handbook of Marine Mineral Deposits* (Cronan DS,
1041 ed.), 239–279, CRC Press, Boca Raton, Florida, 1999.

1042 Helz, R.T. and Thronber, C.R.: Geochemistry if Kilauea Iki lava lake, Hawaii, *Bull. Volcanol.*, 49,
1043 651–658, <https://doi.org/10.1007/BF01080357>, 1987.

1044 Herath, P., Stern, T.A., Savage, M.K., Bassett, D. and Henrys, S.: Wide-angle seismic reflections
1045 reveal a lithosphere-asthenosphere boundary zone in the subducting Pacific Plate, New
1046 Zealand, *Sci. Adv.*, 8, eabn5697, <https://doi.org/10.1126/sciadv.abn5697>, 2022.

1047 Herzberg, C.: Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano,
1048 *Nature*, 444, 605–609. <https://doi.org/10.1038/nature05254>, 2006.

1049 Herzberg, C.: Identification of Source Lithology in the Hawaiian and Canary Islands: Implications
1050 for Origins, *J. Petrol.*, 52, 113–146, <https://doi.org/10.1093/petrology/egq075>, 2011.

1051 Hirano, N., Takahashi, E., Yamamoto, J., Abe, N., Ingle, S.P., Kaneoka, I., Hirata, T., Kimura, J.-I.,
1052 Ishii, T., Ogawa, Y., Machida, S. and Suyehiro, K.: Volcanism in response to plate flexure.
1053 *Science*, 313, 1426–1428. <https://doi.org/10.1126/science.1128235>, 2006.

1054 Hirano, N.: Petit-spot volcanism: a new type of volcanic zone discovered near a trench, *Geochem. J.*,
1055 45, 157–167, <https://doi.org/10.2343/geochemj.1.0111>, 2011.

1056 Hirano, N., Machida, S., Abe, N., Morishita, T., Tamura, A. and Arai, S.: Petit-spot lava fields off the
1057 central Chile trench induced by plate flexure, *Geochem. J.*, 47, 249–257,
1058 <https://doi.org/10.2343/geochemj.2.0227>, 2013.

1059 Hirano, N., Nakanishi, M., Abe, N. and Machida, S.: Submarine lava fields in French Polynesia,
1060 *Mar. Geol.*, 373, 39–48, <http://dx.doi.org/10.1016/j.margeo.2016.01.002>, 2016.

1061 Hirano, N., Machida, S., Sumino, H., Shimizu, K., Tamura, A., Morishita, T., Iwano, H., Sakata, S.,
1062 Ishii, T., Arai, S., Yoneda, S., Danhara, T. and Hirata, T.: Petit-spot volcanoes on the oldest

1063 portion of the Pacific Plate, Deep Sea Res. Part I, 154, 103142,
1064 <https://doi.org/10.1016/j.dsr.2019.103142>, 2019.

1065 Hirano, N., Sumino, H., Morishita, T., Machida, S., Kawano, T., Yasukawa, K., Hirata, T., Kato, Y.
1066 and Ishii, T.: A Paleogene magmatic overprint on Cretaceous seamounts of the western
1067 Pacific, Island Arc, 30, e12386, <https://doi.org/10.1111/iar.12386>, 2021.

1068 Hirano, N. and Machida, S.: The mantle structure below petit-spot volcanoes, Commun. Earth
1069 Environ., 3, 110, <https://doi.org/10.1038/s43247-022-00438-1>, 2022.

1070 Hirth, G. and Kohlstedt, D.L.: Water in the oceanic upper mantle: implications for rheology, melt
1071 extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett., 144, 93–108,
1072 [https://doi.org/10.1016/0012-821X\(96\)00154-9](https://doi.org/10.1016/0012-821X(96)00154-9), 1996.

1073 Hoernle, K., Tilton, G., Le Bas, M.J., Duggen, S. and Garbe-Schönberg, D.: Geochemistry of
1074 oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic
1075 crustal carbonate, Contrib. to Mineral. Petrol., 142, 520–542,
1076 <https://doi.org/10.1007/s004100100308>, 2002.

1077 Hofmann, A.W.: Mantle geochemistry: the message from oceanic volcanism, Nature, 385, 219–229,
1078 <https://doi.org/10.1038/385219a0>, 1997.

1079 Hofmann, A.W.: Sampling mantle heterogeneity through oceanic basalts: isotopes and trace
1080 elements. In: Carson, R. W. (Ed.), Treatise on Geochemistry, 2, The Mantle and Core,
1081 Elsevier, 61–101, <https://doi.org/10.1016/B0-08-043751-6/02123-X>, 2003.

1082 Hosseini, K., Matthews, K.J., Sigloch, K., Shephard, G.E., Domeier, M. and Tsekhmistrenko, M.:
1083 SubMachine: Web-Based tools for exploring seismic tomography and other models of
1084 Earth's deep interior, Geochem. Geophys. Geosyst., 19, 1464–1483,
1085 <https://doi.org/10.1029/2018GC007431>, 2018.

1086 Hua, J., Fisher, K. M., Becker, T.W., Gazel, E. and Hirth, G.: Asthenospheric low-velocity zone
1087 consistent with globally prevalent partial melting, Nat. Geosci., 16, 175–181,
1088 <https://doi.org/10.1038/s41561-022-01116-9>, 2023.

1089 Hulett, S.R., Simonetti, A., Rasbury, E.T. and Hemming, N.G.: Recycling of subducted crustal
1090 components into carbonatite melts revealed by boron isotopes, Nat. Geosci., 9, 904–908,
1091 <https://doi.org/10.1038/ngeo2831>, 2016.

1092 Irvine, T. N. and Baragar, W. R. A.: A Guide to the Chemical Classification of the Common Volcanic
1093 Rocks, Can. J. Earth Sci., 8, 523–548, <https://doi.org/10.1139/e71-055>, 1971.

1094 Irving, A.J and Green, D.H.: Geochemistry and petrogenesis of the newer basalts of Victoria and
1095 South Australia, J. Geol. Sci. Australia., 23, 45–66,
1096 <https://doi.org/10.1080/00167617608728920>, 1976.

1097 Iwata, N.: Geochronological study of the Deccan volcanism by the ^{40}Ar – ^{39}Ar method, Doctor

1098 Thesis, University of Tokyo, pp. 168, 1998.

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 Jochum, K.P. and Nohl, U.: Reference materials in geochemistry and environmental research and the GeoReM database, *Chem. Geol.*, 253, 50–53, <https://doi.org/10.1016/j.chemgeo.2008.04.002>, 2008.

Johnson, K.T.M., Dick, H.J.B. and Shimizu, N.: Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites, *J. Geophys. Res.*, 95, 2661–2678, <https://doi.org/10.1029/JB095iB03p02661>, 1990.

Juriček, M.P and Keppler, H.: Amphibole stability, water storage in the mantle, and the nature of the lithosphere–asthenosphere boundary, *Earth Planet. Sci. Lett.*, 608, 118082, <https://doi.org/10.1016/j.epsl.2023.118082>, 2023.

Kaneko, J., Machida, S., Hirano, N., Kasaya, T. and Kumagai, H.: Near bottom MBES survey mounted on a HOV at 5500m depth. *Oceans Conference Record (IEEE)* 2022, 1–5, <https://doi.org/10.1109/OCEANSChennai45887.2022.9775366>, 2022.

Kang, L. and Karato, S. -I.: Hydrogen Partitioning Between Olivine and Orthopyroxene: Implications for the Lithosphere–Asthenosphere Structure, *J. Geophys. Res.*, 128, e2022JB025259, <https://doi.org/10.1029/2022JB025259>, 2023.

Karato, S.-I. and Jung, H.: Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle, *Earth Planet. Sci. Lett.*, 157, 193–207, [https://doi.org/10.1016/S0012-821X\(98\)00034-X](https://doi.org/10.1016/S0012-821X(98)00034-X), 1998.

Katsura, T. and Fei, H.: Asthenosphere dynamics based on the H₂O dependence of element diffusivity in olivine, *Natl. Sci. Rev.*, 8, nwaa278. <https://doi.org/10.1093/nsr/nwaa278>, 2021.

Kawakatsu, H., Kumar, P., Takei, Y., Shinohara, M., Kanazawa, T., Araki, E. and Suyehiro, K.: Seismic Evidence for Sharp Lithosphere–Asthenosphere Boundaries of Oceanic Plates, *Science*, 324, 499–502, <https://www.science.org/doi/10.1126/science.1169499>, 2009.

Kelemen, P.B., Yogodzinski G.M., and Scholl, D.W.: Along-strike variation in the Aleutian Island Arc: genesis of high Mg# andesite and implications for continental crust, In: Eiler, J. (ed.), *Inside the subduction Factory*, American Geophysical Union, Geophysical Monograph, 138, 223–276, <https://doi.org/10.1029/138GM11>, 2003.

Keshav, S. and Gudfinnsson, G.H.: Silicate liquid–carbonatite liquid transition along the melting curve of model, vapor-saturated peridotite in the system CaO–MgO–Al₂O₃–SiO₂–CO₂ from 1.1 to 2 GPa, *J. Geophys. Res.*, 118, 3341–3353, <https://doi.org/10.1002/jgrb.50249>, 2013.

Kiseeva, E.S., Litasov, K.D., Yaxley, G.M., Ohtani, E. and Kamenetsky, V.S.: Melting and Phase Relations of Carbonated Eclogite at 9–21 GPa and the Petrogenesis of Alkali-Rich Melts in the Deep Mantle, *J. Petrol.*, 54, 1555–1583, <https://doi.org/10.1093/petrology/egt023>, 2013.

Kobayashi, M., Sumino, H., Saito, T., Nagao, K.: Determination of halogens in geological reference

1134 materials using neutron irradiation noble gas mass spectrometry, *Chem. Geol.*, 582, 120420,
1135 <https://doi.org/10.1016/j.chemgeo.2021.120420>, 2021.

1136 Konovalov, Y. I. and Martynov, Y. A.: Volcanic complex of the La Mont Guyot; Marcus-Wake Uplift,
1137 Pacific Ocean, *Pacific Geology*, 5, 40–47, 1992.

1138 Konter, J.G., Hanan, B.B., Blicher-Toft, J., Koppers, A.A.P., Plank, T. and Staudigel, H.: One
1139 hundred million years of mantle geochemical history suggest the retiring of mantle plumes
1140 is premature, *Earth Planet Sci Lett*, 275, 285–295,
1141 <https://doi.org/10.1016/j.epsl.2008.08.023>, 2008.

1142 Koppers, A. A. P., H. Staudigel. and J. R. Wijbrans.: Dating crystalline groundmass separates of
1143 altered Cretaceous seamount basalts by the Ar⁴⁰/Ar³⁹ incremental heating technique, *Chem.*
1144 *Geol.*, 166, 139–158. [https://doi.org/10.1016/S0009-2541\(99\)00188-6](https://doi.org/10.1016/S0009-2541(99)00188-6), 2000.

1145 Koppers, A.A.P., Staudigel, H., Pringle, M.S. and Wijbrans, J.R.: Short-lived and discontinuous
1146 intra-plate volcanism in the South Pacific: hotspots or extensional volcanism?, *Geochem.*
1147 *Geophys. Geosyst.*, 4, 1089, <https://doi.org/10.1029/2003GC000533>, 2003.

1148 Korenaga, J.: Plate tectonics and surface environment: Role of the oceanic upper mantle, *Earth Sci.*
1149 *Rev.*, 205, 103185, <https://doi.org/10.1016/j.earscirev.2020.103185>, 2020.

1150 Le Bas, M. J., Le Maitre, R., Strackeisen, A. and Zanettin, B. (1986) A chemical classification of
1151 volcanic rocks based on the total alkali–silica diagram, *J. Petrol.*, 27, 745–750,
1152 <https://doi.org/10.1093/petrology/27.3.745>, 2020.

1153 Lu, C., Grand, S. P., Lai, H. and Garnero, E. J.: TX2019slab: A New P and S Tomography Model
1154 Incorporating Subducting Slabs, *J. Geophys. Res.*, 124, 11549–11567,
1155 <https://doi.org/10.1029/2019JB017448>, 2019.

1156 Liu, J., Hirano, N., Machida, S., Xia, Q., Tao, C., Liao, S., Liang, J., Li W., Yang, W. Zhang, G. and
1157 Ding, T.: Melting of recycled ancient crust responsible for the Gutenberg discontinuity, *Nat.*
1158 *Commun.*, 11, 172, <https://doi.org/10.1038/s41467-019-13958-w>, 2020.

1159 Longerich, H.P., Jackson, S.E. and Gunther, D.: Laser ablation inductively coupled plasma mass
1160 spectrometric transient signal data acquisition and analyte concentration calculation, *J. Anal.*
1161 *At. Spectrom.*, 11, 899–904, <https://doi.org/10.1039/ja9961100899>, 1996.

1162 Machida, S., Hirano, N., and Kimura, J.-I.: Evidence for recycled material in Pacific upper mantle
1163 unrelated to plumes, *Geochim. Cosmochim. Acta.*, 73, 3028–3037,
1164 <http://dx.doi.org/10.1016/j.gca.2009.01.026>, 2009.

1165 Machida, S., Orihashi, Y., Magnani, M., Neo, N., Wilson, S., Tanimizu, M., Yoneda, S., Yasuda, A.
1166 and Tamaki, K.: Regional mantle heterogeneity regulates melt production along the Réunion
1167 hotspot-influenced Central Indian Ridge, *Geochem. J.*, 48, 433–449,
1168 <https://doi.org/10.2343/geochemj.2.0320>, 2014.

1169 Machida, S., Hirano, N., Sumino, H., Hirata, T., Yoneda, S. and Kato, Y: Petit-spot geology reveals

1170 melts in upper-most asthenosphere dragged by lithosphere, *Earth Planet. Sci. Lett.*, 426,
1171 267–279, <https://doi.org/10.1016/j.epsl.2015.06.018>, 2015

1172 Machida, S., Fujinaga, K., Ishii, T., Nakamura, K., Hirano, N. and Kato, Y.: Geology and
1173 geochemistry of ferromanganese nodules in the Japanese Exclusive Economic Zone around
1174 Minamitorishima Island, *Geochem. J.*, 50, 539–555,
1175 <https://doi.org/10.2343/geochemj.2.0419>, 2016.

1176 Machida, S., Kogiso, T. and Hirano, N.: Petit-spot as definitive evidence for partial melting in the
1177 asthenosphere caused by CO₂, *Nat. Commun.*, 8, 14302,
1178 <https://doi.org/10.1038/ncomms14302>, 2017.

1179 Massuyeau, M., Gardés, E., Morizet, Y. and Gaillard, F.: A model for the activity of silica along the
1180 carbonatite–kimberlite–mellilitite–basanite melt compositional joint, *Chem. Geol.*, 418,
1181 206–216, <https://doi.org/10.1016/j.chemgeo.2015.07.025>, 2015.

1182 Massuyeau, M., Gardés, E., Rogerie, G., Aulbach, S., Tappe, S., Le Trong, E., Sifré, D. and Gaillaer,
1183 F.: MAGLAB: A computing platform connecting geophysical signatures to melting
1184 processes in Earth's mantle, *Phys. Earth Planet.*, 314, 106638,
1185 <https://doi.org/10.1016/j.pepi.2020.106638>, 2021.

1186 McKenzie, D. and O'Nions, R.K.: Partial melt distributions from inversion of rare Earth element
1187 concentrations, *J. Petrol.*, 32, 1021–1091, <https://doi.org/10.1093/petrology/32.5.1021>,
1188 1991.

1189 McKenzie, D. and O'Nions, R.K.: The Source Regions of Ocean Island Basalts, *J. Petrol.*, 36, 133–
1190 159, <https://doi.org/10.1093/petrology/36.1.133>, 1995.

1191 Melson, W.G., Thompson, G. and van Andel, T.H.: Volcanism and metamorphism in the Mid-
1192 Atlantic Ridge, 22°N latitude, *J. Geophys. Res.*, 73, 5925–5941,
1193 <https://doi.org/10.1029/JB073i018p05925>, 1968.

1194 Mierdel, K., Keppler, H., Smyth, J.R. and Langenhorst, F.: Water solubility in aluminous
1195 orthopyroxene and the origin of Earth's Asthenosphere, *Science*, 315, 364–368,
1196 <https://doi.org/10.1126/science.1135422>, 2007.

1197 Mikuni, K., Hirano, N., Akizawa, N., Yamamoto, J., Machida, S., Tamura, A., Hagiwara, Y.,
1198 Morishita, T.: Lithological structure of western Pacific lithosphere reconstructed from
1199 mantle xenoliths in a petit-spot volcano, *Prog. Earth Planet. Sci.*, 9, 62,
1200 <https://doi.org/10.1186/s40645-022-00518-y>, 2022.

1201 Miyashiro, A., Shido, F. and Ewing, M.: Metamorphism on the Mid-Atlantic Ridge near 24 and 30°
1202 N. *Phil. Trans. Roy. Soc. Lond.*, 268, 589–603, <https://doi.org/10.1098/rsta.1971.0014>,
1203 1971.

1204 Morimoto, N.: Nomenclature of pyroxenes. *Mineral. Petrol.*, 39, 55–76,
1205 <https://doi.org/10.1007/BF01226262>, 1988.

1206 Moore, J.G., Fornari, D.J. and Clague, D.A.: Basalts from the 1877 Submarine Eruption of Mauna
1207 Loa, Hawaii; New Data on the Variation of Palagonitization Rate with Temperature. United
1208 States Geol. Surv. Bull. 1663., 1–11, <https://doi.org/10.3133/b1663>, 1985.

1209 Müller, R.D., Sdrolias, M., Gaina, C. and Roest, W.R.: Age, spreading rates, and spreading
1210 asymmetry of the world's ocean crust. *Geochem. Geophys. Geosyst.*, 9, Q04006.
1211 <http://dx.doi.org/10.1029/2007GC001743>, 2008.

1212 Natland, J.: Petrology of Volcanic Rocks Dredged from Seamounts in the Line Islands, Init. Rep.
1213 Deep Sea Drill. Proj., 33, 749–777. <https://doi.org/10.2973/dsdp.proc.33.126.1976>, 1976.

1214 Nier, A.: A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen,
1215 argon, and potassium, *Phys. Rev.*, 77, 789–793, <https://doi.org/10.1103/PhysRev.77.789>,
1216 1950.

1217 Nobre Silva, I.G., Weis, D., Barling, J. and Scoates, J.S.: Leaching systematics and matrix
1218 elimination for the determination of high-precision Pb isotope compositions of ocean island
1219 basalts, *Geochem. Geophys. Geosyst.*, 10, Q08012, <https://doi.org/10.1029/2009GC002537>,
1220 2009.

1221 Novella, D., Keshav, S., Gudfinnsson, G.H. and Ghosh, S.: Melting phase relations of model
1222 carbonated peridotite from 2 to 3 GPa in the system CaO-MgO-Al₂O₃-SiO₂-CO₂ and further
1223 indication of possible unmixing between carbonatite and silicate liquids, *J. Geophys. Res.*,
1224 119, 2780–2800, <https://doi.org/10.1002/2013JB010913>, 2014.

1225 Nozaki, T., Tokumaru, A., Takaya, Y., Kato, Y., Suzuki, K. and Urabe, T.: Major and trace element
1226 compositions and resource potential of ferromanganese crust at Takuyo Daigo Seamount,
1227 northwestern Pacific Ocean, *Geochem J.*, 50, 527–537,
1228 <https://doi.org/10.2343/geochemj.2.0430>, 2016.

1229 Okumura, S. and Hirano, N.: Carbon dioxide emission to earth's surface by deep-sea volcanism,
1230 *Geology*, 41, 1167–1170, <https://doi.org/10.1130/G34620.1>, 2013.

1231 Orihashi, Y., Maeda, J., Tanaka, R., Zeniya, R. and Niida, K.: Sr and Nd isotopic data for the seven
1232 GSJ rock reference samples; JA-1, JB-1a, JB-2, JB-3, JG-1a, JGb-1 and JR-1, *Geochem. J.*,
1233 32, 205–211, <https://doi.org/10.2343/geochemj.32.205>, 1998.

1234 Ozawa, K.: Mass balance equations for open magmatic systems: Trace element behavior and its
1235 application to open system melting in the upper mantle. *J. Geophys. Res.*, 106, 13407–
1236 13434, <https://doi.org/10.1029/2001JB900001>, 2001.

1237 Pearce, N.J.G., Perkins, W.T., Westgate, J.A., Gorton, M.P., Jackson, S.E., Neal, C.R. and Chenery,
1238 S.P.: A compilation of new and published major and trace element data for NIST SRM 610
1239 and NIST SRM 612 glass reference materials, *Geostand. Newsl.*, 21, 115–144,
1240 <https://doi.org/10.1111/j.1751-908X.1997.tb00538.x>, 1997.

1241 Pilet, S., Baker, M.B. and Stolper, E.M.: Metasomatized Lithosphere and the Origin of Alkaline

1242 Lavas, *Science*, 320, 916–919, <https://doi.org/10.1126/science.1156>, 2008.

1243 Pilet, S.: Generation of low-silica alkaline lavas: Petrological constraints, models, and thermal
1244 implications, *The Interdisciplinary Earth: A Volume in Honor of Don L. Anderson*, Gillian
1245 R. Foulger, Michele Lustrino, Scott D. King. [https://doi.org/10.1130/2015.2514\(17\)](https://doi.org/10.1130/2015.2514(17)), 2015.

1246 Pilet, S., Abe, N., Rochat, L., Kaczmarek, M.-A., Hirano, N., Machida, S., Buchs, D.M.,
1247 Baumgarther, P.O. and Müntener, O.: Pre-subduction metasomatic enrichment of the oceanic
1248 lithosphere induced by plate flexure, *Nat. Geosci.*, 9, 898–903,
1249 <https://doi.org/10.1038/ngeo2825>, 2016.

1250 Regelous, M., Weinzierl, C.G. and Haase, K.M.: Controls on melting at spreading ridges from
1251 correlated abyssal peridotite – mid-ocean ridge basalt compositions, *Earth Planet. Sci. Lett.*,
1252 449, 1–11. <http://dx.doi.org/10.1016/j.epsl.2016.05.017>, 2016.

1253 Reinhard, A.A., Jackson, M.G., Blusztajn, J., Koppers, A.A.P., Simms, A.R. and Konter, J.G.: “Petit
1254 Spot” Rejuvenated Volcanism Superimposed on Plume-Derived Samoan Shield Volcanoes:
1255 Evidence From a 645-m Drill Core From Tutuila Island, American Samoa, *Geochem.
1256 Geophys. Geosys.*, 20, 1485–1507, <https://doi.org/10.1029/2018GC007985>, 2019.

1257 Resing, J.A. and Sansone, F.J.: The chemistry of lava–seawater interactions: the generation of
1258 acidity, *Geochim. Cosmochim. Acta.*, 63, 2183–2198, [https://doi.org/10.1016/S0016-7037\(99\)00193-3](https://doi.org/10.1016/S0016-
1259 7037(99)00193-3), 1999.

1260 Rohrbach, A., Ballhaus, C., Golla-Schindler, U., Ulmer, P., Kamenetsky, V.S. and Kuzmin, D.V.:
1261 Metal saturation in the upper mantle, *Nature*, 449, 456–458,
1262 <https://doi.org/10.1038/nature06183>, 2007.

1263 Rychert, C. A. and Shearer, P. M.: A global view of the lithosphere–asthenosphere boundary,
1264 *Science*, 324, 495–498, <https://www.science.org/doi/10.1126/science.1169754>, 2009.

1265 Sakamaki, T., Suzuki, A., Ohtani, E., Terasaki, H., urakawa, S., Katayama, Y., Funakoshi, K.-I.,
1266 Wang, Y. Hernlund, J.H. and Ballmer, M.D.: Ponded melt at the boundary between the
1267 lithosphere and asthenosphere, *Nat. Geosci.*, 6, 1041–1044,
1268 <https://doi.org/10.1038/ngeo1982>, 2013.

1269 Shaw, D.M.: Trace element fractionation during anataxis, *Geochim. Cosmochim. Acta.*, 34, 237–
1270 243, [https://doi.org/10.1016/0016-7037\(70\)90009-8](https://doi.org/10.1016/0016-7037(70)90009-8), 1970.

1271 Shaw, C.S.J.: Dissolution of orthopyroxene in basanitic magma between 0.4 and 2 GPa: Further
1272 implications for the origin of Si-rich alkaline glass inclusions in mantle xenoliths, *Contrib.
1273 Mineral. Petrol.*, 135, 114–132, <https://doi.org/10.1007/s004100050501>, 1999.

1274 Sifré, D., Gardés, E., Massuyeau, M., Hashim, L., Hier-Majumder, S. and Gaillard, F.: Electrical
1275 conductivity during incipient melting in the oceanic low-velocity zone, *Nature*, 509, 81–85,
1276 <https://doi.org/10.1038/nature13245>, 2014.

1277 Smith, W.H.F., Staudigel, H., Watts, A.B. and Pringle, M.S.: The Magellan seamounts: early

1278 Cretaceous record of the South Pacific isotopic and thermal anomaly, *J. Geophys. Res.*, 94,
1279 10501–10523, <https://doi.org/10.1029/JB094iB08p10501>, 1989.

1280 Staudigel, H. and Hart, S.R.: Alteration of basaltic glass: processes and significance for the oceanic
1281 crust-seawater budget, *Geochim. Cosmochim. Acta.*, 47, 337–350,
1282 [https://doi.org/10.1016/0016-7037\(83\)90257-0](https://doi.org/10.1016/0016-7037(83)90257-0), 1983.

1283 Staudigel, H., Park, K.H., Pringle, M., Rubenstein, J.L., Smith, W.H.F. and Zindler, A.: The
1284 longevity of the South-Pacific isotopic and thermal anomaly, *Earth Planet. Sci. Lett.*, 102,
1285 24–44, [https://doi.org/10.1016/0012-821X\(91\)90015-A](https://doi.org/10.1016/0012-821X(91)90015-A), 1991.

1286 Stixrude, L. and Lithgow-Bertelloni, C.: Thermodynamics of mantle minerals — I. Physical
1287 properties, *Geophys. J. Int.*, 162, 610–632, <https://doi.org/10.1111/j.1365-246X.2005.02642.x>, 2005.

1288 Stoermer, R.W., Schaeffer, O.A. and Katcoff, S.: Half-lives of argon-37, argon-39, and argon-42,
1289 *Science*, 148, 1325–1328, <https://doi.org/10.1126/science.148.3675.1325>, 1965.

1290 Stracke A., Michael, W., Felix, G., Paul, B. and Erin, T.: Major and trace element concentrations and
1291 Sr, Nd, Hf, Pb isotope ratios of global mid ocean ridge and ocean island basalts, GRO data,
1292 V1, <https://doi.org/10.25625/OSVW6S>, 2022.

1293 Sun, S.-S. and McDonough, W.F.: Chemical and isotopic systematics of oceanic basalts: implications
1294 for mantle composition and processes, *Geol. Soc. Spec. Publ.*, 42, 313–345,
1295 <https://doi.org/10.1144/GSL.SP.1989.042.01.19>, 1989.

1296 Takahashi, E.: Origin of basaltic magmas: Implications from peridotite melting experiments and an
1297 olivine fractionation model (in Japanese with English abstract), *Bull. Volcanol. Soc. Jpn.*,
1298 2nd Ser, 30, S17–S40, https://doi.org/10.18940/kazanc.30.TOKUBE_S17, 1986.

1299 Takahashi, E., Uto, K. and Schilling, J.-G.: Primary magma compositions and Mg/Fe ratios of their
1300 mantle residues along Mid Atlantic Ridge 29° N to 73°N, Technical Report of ISEI
1301 Okayama University Series A, 9, 1–4, 1987.

1302 Tamura, A., Arai, S., Takeuchi, M., Miura, M. and Pirnia, T.: Compositional heterogeneity of a
1303 websterite xenolith from Kurose, southwest Japan: insights into the evolution of lower crust
1304 beneath the Japan Arc, *Eur. J. Mineral.*, 31, 35–47, <https://doi.org/10.1127/ejm/2018/0030-2803>, 2019.

1305 Taneja, R., Rushmer, T., Blichert-Toft, J., Turner, S. and O'Neill, C.: Mantle heterogeneities beneath
1306 the Northeast Indian Ocean as sampled by intra-plate volcanism at Christmas Island, *Lithos*,
1307 262, 561–575, <http://dx.doi.org/10.1016/j.lithos.2016.07.027>, 2016.

1308 Tanimizu, M. and Ishikawa, T.: Development of rapid and precise Pb isotope analytical techniques
1309 using MC-ICPMS and new results for GSJ rock reference samples, *Geochem. J.*, 40, 121–
1310 133. <https://doi.org/10.2343/geochemj.40.121>, 2006.

1311 Tatsumi, Y., Sakuyama, M., Fukuyama, H. and Kushiro, I.: Generation of arc basalt magmas and

1314 thermal structure of the mantle wedge in subduction zones, *J. Geophys. Res.*, 88, 5815–
1315 5825, <https://doi.org/10.1029/JB088iB07p05815>, 1983.

1316 Tivey, M.A., Sager, W.W., Lee, S.-M. and Tominaga, M.: Origin of the Pacific Jurassic quiet zone,
1317 *Geology*, 34, 789–792, <https://doi.org/10.1130/G22894.1>, 2006.

1318 Uenzelmann-Neben, G., Schmidt, D.N., Niessen, F. and Stein, R.: Intraplate volcanism off South
1319 Greenland: caused by glacial rebound?, *Geophys. J. Int.*, 190, 1–7,
1320 <https://doi.org/10.1111/j.1365-246X.2012.05468.x>, 2012.

1321 Valentine, G.A. and Hirano, N.: Mechanisms of low-flux intraplate volcanic fields—Basin and
1322 Range (North America) and northwest Pacific Ocean, *Geology*, 38, 55–58,
1323 <https://doi.org/10.1130/G30427.1>, 2010.

1324 Walter, M.J.: Melting of garnet peridotite and the origin of komatiite and depleted lithosphere, *J.
1325 Petrol.*, 39, 29–60, <https://doi.org/10.1093/petroj/39.1.29>, 1998.

1326 Wakaki, S., Shibata, S.-N. and Tanaka, T.: Isotope ratio measurements of trace Nd by the total
1327 evaporation normalization (TEN) method in thermal ionization mass spectrometry, *Int. J.
1328 Mass Spectrom.*, 264, 157–163, <http://dx.doi.org/10.1016/j.ijms.2007.04.006>, 2007.

1329 Wang, D., Mookherjee, M., Xu, Y. and Karato, S.-I.: The effect of water on the electrical conductivity
1330 of olivine, *Nature*, 443, 977–980, <https://doi.org/10.1038/nature05256>, 2006.

1331 Wang, X.-J., Chen, L.-H., Hofmann, A.W., Hanyu, T., Kawabata, H., Zhong, Y., Xie, L.-W., Shi, J.-
1332 H., Miyazaki, T., Hirata, Y., Takahashi, T., Senda, R., Chang, O., Vaglarov, B.S. and Kimura,
1333 J.-I. Recycled ancient ghost carbonate in the Pitcairn mantle plume, *PNAS*, 115, 8682–8687,
1334 <https://doi.org/10.1073/pnas.1719570115>, 2018.

1335 Weis, D. and Frey, F.A.: Isotope geochemistry of the Ninetyeast Ridge basement basalts: Sr, Nd, and
1336 Pb evidence for involvement of the Kerguelen hot spot, *Proc. Ocean Drill. Program Sci.
1337 Results*, 121, 591–610, 1991.

1338 Weis, D. and Frey, F.A.: Role of the Kerguelen Plume in generating the eastern Indian Ocean
1339 seafloor. *J. Geophys. Res.*, 101, 13381–13849, <https://doi.org/10.1029/96JB00410>, 1996.

1340 Weis, D., Kieffer, B., Maerschalk, C., Barling, J., de Jong, J., Williams, G.A., Hanano, D., Pretorius,
1341 W., Mattielli, N., Scoates, J.S., Goolaerts, A., Friedman, R. M. and Mahoney, J.B.: High-
1342 precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS,
1343 *Geochem. Geophys. Geosyst.*, 7, Q08006, <http://dx.doi.org/10.1029/2006GC001283>, 2006.

1344 Weiss, Y., Class, C., Goldstein, S.L. and Hanyu, T.: Key new pieces of the HIMU puzzle from
1345 olivines and diamond inclusions, *Nature*, 537, 666–670,
1346 <https://doi.org/10.1038/nature19113>, 2016.

1347 Wessel, P., Luis, J.F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W.H.F., and Tian, D.: The Generic
1348 Mapping Tools version 6, *Geochem Geophys Geosyst.*, 20, 5556–5564,
1349 <https://doi.org/10.1029/2019GC008515>. 2019.

1350 Workman, R.K., Hart, S.R., Jackson, M., Regelous, M., Farley, K.A., Blusztajn, J., Kurz, M. and
1351 Staudigel, H.: Recycled metasomatized lithosphere as the origin of the Enriched Mantle II
1352 (EM2) end-member: Evidence from the Samoan Volcanic Chain, *Geochem. Geophys.*
1353 *Geosyst.*, 5, Q04008, <https://doi.org/10.1029/2003GC000623>, 2004.

1354 Yamamoto, J., Hirano, N., Abe, N. and Hanyu, T.: Noble gas isotopic compositions of mantle
1355 xenoliths from northwestern Pacific lithosphere, *Chem. Geol.*, 268, 313–323,
1356 <https://doi.org/10.1016/j.chemgeo.2009.09.009>, 2009.

1357 Yamamoto, J., Korenaga, J., Hirano, N. and Kagi, H.: Melt-rich lithosphere-asthenosphere boundary
1358 inferred from petit-spot volcanoes, *Geology*, 42, 967–970,
1359 <https://doi.org/10.1130/G35944.1>, 2014.

1360 Yamamoto, J., Kawano, T., Takahata, N. and Sano, Y.: Noble gas and carbon isotopic compositions
1361 of petit-spot lavas from southeast of Marcus Island. *Earth Planet. Sci. Lett.*, 497, 139–148,
1362 <https://doi.org/10.1016/j.epsl.2018.06.020>, 2018.

1363 Yamamoto, J., Hirano, N. and Kurz, M.D.: Noble gas isotopic compositions of seamount lavas from
1364 the central Chile trench: Implications for petit-spot volcanism and the lithosphere
1365 asthenosphere boundary, *Earth Planet. Sci. Lett.*, 552, 116611,
1366 <https://doi.org/10.1016/j.epsl.2020.116611>, 2020.

1367 Yamazaki, S., Neo, N. and Miyashita, S.: Data report: whole-rock major and trace elements and
1368 mineral compositions of the sheeted dike–gabbro transition in ODP Hole 1256D, In Teagle,
1369 D. A. H., Alt, J. C., Umino, S., Miyashita, S., Banerjee, N. R., Wilson, D. S. and the
1370 Expedition 309/312 Scientists (Eds.), *Proceedings Integrated Ocean Drilling Program*,
1371 309/312: Washington, DC (Integrated Ocean Drilling Program Management International,
1372 Inc.) <https://doi.org/10.2204/iodp.proc.309312.203.2009>, 2009.

1373 Yang, H.-J., Frey, F.A. and Clague, D.A.: Constraints on the Source Components of Lavas Forming
1374 the Hawaiian North Arch and Honolulu Volcanics, *J. Petrol.*, 44, 603–627,
1375 <https://doi.org/10.1093/petrology/44.4.603>, 2003.

1376 Yoshino, T., Matsuzaki, T., Yamashita, S. and Katsura T.: Hydrous olivine unable to account for
1377 conductivity anomaly at the top of the asthenosphere, *Nature*, 443, 973–976,
1378 <https://doi.org/10.1038/nature05223>, 2006.

1379 Zakharov, D.O., Tanaka, R., Butterfield, D.A. and Nakamura, E.: A New Insight Into Seawater-
1380 Basalt Exchange Reactions Based on Combined $\delta^{18}\text{O}$ — $\Delta^{17}\text{O}$ — $^{87}\text{Sr}/^{86}\text{Sr}$ Values of
1381 Hydrothermal Fluids From the Axial Seamount Volcano, Pacific Ocean. *Front. Earth Sci.*, 9,
1382 691699, <https://doi.org/10.3389/feart.2021.691699>, 2021.

1383 Zhang, F., Lin, J. and Zhan, W.: Variations in oceanic plate bending along the Mariana trench. *Earth*
1384 *Planet. Sci. Lett.*, 401, 206–214, <http://dx.doi.org/10.1016/j.epsl.2014.05.032>, 2014.

1385 Zhang, G.L., Chen, L.H., Jackson, M. and Hofmann, A.W.: Evolution of carbonated melt to alkali

1386 basalt in the South China Sea, *Nat. Geosci.*, 10, 229–235, <https://doi.org/10.1038/ngeo2877>,
1387 2017.

1388 Zhang, W., Johnston, S. and Currie, C.A., Kimberlite magmatism induced by west-dipping
1389 subduction of the North American plate, *Geology*, 47, 395–398,
1390 <https://doi.org/10.1130/G45813.1>, 2019.

1391 Zhang, J., Xu, M. and Sun, Z.: Lithospheric flexural modelling of the seaward and trenchward of the
1392 subducting oceanic plates, *Int. Geol. Rev.*, 62, 908–923,
1393 <https://doi.org/10.1080/00206814.2018.1550729>, 2020.

1394 Zhang, G., Wang, S., Huang, S., Zhan, M. and Yao, J.: CO₂-rich rejuvenated stage lavas on Hawaiian
1395 Islands, *Geochem. Geophys. Geosyst.*, 23, e2022GC010525,
1396 <https://doi.org/10.1029/2022GC010525>, 2022.

1397 Zhong, Y., Zhang, G.-L., Zhong, L.-F., Chen, L.-H. and Wang, X.-J.: Post-spreading volcanism
1398 triggered by CO₂ along the South China Sea fossil spreading axis, *Lithos*, 404–405, 106478,
1399 <https://doi.org/10.1016/j.lithos.2021.106478>, 2021.

1400 Zindler, A. and Hart, S.: Chemical geodynamics, *Ann. Rev. Earth Planet. Sci.*, 14, 493–571,
1401 <https://doi.org/10.1146/annurev.ea.14.050186.002425>, 1986.