Supplement of

The fate of fixed nitrogen in Santa Barbara Basin sediments during seasonal anoxia

Xuefeng Peng^{1,2,3}, David J. Yousavich⁴, Annie Bourbonnais¹, Frank Wenzhoefer^{5,6,7}, Felix Janβen^{5,6}, Tina Treude^{4,8} and David L. Valentine^{2,3}

¹School of Earth, Ocean and Environment, University of South Carolina, 701 Sumter Street, Columbia, SC, USA

²Marine Science Institute, University of California, Santa Barbara, CA, USA

³Department of Earth Science, 1006 Webb Hall, University of California, Santa Barbara, CA, USA

⁴Department of Earth, Planetary, and Space Sciences, University of California Los Angeles, 595 Charles E. Young Drive East, Los Angeles, CA, USA

⁵HGF-MPG Group for Deep-Sea Ecology and Technology, Alfred-Wegener-Institute, Helmholtz-Center for Polar and Marine Research, Am Handelshafen 12, Bremerhaven, Germany

⁶Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, Bremen, Germany

⁷Department of Biology, DIAS, Nordcee and HADAL Centres, University of Southern Denmark, Odense M, Denmark

⁸Department of Atmospheric and Oceanic Sciences, University of California Los Angeles, Math Science Building, 520 Portola Plaza, Los Angeles, CA, USA.

Contents of this file

Figures S1 to S3 Tables S1 to S4

Figure S1. Nitrate (NO₃⁻) concentrations in benthic flux chambers with ¹⁵NO₃⁻ additions.

Figure S2. The correlation between NO_3^- drawdown rates measured from benthic flux chambers without ${}^{15}NO_3^-$ additions and the fraction of NO_3^- reduction as N_2O production. The solid line represents the best fit linear regression, and the dashed lines represent the 95% confidence interval band.

Figure S3. The correlation between NO_3^- drawdown rates measured from benthic flux chambers without ${}^{15}NO_3^-$ additions and the NO_3^- drawdown rate fold-change as a result of ${}^{15}NO_3^-$ additions (Table S2). The solid line represents the best fit linear regression, and the dashed lines represent the 95% confidence interval band.

Table S1. Detection limits of the rates of N₂ production from denitrification, N₂ production from anaerobic ammonia oxidation (anammox), NH₄⁺ production from dissimilatory nitrate reduction to ammonia (DNRA), and N₂O production.

Station	NDT3-D	NDT3-C	NDT3-A	NDRO	SDRO	SDT3-A	SDT3-C
N ₂ production - denitrification (mmol m ⁻² d ⁻¹)	0.053	0.174	0.092	0.156	0.200	0.042	0.051
N_2 production - anammox (mmol m ⁻² d ⁻¹)	0.027	0.083	0.032	0.238	0.202	0.033	0.041
NH_4^+ production from DNRA (mmol $m^{-2} d^{-1}$)	0.006	0.022	0.026	0.018	0.071	0.010	0.029
N_2O production (µmol m ⁻² d ⁻¹)	2.46	1.46	1.11	1.25	5.60	3.94	2.94

Table S2 . The fold change in bottom water NO ₃ ⁻ concentration as a result of ${}^{15}NO_{3}^{-}$
addition; areal rates of NO ₃ ⁻ drawdown with and without ¹⁵ NO ₃ ⁻ addition and the
calculated fold change.

	NDT2 D	NDT2 C	NDT2 A	NDDO	SDDO	SDT2 A	SDT2 C
Station	ND13-D	ND13-C	ND13-A	NDKU	SDKU	5D13-A	SD13-C
NO3 ⁻ fold change	1.99	1.62	1.90	2.75	6.17	3.43	2.30
NO ₃ ⁻ drawdown rate <u>without</u> ¹⁵ NO ₃ ⁻ addition (mmol m ⁻² d ⁻¹)	2.76	4.38	3.20	3.59	3.71	3.01	2.13
NO_3^- drawdown rate <u>with</u> ¹⁵ NO_3^- addition (mmol $m^{-2} d^{-1}$)	14.22	8.19	12.21	7.53	8.58	19.26	11.22
NO ₃ ⁻ drawdown rate fold change	5.15	1.87	3.81	2.10	2.31	6.40	5.26

Table S3. The contribution to $^{30}\text{N}_2$ production by anammox.

Station	NDT3-D	NDT3-C	NDT3-A	NDRO	SDRO	SDT3-A	SDT3-C
Contribution (%)	2.0%	1.9%	0.8%	1.5%	1.4%	0.9%	1.7%

Table S4. Bottom water nitrous oxide (N_2O) concentration and saturation at the beginning (T_0) of in-situ incubations. The saturation concentration of N_2O (12.16 nM) was calculated using the solubility equation from Weiss and Price (1980).

Station	NDT3-D	NDT3-C	NDT3-A	NDRO	SDRO	SDT3-A	SDT3-C	
N ₂ O concentration (nM)	19.1	13.6	11.7	1.5	1.2	18.2	13.0	
N ₂ O saturation	157%	112%	96%	12%	9%	150%	107%	