

1 **Exploring the ocean mesoscale at reduced computational cost with FESOM 2.5: efficient**
2 **modeling strategies applied to the Southern Ocean**

3 Nathan Beech¹, Thomas Rackow², Tido Semmler³, and Thomas Jung^{1,4}

4 1. Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven,
5 Germany

6 2. European Center for Medium-range Weather Forecasts, Bonn, Germany

7 3. Met Eireann, the Irish Meteorological Service, Dublin, Ireland

8 4. Department of Physics and Electrical Engineering, University of Bremen, Bremen, Germany

9 Corresponding Author: Nathan Beech (Nathan.beech@awi.de)

10

11 **Abstract**

12 Efficiency-maximizing modeling strategies are applied to 3 km simulations of the Southern
13 Ocean in past, present, and future climates. The model setup exploits reduced-resolution spin-up and
14 transient simulations to initialize a regionally refined, high-resolution ocean model during short time
15 periods. The results are compared with satellite altimetry data and more traditional eddy-present
16 simulations and evaluated based on their ability to reproduce observed mesoscale activity and to reveal a
17 response to climate change distinct from natural variability. The high-resolution simulations reproduce
18 the observed magnitude of Southern Ocean eddy kinetic energy (EKE) well, but differences remain in
19 local magnitudes and the distribution of EKE. The coarser, eddy-permitting ensemble simulates a similar
20 pattern of EKE, but underrepresents observed levels by 55%. At approximately 1 °C of warming, the
21 high-resolution simulations produce no change in overall EKE, in contrast to full ensemble agreement
22 regarding EKE rise within the eddy-permitting simulations. At approximately 4 °C of warming, both
23 datasets produce consistent levels of EKE rise in relative terms, although not absolute magnitudes, as well
24 as an increase in EKE variability. Simulated EKE rise is concentrated where flow interacts with
25 bathymetric features in regions already known to be eddy-rich. Regional EKE change in the high-
26 resolution simulations is consistent with changes seen in at least four of five eddy-permitting ensemble
27 members at 1 °C of warming, and all ensemble members at 4 °C. However, substantial noise would make
28 these changes difficult to distinguish from natural variability without an ensemble.

29 **Plain Language Summary**

30 Cost-reducing modeling strategies are applied to high-resolution simulations of the Southern
31 Ocean in a changing climate. They are evaluated with respect to observations and traditional, lower-
32 resolution modeling methods. The simulations effectively reproduce small-scale ocean flows seen in
33 satellite data and are largely consistent with traditional model simulations after 4 °C of warming. Small-
34 scale flows are found to intensify near bathymetric features and to become more variable.

35 **1 Introduction**

36 Mesoscale activity in the Southern Ocean has been the subject of much research and interest in
37 recent years due to the intensification of Southern Hemisphere westerlies (Marshall, 2003), the
38 phenomena of eddy saturation and compensation (Munday et al., 2013; Bishop et al., 2016), and the
39 potential for carbon sequestration in the face of ongoing anthropogenic emissions (Sallée et al., 2012;
40 Landschützer et al., 2015; Frölicher et al., 2015). Satellite observations already reveal an intensification of
41 eddy activity in the Antarctic Circumpolar Current (ACC) and changes are attributed primarily to wind
42 stress (Marshall, 2003; Hogg et al., 2015; Martínez-Moreno et al., 2021). Modeling studies have been
43 able to reproduce the observed changes, as well as project continued intensification throughout the 21st
44 century (Beech et al., 2022), but the modeled results rely on only partially resolved eddy activity relative
45 to observations, leaving open the possibility for new findings or greater clarity.

46 Advances in computational capabilities have enabled ocean modeling science to make great
47 progress in overcoming the substantial computational burden of simulating the mesoscale. However,
48 shortcomings remain, particularly in the Southern Ocean where the Rossby radius can be as small as 1
49 km, increasing the computational cost of resolving eddies (Hallberg, 2013). Even model resolutions that
50 can generally be considered eddy-resolving are only eddy-permitting poleward of 50° if grid spacing does
51 not vary in space (Hewitt et al., 2020). This highlights an efficiency challenge in simulating the mesoscale
52 with traditional model grids; resolutions necessary to resolve high-latitude, small-radius eddies are both
53 prohibitively expensive and unnecessary to resolve mesoscale eddies in the lower latitudes. Fortunately, a
54 growing number of modeling alternatives to traditional grids now enable dynamic spatial allocation of
55 resources (Danilov, 2013; Ringler et al., 2013; Danilov et al., 2017; Jungclaus et al., 2022), creating the
56 opportunity to more efficiently resolve the mesoscale.

57 As resource allocation in high-resolution modeling becomes spatially flexible in the pursuit of
58 more efficient configurations, the temporal component must also be scrutinized for efficiency. Traditional
59 modeling approaches require long spin-up periods in order to equilibrate the deep ocean and reduce

60 model drift (Irving et al., 2021). Although the impacts of drift are not negligible, they generally affect
61 large-scale processes in the deep ocean; mesoscale processes that require high resolutions to simulate are
62 typically fast-to-equilibrate and will appear relatively quickly wherever large-scale ocean conditions lead
63 to their creation. Admittedly, one cannot entirely disentangle the two scales, as mesoscale activity does
64 affect the position of fronts, stratification, and the paths of ocean circulation (Marshall et al., 2002;
65 Marzocchi et al., 2015; Chassignet and Xu, 2017). Yet, with equilibration times for the deep ocean on the
66 scale of thousands of years (Irving et al., 2021), the possibility, and ultimately necessity, to reduce the
67 resolution of spin-up runs relative to production runs must be investigated.

68 Advancing the concept of dynamic temporal allocation of resources further, the traditional
69 transient climate change simulation also represents an efficiency bottleneck for some applications; by
70 modifying the climate continuously in time, each year of a transient simulation is effectively a single
71 realization of a global mean climatic state that varies from the following and preceding years by only a
72 fraction of a degree. For some applications, like hindcasts of real events or trend analysis, this approach
73 may be desirable, but for assessing the impacts of climate change with limited resources and a low signal-
74 to-noise ratio, a larger sample of realizations for a consistent climatic state may be more suitable.

75 Aside from oceanic concerns, the atmosphere can have substantial impacts on mesoscale activity
76 in climate models. Most simply, with a coupled atmosphere, absolute surface winds will react to ocean
77 eddy activity, whereas atmospheric forcing will not, resulting in more eddy killing by wind stress
78 (Renault et al., 2016). Additionally, an atmosphere coupled to a high-resolution ocean must be of
79 similarly high resolution for certain mesoscale interactions to be resolved (Byrne et al., 2016). Ultimately,
80 the modeled atmosphere further escalates the already exponential cost of increasing ocean resolution by
81 requiring more computational resources in order for the benefits of the resolved mesoscale to fully
82 transfer to the broader climate.

83 To address the computational inefficiencies outlined above, a novel simulation configuration is
84 proposed, combining several experimental modeling approaches. Simulations will exploit the multi-

85 resolution Finite volumE Sea-ice Ocean Model (FESOM) (Danilov et al., 2017) employing a high-
86 resolution unstructured mesh that concentrates computational resources on the Southern Ocean, while
87 maintaining grid resolution in the remainder of the global ocean that can still be considered high-
88 resolution, as in, for example, HighResMIP (Haarsma et al., 2016). The multi-resolution strategy
89 overcomes the efficiency challenges of resolving high-latitude eddies without needlessly increasing
90 tropical resolutions, as well as limiting the focus and computational requirements to one hemisphere. The
91 high-resolution simulations will make use of a spin-up simulation on a medium-resolution, eddy-
92 permitting mesh to avoid the computational burden of allowing an eddy-resolving ocean to equilibrate
93 deep, slow-changing processes. The eddy-permitting mesh will also be used to simulate the transient
94 periods between shorter, high-resolution time slices, increasing the signal-to-noise ratio of the results by
95 separating the production data further in time and the progression of anthropogenic climate change.
96 Finally, the ocean model will be forced with atmospheric data from existing coupled simulations
97 (Semmler et al., 2020). Although this will not facilitate mesoscale atmosphere-ocean interaction, the
98 simulation will reflect the climatic development of an eddy-permitting simulation of the future
99 atmosphere without the additional computational requirements.

100 The Southern Ocean is one of the world's hotspots for mesoscale activity and a region where
101 substantial change is anticipated in the context of anthropogenic climate change (Beech et al., 2022).
102 Simultaneously, the high latitude of the region makes eddy-resolving model simulations computationally
103 demanding and observational data relatively scarce (Auger et al., 2023; Hallberg, 2013). Yet, as the
104 climate changes, the importance of the Southern Ocean grows as a heat and carbon sink, an ecosystem,
105 and a medium for feedback between the atmosphere and ocean (Byrne et al., 2016; Frölicher et al., 2015).
106 Thus, the study of the Southern Ocean demands innovation in the modeling field to produce high-
107 resolution simulations at reduced computational cost. This study maximizes grid resolution relative to
108 computational cost using an unstructured, multi-resolution grid, a medium-resolution spin-up simulation,
109 and atmospheric forcing from lower-resolution coupled simulations in order to focus resources as much as

110 possible on resolving mesoscale activity in the study region. The resulting simulations enable an
111 exploratory analysis of the past, present, and future of the Southern Ocean with a fully resolved
112 mesoscale. Simulations with this cost-efficient, high-resolution configuration are presented in comparison
113 to a comprehensive ensemble of eddy-permitting simulations to assess the performance of the efficiency-
114 focused approach in reproducing mesoscale activity and its response to climate change.

115 **2 Methods**

116 **2.1 Experimental setup**

117 This analysis contrasts a subset of simulations from AWI-CM-1-1-MR's contribution to the sixth
118 phase of the Coupled Model Intercomparison Project (CMIP6; Semmler et al., 2020), (hereafter referred
119 to as the AWI-CM-1 ensemble) with single-member stand-alone ocean simulations using an updated
120 version of FESOM (FESOM 2.5) and a mesh substantially refined to a resolution surpassing 3 km in the
121 Southern Ocean (hereafter referred to as the SO3 simulations) (Supplementary Figure 1). Observations of
122 ocean surface velocity derived from satellite altimetry data are also used to evaluate model performance
123 for both modeled datasets during the period of overlap with the altimetry record. The AWI-CM-1
124 simulations consist of the five-member ensemble of historical simulations and the five-member ensemble
125 of climate change projections under shared socioeconomic pathway (SSP) 3-7.0 which were performed by
126 AWI-CM-1-MR in CMIP6 (Semmler et al., 2020). These are state-of-the-art CMIP6 experiments and
127 benefit from the multiple ensemble members and long spin-up times that CMIP simulations typically
128 boast. However, while the AWI-CM-1 ensemble reproduces eddy activity remarkably well within the
129 context of CMIP6 (Beech et al., 2022), high-resolution ocean modeling now far surpasses even the
130 highest ocean resolutions in the CMIP6 ensemble. Conversely, the SO3 simulations push the limits of
131 ocean resolution but rely on several measures for maximizing computational efficiency that may impact
132 the robustness of the simulations. Details on the experimental setup for CMIP6 and ScenarioMIP are
133 widely available (Eyring et al., 2016; O'Neill et al., 2016) and information more specific to AWI-CM-1-

134 1-MR's contribution has been published previously (Semmler et al., 2020). The following sections will
135 outline the details of the SO3 simulations.

136 To produce initial conditions for the high-resolution model simulations on the SO3 mesh, a
137 medium-resolution, eddy-permitting, ocean-only transient simulation was first run from 1851 to 2100
138 using the same ocean mesh employed by AWI-CM-1-1-MR in CMIP6 (Semmler et al., 2020). This mesh
139 has been shown to effectively reproduce eddy activity in active regions while maintaining a
140 computational cost comparable to a traditional $\frac{1}{4}$ $^{\circ}$ model (Beech et al., 2022). The transient simulation
141 was initialized with conditions for ocean temperature and salinity, as well as sea ice concentration,
142 thickness, and snow cover taken from the end of the first year (1850) and first ensemble member
143 (r1i1p1f1) of AWI-CM-1-1-MR's historical simulations in CMIP6 (Semmler et al., 2018, 2020, 2022a,
144 b). In this way, the model undergoes a semi-cold start in which ocean conditions are not exact
145 continuations of the previous coupled simulation, but should be far closer to equilibrium than a true cold
146 start initialization. The eddy-permitting transient simulation was forced using atmospheric data from the
147 same ensemble member of the historical CMIP6 simulations until 2014 (Semmler et al., 2022a), and
148 thereafter using the first ensemble member of AWI-CM-1-1-MR's ScenarioMIP simulations for SSP 3-
149 7.0 (Eyring et al., 2016; O'Neill et al., 2017; Semmler et al., 2022b). This approach to forcing takes
150 advantage of a coupled simulation, CMIP6, to produce a forcing dataset of better temporal and spatial
151 coverage than the observational record and which maintains a realistic transient climate throughout
152 anthropogenic impacts during the 21st century.

153 In the years 1950, 2015, and 2090, FESOM is reinitialized with the high-resolution ocean grid,
154 SO3 (Supplementary Figure 1), using the same semi-cold start approach and forcing dataset that was
155 implemented for the eddy-permitting transient simulation described previously. These years were chosen
156 to represent a historical period, beginning in 1950, when the effects of climate change on EKE should be
157 small or none (Beech et al., 2022); a near-present period, beginning in 2015, in which the simulations will
158 overlap with satellite altimetry data; and a projected period, beginning in 2090, which should include a

159 strong climate change signal. The latter two simulated periods represent 1.07 °C and 3.74 °C of warming,
160 respectively, in the first ensemble member of the AWI-CM-1 ensemble defined as a rise in the 21-year
161 running mean of global mean two-meter air temperatures. Warming of the ensemble mean is similar: 1.08
162 and 3.76 °C respectively, and warming is henceforth approximated as 1 °C and 4 °C in Figure 4 and the
163 text. Initial conditions for these shorter time-slice simulations are taken from the end of the previous year
164 of the eddy-permitting transient simulation. The high-resolution simulations are each integrated for six
165 years with the first year ignored as a true spin-up, leaving five years of data for each time period. The
166 high-resolution grid is, in truth, a regionally refined mesh in which a 25 km global resolution is refined to
167 approximately 2.5 km, following Danilov (2022), primarily south of 40 °S, but with other pertinent
168 regions, such as the Agulhas Current and several narrow straits, also refined. In this way, the model is
169 able to simultaneously achieve eddy-rich conditions in the Southern Ocean and many of the nearby active
170 regions, as well as a global resolution that would still be considered high in the context of CMIP6
171 (Hallberg, 2013; Hewitt et al., 2020). While model drift may be a concern with such a short true spin-up
172 period, this should affect each of the high-resolution time slices similarly and to a limited extent due to
173 their short integration lengths. Thus, the differences between the high-resolution ocean simulations should
174 primarily reflect anthropogenic climate impacts simulated during the eddy-permitting transient run and
175 present in the forcing dataset.

176 **2.2 Model configuration**

177 The Finite volume Sea-ice Ocean Model version 2.5 is a post-CMIP6 era model, having been
178 refactored to a finite-volume configuration from the finite-element version (FESOM1.4, Q. Wang et al.,
179 2014) employed in CMIP6, and transitioned to arbitrary Lagrangian Eulerian vertical coordinates, among
180 other improvements (Danilov et al., 2017; Scholz et al., 2019, 2021). FESOM's most distinguishing
181 feature among mature ocean models is the unstructured horizontal grid that exploits triangular grid cells
182 which can smoothly vary in size to change the horizontal grid resolution in space. In these simulations,
183 full free surface, or z^* , vertical coordinates were used, allowing the vertical model layer thicknesses to

184 change in time. Gent-McWilliams eddy parameterization (Gent and McWilliams, 1990) is scaled with
185 resolution according to Ferrari et al. (2010) and vertical mixing is simulated by a k -profile
186 parameterization scheme (Large et al., 1994).

187 The SO3 mesh consists of over 22 million surface elements (triangle faces) or 11 million surface
188 nodes (triangle vertices) and 70 vertical layers. The simulations produce about 1.1 terabytes of data per
189 year of 3D data stored on nodes. For reference, the medium-resolution mesh used in the AWI-CM-1
190 ensemble is 1.6 million surface elements or 0.83 million surface nodes and 46 vertical layers and
191 produces approximately 56 GB per year of 3D data stored on nodes. The model was run on 8192 CPU
192 cores and with a typical throughput of approximately 0.65 simulated years per day, consuming
193 approximately 5.5 million CPU hours in total despite the various cost-saving modeling approaches. It
194 should be noted, however, that the throughput in high-resolution production simulations like this is highly
195 dependent on the volume and choice of data being saved. The simulations and following analysis were
196 performed using the high-performance computing system, Levante, at the German Climate Computing
197 Center (DKRZ).

198 The ocean model is forced by several atmospheric variables at a six-hour resolution, although one
199 forcing variable, humidity, is interpolated monthly data. The forcing data is supplied to the model on the
200 regular atmospheric grid used in the coupled setup during AWI-CM-1-1-MR's CMIP6 simulations
201 (Semmler et al., 2018) and interpolated to the multi-resolution grid used in the respective simulations by
202 FESOM. Runoff data is a monthly climatology and dynamic ice sheet coupling is not included, meaning
203 the freshwater influx from the Antarctic continent does not react to warming which may impact certain
204 processes, such as the timing and intensity of sea ice loss (Pauling et al., 2017; Bronselaer et al., 2018).

205 **2.3 Modeled ocean velocity data**

206 Geostrophic balance is an idealized approximation that does not match real ocean velocities for
207 several reasons, including the presence of ageostrophic flow, such as Ekman transport, as well as

208 assumptions made in the derivation of equations (1) and (2). Specifically, geostrophic balance between
209 the Coriolis effect and the pressure gradient is valid under the assumption that the curl of horizontal
210 velocities or vorticity is small relative to the magnitude of overall flow. In models, this assumption is
211 relatively close to reality in coarse-resolution simulations where geostrophic flow dominates, but on
212 higher-resolution meshes, where submesoscale flows are well-resolved, these omitted terms become
213 larger. Therefore, while using geostrophic velocities for both high-resolution and coarse-resolution
214 modeled datasets would be methodologically consistent, the error introduced would be systematically larger
215 for the finer-resolution dataset than the coarser. Therefore, we do not consider the use of geostrophic
216 velocities for both modeled datasets in this analysis to bring the data into closer agreement. Rather, for the
217 AWI-CM-1 dataset, where daily ocean velocities were not saved (Semmler et al., 2018), geostrophic
218 velocities derived from sea surface height with equations (1) and (2) are the best possible choice, and
219 fortunately, as described earlier, the error introduced by the assumptions of geostrophic balance will be
220 small. For the SO3 simulations, direct model output was saved and is preferred, particularly given the
221 high resolution of the mesh.

222 $u = -g/f^* \partial \text{SSH} / \partial y$ (1)

223 $v = g/f^* \partial \text{SSH} / \partial x$ (2)

224 The omission of Ekman transport, the primary source of ageostrophic oceanic flow from atmospheric
225 influences, can be relatively well addressed in the SO3 dataset by selecting modeled velocities just below
226 the Ekman layer. At depths of 25-30m below sea level, the bulk of Ekman transport can be avoided (Price
227 et al., 1987), while velocities should not substantially differ from those at the surface. What ageostrophic
228 flow remains in the model output velocities should be primarily large-scale and small relative to
229 geostrophic flow in the high-energy regions of the ocean, including the ACC (Yu et al., 2021).

230 **2.4 Altimetry data**

231 An observational data product of gridded, daily geostrophic velocities derived from along-track
232 satellite altimetry from crossover data is taken from the Data Unification and Altimeter Combination
233 System (DUACS) (Taburet et al., 2019). The gridded product has a resolution of 0.25 °, although
234 effective resolution at high latitudes may be much lower (Bellarotta et al., 2019). Recently, improved data
235 has become available in the ice-covered regions of the Southern Ocean (Auger et al., 2022), but does not
236 yet cover the full present-day simulated period (2016-2020) in this study. Absolute velocities from the
237 gridded altimetry product were used to calculate anomalies and EKE using equations (3) and (4) below
238 for consistency with the modeled dataset.

239 **2.5 EKE analysis**

240 Velocity anomalies are defined by subtracting the multi-year monthly climatology of each
241 respective 5-year period from daily velocities with equation (3).

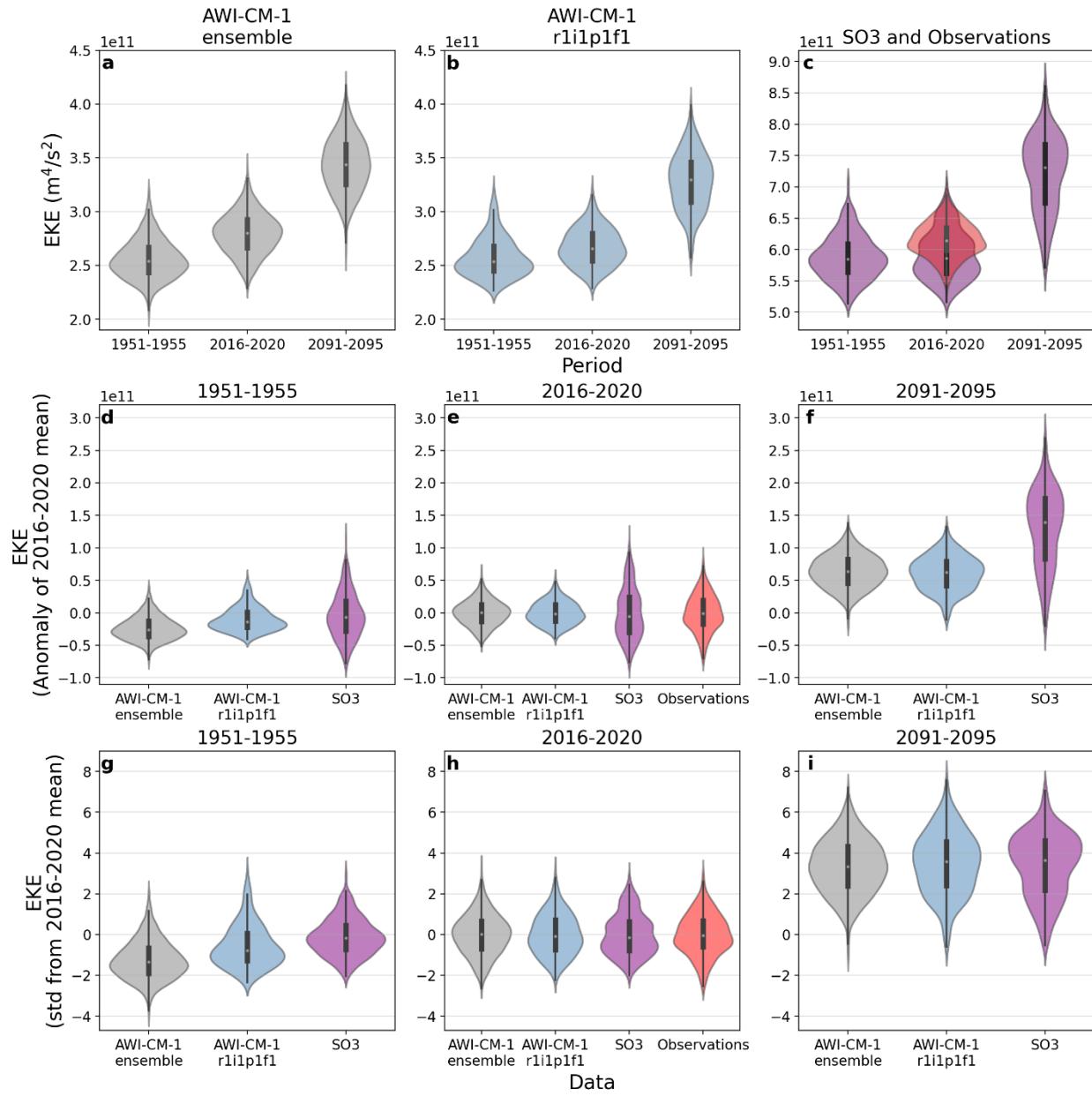
242 $u'_i = u_i - \bar{u}_m$ (3)

243 Where u_i is the daily zonal velocity, ' denotes an anomaly, and \bar{u}_m is a monthly mean. For meridional
244 velocities (v) substitute u with v.

245 Eddy kinetic energy is calculated from ocean velocities according to equation (4).

246 $EKE_i = 0.5(u'^2 + v'^2)$ (4)

247 Where $(.)$ denotes a daily value and ' denotes an anomaly.

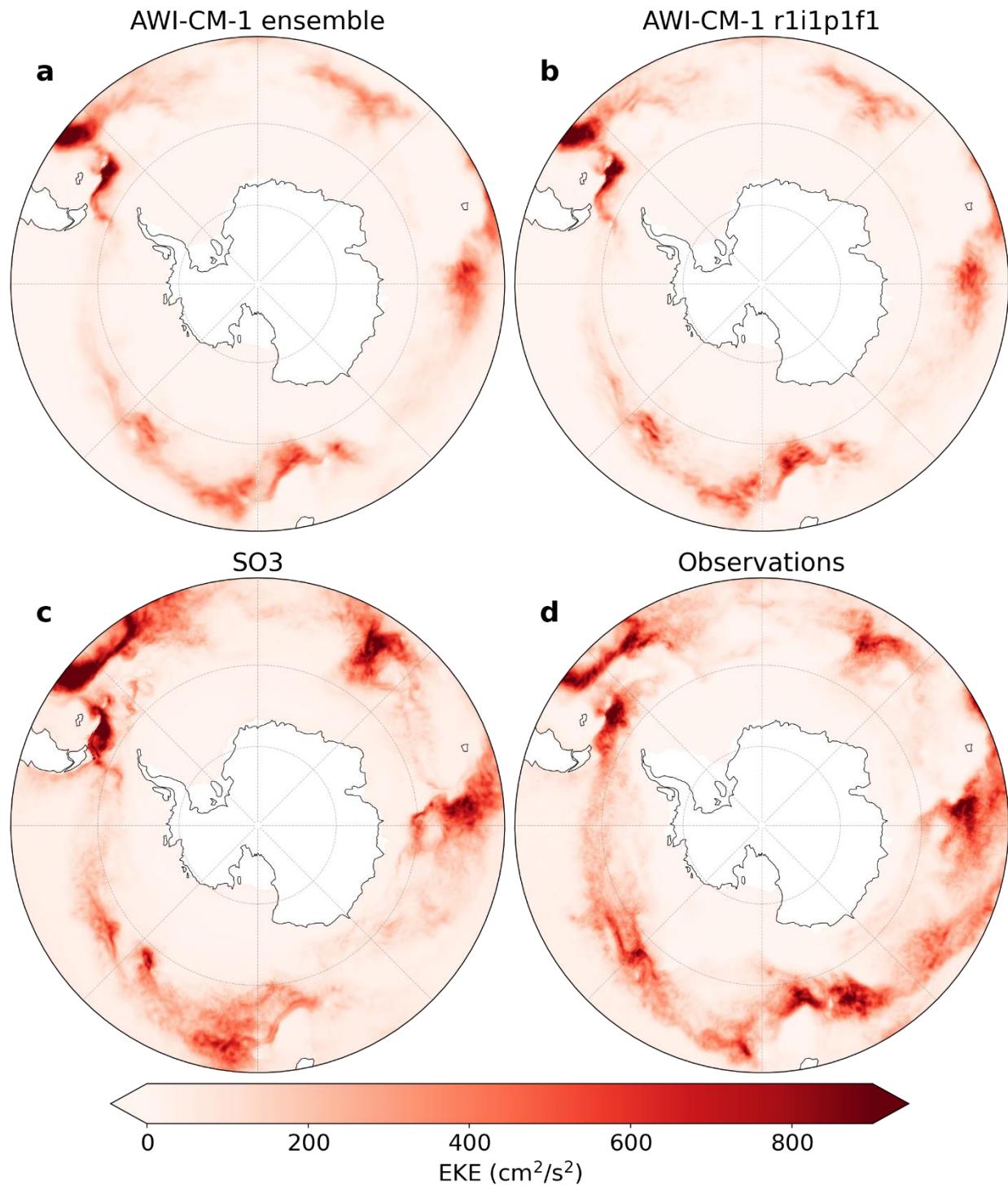

248 EKE was calculated on the native grid of each dataset and then interpolated to a 0.25 ° grid for all
249 analyses. In Figures 1 and 3, EKE was first calculated on a daily timescale and coarsened to five-day
250 means before analysis to reduce computational costs during post-processing. Area-integrated EKE (Figure
251 1, 3) is calculated by summing the area-weighted EKE of each grid cell in the study region defined as the
252 zonal band between 45 °S and 65 °S. The Brazil/Malvinas confluence region between 57 °E and 29 °E
253 and northward of 40 °S is removed to focus the study on a region with consistent physical drivers

254 theorized to be responsible for the changes in eddy activity (Beech et al., 2022). As a precaution, Each
255 dataset was linearly detrended before analysis in Figures 1 and 3 to avoid artificially increasing the range
256 of the later distributions due to the accelerating climate change signal. Select statistical properties are
257 reported in Supplementary Tables 1-3 to indicate deviations from normality (D'Agostino and Belanger,
258 1990; Fisher, 1997) and autocorrelation (Durbin and Watson, 1950). Rather than attempt to manipulate
259 the data to meet certain statistical assumptions, complex statistical tests are avoided and the statistical
260 properties reported can be used to interpret the EKE data in a physical sense. EKE anomalies (Figure 1)
261 were calculated by subtracting the 2016-2020 mean of area-integrated EKE from the 5-day mean values
262 of each period. Normalized EKE was calculated by further dividing EKE anomaly by the standard
263 deviation of EKE during the 2016-2020 period. In Figure 4, ensemble agreement is determined by
264 ordering the Δ EKE values within each grid cell from lowest to highest, plotting the positive values in
265 increasing order from left to right and negative values in decreasing order from left to right.

266 3 Results

267 3.1 Agreement with observations

268 During the five-year period of overlap with observations, the SO3 simulation is a drastic
269 improvement on the AWI-CM-1 ensemble in reproducing median observed EKE (Figure 1a, c); only a
270 slight underrepresentation of EKE remains in the SO3 simulation, although the simulated distribution is
271 somewhat distinct from observations. In comparison, the AWI-CM-1 ensemble, being effectively eddy-
272 permitting in the Southern Ocean, underrepresents observations by approximately 55% (Figure 1a, c, note
273 the different y-axis). EKE in SO3 appears more variable than the observations considering its larger
274 range, (Figure 1c, e), and in general, the modeled datasets display greater deviations from a normal
275 distribution than the observations (Figure 1a, b, c; Supplementary Table 2). Nonetheless, relative to the
276 AWI-CM-1 model bias and the magnitude of EKE resolved, the ensemble spread within the AWI-CM-1
277 dataset is small (Figure 3), suggesting that a single ensemble member of five years duration is sufficient
278 to assess how well a model captures the magnitude of overall Southern Ocean EKE (Figure 1c).

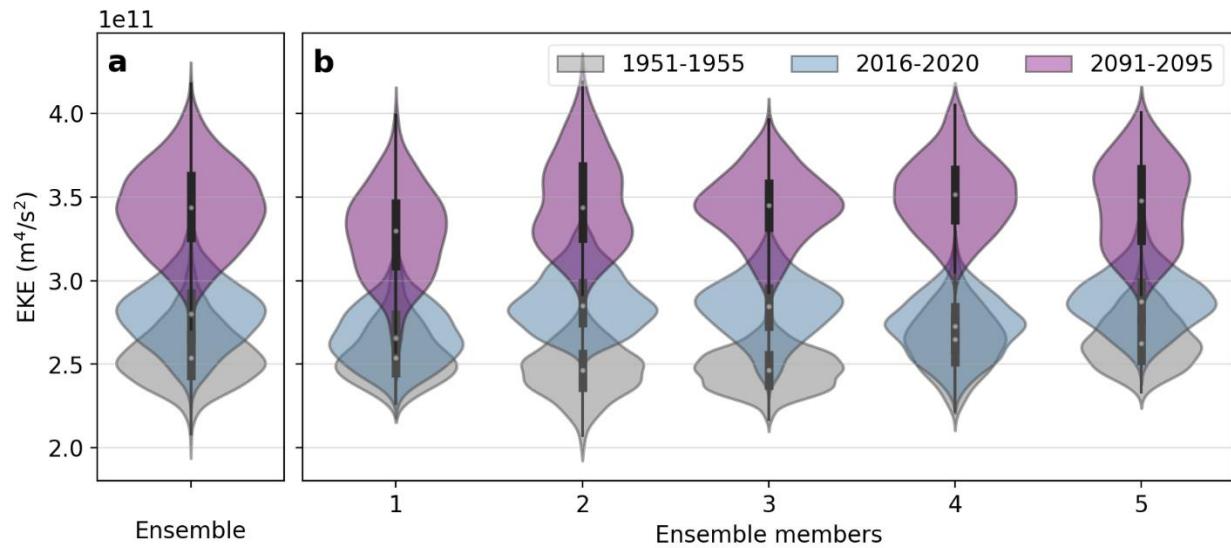

279

280 **Figure 1. Violin plots of area-integrated Southern Ocean EKE in simulations and observations.**

281 Central points of each plot indicate the median, thick bars span the first and third quartiles, thin bars span
 282 the range, and the violin body is a kernel density estimation of the data. **a-c)** Magnitudes of area-
 283 integrated EKE (note the different y axes) **a)** The AWI-CM-1 ensemble. **b)** the first member of the AWI-
 284 CM-1 ensemble, from which the SO3 simulations take their atmospheric forcing. **c)** The SO3 simulations
 285 and observations. **d-f)** Anomalies relative to the 2016-2020 mean of area-integrated EKE for each dataset

286 respectively. **d)** 1951-1955. **e)** 2016-2020. **f)** 2091-2095. **g-i)** Normalized values relative to the mean and
287 standard deviation of EKE during the 2016-2020 period for each dataset respectively. **g)** 1951-1955. **h)**
288 2016-2020. **i)** 2091-2095.

289 From a regional perspective, the SO3 simulation accurately reflects local magnitudes of observed
290 EKE and also generally captures the spatial distribution well (Figure 2). However, there are regional
291 shortcomings, such as between 90 and 145 °E. Grid resolution in this region should be sufficient to
292 resolve eddy activity (Supplementary Figure 1), indicating that the bias arises from another source. In the
293 AWI-CM-1 ensemble, the regional representation of EKE reinforces a broad underrepresentation relative
294 to observed magnitudes, but the major geographic features of eddy activity are fairly well represented
295 (Figure 2). Once again, the ensemble spread within the AWI-CM-1 simulations reveals remarkable
296 consistency, this time in terms of the spatial pattern and regional magnitudes (Supplementary Figure 2),
297 reinforcing the conclusion that a single ensemble member of five years duration is sufficient to assess the
298 mean state of EKE in the Southern Ocean. The consistency of the AWI-CM-1 ensemble further suggests
299 that regional shortcomings in eddy activity in the SO3 simulations are not a product of variability within a
300 single realization of Southern Ocean conditions (Supplementary Figure 2).

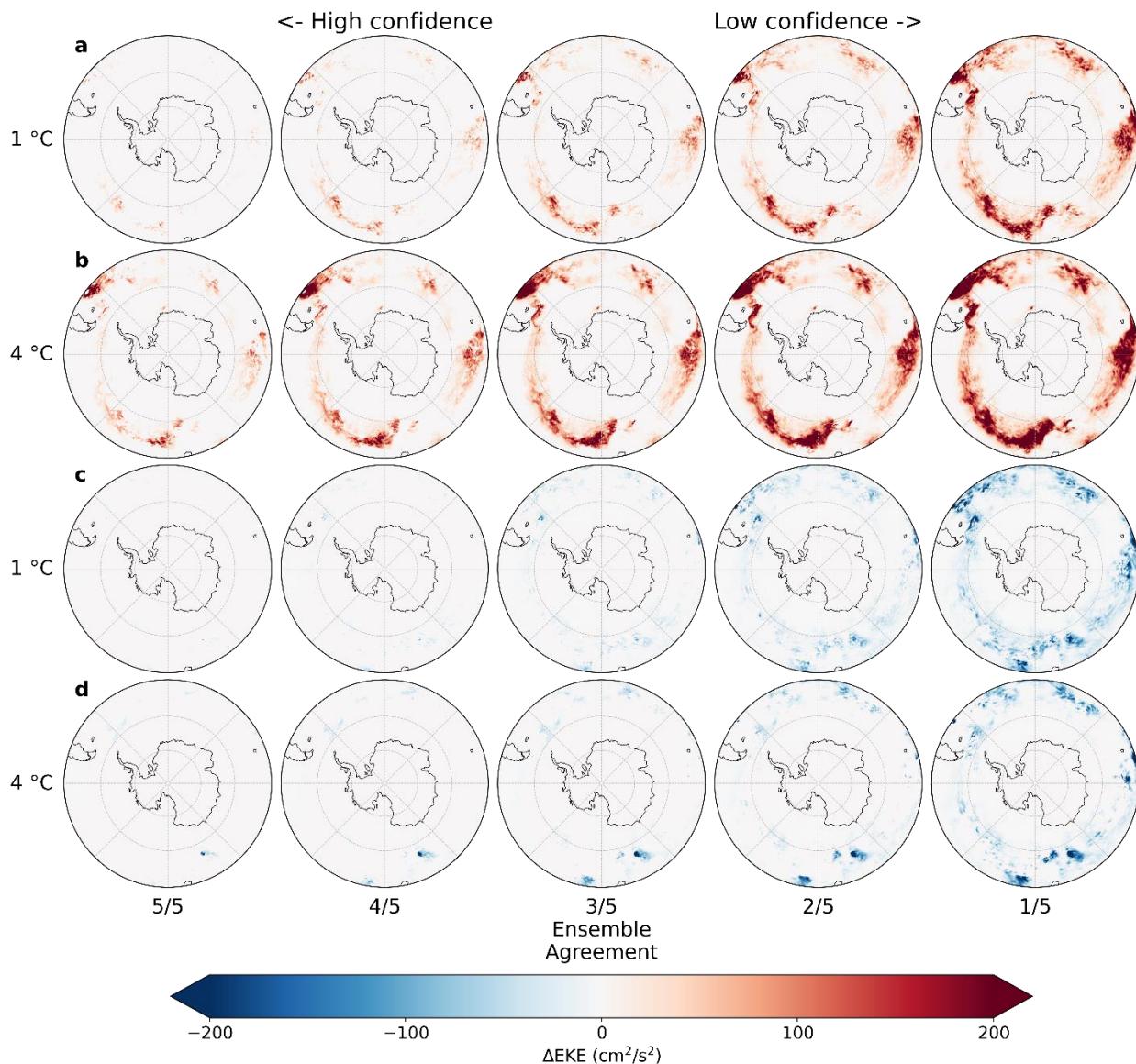

305 **3.2 EKE change and significance**

306 Southern Ocean eddy activity has been shown to intensify over the recent decades both using
307 satellite altimetry (Martínez-Moreno et al., 2021), and the complete AWI-CM-1-1 dataset from CMIP6
308 (Beech et al., 2022). Even after reducing the AWI-CM-1 CMIP6 dataset to five-year periods preceding
309 the apparent change (1951-1955) and at the end of the altimetry era (2016-2020), this intensification is
310 still discernable within the AWI-CM-1 ensemble (Figure 1a). Despite this, the SO3 simulations do not
311 demonstrate any substantial change in EKE magnitude over the same period (Figure 1). Further reducing
312 the ensemble to its individual members (Figure 3), the EKE rise is still relatively robust in each case,
313 including clear separation of the datasets considering the median, mode, and distribution of the data.
314 However, the first ensemble member, from which the atmospheric forcing of SO3 is taken, demonstrates
315 less EKE rise than the ensemble average (Figure 3), suggesting that natural variability in atmospheric
316 conditions may contribute to the disagreement. Further investigation reveals several differences between
317 the SO3 simulations and the AWI-CM-1 ensemble members that may play a role. Mean zonal ocean
318 velocity in SO3 is faster and broader than the AWI-CM-1 ensemble (Supplementary Figure 3), meaning
319 wind speed intensification may be misaligned with peak ocean velocities in SO3, particularly around 47
320 to 51 °S. Moreover, considerably less zonal wind stress is imparted to the ocean in SO3 despite identical
321 wind speeds as the first AWI-CM-1 ensemble member (Supplementary Figure 4), possibly due to the
322 higher ocean surface velocity.

323 The intensification of EKE becomes clear in both the AWI-CM-1 ensemble (Figure 1a), its
324 members (Figure 3), and the SO3 simulations (Figure 1c) by the end of the 21st century. Over this period,
325 the variability of EKE, indicated by the range of the distribution, also increases for each dataset (Figure
326 1f, i). EKE rise in SO3 is approximately twice that of the AWI-CM1 ensemble in absolute terms (Figure
327 1f), but expressing EKE as a relative value normalized by the mean and standard deviation of each dataset
328 during the observational period (Figure 1g, h, i), reveals greater consistency between the changes until the
329 end of the 21st century. EKE in each dataset appears to increase by approximately 3.5 standard deviations,

330 and the range of EKE distributions increases by approximately two to three standard deviations (Figure
331 1h, i). However, the datasets also tend to become more autocorrelated, which can inflate the distribution
332 range (Supplementary Tables 1, 3).

333



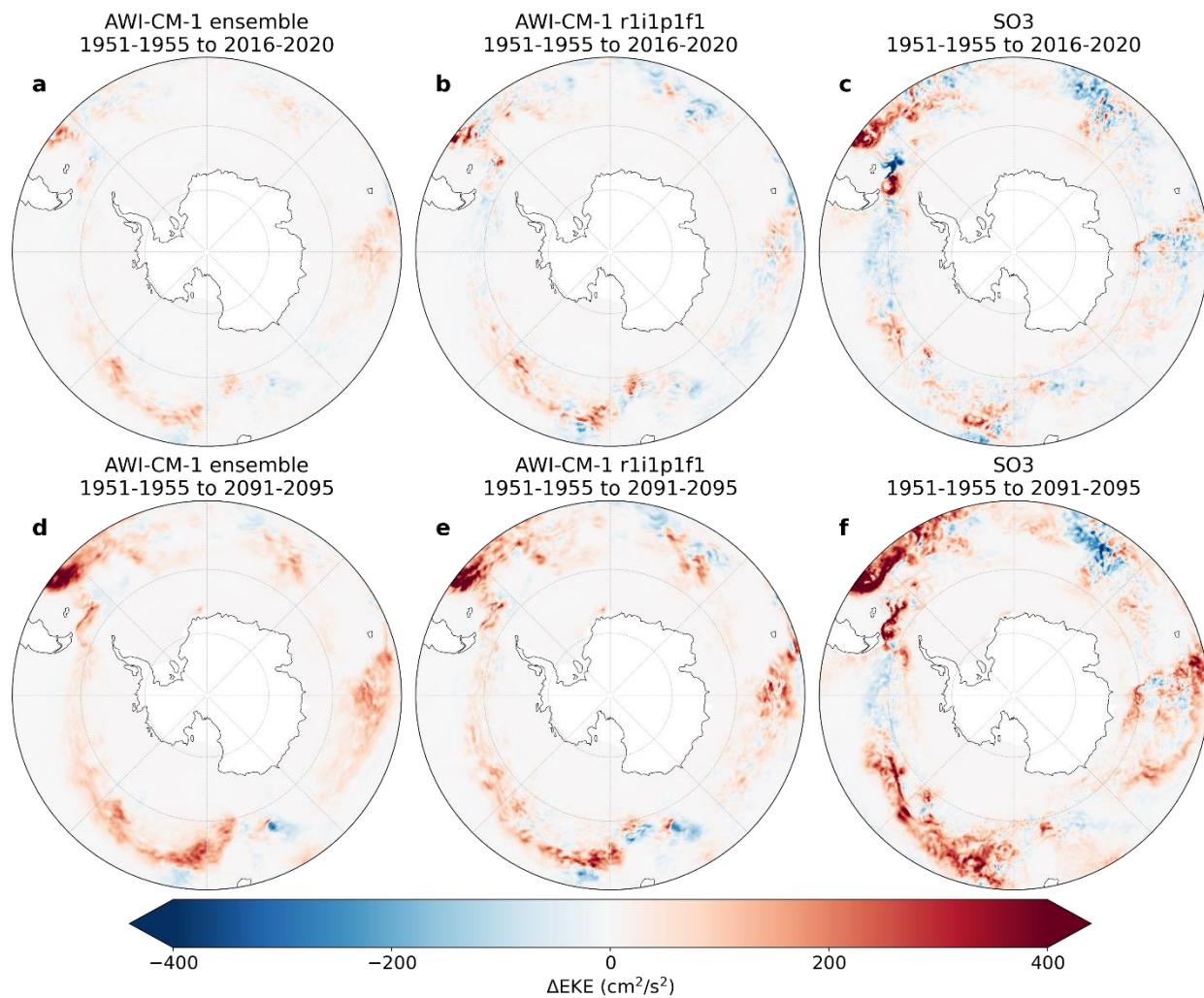
334

335 **Figure 3. Ensemble spread of EKE in AWI-CM-1. a)** Violin plots of area-integrated Southern Ocean
336 EKE in the AWI-CM-1 ensemble. **b)** Violin plots of mean Southern Ocean EKE in each member of the
337 AWI-CM-1 ensemble. Grey plots represent the period 1951-1955, blue plots represent 2016-2020, and
338 purple plots represent 2091-2095.

339 Before considering the regional impacts of warming on EKE in the SO3 simulations, it is useful
340 to refer to the ensemble spread within the AWI-CM-1 simulations to approximate the reliability of a
341 single ensemble member in revealing the ensemble-mean change as an analogue to the signal-to-noise
342 ratio. At 1 °C of warming, EKE change in the ensemble is weak, with at least one ensemble member
343 tending to show little or no EKE change in most regions (Figure 4a,c). Only a few clear patterns of
344 change emerge throughout the ensemble, namely the regions of EKE intensification downstream of the
345 Kerguelen Plateau and the Campbell Plateau where four to five out of five ensemble members show clear
346 EKE intensification (Figure 4a). It should be noted that even in these regions of relatively high confidence

347 (4 to 5 ensemble members, Figure 4a) EKE rise can be interspersed with lower-confidence (1 to 2
348 ensemble members, Figure 4c) EKE decline; this is also illustrated by the ensemble mean changes
349 themselves (Supplementary Figures 5, 6). Despite this, the consistency of EKE rise in these regions, and
350 their geographic positions in already EKE-rich regions, suggests that the intensification patterns are
351 robust changes within substantial noise. This level of noise suggests that EKE changes in the SO3
352 simulations at 1 °C of warming will be difficult to distinguish from natural variability when taken on their
353 own; indeed, in the SO3 simulations, the large variability of both sign and magnitude of change within
354 relatively small spatial scales does not lend confidence to any significant change at 1 °C of warming
355 (Figure 5c). However, building on the changes observed in the AWI-CM-1 ensemble, the intensification
356 of EKE downstream of the Kerguelen and Campbell Plateaus seems to be reinforced by the high-
357 resolution simulations.

358


359 **Figure 4. Ensemble agreement regarding EKE change.** EKE rise (a, b) and decline (c, d) within the
360 AWI-CM-1 ensemble after one (a, c) and four (b, d) °C of warming or between 1951-1955 and 2016-
361 2020 and 2091-2095, respectively, arranged in order of decreasing ensemble agreement regarding change
362 in each grid cell. Ensemble agreement refers to the number of ensemble members that simulate at least the
363 pictured magnitude of mean EKE rise or decline for each grid cell. Mean EKE change is defined as the
364 difference of mean EKE between 1951-1955 and each of the two latter periods, as in Supplementary
365 Figures 5 and 6 but arranged in ascending order of magnitude for each grid cell and for positive and
366 negative signs separately. Rank 5/5 indicates the lowest magnitude of mean EKE rise (a, b) or decline (c,

367 d) within the ensemble for a given grid cell, meaning the entire ensemble agrees on at least this much
368 change. Rank 1/5 indicates the highest magnitude of EKE rise or decline within the ensemble for each
369 grid cell, representing the upper limit of projected EKE change.

370 At 4 °C of warming, change in eddy activity becomes clearer; EKE intensification downstream of
371 the Kerguelen and Campbell Plateaus is now consistent throughout the entire AWI-CM-1 ensemble, along
372 with additional intensifications south of the Falkland/Malvinas Plateau, around the Conrad Rise, and
373 along the Antarctic Slope Current at approximately 5 °E (Figure 4b). Four fifths of the ensemble also
374 include a broad increase in EKE throughout the ACC across most longitudes. Interestingly, a consistent
375 pattern of EKE decline also emerges upstream of the Campbell Plateau in the entire ensemble (Figure 4d).
376 The spatial pattern of EKE rise is relatively consistent regardless of confidence, with only the magnitude
377 increasing in the lower confidence composites (Figure 4b). The same tendency is observable between the
378 EKE changes at 1 and 4 °C of warming, where the magnitude of change is greater after further warming
379 but follows the same spatial pattern. Thus, regions of intensification can be identified more reliably than
380 the magnitude of change and tend to be concentrated where flow interacts with topographic features, in
381 already eddy-rich regions (Figure 2). Conversely, low confidence EKE decline appears nearly throughout
382 the Southern Ocean in at least one ensemble member, but only consistently upstream of the Campbell
383 Plateau and, to a far lesser extent, downstream of the Drake Passage and Campbell Plateau (Figure 4d).
384 Changes of negative sign tend to be of lower magnitude at 4 °C of warming than at 1 °C. This suggests
385 that the general EKE response to climate change in the Southern Ocean is that of intensification, and the
386 interspersed signals of decline tend to be the result of natural variability. Yet, small regions of high-
387 confidence EKE decline also appear. Consequently, it would be difficult to confidently separate reliable
388 EKE change from natural variability in simulations without an ensemble to compare with. In the SO3
389 simulations, EKE rise downstream of the Drake Passage and Kerguelen and Campbell Plateaus is
390 substantial (Figure 5f). EKE rise is also projected south of the Falkland/Malvinas Plateau, around the
391 Conrad Rise, and along the Antarctic Slope Current at approximately 5 °E, and a slight EKE decline

392 appears upstream of the Campbell Plateau. All of this is comparable to the AWI-CM-1 ensemble, and the
393 interspersed areas of EKE decline within these regions, for example, around the Conrad Rise, are not
394 improbable based on the example set by AWI-CM-1 (Figure 4d). However, considering that some high-
395 confidence EKE decline is present in the AWI-CM-1 ensemble, it is difficult to confidently dismiss
396 regional EKE decline in the SO3 simulations as noise.

397

398

399 **Figure 5. EKE change.** Spatial representations of the difference in EKE between (a-c) 1951-1955 and
400 2016-2020, (d-f) 1951-1955 and 2091-2095. **a,d)** The AWI-CM-1 ensemble. **b,e)** the first member of the
401 AWI-CM-1 ensemble. **c,f)** The SO3 simulations.

402 **4 Discussion**

403 Intensification of eddy activity in the Southern Ocean is now widely accepted as a consequence
404 of anthropogenic climate change (Hogg et al., 2015; Patara et al., 2016; Martínez-Moreno et al., 2021;
405 Beech et al., 2022), and is understood to be caused primarily by stronger westerly winds imparting more
406 energy to the Antarctic Circumpolar Current (Munday et al., 2013; Marshall, 2003). The results presented
407 here reinforce the notion of EKE intensification and further project increased EKE variability as the
408 climate warms (Figure 1, 3). By expressing EKE change in terms of ensemble agreement on a cell-by-cell
409 basis, the results presented here are also able to identify regions of reliable and substantial change as those
410 where flow interacts with major bathymetric features and high eddy activity is already known to occur
411 (Figure 4). Analysis of regional changes within the Southern Ocean eddy field has generally been limited
412 to regions defined by oceanic sectors (Atlantic, Indian, Pacific) (Hogg et al., 2015), or incremental
413 longitudinal delimitations (Patara et al., 2016). In future research, regional analyses of the significance,
414 rate, or cause of EKE trends could focus on the bathymetrically defined regions identified in this analysis
415 to produce physically related and consistent results.

416 The consistency of the AWI-CM-1 ensemble in projecting clear EKE rise in the Southern Ocean
417 as a whole suggests that a single ensemble member of five-years simulation length should be sufficient to
418 reliably identify change, even after 1 °C of temperature rise. Despite this, the SO3 simulations fail to
419 reproduce the EKE rise that is already observable through observations (Martínez-Moreno et al., 2021). A
420 potential source for this discrepancy is the uncoupled model setup in the SO3 simulations which omits
421 ocean-atmosphere feedbacks. In this regard, the SO3 simulations experience lower wind stress imparted
422 to the ocean surface than AWI-CM-1 ensemble member one by the same surface winds (Supplementary
423 Figure 4), and a mismatch between peak zonal wind speeds and mean zonal ocean velocities
424 (Supplementary Figure 3). Confounding the comparison further, is the fact that strengthening winds can
425 both increase and dampen eddy activity; as westerlies intensify, the additional energy imparted to the
426 ocean is expected to strengthen eddy activity (Munday et al., 2013; Meredith and Hogg, 2006), but winds

427 are also known to dampen mesoscale activity through eddy killing (Rai et al., 2021) and this impact is
428 greater in uncoupled model configurations (Renault et al., 2016). While the lack of change at 1 °C is
429 difficult to explain, the disagreement is limited to these more subtle changes and the simulations tend to
430 agree on the strong EKE rise at 4 °C of warming.

431 The remaining discrepancies between eddy activity in SO3 and observations are relatively small,
432 but exploring potential sources of disagreement may help to interpret the simulations and guide future
433 modeling endeavors. Greater skew in the distribution of EKE in the modeled dataset (Supplementary
434 Table 2) could reflect multiple modes of circulation or seasonality. While seasonality of eddy activity in
435 the ACC is low, seasonal ice cover likely affects eddy activity in the modeled dataset, and certainly
436 affects the observational dataset by producing gaps in its spatio-temporal coverage. Beyond differences in
437 skew, this could contribute to the greater range of EKE seen in the SO3 simulations by systemically
438 obscuring seasonal conditions from the observational dataset. Regional deficiencies of EKE in SO3 could
439 be explained in terms of grid resolution outside of the study region; resolving the first Rossby radius of
440 deformation with at least two grid points is not enough to comprehensively reproduce mesoscale activity
441 (Hallberg, 2013; Sein et al., 2017), and grid refinement may need to be expanded to upstream regions that
442 impact eddy dynamics in the Southern Ocean. Other sources of bias may include ocean-atmosphere
443 interactions which are absent or unrealistic within the uncoupled simulations (Byrne et al., 2016; Rai et
444 al., 2021; Renault et al., 2016). As well, some small-scale, slow-to-equilibrate ocean processes may be
445 resolved in the high-resolution simulations, but not be integrated long enough for their effects to impact
446 eddy activity (van Westen and Dijkstra, 2021; Rackow et al., 2022). Finally, the gridded altimetry product
447 itself may be responsible for some disagreement, as the along-track data is known to underrepresent eddy
448 activity at scales less than 150km and 10 days (Chassignet and Xu, 2017), which will be particularly
449 impactful at high latitudes.

450 To distinguish a meaningful signal of anthropogenic impacts from natural variability, this
451 analysis relies primarily on consistency among ensemble members (Figures 3, 4). This is distinct from

452 more traditional methods like assessment of error relative to observations or ensemble mean, commonly
453 applied to weather forecasting (Ferro et al., 2012), but can be compared to measures of ensemble
454 agreement used extensively in the IPCC reports (Fox-Kemper et al., 2021). Performance evaluation
455 relative to observations would undoubtedly point to the high-resolution simulation as superior due to the
456 drastic underrepresentation of EKE in the eddy-permitting ensemble (Figure 1). Yet, the effects of climate
457 change are still apparent in the AWI-CM-1 ensemble (Figure 1, 5), and the AWI-CM-1 dataset has been
458 used to make similar projections of EKE already (Beech et al., 2022). Moreover, the eddy response to
459 forcing seems to be consistent between the model resolutions when expressed in relative (Figure 1g, h, i),
460 rather than absolute terms (Figure 1a, b, c). While more verification of this result is necessary both
461 regionally, and with other models, these results suggest that eddy-permitting resolutions can be
462 interpreted with their shortcomings in mind in order to discern the real-world implications: as is often
463 necessary with model data. Thus, based on the test case of the Southern Ocean, the usefulness of the
464 AWI-CM-1 ensemble and the effectiveness of model simulations in identifying physically significant and
465 reproducible impacts of climate change may be greater than would be identified using traditional
466 methods and comes at a much lower cost relative to the eddy-resolving simulations.

467 This study has focused on EKE as an evaluation metric for the simulations since mesoscale
468 activity is the primary motivation for increasing ocean model resolution. It has stopped short of assessing
469 the improvements that resolving the mesoscale has on climate and ocean dynamics, many of which are
470 discussed in detail elsewhere (eg. Hewitt et al., 2017). Rather than repeat an assessment of the benefits of
471 resolving smaller scales, we assume that the accurate reproduction and evolution of eddy activity
472 indicates that these improvements are transferred to broader processes. Certainly, inaccurate simulation of
473 the mesoscale would raise questions regarding the improvements that this mesoscale activity should have
474 on the simulations as a whole. Nonetheless, further evaluation of the modeling approaches employed in
475 this study will be necessary to determine if these methods are appropriate for studying broader elements
476 of the climate system. Since the high-resolution simulations derive their deep-ocean climate primarily

477 from the medium-resolution spin-up simulation, improving the initialization process (Thiria et al., 2023)
478 may be the critical barrier to extending these results from the mixed layer to the deeper ocean.

479 **5 Conclusion**

480 Resolving the ocean mesoscale has become a focus for the climate and ocean modeling
481 community as computational capabilities expand and models become increasingly complex. The benefits
482 that explicitly resolved eddy activity can have on climate simulations are clear (Hewitt et al., 2017; Sein
483 et al., 2017) along with the impact that mesoscale variability has on local (Lachkar et al., 2009; Wang et
484 al., 2017) and global environments (Falkowski et al., 1991; Sallée et al., 2012). However, state-of-the-art
485 climate models will be unable to fully resolve the mesoscale for the foreseeable future, particularly in
486 large-scale modeling endeavors such as CMIP (Hewitt et al., 2020). Thus, modelers must make informed
487 choices regarding the explicit processes needed to answer research questions and where resources must be
488 allocated to achieve specific goals. Existing analysis of resource allocation has typically addressed short-
489 term weather forecasting or the ability to reproduce observations with low error (Ferro et al., 2012), but
490 the question of how to best allocate resources for climate change impact assessment remains. This study
491 has applied several cost-efficient modeling approaches to an analysis of the impacts of climate change on
492 a key focus of high-resolution modeling: the mesoscale. Applying these results to broader climate change
493 impact studies should improve the efficiency of resource allocation and focus modeling studies.
494 Resolution can be dynamically adjusted both spatially, by focusing resources in study regions and where
495 they are necessary to resolve local dynamics, and temporally, by allowing lower-resolution workhorse
496 configurations to perform spin-up and transient runs. Limited simulation length and ensemble size can be
497 sufficient for certain research questions and validation, but simulations must ultimately be designed to
498 meet their specific goals. Where resources are limited, studies may best include a combination of eddy-
499 resolving simulations able to fully capture the local eddy field, as well as eddy-permitting simulations that
500 can attest to the significance of results through consistency and repetition.

501 This work represents a contribution to the growing wealth of research that points to an
502 intensification of eddy activity in the Southern Ocean (Hogg et al., 2015; Martínez-Moreno et al., 2021;
503 Beech et al., 2022). The further conclusions that EKE variability may increase and that EKE
504 intensification appears concentrated in key regions based on topography can both expand the present state
505 of knowledge, as well as direct future research. The cost-efficient modeling approaches of regional grid
506 refinement, reduced-resolution spin-up and transient runs, and limited simulation lengths distinguished by
507 longer periods of change are demonstrated to be effective at reproducing change within a more traditional
508 eddy-permitting ensemble. When resources are limited and resolution demands are high, these approaches
509 can be adapted to address specific research questions. Where assessing the robustness of change is
510 critical, the complimentary eddy-permitting ensemble represents an effective, low-cost supplement to the
511 high-resolution simulations.

512
513
514

515 **Data Availability**

516 Geostrophic velocities derived from satellite altimetry data are publicly available at
517 <https://doi.org/10.48670/moi-00148>. Daily sea surface height data from AWI-CM-1-1-MR in CMIP6
518 used to compute geostrophic velocities in this study is archived at the World Data Center for Climate at
519 the DKRZ (<https://doi.org/10.26050/WDCC/C6sCMAWAWM>,
520 <https://doi.org/10.26050/WDCC/C6sSPAWAWM>) (Semmler et al., 2022a, b). Model output from AWI-
521 CM-1-1-MR in the CMIP6 framework, including all variables used to force the standalone ocean
522 simulations conducted for this study, is publicly available at <https://doi.org/10.22033/ESGF/CMIP6.359>
523 (Semmler et al., 2018). Eddy kinetic energy datasets calculated from FESOM output velocities are
524 available at <https://doi.org/10.5281/zenodo.8046792> (Beech, 2023b).

525 **Code Availability**

526 Source code for the ocean model FESOM2 is available at (<https://doi.org/10.5281/zenodo.7737061>) (patrickscholz et al., 2023). Code used for data analysis and visualization in
527 this study is publicly available at (<https://doi.org/10.5281/zenodo.10025361>) (Beech, 2023a). Code used
528 to calculate geostrophic velocities from sea surface height data from AWI-CM-1-1-MR is available from
529 <https://doi.org/10.5281/zenodo.7050573>.

531 **Author Contributions**

532 NB, TJ, TR, and TS conceived of the study. NB carried out the simulations, analyzed the data, and drafted
533 the manuscript. All authors reviewed the manuscript.

534 **Competing Interests**

535 The authors declare no competing interests.

536 **Acknowledgements**

537 The work described in this paper has received funding from the Helmholtz Association through
538 the project ‘Advanced Earth System Model Capacity’ (project leader: T.J., support code: ZT-0003) in the
539 frame of the initiative ‘Zukunftsthemen’. The content of the paper is the sole responsibility of the authors
540 and it does not represent the opinion of the Helmholtz Association, and the Helmholtz Association is not
541 responsible for any use that might be made of information contained. TJ acknowledges the EERIE project
542 funded under the EU Horizon Europe programme (grant number 101081383). TR acknowledges support
543 from the European Commission’s Horizon 2020 collaborative project NextGEMS (grant number
544 101003470). This work used resources of the Deutsches Klimarechenzentrum (DKRZ) granted by its
545 Scientific Steering Committee (WLA) under project ID 995. The CMIP data used in this study were
546 replicated and made available by the DKRZ.

547

548

549 **References**

550 Auger, M., Prandi, P., and Sallée, J.-B.: Southern ocean sea level anomaly in the sea ice-covered sector
551 from multimission satellite observations, *Sci. Data*, 9, 70, <https://doi.org/10.1038/s41597-022-01166-z>,
552 2022.

553 Auger, M., Sallée, J.-B., Thompson, A. F., Pauthenet, E., and Prandi, P.: Southern Ocean Ice-Covered Eddy
554 Properties From Satellite Altimetry, *J. Geophys. Res. Oceans*, 128, e2022JC019363,
555 <https://doi.org/10.1029/2022JC019363>, 2023.

556 Ballarotta, M., Ubelmann, C., Pujol, M.-I., Taburet, G., Fournier, F., Legeais, J.-F., Faugère, Y., Delepoule,
557 A., Chelton, D., Dibarboure, G., and Picot, N.: On the resolutions of ocean altimetry maps, *Ocean Sci.*, 15,
558 1091–1109, <https://doi.org/10.5194/os-15-1091-2019>, 2019.

559 Beech, N.: Beech_et_al_cost_efficient_SO: Revision, <https://doi.org/10.5281/zenodo.10025361>, 2023a.

560 Beech, N.: Processed EKE from FESOM-SO3 (1.0), <https://doi.org/10.5281/zenodo.8046792>, 2023b.

561 Beech, N., Rackow, T., Semmler, T., Danilov, S., Wang, Q., and Jung, T.: Long-term evolution of ocean
562 eddy activity in a warming world, *Nat. Clim. Change*, 12, 910–917, <https://doi.org/10.1038/s41558-022-01478-3>, 2022.

564 Bishop, S. P., Gent, P. R., Bryan, F. O., Thompson, A. F., Long, M. C., and Abernathey, R.: Southern Ocean
565 Overturning Compensation in an Eddy-Resolving Climate Simulation, *J. Phys. Oceanogr.*, 46, 1575–1592,
566 <https://doi.org/10.1175/JPO-D-15-0177.1>, 2016.

567 Bronselaer, B., Winton, M., Griffies, S. M., Hurlin, W. J., Rodgers, K. B., Sergienko, O. V., Stouffer, R. J.,
568 and Russell, J. L.: Change in future climate due to Antarctic meltwater, *Nature*, 564, 53–58,
569 <https://doi.org/10.1038/s41586-018-0712-z>, 2018.

570 Byrne, D., Münnich, M., Frenger, I., and Gruber, N.: Mesoscale atmosphere ocean coupling enhances the
571 transfer of wind energy into the ocean, *Nat. Commun.*, 7, ncomms11867,
572 <https://doi.org/10.1038/ncomms11867>, 2016.

573 Chassignet, E. P. and Xu, X.: Impact of Horizontal Resolution (1/12° to 1/50°) on Gulf Stream Separation,
574 Penetration, and Variability, *J. Phys. Oceanogr.*, 47, 1999–2021, <https://doi.org/10.1175/JPO-D-17-0031.1>, 2017.

576 D'Agostino, R. B. and Belanger, A.: A Suggestion for Using Powerful and Informative Tests of Normality,
577 *Am. Stat.*, 44, 316–321, <https://doi.org/10.2307/2684359>, 1990.

578 Danilov, S.: Ocean modeling on unstructured meshes, *Ocean Model.*, 69, 195–210,
579 <https://doi.org/10.1016/j.ocemod.2013.05.005>, 2013.

580 Danilov, S.: On the Resolution of Triangular Meshes, *J. Adv. Model. Earth Syst.*, 14, e2022MS003177,
581 <https://doi.org/10.1029/2022MS003177>, 2022.

582 Danilov, S., Sidorenko, D., Wang, Q., and Jung, T.: The Finite-volumE Sea ice–Ocean Model (FESOM2),
583 *Geosci. Model Dev.*, 10, 765–789, <https://doi.org/10.5194/gmd-10-765-2017>, 2017.

584 Durbin, J. and Watson, G. S.: Testing for Serial Correlation in Least Squares Regression. I, *Biometrika*, 37,
585 409–428, <https://doi.org/10.1093/biomet/37.3-4.409>, 1950.

586 Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of
587 the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization,
588 *Geosci. Model Dev.*, 9, 1937–1958, <https://doi.org/10.5194/gmd-9-1937-2016>, 2016.

589 Falkowski, P. G., Ziemann, D., Kolber, Z., and Bienfang, P. K.: Role of eddy pumping in enhancing primary
590 production in the ocean, *Nature*, 352, 55–58, <https://doi.org/10.1038/352055a0>, 1991.

591 Ferrari, R., Griffies, S. M., Nurser, A. J. G., and Vallis, G. K.: A boundary-value problem for the
592 parameterized mesoscale eddy transport, *Ocean Model.*, 32, 143–156,
593 <https://doi.org/10.1016/j.ocemod.2010.01.004>, 2010.

594 Ferro, C. A. T., Jupp, T. E., Lambert, F. H., Huntingford, C., and Cox, P. M.: Model complexity versus
595 ensemble size: allocating resources for climate prediction, *Philos. Trans. R. Soc. Math. Phys. Eng. Sci.*,
596 370, 1087–1099, <https://doi.org/10.1098/rsta.2011.0307>, 2012.

597 Fisher, R. A.: The moments of the distribution for normal samples of measures of departure from
598 normality, *Proc. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character*, 130, 16–28,
599 <https://doi.org/10.1098/rspa.1930.0185>, 1997.

600 Frölicher, T. L., Sarmiento, J. L., Paynter, D. J., Dunne, J. P., Krasting, J. P., and Winton, M.: Dominance of
601 the Southern Ocean in Anthropogenic Carbon and Heat Uptake in CMIP5 Models, *J. Clim.*, 28, 862–886,
602 <https://doi.org/10.1175/JCLI-D-14-00117.1>, 2015.

603 Gent, P. R. and McWilliams, J. C.: Isopycnal Mixing in Ocean Circulation Models, *J. Phys. Oceanogr.*, 20,
604 150–155, [https://doi.org/10.1175/1520-0485\(1990\)020<0150:IMOCM>2.0.CO;2](https://doi.org/10.1175/1520-0485(1990)020<0150:IMOCM>2.0.CO;2), 1990.

605 Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q., Chang, P., Corti, S., Fučkar,
606 N. S., Guemas, V., von Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T., Leung, L. R., Lu, J., Luo, J.,
607 J., Mao, J., Mzielinski, M. S., Mizuta, R., Nobre, P., Satoh, M., Scoccimarro, E., Semmler, T., Small, J., and
608 von Storch, J.-S.: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6, *Geosci.*
609 *Model Dev.*, 9, 4185–4208, <https://doi.org/10.5194/gmd-9-4185-2016>, 2016.

610 Hallberg, R.: Using a resolution function to regulate parameterizations of oceanic mesoscale eddy
611 effects, *Ocean Model.*, 72, 92–103, <https://doi.org/10.1016/j.ocemod.2013.08.007>, 2013.

612 Hewitt, H. T., Bell, M. J., Chassignet, E. P., Czaja, A., Ferreira, D., Griffies, S. M., Hyder, P., McClean, J. L.,
613 New, A. L., and Roberts, M. J.: Will high-resolution global ocean models benefit coupled predictions on
614 short-range to climate timescales?, *Ocean Model.*, 120, 120–136,
615 <https://doi.org/10.1016/j.ocemod.2017.11.002>, 2017.

616 Hewitt, H. T., Roberts, M., Mathiot, P., Biastoch, A., Blockley, E., Chassignet, E. P., Fox-Kemper, B., Hyder,
617 P., Marshall, D. P., Popova, E., Treguier, A.-M., Zanna, L., Yool, A., Yu, Y., Beadling, R., Bell, M., Kuhlbrodt,
618 T., Arsouze, T., Bellucci, A., Castruccio, F., Gan, B., Putrasahan, D., Roberts, C. D., Van Roekel, L., and
619 Zhang, Q.: Resolving and Parameterising the Ocean Mesoscale in Earth System Models, *Curr. Clim.
620 Change Rep.*, 6, 137–152, <https://doi.org/10.1007/s40641-020-00164-w>, 2020.

621 Hogg, A. McC., Meredith, M. P., Chambers, D. P., Abrahamsen, E. P., Hughes, C. W., and Morrison, A. K.:
622 Recent trends in the Southern Ocean eddy field, *J. Geophys. Res. Oceans*, 120, 257–267,
623 <https://doi.org/10.1002/2014JC010470>, 2015.

624 Irving, D., Hobbs, W., Church, J., and Zika, J.: A Mass and Energy Conservation Analysis of Drift in the
625 CMIP6 Ensemble, *J. Clim.*, 34, 3157–3170, <https://doi.org/10.1175/JCLI-D-20-0281.1>, 2021.

626 Jungclaus, J. H., Lorenz, S. J., Schmidt, H., Brovkin, V., Brügemann, N., Chegini, F., Crüger, T., De-Vrese,
627 P., Gayler, V., Giorgetta, M. A., Gutjahr, O., Haak, H., Hagemann, S., Hanke, M., Ilyina, T., Korn, P.,
628 Kröger, J., Linardakis, L., Mehlmann, C., Mikolajewicz, U., Müller, W. A., Nabel, J. E. M. S., Notz, D.,
629 Pohlmann, H., Putrasahan, D. A., Raddatz, T., Ramme, L., Redler, R., Reick, C. H., Riddick, T., Sam, T.,
630 Schneck, R., Schnur, R., Schupfner, M., von Storch, J.-S., Wachsmann, F., Wieners, K.-H., Ziemen, F.,
631 Stevens, B., Marotzke, J., and Claussen, M.: The ICON Earth System Model Version 1.0, *J. Adv. Model.*
632 *Earth Syst.*, 14, e2021MS002813, <https://doi.org/10.1029/2021MS002813>, 2022.

633 Lachkar, Z., Orr, J. C., Dutay, J. C., and Delecluse, P.: On the role of mesoscale eddies in the ventilation of
634 Antarctic intermediate water, *Deep-Sea Res. Part Oceanogr. Res. Pap.*, 56, 909–925,
635 <https://doi.org/10.1016/j.dsr.2009.01.013>, 2009.

636 Landschützer, P., Gruber, N., Haumann, F. A., Rödenbeck, C., Bakker, D. C. E., van Heuven, S., Hoppema,
637 M., Metzl, N., Sweeney, C., Takahashi, T., Tilbrook, B., and Wanninkhof, R.: The reinvigoration of the
638 Southern Ocean carbon sink, *Science*, 349, 1221–1224, <https://doi.org/10.1126/science.aab2620>, 2015.

639 Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic vertical mixing: A review and a model with a
640 nonlocal boundary layer parameterization, *Rev. Geophys.*, 32, 363–403,
641 <https://doi.org/10.1029/94RG01872>, 1994.

642 Marshall, G. J.: Trends in the Southern Annular Mode from Observations and Reanalyses, *J. Clim.*, 16,
643 4134–4143, [https://doi.org/10.1175/1520-0442\(2003\)016<4134:TITSAM>2.0.CO;2](https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2), 2003.

644 Marshall, J., Jones, H., Karsten, R., and Wardle, R.: Can Eddies Set Ocean Stratification?, *J. Phys.*
645 *Oceanogr.*, 32, 26–38, [https://doi.org/10.1175/1520-0485\(2002\)032<0026:CESOS>2.0.CO;2](https://doi.org/10.1175/1520-0485(2002)032<0026:CESOS>2.0.CO;2), 2002.

646 Martínez-Moreno, J., Hogg, A. McC., England, M. H., Constantinou, N. C., Kiss, A. E., and Morrison, A. K.:
647 Global changes in oceanic mesoscale currents over the satellite altimetry record, *Nat. Clim. Change*, 11,
648 397–403, <https://doi.org/10.1038/s41558-021-01006-9>, 2021.

649 Marzocchi, A., Hirschi, J. J.-M., Holliday, N. P., Cunningham, S. A., Blaker, A. T., and Coward, A. C.: The
650 North Atlantic subpolar circulation in an eddy-resolving global ocean model, *J. Mar. Syst.*, 142, 126–143,
651 <https://doi.org/10.1016/j.jmarsys.2014.10.007>, 2015.

652 Meredith, M. P. and Hogg, A. M.: Circumpolar response of Southern Ocean eddy activity to a change in
653 the Southern Annular Mode, *Geophys. Res. Lett.*, 33, <https://doi.org/10.1029/2006GL026499>, 2006.

654 Munday, D. R., Johnson, H. L., and Marshall, D. P.: Eddy Saturation of Equilibrated Circumpolar Currents,
655 *J. Phys. Oceanogr.*, 43, 507–532, <https://doi.org/10.1175/JPO-D-12-095.1>, 2013.

656 O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E.,
657 Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model

658 Intercomparison Project (ScenarioMIP) for CMIP6, *Geosci. Model Dev.*, 9, 3461–3482,
659 <https://doi.org/10.5194/gmd-9-3461-2016>, 2016.

660 O'Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K., Rothman, D. S., van Ruijen, B. J., van
661 Vuuren, D. P., Birkmann, J., Kok, K., Levy, M., and Solecki, W.: The roads ahead: Narratives for shared
662 socioeconomic pathways describing world futures in the 21st century, *Glob. Environ. Change*, 42, 169–
663 180, <https://doi.org/10.1016/j.gloenvcha.2015.01.004>, 2017.

664 Patara, L., Böning, C. W., and Biastoch, A.: Variability and trends in Southern Ocean eddy activity in 1/12°
665 ocean model simulations, *Geophys. Res. Lett.*, 43, 4517–4523, <https://doi.org/10.1002/2016GL069026>,
666 2016.

667 patrickscholz, dsidoren, Koldunov, N., Hegewald, J., rakowsk, Streffing, J., Rackow, T., ogurses,
668 helgegoessling, Guibert, D., qiangclimate, cwekerle, Oord, G. van den, jrberlin, Miguel, Gierz, P., and
669 Cheedela, S. K.: FESOM/fesom2: FESOM2.5, , <https://doi.org/10.5281/zenodo.7737061>, 2023.

670 Pauling, A. G., Smith, I. J., Langhorne, P. J., and Bitz, C. M.: Time-Dependent Freshwater Input From Ice
671 Shelves: Impacts on Antarctic Sea Ice and the Southern Ocean in an Earth System Model, *Geophys. Res.*
672 *Lett.*, 44, 10,454-10,461, <https://doi.org/10.1002/2017GL075017>, 2017.

673 Price, J. F., Weller, R. A., and Schudlich, R. R.: Wind-Driven Ocean Currents and Ekman Transport,
674 *Science*, 238, 1534–1538, <https://doi.org/10.1126/science.238.4833.1534>, 1987.

675 Rackow, T., Danilov, S., Goessling, H. F., Hellmer, H. H., Sein, D. V., Semmler, T., Sidorenko, D., and Jung,
676 T.: Delayed Antarctic sea-ice decline in high-resolution climate change simulations, *Nat. Commun.*, 13,
677 637, <https://doi.org/10.1038/s41467-022-28259-y>, 2022.

678 Rai, S., Hecht, M., Maltrud, M., and Aluie, H.: Scale of oceanic eddy killing by wind from global satellite
679 observations, *Sci. Adv.*, 7, eabf4920, <https://doi.org/10.1126/sciadv.abf4920>, 2021.

680 Renault, L., Molemaker, M. J., McWilliams, J. C., Shchepetkin, A. F., Lemarié, F., Chelton, D., Illig, S., and
681 Hall, A.: Modulation of Wind Work by Oceanic Current Interaction with the Atmosphere, *J. Phys.*
682 *Oceanogr.*, 46, 1685–1704, <https://doi.org/10.1175/JPO-D-15-0232.1>, 2016.

683 Ringler, T., Petersen, M., Higdon, R. L., Jacobsen, D., Jones, P. W., and Maltrud, M.: A multi-resolution
684 approach to global ocean modeling, *Ocean Model.*, 69, 211–232,
685 <https://doi.org/10.1016/j.ocemod.2013.04.010>, 2013.

686 Sallée, J.-B., Matear, R. J., Rintoul, S. R., and Lenton, A.: Localized subduction of anthropogenic carbon
687 dioxide in the Southern Hemisphere oceans, *Nat. Geosci.*, 5, 579–584,
688 <https://doi.org/10.1038/ngeo1523>, 2012.

689 Scholz, P., Sidorenko, D., Gurses, O., Danilov, S., Koldunov, N., Wang, Q., Sein, D., Smolentseva, M.,
690 Rakowsky, N., and Jung, T.: Assessment of the Finite-volumE Sea ice-Ocean Model (FESOM2.0) – Part 1:
691 Description of selected key model elements and comparison to its predecessor version, *Geosci. Model*
692 *Dev.*, 12, 4875–4899, <https://doi.org/10.5194/gmd-12-4875-2019>, 2019.

693 Scholz, P., Sidorenko, D., Danilov, S., Wang, Q., Koldunov, N., Sein, D., and Jung, T.: Assessment of the
694 Finite VolumE Sea Ice Ocean Model (FESOM2.0), Part II: Partial bottom cells, embedded sea ice and

695 vertical mixing library CVMIX, Climate and Earth system modeling, <https://doi.org/10.5194/gmd-2021-94>, 2021.

697 Sein, D. V., Koldunov, N. V., Danilov, S., Wang, Q., Sidorenko, D., Fast, I., Rackow, T., Cabos, W., and Jung, T.: Ocean Modeling on a Mesh With Resolution Following the Local Rossby Radius, *J. Adv. Model. Earth Syst.*, 9, 2601–2614, <https://doi.org/10.1002/2017MS001099>, 2017.

700 Semmler, T., Danilov, S., Rackow, T., Sidorenko, D., Barbi, D., Hegewald, J., Sein, D., Wang, Q., and Jung, T.: AWI AWI-CM1.1MR model output prepared for CMIP6 CMIP, <https://doi.org/10.22033/ESGF/CMIP6.359>, 2018.

703 Semmler, T., Danilov, S., Gierz, P., Goessling, H. F., Hegewald, J., Hinrichs, C., Koldunov, N., Khosravi, N., Mu, L., Rackow, T., Sein, D. V., Sidorenko, D., Wang, Q., and Jung, T.: Simulations for CMIP6 With the AWI Climate Model AWI-CM-1-1, *J. Adv. Model. Earth Syst.*, 12, e2019MS002009, <https://doi.org/10.1029/2019MS002009>, 2020.

707 Semmler, T., Danilov, S., Rackow, T., Sidorenko, D., Barbi, D., Hegewald, J., Sein, D., Wang, Q., and Jung, T.: CMIP6_supplemental CMIP AWI AWI-CM-1-1-MR, <https://doi.org/10.26050/WDCC/C6sCMAWAWM>, 2022a.

710 Semmler, T., Danilov, S., Rackow, T., Sidorenko, D., Barbi, D., Hegewald, J., Sein, D., Wang, Q., and Jung, T.: CMIP6_supplemental ScenarioMIP AWI AWI-CM-1-1-MR, <https://doi.org/10.26050/WDCC/C6sSPAWAWM>, 2022b.

713 Taburet, G., Sanchez-Roman, A., Ballarotta, M., Pujol, M.-I., Legeais, J.-F., Fournier, F., Faugere, Y., and Dibarboure, G.: DUACS DT2018: 25 years of reprocessed sea level altimetry products, *Ocean Sci.*, 15, 1207–1224, <https://doi.org/10.5194/os-15-1207-2019>, 2019.

716 Thiria, S., Sorror, C., Archambault, T., Charantonis, A., Bereziat, D., Mejia, C., Molines, J.-M., and Crépon, M.: Downscaling of ocean fields by fusion of heterogeneous observations using Deep Learning algorithms, *Ocean Model.*, 182, 102174, <https://doi.org/10.1016/j.ocemod.2023.102174>, 2023.

719 Wang, Q., Danilov, S., Sidorenko, D., Timmermann, R., Wekerle, C., Wang, X., Jung, T., and Schröter, J.: The Finite Element Sea Ice-Ocean Model (FESOM) v1.4: formulation of an ocean general circulation model, *Geosci. Model Dev.*, 7, 663–693, <https://doi.org/10.5194/gmd-7-663-2014>, 2014.

722 Wang, Y., Claus, M., Greatbatch, R. J., and Sheng, J.: Decomposition of the Mean Barotropic Transport in a High-Resolution Model of the North Atlantic Ocean, *Geophys. Res. Lett.*, 44, 11,537–11,546, <https://doi.org/10.1002/2017GL074825>, 2017.

725 van Westen, R. M. and Dijkstra, H. A.: Ocean eddies strongly affect global mean sea-level projections, *Sci. Adv.*, 7, eabf1674, <https://doi.org/10.1126/sciadv.abf1674>, 2021.

727 Yu, X., Ponte, A. L., Lahaye, N., Caspar-Cohen, Z., and Menemenlis, D.: Geostrophy Assessment and Momentum Balance of the Global Oceans in a Tide- and Eddy-Resolving Model, *J. Geophys. Res. Oceans*, 126, e2021JC017422, <https://doi.org/10.1029/2021JC017422>, 2021.

730