

1 **Resolving Exploring the ocean mesoscale at reduced computational cost with FESOM 2.5: efficient modeling strategies applied to the Southern Ocean; efficient modeling approaches applied to the Southern Ocean**

4 Nathan Beech¹, Thomas Rackow², Tido Semmler³, and Thomas Jung^{1,4}

5 1. Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven,
6 Germany

7 2. European Center for Medium-range Weather Forecasts, Bonn, Germany

8 3. Met Eireann, the Irish Meteorological Service, Dublin, Ireland

9 4. Department of Physics and Electrical Engineering, University of Bremen, Bremen, Germany

10 Corresponding Author: Nathan Beech (Nathan.beech@awi.de)

11

Style Definition: Style1: Add space between paragraphs of the same style

Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Not Highlight

12 **Abstract**

13 Efficiency-maximizing modeling strategies are applied to 3 km simulations of the Southern
14 Ocean in past, present, and future climates. The model setup exploits reduced-resolution spin-up and
15 transient simulations to initialize a regionally refined, high-resolution ocean model during short time
16 periods. Several cost efficient, high resolution modeling approaches are applied to simulations of the
17 Southern Ocean in past, present, and future climates. The results are compared with satellite altimetry
18 data and more traditional eddy-present simulations and evaluated based on their ability to reproduce
19 observed mesoscale activity and to reveal a response to climate change distinct from natural
20 variabilitycompared with observations and an ensemble of medium resolution, eddy present simulations
21 and evaluated based on their ability to reproduce observed mesoscale activity and to reveal a response to
22 climate change distinct from natural variability. The high-resolution simulations reproduce the observed
23 magnitude of Southern Ocean eddy kinetic energy (EKE) well, but differences remain in local magnitudes
24 and the spatial distribution of EKE. The coarser, eddy-permittingpresent ensemble simulates a similar
25 pattern of EKE, but underrepresents observed levels by 550%. Five years of simulated data in each time
26 period is found to produce consistent results when evaluating mean conditions and assessing change in
27 the region as a whole. At approximately 1 °C of warming, the high-resolution simulations produce no
28 change in overall EKE, in contrast to full ensemble agreement regarding to the increase projected EKE
29 rise withinby the eddy-permitting simulationsensemble and despite full ensemble agreement. At
30 approximately 4 °C of warming, both datasets produce consistent levels of EKE rise in relative terms,
31 although not absolute magnitudes, as well as an increase in EKE variability. Simulated EKE rise is
32 concentrated where flow interacts with topographic bathymetric features in regions already known to be
33 eddy-rich. Regional EKE change in the high-resolution simulations is consistent with changes seen in at
34 least four of five eddy-permitting ensemble members at 1 °C of warming, and all ensemble members at 4
35 °C. However, substantial noise would make these changes difficult to distinguish from natural variability
36 without an ensemble.

Formatted: Font: 12 pt

37 **Plain Language Summary**

38 Ocean models struggle to simulate small-scale ocean flows due to the computational cost of high-
39 resolution simulations. Several cost-reducing modeling strategies are applied to high-
40 resolution simulations of the Southern Ocean in a changing climate, and they are evaluated with respect
41 to observations and traditional, lower-resolution modelling methods. The high-resolution simulations
42 effectively reproduce small-scale ocean flows seen in satellite data and are largely consistent with
43 traditional model simulations regarding their response to climate change after 4 °C of warming. Small-
44 scale flows are found to intensify near bathymetric features and to become more variable.

45

46 **1 Introduction**

47 Mesoscale activity in the Southern Ocean has been the subject of much research and interest in
48 recent years due to the intensification of Southern Hemisphere westerlies (Marshall, 2003), the
49 phenomena of eddy saturation and compensation (Munday et al., 2013; Bishop et al., 2016), and the
50 potential for carbon sequestration in the face of ongoing anthropogenic emissions (Sallée et al., 2012;
51 Landschützer et al., 2015; Frölicher et al., 2015). Satellite observations already reveal an intensification
52 of eddy activity in the Antarctic Circumpolar Current (ACC) and changes are attributed primarily to wind
53 stress (Marshall, 2003; Hogg et al., 2015; Martínez-Moreno et al., 2021). Modeling studies have been
54 able to reproduce the observed changes, as well as project continued intensification throughout the 21st
55 century (Beech et al., 2022), but the modeled results rely on only partially resolved eddy activity relative
56 to observations, leaving open the possibility for new findings or greater clarity.

57 Advances in computational capabilities have enabled ocean modeling science to make great
58 progress in overcoming the substantial computational burden of simulating the mesoscale.~~s~~ but However,
59 shortcomings remain, particularly in the Southern Ocean where the Rossby radius can be as small as 1
60 km, increasing the computational cost of resolving eddies (Hallberg, 2013). Even model resolutions that
61 can generally be considered eddy-resolving are only eddy-permitting poleward of 50° if grid spacing~~they~~
62 does not vary in space (Hewitt et al., 2020). This highlights an efficiency challenge in simulating the
63 mesoscale with traditional model grids; resolutions necessary to resolve high-latitude, small-radius eddies
64 are both prohibitively expensive and unnecessary to resolve mesoscale eddies in the lower latitudes.
65 Fortunately, a growing number of ~~modelling~~ alternatives to traditional grids now enable dynamic spatial
66 allocation of resources (Danilov, 2013; Ringler et al., 2013; Danilov et al., 2017; Jungclaus et al., 2022),
67 creating the opportunity to more efficiently resolve the mesoscale.

68 As resource allocation in high-resolution modeling becomes spatially flexible in the pursuit of
69 more efficient configurations, the temporal component must also be scrutinized for efficiency. Traditional
70 modeling approaches require long spin-up periods in order to equilibrate the deep ocean and reduce

71 model drift (Irving et al., 2021). Although the impacts of drift are not negligible, ~~they~~ generally affects
72 large-scale processes in the deep ocean; mesoscale processes that require high resolutions to simulate are
73 typically fast-to-equilibrate and will appear relatively quickly wherever large-scale ocean conditions lead
74 to their creation. Admittedly, one cannot entirely disentangle the two scales, as mesoscale activity does
75 affect the position of fronts, stratification, and the paths of ocean circulation (Marshall et al., 2002;
76 Marzocchi et al., 2015; Chassignet and Xu, 2017). Yet, with equilibration times for the deep ocean on the
77 scale of thousands of years (Irving et al., 2021), the possibility, and ultimately necessity, to reduce the
78 resolution of spin-up runs relative to production runs must be investigated.

79 Advancing the concept of dynamic temporal allocation of resources further, the traditional
80 transient climate change simulation also represents an efficiency bottleneck for some applications; by
81 modifying the climate continuously in time, each year of a transient simulation is effectively a single
82 realization of a global mean climatic state that varies from the following and preceding years by only a
83 fraction of a degree. For some applications, like hindcasts of real events or trend analysis, this approach
84 may be desirable, but for assessing the impacts of climate change with limited resources and a low signal-
85 to-noise ratio, a larger sample of realizations for a consistent climatic state may be more suitable.

86 Aside from oceanic concerns, the atmosphere can have substantial impacts on mesoscale activity
87 in climate models. Most simply, with a coupled atmosphere, absolute surface winds will react to ocean
88 eddy activity, whereas atmospheric forcing will not, resulting in more eddy killing by wind stress
89 (Renault et al., 2016). Additionally, an atmosphere coupled to a high-resolution ocean must be of
90 similarly high resolution for certain mesoscale interactions to be resolved (Byrne et al., 2016). Ultimately,
91 the modeled atmosphere further escalates the already exponential cost of increasing ocean resolution by
92 requiring more computational resources in order for the benefits of the resolved mesoscale to fully
93 transfer to the broader climate.

94 To address the computational inefficiencies outlined above, an experimental novel simulation
95 configuration is proposed, combining several experimental modeling approaches. Simulations will exploit

96 the multi-resolution Finite volumE Sea-ice Ocean Model (FESOM) (Danilov et al., 2017) employing a
97 high-resolution unstructured mesh that concentrates computational resources on the Southern Ocean,
98 while maintaining grid resolution in the remainder of the global ocean that can still be considered high-
99 resolution, as in, for example, HighResMIP (Haarsma et al., 2016). The multi-resolution strategy
100 overcomes the efficiency challenges of resolving high-latitude eddies without needlessly increasing
101 tropical resolutions, as well as limiting the focus and computational requirements to one hemisphere. The
102 high-resolution simulations will make use of a spin-up simulation on a medium-resolution, eddy-
103 permitting mesh to avoid the computational burden of allowing an eddy-resolving ocean to equilibrate
104 deep, slow-changing processes. The eddy-permitting mesh will also be used to simulate the transient
105 periods between shorter, high-resolution time slices, increasing the signal-to-noise ratio of the results by
106 separating the production data further in time and the progression of anthropogenic climate change.
107 Finally, the ocean model will be forced with atmospheric data from existing coupled simulations
108 (Semmler et al., 2020). Although this will not facilitate mesoscale atmosphere-ocean interaction, the
109 simulation will reflect the climatic development of an eddy-permitting simulation of the future
110 atmosphere without the additional computational requirements.

111 The Southern Ocean is one of the world's hotspots for mesoscale activity and a region where
112 substantial change is anticipated in the context of anthropogenic climate change (Beech et al., 2022).
113 Simultaneously, the high latitude of the region makes eddy-resolving model simulations computationally
114 demanding and observational data relatively scarce (Auger et al., 2023; Hallberg, 2013). Yet, as the
115 climate changes, the importance of the Southern Ocean grows as a heat and carbon sink, an ecosystem,
116 and a medium for feedback between the atmosphere and ocean (Byrne et al., 2016; Frölicher et al., 2015).
117 Thus, the study of the Southern Ocean demands innovation in the modeling field to produce high-
118 resolution simulations at reduced computational cost. This study maximizes grid resolution relative to
119 computational cost using an unstructured, multi-resolution grid, a medium-resolution spin-up simulation,
120 and atmospheric forcing from lower-resolution coupled simulations in order to focus resources as much as

121 possible on resolving mesoscale activity in the study region. The resulting simulations enable an
122 exploratory analysis of the past, present, and future of the Southern Ocean with a fully resolved
123 mesoscale. Simulations with this cost-efficient, high-resolution configuration are presented in comparison
124 to a comprehensive ensemble of eddy-permitting simulations to assess the performance of the efficiency-
125 focused approach in reproducing mesoscale activity and its response to climate change.

126 **2 Methods**

127 **2.1 Experimental setup**

129 This analysis ~~contrasts is broadly a comparison of results from a subset of simulations from AWI-~~
130 ~~CM-1-1-MR's contribution to the sixth phase of the Coupled Model Intercomparison Project (CMIP6;~~
131 ~~(Semmler et al., 2020). AWI CM-1-1-MR's contribution to CMIP6~~ (hereafter referred to as ~~the~~ AWI-
132 CM-1 ~~ensemble~~) ~~(Semmler et al., 2020)~~ ~~with and~~ single-member stand-alone ocean simulations using an
133 updated version of FESOM (FESOM 2.5) and a mesh substantially refined to a resolution ~~reaching less~~
134 ~~than surpassing~~ 3 km in the Southern Ocean (hereafter referred to as ~~the~~ SO3 ~~simulations~~) (Supplementary
135 Figure 1). Observations of ocean surface velocity derived from satellite altimetry data are also used to
136 evaluate ~~the model performance of each simulation~~ ~~model performance for both modeled datasets during~~
137 ~~the period of overlap with the altimetry record~~. The AWI-CM-1 simulations ~~consist of the five-member~~
138 ~~ensemble of historical simulations and the five-member ensemble of climate change projections under~~
139 ~~shared socioeconomic pathway (SSP) 3-7.0 which were performed by AWI-CM-1-1-MR in CMIP6~~
140 (Semmler et al., 2020). ~~These are~~ state-of-the-art CMIP6 experiments and benefit from the multiple
141 ensemble members and long spin-up times that CMIP simulations typically boast. However, while the
142 AWI-CM-1 ensemble reproduces eddy activity remarkably well within the context of CMIP6 (Beech et
143 al., 2022), high-resolution ocean modeling now far surpasses even the highest ocean resolutions in the
144 CMIP6 ensemble. Conversely, the SO3 simulations push the limits of ocean resolution but rely on several

← **Formatted:** Add space between paragraphs of the same style

← **Formatted:** Indent: First line: 0 cm

145 measures for maximizing computational efficiency that may impact the robustness of the simulations.
146 Details on the experimental setup for CMIP6 and ScenarioMIP are widely available (Eyring et al., 2016;
147 O'Neill et al., 2016) and information more specific to AWI-CM-1-1-MR's contribution has been
148 published previously (Semmler et al., 2020). The following sections will outline the details of the SO3
149 simulations.

150 ~~To produce initial conditions for the high-resolution model simulations on the SO3 mesh, The~~
151 ~~model experiments with SO3 consist of~~ a medium-resolution, eddy-permitting, ocean-only transient
152 ~~simulation was first run~~ from 1851 ~~to~~ 2100 ~~using the same ocean mesh employed by AWI-CM-1-1-MR~~
153 ~~in CMIP6~~ (Semmler et al., 2020). ~~This mesh has~~ and three shorter simulations with the SO3 mesh at
154 ~~different time periods during the progression of anthropogenic climate change. The medium resolution~~
155 ~~transient run is a stand-alone ocean simulation using a medium resolution mesh that has~~ been shown to
156 effectively reproduce eddy activity in active regions while maintaining a computational cost comparable
157 to a traditional $\frac{1}{4}$ ° model (Beech et al., 2022). The ~~transient simulation model was~~ initialized with
158 conditions for ocean temperature and salinity, as well as sea ice concentration, thickness, and snow cover
159 taken from the end of the first year (1850) and first ensemble member (r1i1p1f1) of AWI-CM-1-1-MR's
160 historical simulations in CMIP6 (Semmler et al., 2018, 2020, 2022a, b). In this way, the model undergoes
161 a semi-cold start in which ocean conditions are not exact continuations of the previous coupled
162 simulation, but ~~should be far closer to equilibrium than a true cold start initialization nonetheless benefit~~
163 ~~from more realistic and partially equilibrated ocean properties. The stand-alone ocean is eddy-permitting~~
164 ~~transient simulation was~~ forced using atmospheric data from the same ensemble member of the historical
165 CMIP6 simulations until 2014 (Semmler et al., 2022a), and thereafter using the first ensemble member of
166 AWI-CM-1-1-MR's ScenarioMIP simulations for ~~shared socioeconomic pathway (SSP)~~ 3-7.0 (Eyring et
167 al., 2016; O'Neill et al., 2017; Semmler et al., 2022b). This approach to forcing takes advantage of a
168 coupled simulation, CMIP6, to produce a forcing dataset of better temporal and spatial coverage than the

169 observational record and which maintains a realistic transient climate throughout anthropogenic impacts
170 during the 21st century.

171 In the years 1950, 2015, and 2090, ~~the model~~FESOM is reinitialized with the ~~higher~~-resolution
172 ocean grid, SO3 (Supplementary Figure 1), using the same semi-cold start approach and forcing dataset
173 ~~that was implemented for the eddy-permitting transient simulation described previously. These years were~~
174 ~~chosen to represent a historical period, beginning in 1950, when the effects of climate change on EKE~~
175 ~~should be small or none~~ (Beech et al., 2022); ~~a near-present period, beginning in 2015, in which the~~
176 ~~simulations will overlap with satellite altimetry data; and a projected period, beginning in 2090, which~~
177 ~~should include a strong climate change signal. The latter two simulated periods represent 1.07 °C and~~
178 ~~3.74 °C of warming, respectively, in the first ensemble member of the AWI-CM-1 ensemble defined as a~~
179 ~~rise in the 21-year running mean of global mean two-meter air temperatures. Warming of the ensemble~~
180 ~~mean is similar: 1.08 and 3.76 °C respectively, and warming is henceforth approximated as 1 °C and 4 °C~~
181 ~~in Figure 4 and the text, as well as~~ ~~I~~initial conditions ~~for these shorter time-slice simulations are taken~~
182 from the end of the previous year of the ~~eddy permitting~~eddy-permitting transient simulation. ~~The high-~~
183 ~~resolution simulations are each integrated for six years with the first year ignored as a true spin-up,~~
184 ~~leaving five years of data for each time period. While model drift may be a concern with such a short true~~
185 ~~spin up period, this should affect each of the high resolution time slices similarly and to a limited extent~~
186 ~~due to their short integration lengths. Thus, the differences between the high resolution ocean simulations~~
187 ~~should primarily reflect anthropogenic climate impacts simulated during the eddy permitting transient~~
188 ~~run.~~ The high-resolution grid is, in truth, a regionally refined mesh in which a 25 km global resolution is
189 ~~increased-refined~~ to approximately 2.5 km, ~~following~~ ~~Danilov, (2022)~~, primarily south of 40 °S, but with
190 other pertinent regions, such as the Agulhas Current and several narrow straits, also refined. In this way,
191 the model is able to simultaneously achieve eddy-rich conditions in the Southern Ocean and many of the
192 nearby active regions, as well as a global resolution that would still be considered high in the context of
193 CMIP6 (Hallberg, 2013; Hewitt et al., 2020). ~~While model drift may be a concern with such a short true~~

194 spin-up period, this should affect each of the high-resolution time slices similarly and to a limited extent
195 due to their short integration lengths. Thus, the differences between the high-resolution ocean simulations
196 should primarily reflect anthropogenic climate impacts simulated during the eddy-permitting transient run
197 and present in the forcing dataset. The high resolution simulations are each integrated for six years with
198 the first year ignored as a true spin-up, leaving five years of data for each time period. While model drift
199 may be a concern with such a short true spin-up period, this should affect each of the high-resolution time
200 slices similarly and to a limited extent due to their short integration lengths. Thus, the differences between
201 the high-resolution ocean simulations should primarily reflect anthropogenic climate impacts simulated
202 during the eddy-permitting transient run.

203 **2.2 Model configuration**

204 The Finite volume Sea-ice Ocean Model version 2.5 is a post-CMIP6 era model, having been
205 refactored to a finite-volume configuration from the finite-element version (FESOM1.4, Q. Wang et al.,
206 2014) employed in CMIP6, and transitioned to arbitrary Lagrangian Eulerian (ALE) vertical coordinates,
207 among other improvements (Danilov et al., 2017; Scholz et al., 2019, 2021). FESOM's most
208 distinguishing feature among mature ocean models is the unstructured horizontal grid that exploits
209 triangular grid cells which can smoothly vary in size to change the horizontal grid resolution in space. In
210 these simulations, full free surface, or z^* , vertical coordinates were used, allowing the vertical model
211 layer thicknesses to change in time. Gent-McWilliams eddy parameterization (Gent and McWilliams,
212 1990) is scaled with resolution according to Ferrari et al. (2010) and vertical mixing is simulated by a k -
213 profile parameterization scheme (Large et al., 1994).

214 The SO3 mesh consists of over 22 million surface elements (triangle faces) or 11 million surface
215 nodes (triangle vertices) and 70 vertical layers. The simulations produce about 1.1 terabytes of data per
216 year of 3D data stored on nodes. For reference, the medium-resolution mesh used in the AWI-CM-1
217 ensemble is 1.6 million surface elements or 0.83 million surface nodes and 46 vertical layers and
218 produces approximately 56 GB per year of 3D data stored on nodes. The model was run on 8192 CPU

219 cores and with a typical throughput of approximately 0.65 simulated years per day, consuming
220 approximately 5.5 million CPU hours in total despite the various cost-saving modeling approaches. It
221 should be noted, however, that the throughput in high-resolution production simulations like this is highly
222 dependent on the volume and choice of data being saved. The simulations and following analysis were
223 performed using the high-performance computing system, Levante, at the German Climate Research
224 Computing Center (DKRZ).

225 The ocean model is forced by several atmospheric variables at a six-hour resolution, although one
226 forcing variable, humidity, is interpolated monthly data. The forcing data is first interpolated to a regular
227 grid which can be interpreted by the model and appliedsupplied to the model on the regular atmospheric
228 grid used in the coupled setup during AWI-CM-1-1-MR's CMIP6 simulations (Semmler et al., 2018) and
229 interpolated to the multi-resolution grid used in the respective simulations by FESOM. Runoff data is a
230 monthly climatology and dynamic ice sheet coupling is not included, meaning the freshwater influx from
231 the Antarctic continent does not react to warming which may impact certain processes, such as the timing
232 and intensity of sea ice loss (Pauling et al., 2017; Bronselaer et al., 2018).

233 2.3 Geostrophic Modeled ocean velocity dataies

234 Ocean velocities in the SO3 simulations are saved on a daily timescale as direct model output,
235 whereas
236 (Semmler et al., 2018) in the AWI-CM-1 ensemble, only monthly data is available and daily data
237 must first be derived from sea surface height data and geostrophic balance as in equations (1) and
238 (2). Geostrophic balance is an idealized approximation that does not match real ocean velocities for
239 several reasons, including the presence of ageostrophic flow, such as Ekman transport, as well as
240 assumptions made in the derivation of equations (1) and (2). Specifically, geostrophic balance between
241 the Coriolis effect and the pressure gradient is valid under the assumption that the curl of horizontal
242 velocities or vorticity is small relative to the magnitude of overall flow. In models, this assumption is

Formatted: Not Highlight

Formatted: Not Highlight

243 relatively close to reality in coarse-resolution simulations where geostrophic flow dominates, but on
244 higher-resolution meshes, where submesoscale flows are well-resolved, these omitted terms become
245 larger. Therefore, while using geostrophic velocities for both high-resolution and coarse-resolution
246 modeled datasets would be methodologically consistent, the error introduced would be systemically larger
247 for the finer-resolution dataset than the coarser. Therefore, we do not consider the use of geostrophic
248 velocities for both modeled datasets in this analysis to bring the data into closer agreement. Rather, for the
249 AWI-CM-1 dataset, where daily ocean velocities were not saved (Semmler et al., 2018), geostrophic
250 velocities derived from sea surface height with equations (1) and (2) are the best possible choice, and
251 fortunately, as described earlier, the error introduced by the assumptions of geostrophic balance will be
252 small. For the SO3 simulations, direct model output was saved and is preferred, particularly given the
253 high resolution of the mesh. (Taburet et al., 2019)

254 $u = -g/f^* \partial \text{SSH} / \partial y$ (1)

255 $v = g/f^* \partial \text{SSH} / \partial x$ (2)

256

257 The omission of Ekman transport, the primary source of ageostrophic oceanic flow from atmospheric
258 influences, can be relatively well addressed in the SO3 dataset by selecting modeled velocities just below
259 the Ekman layer. At depths of 25-30m below sea level, the bulk of Ekman transport can be avoided (Price
260 et al., 1987), while velocities should not substantially differ from those at the surface. What ageostrophic
261 flow remains in the model output velocities should be primarily large-scale and overshadowed small
262 relative to geostrophic flow in the high-energy regions of the ocean, including the ACC (Yu et al.,
263 2021).

264 **2.4 Altimetry data**

265 An observational data product of gridded, daily geostrophic velocities derived from along-track
266 satellite altimetry from crossover data is taken from the Data Unification and Altimeter Combination

267 System (DUACS) (Taburet et al., 2019). The gridded product has a resolution of 0.25 °, although
268 effective resolution at high latitudes may be much lower (Ballarotta et al., 2019). Recently, improved data
269 has become available in the ice-covered regions of the Southern Ocean (Auger et al., 2022), but does not
270 yet cover the full present-day simulated period (2016-2020) in this study. Absolute velocities from the
271 gridded altimetry product were used to calculate anomalies and EKE using equations (3) and (4) below
272 for consistency with the modeled dataset.

273 ~~To avoid including ageostrophic contributions to ocean surface velocity in this analysis, model output~~
274 ~~velocity between 25 m and 30 m depth is used for the SO3 dataset. This depth should be close enough to~~
275 ~~the surface to closely match surface geostrophic flows while also avoiding Ekman transport, a major~~
276 ~~contributor to ageostrophic ocean flow. What ageostrophic flow remains in the model output velocities~~
277 ~~should be primarily large scale and overshadowed by geostrophic flow in the high energy regions of the~~
278 ~~ocean, including the ACC (Yu et al., 2021).~~

279 $u = g/\rho^* \partial \text{SSH} / \partial y$ (1)

280 $v = g/\rho^* \partial \text{SSH} / \partial x$ (2)

281 **2.5 EKE analysis**

282 Velocity anomalies are defined by subtracting the multi-year monthly climatology of each
283 respective 5-year period from daily velocities with equation (3).

284 $u'_i = u_i - \bar{u}_m$ (3)

285 Where u_i is the daily zonal velocity, $'$ denotes an anomaly, and \bar{u}_m is a monthly mean. For meridional
286 velocities (v) substitute u with v .

287 Eddy kinetic energy is calculated from ocean velocities according to equation (4).

288 $EKE_i = 0.5(u'^2 + v'^2)$ (4)

Formatted: Font: Bold, Not Italic

Formatted: Font: Bold, Not Italic

289 Where (\cdot) denotes a daily value and $(\cdot - \bar{\cdot})$ denotes an anomaly.

290 EKE was calculated on the native grid of each dataset and then interpolated to a 0.25° grid for all

291 analyses. IEKE in Figures 1 and 3, EKE was first calculated on a daily timescale and coarsened to five-

292 day means before analysis to reduce computational costs during post-processing. Area-integrated EKE

293 (Figure 1, 3) is calculated by summing the area-weighted EKE of each grid cell in the study region

294 defined as the zonal band between 45°S and 65°S , with the The Brazil/Malvinas confluence region

295 between 57°E and 29°E and northward of 40°S is removed to focus the study on a region with

296 consistent physical drivers theorized to be responsible for the changes in eddy activity (Beech et al.,

297 2022). As a precaution, Each dataset was linearly detrended before analysis in

298 Figures 1 and 3 to avoid artificially increasing the range of the later distributions due to the accelerating

299 climate change signal. Select statistical properties are reported in Supplementary Tables 1-3 to indicate

300 deviations from normality (D'Agostino and Belanger, 1990; Fisher, 1997) and autocorrelation (Durbin

301 and Watson, 1950). Rather than attempt to manipulate the data to meet certain statistical assumptions,

302 complex statistical tests are avoided and the statistical properties reported can be used to interpret the

303 EKE data in a physical sense. EKE anomalies (Figure 1) were calculated by subtracting the 2016-2020

304 mean of area-integrated EKE from the EKE 5-day mean values data of each period. Normalized EKE

305 was calculated by further dividing EKE anomaly by the standard deviation of EKE during the 2016-2020

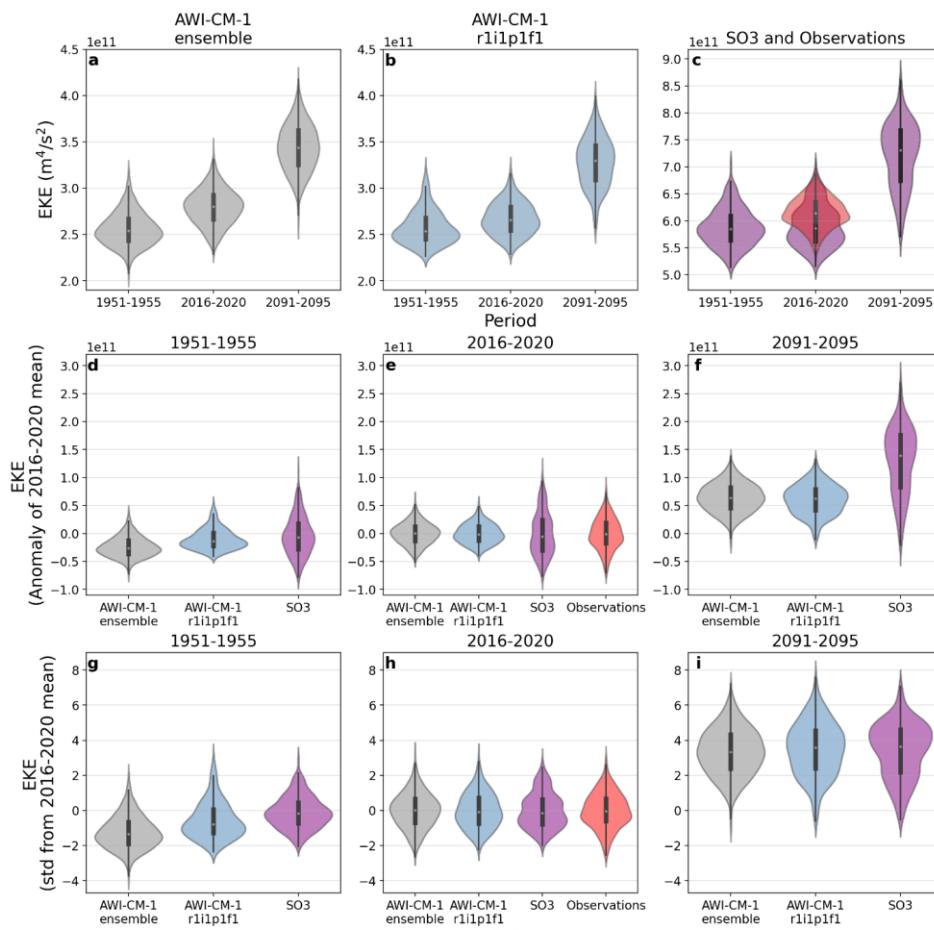
306 period. In Figure 4, ensemble agreement is determined by ordering the ΔEKE values within each grid cell

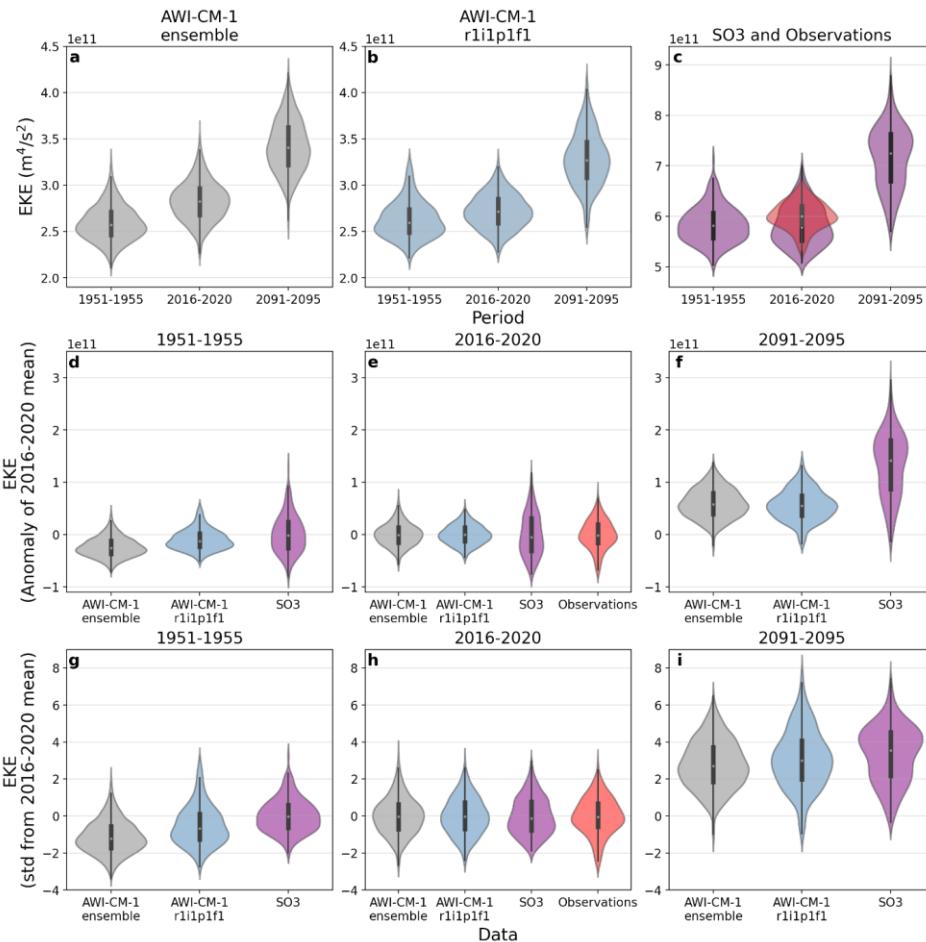
307 from lowest to highest, plotting the positive values in increasing order from left to right and negative

308 values in decreasing order from left to right.

309 3 Results

310 3.1 Agreement with observations

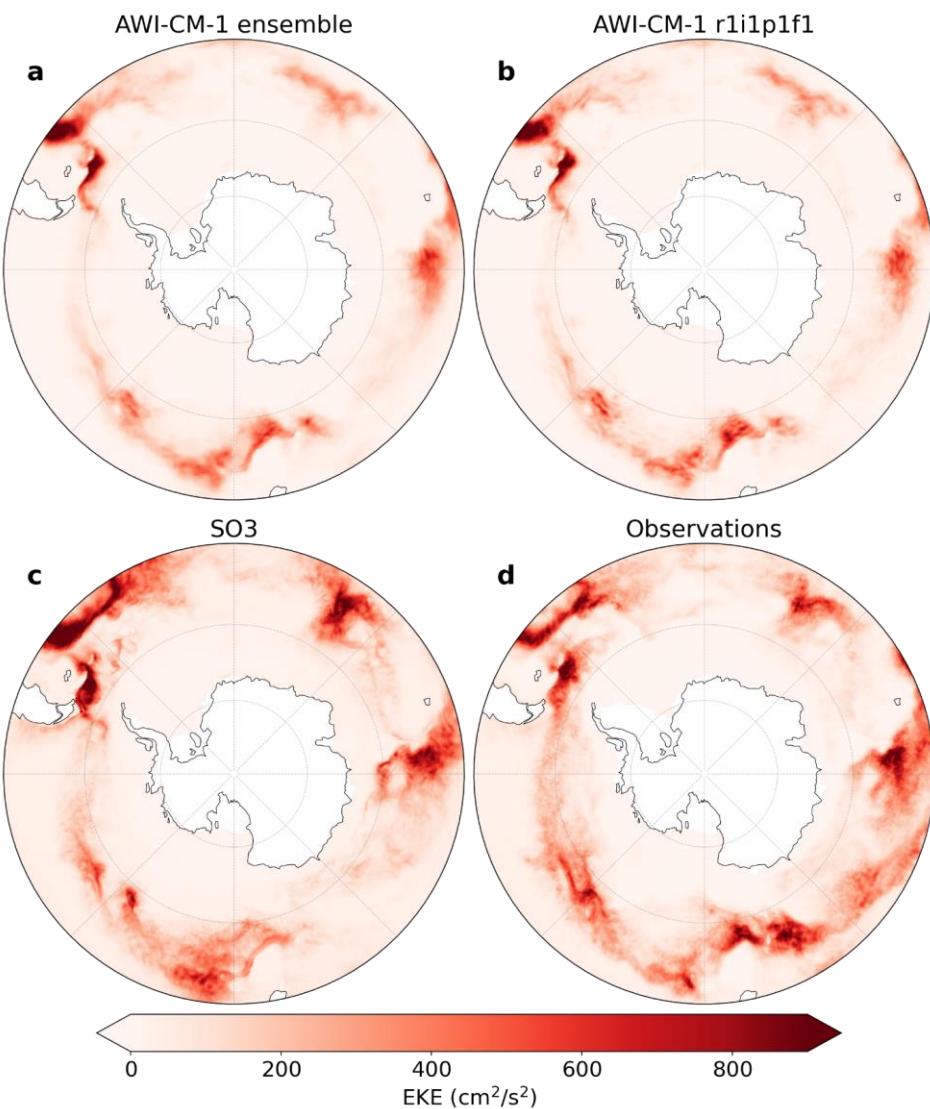

311 During the five-year period of overlap with observations, the SO3 simulation is a drastic


312 improvement on the AWI-CM-1 ensemble in reproducing median observed EKE (Figure 1a, c); only a

← **Formatted:** Add space between paragraphs of the same style

313 slight underrepresentation of EKE remains in the SO3 simulation, although the simulated distribution
314 ~~remains is somewhat distinct from observations, whereas~~⁵ ~~in comparison,~~ the AWI-CM-1 ensemble, ~~being~~
315 ~~effectively eddy-permitting in the Southern Ocean,~~ underrepresents observations by ~~approximately~~^{about}
316 ~~550%~~ (Figure 1a, c, ~~note the different y-axis~~). EKE in SO3 appears more variable than the observations
317 ~~considering as can be inferred from the its~~ larger range, (Figure 1c, e) ~~and~~⁴, ~~and in general, the modeled~~
318 ~~datasets display greater deviations from a normal distribution than the observations (Figure 1a, b, c;~~
319 ~~Supplementary Table 2).~~ ~~ts~~ distribution appears less Gaussian than observations or the eddy permitting
320 ~~dataset (Figure 1a, b, c).~~ Taking the AWI CM 1 ensemble as an example, there is no consistent pattern of
321 ~~multimodality or skewness and the ensemble mean more closely approximates the normal distribution~~
322 ~~than the individual members (Figure 3), suggesting that deviations from normality could be primarily due~~
323 ~~to sample size rather than the character of the data.~~ (Beech et al., 2022) ~~Nonetheless, i~~Relative to the
324 AWI-CM-1 model bias and the magnitude of EKE resolved, the ensemble spread within the AWI-CM-1
325 dataset is small (Figure 3), suggesting that a single ensemble member of five years duration is sufficient
326 to assess how well a model captures the ~~overall~~ magnitude of ~~overall~~ Southern Ocean EKE (Figure 1c).

Formatted: Not Highlight


328

329 **Figure 1. Violin plots of area-integrated Southern Ocean EKE in simulations and observations.**

330 Central points of each plot indicate the median, thick bars span the first and third quartiles, thin bars span
 331 the range, and the violin body is a kernel density estimation of the data. **a-c)** MReal magnitudes of area-
 332 integrated EKE (note the different y axes) **a)** The AWI-CM-1 ensemble. **b)** the first member of the AWI-
 333 CM-1 ensemble, from which the SO3 simulations take their atmospheric forcing. **c)** The SO3
 334 simulations and observations. **d-f)** ΔEKE anomalies relative to the 2016-2020 mean of area-integrated

335 EKE for each dataset respectively. **d)** 1951-1955. **e)** 2016-2020. **f)** 2091-2095. **g-i)** Normalized values
336 relative to the mean and standard deviation of EKE during the 2016-2020 period for each dataset
337 respectively. **g)** 1951-1955. **h)** 2016-2020. **i)** 2091-2095.

338 From a regional perspective, the SO3 simulation accurately reflects local magnitudes of observed
339 EKE and also generally captures the spatial distribution well (Figure 2). However, there are regional
340 shortcomings, such as between 90 and 145 °E. Grid resolution in this region should be sufficient to
341 resolve eddy activity (Supplementary Figure 1), indicating that the bias arises from another source. In the
342 AWI-CM-1 ensemble, the regional representation of EKE reinforces a broad underrepresentation relative
343 to observed magnitudes, but the major geographic features of eddy activity are fairly well represented
344 (Figure 2). Once again, the ensemble spread within the AWI-CM-1 simulations reveals remarkable
345 consistency, this time in terms of the spatial pattern and regional magnitudes (Supplementary Figure 2),
346 reinforcing the conclusion that a single ensemble member of five years duration is sufficient to assess the
347 mean state of EKE in the Southern Ocean. The consistency of the AWI-CM-1 ensemble further suggests
348 that regional shortcomings in eddy activity in the SO3 simulations are not a product of variability within a
349 single realization of Southern Ocean conditions (Supplementary Figure 2).

Formatted: Add space between paragraphs of the same style

351 **Figure 2. Mean eddy kinetic energy between 2016 and 2020. a)** The AWI-CM-1 ensemble. **b)** The first
 352 member of the AWI-CM-1 ensemble. **c)** The SO3 simulation. **d)** The gridded satellite altimetry dataset.

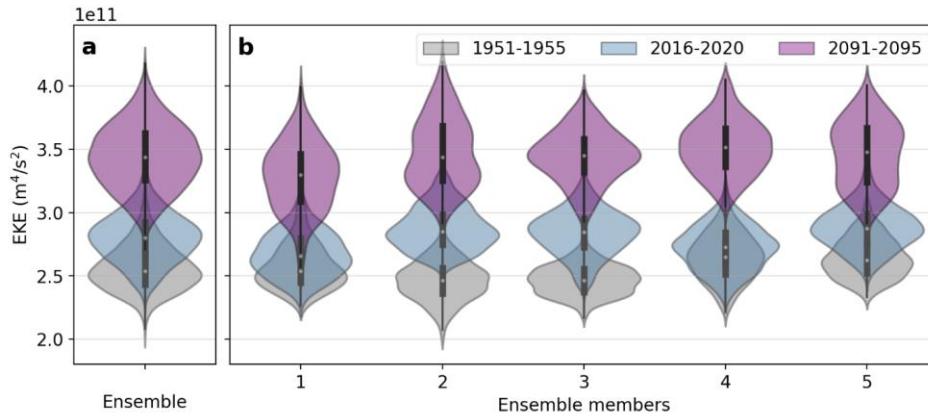
Formatted: Font: Not Bold

353

354 3.2 EKE change and significance

355 Southern Ocean eddy activity has been shown to intensify over the recent decades both using
356 satellite altimetry (Martínez-Moreno et al., 2021), and the complete AWI-CM-1-1 dataset from CMIP6
357 (Beech et al., 2022). Even after reducing the AWI-CM-1 CMIP6 dataset to five-year periods preceding
358 the apparent change (1951-1955) and at the end of the altimetry era (2016-2020), this intensification is
359 still discernable within the AWI-CM-1 ensemble (Figure 1a). Despite this, the SO3 simulations do not
360 demonstrate any substantial change in EKE magnitude over the same period (Figure 1). Further reducing
361 the ensemble to its individual members (Figure 3), the EKE rise is still relatively, relatively, clear, robust in
362 each case, including clear separation of the datasets -considering the median, mode, and first and third
363 ~~quartiles, distribution~~ of the data distributions (Figure 3). However, the, first ensemble member, from
364 which the atmospheric forcing of SO3 is taken, demonstrates less EKE rise than the ensemble average
365 (Figure 3), suggesting that natural variability in atmospheric conditions may contribute to the
366 disagreement. Further investigation reveals several differences between the SO3 simulations and the
367 AWI-CM-1 ensemble members that may play a role. Mean zonal ocean velocity in SO3 is faster and
368 broader than the AWI-CM-1 ensemble (Supplementary Figure 3), meaning wind speed intensification
369 may be misaligned with peak ocean velocities in SO3, particularly around 47 to 51 °S. Moreover,
370 considerably less zonal wind stress is imparted to the ocean in SO3 despite identical wind speeds as the
371 first AWI-CM-1 ensemble member (Supplementary Figure 4), possibly due to the higher ocean surface
372 velocity.
373 suggesting again, that natural or internal variability is not responsible for the discrepancies between
374 simulations. Therefore, despite the first AWI-CM-1 ensemble member, from which the SO3 simulations
375 receive their atmospheric forcing, producing lower than average EKE rise over this period (Figure 3), it is
376 likely that other factors (Renault et al., 2016) also contribute to the lack of change in the SO3
377 simulations. (Renault et al., 2016)

Formatted: Font: (Default) Times New Roman

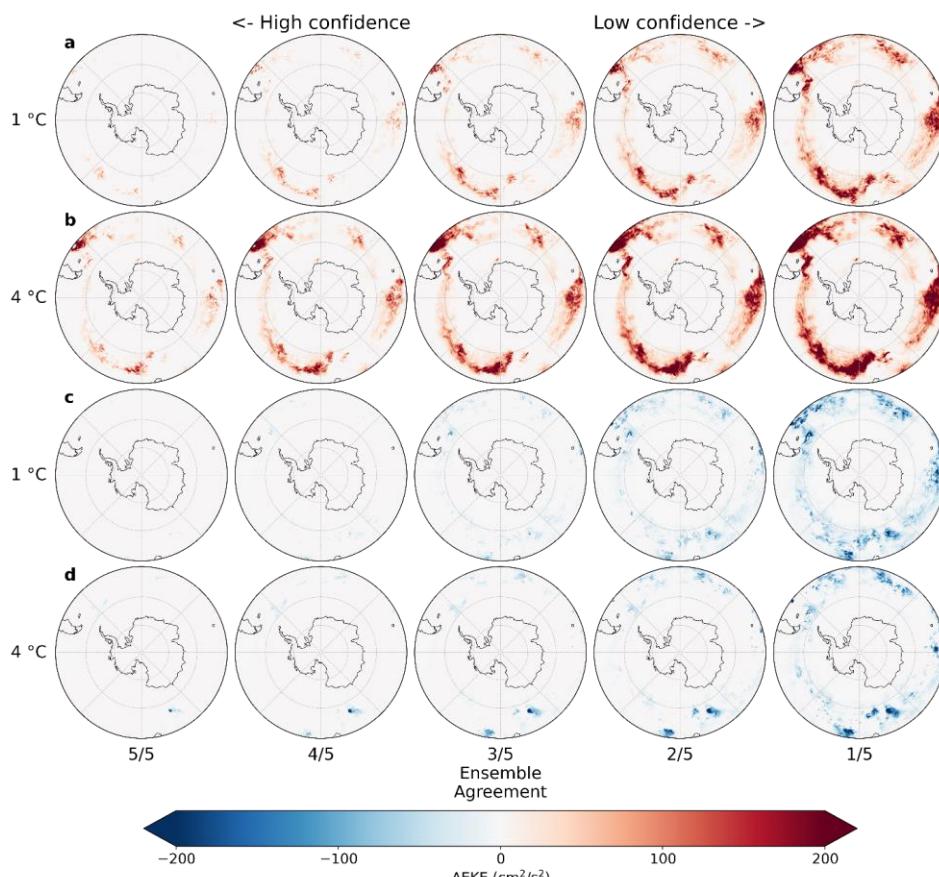

Formatted: Style1, Line spacing: single

378 The intensification of EKE becomes clear in both the AWI-CM-1 ensemble (Figure 1a), its
379 members (Figure 3), and the SO3 simulations (Figure 1c) by the end of the 21st century. Over this period,
380 the variability of EKE, indicated by the range of the distribution, also increases for each dataset (Figure
381 1f, i). EKE rise in SO3 is approximately ~~three times twice~~ that of the AWI-CM1 ensemble in absolute
382 terms (Figure 1f), but expressing EKE as a relative value normalized by the mean and standard deviation
383 of each dataset during the observational period (Figure 1g, h, i), reveals greater consistency between the
384 changes until the end of the 21st century. EKE in each dataset appears to increase by approximately ~~3.53~~
385 standard deviations, and the range of EKE distributions increases by approximately ~~two one~~ to ~~three two~~
386 standard deviations (Figure 1h, i). However, the datasets also tend to become more autocorrelated, which
387 can inflate the distribution range (Supplementary Tables 1, 3).

388

← **Formatted:** Add space between paragraphs of the same style

389



390 **Figure 3. Ensemble spread of EKE in AWI-CM-1.** **a)** Violin plots of area-integratedmean Southern
 391 Ocean EKE in the AWI-CM-1 ensemble. **b)** Violin plots of mean Southern Ocean EKE in each member
 392 of the AWI-CM-1 ensemble. Grey plots represent the period 1951-1955, blue plots represent 2016-2020,
 393 and purple plots represent 2091-2095.

394 Before considering the regional impacts of warming on EKE in the SO3 simulations, it is useful
 395 to refer to the ensemble spread within the AWI-CM-1 simulations to approximate the reliability of a
 396 single ensemble member in revealing the ensemble-mean change as an analogue to the signal-to-noise
 397

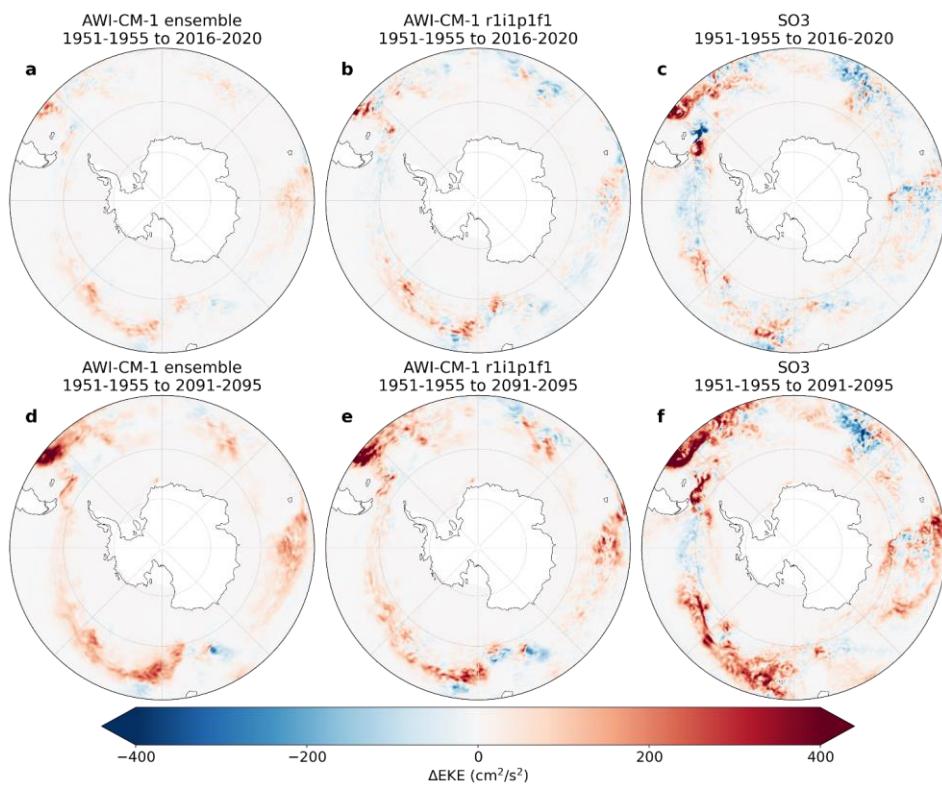
← **Formatted:** Add space between paragraphs of the same style

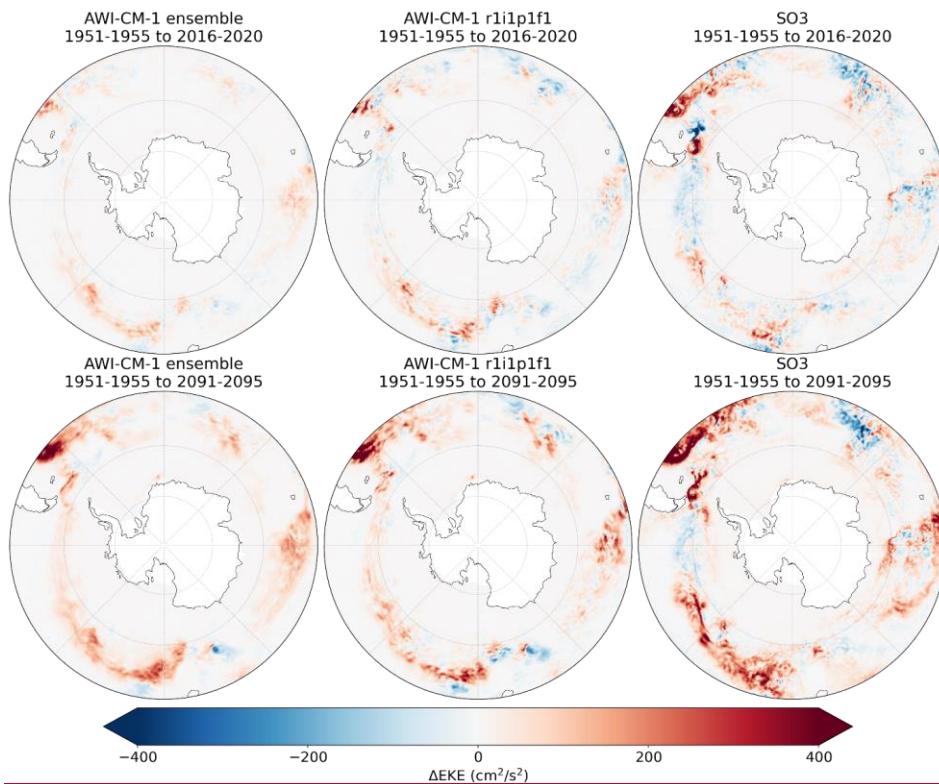
398 ratio. At 1 °C of warming, EKE change in the ensemble is weak, with at least one ensemble member
399 tending to show little or no EKE change in most regions (Figure 4a,c). Only a few clear patterns of
400 change emerge throughout the ensemble, namely the regions of EKE intensification downstream of the
401 Kerguelen Plateau and the Campbell Plateau where four to five out of five ensemble members show clear
402 EKE intensification (Figure 4a). It should be noted that even in these regions of relatively high confidence
403 (4 to 5 ensemble members, Figure 4a) EKE rise can be interspersed with lower-confidence (1 to 2
404 ensemble members, Figure 4c) EKE decline; this is also illustrated by the ensemble mean changes
405 themselves (Supplementary Figures [52](#), [63](#)). Despite this, the consistency of EKE rise in these regions,
406 and their geographic positions in already EKE-rich regions, suggests that the intensification patterns are
407 robust changes within substantial noise. This level of noise suggests that EKE changes in the SO3
408 simulations at 1 °C of warming will be difficult to distinguish from natural variability when taken on their
409 own; indeed, in the SO3 simulations, the large variability of both sign and magnitude of change within
410 relatively small spatial scales does not lend confidence to any significant change at 1 °C of warming
411 (Figure 5c). However, building on the changes observed in the AWI-CM-1 ensemble, the intensification
412 of EKE downstream of the Kerguelen and Campbell Plateaus seems to be reinforced by the high-
413 resolution simulations.

414

415 **Figure 4. Ensemble agreement regarding EKE change.** EKE rise (a, b) and decline (c, d) within the
 416 AWI-CM-1 ensemble after one (a, c) and four (b, d) °C of warming or between 1951-1955 and 2016-
 417 2020 and 2091-2095, respectively, arranged in order of decreasing ensemble agreement regarding change
 418 in each grid cell. Ensemble agreement refers to the number of ensemble members that simulate at least the
 419 pictured magnitude of mean EKE rise or decline for each grid cell. Mean EKE change is defined as the
 420 difference of mean EKE between 1951-1955 and each of the two latter periods, as in Supplementary
 421 Figures 5 and 6 but arranged in ascending order of magnitude for each grid cell and for positive and
 422 negative signs separately. Rank 5/5 indicates the lowest magnitude of mean EKE rise (a, b) or decline (c,

Formatted: Font: Bold


423 d) within the ensemble for a given grid cell, meaning the entire ensemble agrees on at least this much
424 change. Rank 1/5 indicates the highest magnitude of EKE rise or decline within the ensemble for each
425 grid cell, representing the upper limit of projected EKE change.


426

427 At 4 °C of warming, change in eddy activity becomes clearer; EKE intensification downstream of
428 the Kerguelen and Campbell Plateaus is now consistent throughout the entire AWI-CM-1 ensemble, along
429 with additional intensifications south of the Falkland/Malvinas Plateau, around the Conrad Rise, and
430 along the Antarctic Slope Current at approximately 5 °E (Figure 4b). Four fifths of the ensemble also
431 include a broad increase in EKE throughout the ACC across most longitudes. Interestingly, a consistent
432 pattern of EKE decline also emerges upstream of the Campbell Plateau in the entire ensemble (Figure 4d).
433 The spatial pattern of EKE rise is relatively consistent regardless of confidence, with only the magnitude
434 increasing in the lower confidence composites (Figure 4b). The same tendency is observable between the
435 EKE changes at 1 and 4 °C of warming, where the magnitude of change is greater after further warming
436 but follows the same spatial pattern. Thus, regions of intensification can be identified more reliably than
437 the magnitude of change and tend to be concentrated where flow interacts with topographic features, in
438 already eddy-rich regions (Figure 2). Conversely, low confidence EKE decline appears nearly throughout
439 the Southern Ocean in at least one ensemble member, but only consistently upstream of the Campbell
440 Plateau and, to a far lesser extent, downstream of the Drake Passage and Campbell Plateau (Figure 4d).
441 Changes of negative sign tend to be of lower magnitude at 4 °C of warming than at 1 °C. This suggests
442 that in any given single ensemble simulation, a robust general intensification of EKE tends to occur~~the~~
443 general EKE response to climate change in the Southern Ocean is that of intensification, and the
444 interspersed signals of decline tend to be the result of ~~but can be interspersed with spurious signals of~~
445 decline~~natural variability~~. Yet, small regions of high-confidence EKE decline ~~are also possible, also~~
446 appear~~however~~uncommon. Consequently, it would be difficult to confidently separate reliable EKE
447 change from natural variability in simulations without an ensemble to compare with. In the SO3

448 simulations, EKE rise downstream of the Drake Passage and Kerguelen and Campbell Plateaus is
449 substantial (Figure 5f). EKE rise is also projected south of the Falkland/Malvinas Plateau, around the
450 Conrad Rise, and along the Antarctic Slope Current at approximately 5 °E, and a slight EKE decline
451 appears upstream of the Campbell Plateau. All of this is comparable to the AWI-CM-1 ensemble, and the
452 interspersed areas of EKE decline within these regions, for example, around the Conrad Rise, are not
453 improbable based on the example set by AWI-CM-1 (Figure 4d). However, considering that some high-
454 confidence EKE decline is present in the AWI-CM-1 ensemble, it is difficult to confidently dismiss
455 regional EKE decline in the SO3 simulations as noise.

456

458
459 **Figure 5. EKE change.** Spatial representations of the difference in EKE between (a-c) 1951-1955 and
460 2016-2020, (d-f) 1951-1955 and 2091-2095. **a,d)** The AWI-CM-1 ensemble. **b,e)** the first member of the
461 AWI-CM-1 ensemble. **c,f)** The SO3 simulations.

462
463 **4 Discussion**

464 Intensification of eddy activity in the Southern Ocean is now widely accepted as a consequence
465 of anthropogenic climate change (Hogg et al., 2015; Patara et al., 2016; Martínez-Moreno et al., 2021;
466 Beech et al., 2022), and is understood to be caused primarily by stronger westerly winds imparting more
467 energy to the Antarctic Circumpolar Current (Munday et al., 2013; Marshall, 2003). The results presented

468 here reinforce the notion of EKE intensification and further project increased EKE variability as the
469 climate warms (Figure 1, 3). By expressing EKE change in terms of ensemble agreement on a cell-by-cell
470 basis, the results presented here are also able to identify regions of reliable and substantial change as those
471 where flow interacts with major bathymetric features, and high eddy activity is already known to occur
472 (Figure 4). Understanding Analysis of regional changes within the Southern Ocean eddy field ~~has~~
473 generally been limited to regions defined by oceanic sectors (Atlantic, Indian, Pacific) (Hogg et al., 2015),
474 or incremental longitudinal delimitations (Patara et al., 2016). By expressing EKE change in terms of
475 ensemble agreement on a cell by cell basis, the results presented here are able to identify regions of
476 reliable and substantial change as those where flow interacts with major bathymetric features, and high
477 eddy activity is already known to occur (Figure 4). In future research, regional analyses of ~~both~~ the
478 significance, rate, and/or cause of EKE trends could focus on the bathymetrically defined~~these~~ regions
479 identified in this analysis to to avoid confounding results with those of physically unrelated change within
480 the chosen geographic delimitations~~produce physically related and consistent results.~~

481 The consistency of the AWI-CM-1 ensemble in projecting clear EKE rise in the Southern Ocean
482 as a whole suggests that a single ensemble member of five-years simulation length should be sufficient to
483 reliably identify change, even after 1 °C- of temperature rise. Despite this, the SO3 simulations fail to
484 reproduce the EKE rise that is already observable through observations (Martínez-Moreno et al., 2021). A
485 potential source for this discrepancy is the uncoupled model setup in the SO3 simulations which omits
486 ocean-atmosphere feedbacks. In this regard, the SO3 simulations experience lower wind stress imparted
487 to the ocean surface than AWI-CM-1 ensemble member one by the same surface winds (Supplementary
488 Figure 4), and a mismatch between peak zonal wind speeds and mean zonal ocean velocities
489 (Supplementary Figure 3). Confounding the comparison further, is the fact that strengthening winds can
490 both increase and dampen eddy activity; as westerlies intensify, the additional energy imparted to the
491 ocean is expected to strengthen eddy activity (Munday et al., 2013; Meredith and Hogg, 2006), but winds
492 are also known to dampen mesoscale activity through eddy killing (Rai et al., 2021) and this impact is

493 greater in uncoupled model configurations (Renault et al., 2016). While the lack of change at 1 °C is
494 difficult to explain, the disagreement is limited to these more subtle changes and the simulations tend to
495 agree on the strong EKE rise at 4 °C of warming.

496 Considering the consistency of the AWI-CM-1 ensemble both in terms of representing regional mean
497 EKE (Supplementary Figure 2), and projecting overall Southern Ocean EKE change (Figure 2), it appears
498 that a larger ensemble of high resolution simulations is not necessary to assess local mean states and
499 changes over the entire region. This also means that the discrepancies between the SO3 simulations and
500 AWI-CM-1 ensemble remain unexplained. The SO3 simulations failed to reproduce the clear
501 intensification of EKE present in the ensemble at 1 °C of warming (Martínez Moreno et al., 2021), which
502 has already been identified in observations (Martínez Moreno et al., 2021). One potential explanation for
503 this is the atmospheric forcing applied to the SO3 simulations which cannot react to oceanic conditions in
504 the same way that the real atmosphere or coupled atmosphere of the AWI-CM-1 ensemble can.

505 Consequently, atmospheric forcing has been found to cause 27% more eddy killing by wind stress than
506 coupled simulations (Renault et al., 2016). Since intensifying wind is widely considered the cause of EKE
507 intensification in the Southern Ocean (Munday et al., 2013; Meredith and Hogg, 2006) (Meredith and
508 Hogg, 2006; Munday et al., 2013; Hogg et al., 2015; Beech et al., 2022), the increase may be counteracted
509 by a simultaneous increase in eddy killing.

510 The remaining discrepancies between eddy activity in SO3 and observations are relatively small,
511 but Assuming that the medium resolution spin up simulation effectively imparts a generally equilibrated
512 ocean to the SO3 simulations in terms of baroclinic and barotropic instability, exploring potential sources
513 of disagreement may help to interpret the simulations and guide future modeling endeavors the remaining
514 discrepancies between eddy activity in SO3 and observations should be largely identifiable. Greater skew
515 in the distribution of EKE in the modeled dataset (Supplementary Table 2) could reflect multiple modes
516 of circulation or seasonality. While seasonality of eddy activity in the ACC is low, seasonal ice cover
517 likely affects eddy activity in the modeled dataset, and certainly affects the observational dataset by

518 producing gaps in its spatio-temporal coverage. Beyond differences in skew, this could contribute to the
519 greater range of EKE seen in the SO3 simulations [by systemically obscuring seasonal conditions from the](#)
520 [observational dataset](#). Regional deficiencies of EKE in SO3 could be explained in terms of grid resolution
521 [outside of the study region](#); resolving the first Rossby radius of deformation with at least two grid points
522 is not enough to comprehensively reproduce mesoscale activity (Hallberg, 2013; Sein et al., 2017), [and](#)
523 [meaning](#) grid refinement may need to be expanded to upstream regions that impact eddy dynamics in the
524 Southern Ocean. Other sources of bias may include ocean-atmosphere interactions which are absent or
525 unrealistic within the uncoupled simulations (Byrne et al., 2016; Rai et al., 2021; Renault et al., 2016). As
526 well, some small-scale, slow-to-equilibrate ocean processes may be resolved in the high-resolution
527 simulations, but not be integrated long enough for their effects to impact eddy activity (van Westen and
528 Dijkstra, 2021; Rackow et al., 2022). Finally, the gridded altimetry product itself may be responsible for
529 some disagreement, as the along-track data is known to underrepresent eddy activity at scales less than
530 150km and 10 days (Chassignet and Xu, 2017), which will be particularly impactful at high latitudes.

531 To distinguish a meaningful signal of anthropogenic impacts from natural variability, this
532 analysis relies primarily on consistency among ensemble members (Figures 3, 4). This is distinct from
533 more traditional methods like assessment of error relative to observations or ensemble mean, commonly
534 applied to weather forecasting (Ferro et al., 2012), [but can be compared to measures of ensemble](#)
535 [agreement used extensively in the IPCC reports](#) ADDIN ZOTERO_ITEM CSL_CITATION
536 {"citationID":"UjI4jUe8","properties":{"formattedCitation":"(Frenger et al.,
537 2015)","plainCitation":"(Frenger et al.,
538 2015)","noteIndex":0,"citationItems":[{"id":500,"uri":["http://zotero.org/users/6300652/items/9EPNRS
539 D9"]}, {"itemData":{"id":500,"type":"article-journal","abstract":"Mesoscale eddies are ubiquitous features
540 in the Southern Ocean, yet their phenomenology is not well quantified. To tackle this task, we use satellite
541 observations of sea level anomalies and sea surface temperature (SST) as well as in situ temperature and
542 salinity measurements from profiling floats. Over the period 1997–2010, we identified over a million

543 mesoscale eddy instances and were able to track about 105 of them over 1 month or more. The Antarctic
544 Circumpolar Current (ACC), the boundary current systems, and the regions where they interact are hot
545 spots of eddy presence, representing also the birth places and graveyards of most eddies. These hot spots
546 contrast strongly to areas shallower than about 2000 m, where mesoscale eddies are essentially absent,
547 likely due to topographical steering. Anticyclones tend to dominate the southern subtropical gyres, and
548 cyclones the northern flank of the ACC. Major causes of regional polarity dominance are larger formation
549 numbers and lifespans, with a contribution of differential propagation pathways of long-lived eddies.
550 Areas of dominance of one polarity are generally congruent with the same polarity being longer lived,
551 bigger, of larger amplitude, and more intense. Eddies extend down to at least 2000 m. In the ACC, eddies
552 show near surface temperature and salinity maxima, whereas eddies in the subtropical areas generally
553 have deeper anomaly maxima, presumably inherited from their origin in the boundary currents. The
554 temperature and salinity signatures of the average eddy suggest that their tracer anomalies are a result of
555 both trapping in the eddy core and stirring.", "container-title": "Journal of Geophysical Research:
556 Oceans", "DOI": "10.1002/2015JC011047", "ISSN": "2169-
557 9291", "issue": "11", "language": "en", "note": "_eprint:
558 <https://onlinelibrary.wiley.com/doi/pdf/10.1002/2015JC011047>", "page": "7413-7449", "source": "Wiley
559 Online Library", "title": "Southern Ocean eddy
560 phenomenology", "URL": "https://onlinelibrary.wiley.com/doi/abs/10.1002/2015JC011047", "volume": "12
561 0", "author": [{"family": "Frenger", "given": "I."}, {"family": "M\u00fcnich", "given": "M."}, {"family": "Gruber", "given": "N."}, {"family": "Knutti", "given": "R."}], "accessed": {"date-parts": [[2023, 5, 2]]}, "issued": {"date-parts": [[2015]]}}, "schema": "https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} (Frenger et al., 2015) (Fox-Kemper et al., 2021). Performance evaluation relative to
565 observations would undoubtedly point to the high-resolution simulation as superior due to the drastic
566 underrepresentation of EKE in the eddy-permitting ensemble (Figure 1). Yet, the effects of climate
567 change are still apparent in the AWI-CM-1 ensemble (Figure 1, 5), and the AWI-CM-1 dataset has been
568 used to make similar projections of EKE already (Beech et al., 2022). Moreover, the eddy response to

569 forcing seems to be consistent between the model resolutions when expressed in relative (Figure 1g, h, i),
570 rather than absolute terms (Figure 1a, b, c). While more verification of this result is necessary both
571 regionally, and with other models, these results suggest that eddy-permitting resolutions can be
572 interpreted with their shortcomings in mind in order to discern the real-world implications: as is often
573 necessary with model data. Thus, based on the test case of the Southern Ocean, the usefulness of the
574 AWI-CM-1 ensemble and the effectiveness of model simulations in identifying physically significant and
575 reproducible impacts of climate change may be greater than would be identified using traditional
576 methods and comes at a much lower cost relative to the eddy-resolving simulations.

577 This study has focused on EKE as an evaluation metric for the simulations since mesoscale
578 activity is the primary motivation for increasing ocean model resolution. It has stopped short of assessing
579 the improvements that resolving the mesoscale has on climate and ocean dynamics, many of which are
580 discussed in detail elsewhere (eg. [Hewitt et al., 2017](#)). Rather than repeat an assessment of the benefits of
581 resolving smaller scales, we assume that the accurate reproduction and evolution of eddy activity
582 indicates that these improvements are transferred to broader processes. Certainly, inaccurate simulation of
583 the mesoscale would raise questions regarding the improvements that this mesoscale activity should have
584 on the simulations as a whole. Nonetheless, further evaluation of the modeling approaches employed in
585 this study will be necessary to determine if these methods are appropriate for studying broader elements
586 of the climate system. Since the high-resolution simulations derive their deep-ocean climate primarily
587 from the medium-resolution spin-up simulation, improving the initialization process (Thiria et al., 2023)
588 may be the critical barrier to extending these results from the mixed layer to the deeper ocean.

589 **5 Conclusion**

590 Resolving the ocean mesoscale has become a focus for the climate and ocean modeling
591 community as computational capabilities expand and models become increasingly complex. The benefits
592 that explicitly resolved eddy activity can have on climate simulations are clear (Hewitt et al., 2017; Sein
593 et al., 2017) along with the impact that mesoscale variability has on local (Lachkar et al., 2009; Wang et

594 al., 2017) and global environments (Falkowski et al., 1991; Sallée et al., 2012). However, state-of-the-art
595 climate models will be unable to fully resolve the mesoscale for the foreseeable future, particularly in
596 large-scale modeling endeavors such as CMIP (Hewitt et al., 2020). Thus, modelers must make informed
597 choices regarding the explicit processes needed to answer research questions and where resources must be
598 allocated to achieve specific goals. Existing analysis of resource allocation has typically addressed short-
599 term weather forecasting or the ability to reproduce observations with low error (Ferro et al., 2012), but
600 the question of how to best allocate resources for climate change impact assessment remains. This study
601 has applied several cost-efficient modeling approaches to an analysis of the impacts of climate change on
602 a key focus of high-resolution modeling: the mesoscale. Applying these results to broader climate change
603 impact studies should improve the efficiency of resource allocation and focus modeling studies.
604 Resolution can be dynamically adjusted both spatially, by focusing resources in study regions and where
605 they are necessary to resolve local dynamics, and temporally, by allowing lower-resolution workhorse
606 configurations to perform spin-up and transient runs. Limited simulation length and ensemble size can be
607 sufficient for certain research questions and validation, but simulations must ultimately be designed to
608 meet their specific goals. Where resources are limited, studies may best include a combination of eddy-
609 resolving simulations able to fully capture the local eddy field, as well as eddy-permitting~~present~~
610 simulations that can attest to the significance of results through consistency and repetition.

611 This work represents a contribution to the growing wealth of research that points to an
612 intensification of eddy activity in the Southern Ocean (Hogg et al., 2015; Martínez-Moreno et al., 2021;
613 Beech et al., 2022). The further conclusions that EKE variability may increase and that EKE
614 intensification appears concentrated in key regions based on topography can both expand the present state
615 of knowledge, as well as direct future research. The cost-efficient ~~modelling~~ approaches of regional grid
616 refinement, reduced-resolution spin-up and transient runs, and limited simulation lengths distinguished by
617 longer periods of change are demonstrated to be effective at reproducing change within a more traditional
618 eddy-permitting ensemble. When resources are limited and resolution demands are high, these approaches

619 can be adapted to address specific research questions. Where assessing the robustness of change is
620 critical, the complimentary eddy-permitting ensemble represents an effective, low-cost supplement to the
621 high-resolution simulations.

622

623

624

625 **Data Availability**

626 Geostrophic velocities derived from satellite altimetry data are publicly available at
627 <https://doi.org/10.48670/moi-00148>. Daily sea surface height data from AWI-CM-1-1-MR in CMIP6
628 used to compute geostrophic velocities in this study is archived at the World Data Center for Climate at
629 the DKRZ (<https://doi.org/10.26050/WDCC/C6sCMAWAWM>,
630 <https://doi.org/10.26050/WDCC/C6sSPAIAWM>) (Semmler et al., 2022a, b). Model output from AWI-
631 CM-1-1-MR in the CMIP6 framework, including all variables used to force the standalone ocean
632 simulations conducted for this study, is publicly available at <https://doi.org/10.22033/ESGF/CMIP6.359>
633 (Semmler et al., 2018). Eddy kinetic energy datasets calculated from FESOM output velocities are
634 available at <https://doi.org/10.5281/zenodo.8046792> (<https://doi.org/10.5281/zenodo.8046792>) (Beech,
635 2023b).

636 **Code Availability**

637 Source code for the ocean model FESOM2 is available at (<https://doi.org/10.5281/zenodo.7737061>) (patrickscholz et al., 2023). Code used for data analysis and visualization in
638 this study is publicly available at
639 <https://doi.org/10.5281/zenodo.10025361> (<https://doi.org/10.5281/zenodo.8046783>) (Beech, 2023a).
640 Code used to calculate geostrophic velocities from sea surface height data from AWI-CM-1-1-MR is
641 available from <https://doi.org/10.5281/zenodo.7050573>.

643 **Author Contributions**

644 NB, TJ, TR, and TS conceived of the study. NB carried out the simulations, analyzed the data, and drafted
645 the manuscript. All authors reviewed the manuscript.

646 **Competing Interests**

647 The authors declare no competing interests.

Field Code Changed

Field Code Changed

Formatted: Font: (Default) +Body (Calibri)

Formatted: Font: (Default) +Body (Calibri)

648 **Acknowledgements**

649 The work described in this paper has received funding from the Helmholtz Association through
650 the project ‘Advanced Earth System Model Capacity’ (project leader: T.J., support code: ZT-0003) in the
651 frame of the initiative ‘Zukunftsthemen’. The content of the paper is the sole responsibility of the authors
652 and it does not represent the opinion of the Helmholtz Association, and the Helmholtz Association is not
653 responsible for any use that might be made of information contained. TJ acknowledges the EERIE project
654 funded under the EU Horizon Europe programme (grant number 101081383). TR acknowledges support
655 from the European Commission’s Horizon 2020 collaborative project NextGEMS (grant number
656 101003470). This work used resources of the Deutsches Klimarechenzentrum (DKRZ) granted by its
657 Scientific Steering Committee (WLA) under project ID 995. The CMIP data used in this study were
658 replicated and made available by the DKRZ.

659

660

661 **References**

662 Auger, M., Prandi, P., and Sallée, J.-B.: Southern ocean sea level anomaly in the sea ice-covered sector
663 from multimission satellite observations, *Sci. Data*, 9, 70, <https://doi.org/10.1038/s41597-022-01166-z>,
664 2022.

665 Auger, M., Sallée, J.-B., Thompson, A. F., Pauthenet, E., and Prandi, P.: Southern Ocean Ice-Covered Eddy
666 Properties From Satellite Altimetry, *J. Geophys. Res. Oceans*, 128, e2022JC019363,
667 <https://doi.org/10.1029/2022JC019363>, 2023.

668 Ballarotta, M., Ubelmann, C., Pujol, M.-I., Taburet, G., Fournier, F., Legeais, J.-F., Faugère, Y., Delepoule,
669 A., Chelton, D., Dibarboire, G., and Picot, N.: On the resolutions of ocean altimetry maps, *Ocean Sci.*, 15,
670 1091–1109, <https://doi.org/10.5194/os-15-1091-2019>, 2019.

671 Beech, N.: Beech_et_al_cost_efficient_SO: Revision, <https://doi.org/10.5281/zenodo.10025361>, 2023a.

672 Beech, N.: Processed EKE from FESOM-SO3 (1.0), <https://doi.org/10.5281/zenodo.8046792>, 2023b.

673 Beech, N., Rackow, T., Semmler, T., Danilov, S., Wang, Q., and Jung, T.: Long-term evolution of ocean
674 eddy activity in a warming world, *Nat. Clim. Change*, 12, 910–917, <https://doi.org/10.1038/s41558-022-01478-3>, 2022.

675

676 Bishop, S. P., Gent, P. R., Bryan, F. O., Thompson, A. F., Long, M. C., and Abernathey, R.: Southern Ocean
677 Overturning Compensation in an Eddy-Resolving Climate Simulation, *J. Phys. Oceanogr.*, 46, 1575–1592,
678 <https://doi.org/10.1175/JPO-D-15-0177.1>, 2016.

679 Bronselaer, B., Winton, M., Griffies, S. M., Hurlin, W. J., Rodgers, K. B., Sergienko, O. V., Stouffer, R. J.,
680 and Russell, J. L.: Change in future climate due to Antarctic meltwater, *Nature*, 564, 53–58,
681 <https://doi.org/10.1038/s41586-018-0712-z>, 2018.

682 Byrne, D., Münnich, M., Frenger, I., and Gruber, N.: Mesoscale atmosphere ocean coupling enhances the
683 transfer of wind energy into the ocean, *Nat. Commun.*, 7, ncomms11867,
684 <https://doi.org/10.1038/ncomms11867>, 2016.

685 Chassignet, E. P. and Xu, X.: Impact of Horizontal Resolution (1/12° to 1/50°) on Gulf Stream Separation,
686 Penetration, and Variability, *J. Phys. Oceanogr.*, 47, 1999–2021, <https://doi.org/10.1175/JPO-D-17-0031.1>, 2017.

687

688 D'Agostino, R. B. and Belanger, A.: A Suggestion for Using Powerful and Informative Tests of Normality,
689 *Am. Stat.*, 44, 316–321, <https://doi.org/10.2307/2684359>, 1990.

690 Danilov, S.: Ocean modeling on unstructured meshes, *Ocean Model.*, 69, 195–210,
691 <https://doi.org/10.1016/j.ocemod.2013.05.005>, 2013.

692 Danilov, S.: On the Resolution of Triangular Meshes, *J. Adv. Model. Earth Syst.*, 14, e2022MS003177,
693 <https://doi.org/10.1029/2022MS003177>, 2022.

694 Danilov, S., Sidorenko, D., Wang, Q., and Jung, T.: The Finite-volumE Sea ice–Ocean Model (FESOM2),
695 *Geosci. Model Dev.*, 10, 765–789, <https://doi.org/10.5194/gmd-10-765-2017>, 2017.

696 Durbin, J. and Watson, G. S.: Testing for Serial Correlation in Least Squares Regression. I, *Biometrika*, 37,
697 409–428, <https://doi.org/10.1093/biomet/37.3-4.409>, 1950.

698 Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of
699 the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization,
700 *Geosci. Model Dev.*, 9, 1937–1958, <https://doi.org/10.5194/gmd-9-1937-2016>, 2016.

701 Falkowski, P. G., Ziemann, D., Kolber, Z., and Bienfang, P. K.: Role of eddy pumping in enhancing primary
702 production in the ocean, *Nature*, 352, 55–58, <https://doi.org/10.1038/352055a0>, 1991.

703 Ferrari, R., Griffies, S. M., Nurser, A. J. G., and Vallis, G. K.: A boundary-value problem for the
704 parameterized mesoscale eddy transport, *Ocean Model.*, 32, 143–156,
705 <https://doi.org/10.1016/j.ocemod.2010.01.004>, 2010.

706 Ferro, C. A. T., Jupp, T. E., Lambert, F. H., Huntingford, C., and Cox, P. M.: Model complexity versus
707 ensemble size: allocating resources for climate prediction, *Philos. Trans. R. Soc. Math. Phys. Eng. Sci.*,
708 370, 1087–1099, <https://doi.org/10.1098/rsta.2011.0307>, 2012.

709 Fisher, R. A.: The moments of the distribution for normal samples of measures of departure from
710 normality, *Proc. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character*, 130, 16–28,
711 <https://doi.org/10.1098/rspa.1930.0185>, 1997.

712 Frölicher, T. L., Sarmiento, J. L., Paynter, D. J., Dunne, J. P., Krasting, J. P., and Winton, M.: Dominance of
713 the Southern Ocean in Anthropogenic Carbon and Heat Uptake in CMIP5 Models, *J. Clim.*, 28, 862–886,
714 <https://doi.org/10.1175/JCLI-D-14-00117.1>, 2015.

715 Gent, P. R. and McWilliams, J. C.: Isopycnal Mixing in Ocean Circulation Models, *J. Phys. Oceanogr.*, 20,
716 150–155, [https://doi.org/10.1175/1520-0485\(1990\)020<0150:IMOCM>2.0.CO;2](https://doi.org/10.1175/1520-0485(1990)020<0150:IMOCM>2.0.CO;2), 1990.

717 Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q., Chang, P., Corti, S., Fučkar,
718 N. S., Guemas, V., von Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T., Leung, L. R., Lu, J., Luo, J.-
719 J., Mao, J., Mizielski, M. S., Mizuta, R., Nobre, P., Satoh, M., Scoccimarro, E., Semmler, T., Small, J., and
720 von Storch, J.-S.: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6, *Geosci.*
721 *Model Dev.*, 9, 4185–4208, <https://doi.org/10.5194/gmd-9-4185-2016>, 2016.

722 Hallberg, R.: Using a resolution function to regulate parameterizations of oceanic mesoscale eddy
723 effects, *Ocean Model.*, 72, 92–103, <https://doi.org/10.1016/j.ocemod.2013.08.007>, 2013.

724 Hewitt, H. T., Bell, M. J., Chassignet, E. P., Czaja, A., Ferreira, D., Griffies, S. M., Hyder, P., McClean, J. L.,
725 New, A. L., and Roberts, M. J.: Will high-resolution global ocean models benefit coupled predictions on
726 short-range to climate timescales?, *Ocean Model.*, 120, 120–136,
727 <https://doi.org/10.1016/j.ocemod.2017.11.002>, 2017.

728 Hewitt, H. T., Roberts, M., Mathiot, P., Biastoch, A., Blockley, E., Chassignet, E. P., Fox-Kemper, B., Hyder,
729 P., Marshall, D. P., Popova, E., Treguier, A.-M., Zanna, L., Yool, A., Yu, Y., Beadling, R., Bell, M., Kuhlbrodt,
730 T., Arsouze, T., Bellucci, A., Castruccio, F., Gan, B., Putrasahan, D., Roberts, C. D., Van Roekel, L., and
731 Zhang, Q.: Resolving and Parameterising the Ocean Mesoscale in Earth System Models, *Curr. Clim.
732 Change Rep.*, 6, 137–152, <https://doi.org/10.1007/s40641-020-00164-w>, 2020.

733 Hogg, A. McC., Meredith, M. P., Chambers, D. P., Abrahamsen, E. P., Hughes, C. W., and Morrison, A. K.:
734 Recent trends in the Southern Ocean eddy field, *J. Geophys. Res. Oceans*, 120, 257–267,
735 <https://doi.org/10.1002/2014JC010470>, 2015.

736 Irving, D., Hobbs, W., Church, J., and Zika, J.: A Mass and Energy Conservation Analysis of Drift in the
737 CMIP6 Ensemble, *J. Clim.*, 34, 3157–3170, <https://doi.org/10.1175/JCLI-D-20-0281.1>, 2021.

738 Jungclaus, J. H., Lorenz, S. J., Schmidt, H., Brovkin, V., Brügmann, N., Chegini, F., Crüger, T., De-Vrese,
739 P., Gayler, V., Giorgetta, M. A., Gutjahr, O., Haak, H., Hagemann, S., Hanke, M., Ilyina, T., Korn, P.,
740 Kröger, J., Linardakis, L., Mehlmann, C., Mikolajewicz, U., Müller, W. A., Nabel, J. E. M. S., Notz, D.,
741 Pohlmann, H., Putrasahan, D. A., Raddatz, T., Ramme, L., Redler, R., Reick, C. H., Riddick, T., Sam, T.,
742 Schneck, R., Schnur, R., Schupfner, M., von Storch, J.-S., Wachsmann, F., Wieners, K.-H., Ziemen, F.,
743 Stevens, B., Marotzke, J., and Claussen, M.: The ICON Earth System Model Version 1.0, *J. Adv. Model.*
744 *Earth Syst.*, 14, e2021MS002813, <https://doi.org/10.1029/2021MS002813>, 2022.

745 Lachkar, Z., Orr, J. C., Dutay, J. C., and Delecluse, P.: On the role of mesoscale eddies in the ventilation of
746 Antarctic intermediate water, *Deep-Sea Res. Part Oceanogr. Res. Pap.*, 56, 909–925,
747 <https://doi.org/10.1016/j.dsr.2009.01.013>, 2009.

748 Landschützer, P., Gruber, N., Haumann, F. A., Rödenbeck, C., Bakker, D. C. E., van Heuven, S., Hoppema,
749 M., Metzl, N., Sweeney, C., Takahashi, T., Tilbrook, B., and Wanninkhof, R.: The reinvigoration of the
750 Southern Ocean carbon sink, *Science*, 349, 1221–1224, <https://doi.org/10.1126/science.aab2620>, 2015.

751 Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic vertical mixing: A review and a model with a
752 nonlocal boundary layer parameterization, *Rev. Geophys.*, 32, 363–403,
753 <https://doi.org/10.1029/94RG01872>, 1994.

754 Marshall, G. J.: Trends in the Southern Annular Mode from Observations and Reanalyses, *J. Clim.*, 16,
755 4134–4143, [https://doi.org/10.1175/1520-0442\(2003\)016<4134:TITSAM>2.0.CO;2](https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2), 2003.

756 Marshall, J., Jones, H., Karsten, R., and Wardle, R.: Can Eddies Set Ocean Stratification?, *J. Phys.*
757 *Oceanogr.*, 32, 26–38, [https://doi.org/10.1175/1520-0485\(2002\)032<0026:CESOS>2.0.CO;2](https://doi.org/10.1175/1520-0485(2002)032<0026:CESOS>2.0.CO;2), 2002.

758 Martínez-Moreno, J., Hogg, A. McC., England, M. H., Constantinou, N. C., Kiss, A. E., and Morrison, A. K.:
759 Global changes in oceanic mesoscale currents over the satellite altimetry record, *Nat. Clim. Change*, 11,
760 397–403, <https://doi.org/10.1038/s41558-021-01006-9>, 2021.

761 Marzocchi, A., Hirschi, J. J.-M., Holliday, N. P., Cunningham, S. A., Blaker, A. T., and Coward, A. C.: The
762 North Atlantic subpolar circulation in an eddy-resolving global ocean model, *J. Mar. Syst.*, 142, 126–143,
763 <https://doi.org/10.1016/j.jmarsys.2014.10.007>, 2015.

764 Meredith, M. P. and Hogg, A. M.: Circumpolar response of Southern Ocean eddy activity to a change in
765 the Southern Annular Mode, *Geophys. Res. Lett.*, 33, <https://doi.org/10.1029/2006GL026499>, 2006.

766 Munday, D. R., Johnson, H. L., and Marshall, D. P.: Eddy Saturation of Equilibrated Circumpolar Currents,
767 *J. Phys. Oceanogr.*, 43, 507–532, <https://doi.org/10.1175/JPO-D-12-095.1>, 2013.

768 O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E.,
769 Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model

770 Intercomparison Project (ScenarioMIP) for CMIP6, *Geosci. Model Dev.*, 9, 3461–3482,
771 <https://doi.org/10.5194/gmd-9-3461-2016>, 2016.

772 O'Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K., Rothman, D. S., van Ruijven, B. J., van
773 Vuuren, D. P., Birkmann, J., Kok, K., Levy, M., and Solecki, W.: The roads ahead: Narratives for shared
774 socioeconomic pathways describing world futures in the 21st century, *Glob. Environ. Change*, 42, 169–
775 180, <https://doi.org/10.1016/j.gloenvcha.2015.01.004>, 2017.

776 Patara, L., Böning, C. W., and Biastoch, A.: Variability and trends in Southern Ocean eddy activity in 1/12°
777 ocean model simulations, *Geophys. Res. Lett.*, 43, 4517–4523, <https://doi.org/10.1002/2016GL069026>,
778 2016.

779 patrickscholz, dsidoren, Koldunov, N., Hegewald, J., rakowsk, Streffing, J., Rackow, T., ogurses,
780 helgegoessling, Guibert, D., qiangclimate, cwekerle, Oord, G. van den, jrberlin, Miguel, Gierz, P., and
781 Cheedela, S. K.: FESOM/fesom2: FESOM2.5., <https://doi.org/10.5281/zenodo.7737061>, 2023.

782 Pauling, A. G., Smith, I. J., Langhorne, P. J., and Bitz, C. M.: Time-Dependent Freshwater Input From Ice
783 Shelves: Impacts on Antarctic Sea Ice and the Southern Ocean in an Earth System Model, *Geophys. Res.*
784 *Lett.*, 44, 10,454-10,461, <https://doi.org/10.1002/2017GL075017>, 2017.

785 Price, J. F., Weller, R. A., and Schudlich, R. R.: Wind-Driven Ocean Currents and Ekman Transport,
786 *Science*, 238, 1534–1538, <https://doi.org/10.1126/science.238.4833.1534>, 1987.

787 Rackow, T., Danilov, S., Goessling, H. F., Hellmer, H. H., Sein, D. V., Semmler, T., Sidorenko, D., and Jung,
788 T.: Delayed Antarctic sea-ice decline in high-resolution climate change simulations, *Nat. Commun.*, 13,
789 637, <https://doi.org/10.1038/s41467-022-28259-y>, 2022.

790 Rai, S., Hecht, M., Maltrud, M., and Aluie, H.: Scale of oceanic eddy killing by wind from global satellite
791 observations, *Sci. Adv.*, 7, eabf4920, <https://doi.org/10.1126/sciadv.abf4920>, 2021.

792 Renault, L., Molemaker, M. J., McWilliams, J. C., Shchepetkin, A. F., Lemarié, F., Chelton, D., Illig, S., and
793 Hall, A.: Modulation of Wind Work by Oceanic Current Interaction with the Atmosphere, *J. Phys.*
794 *Oceanogr.*, 46, 1685–1704, <https://doi.org/10.1175/JPO-D-15-0232.1>, 2016.

795 Ringler, T., Petersen, M., Higdon, R. L., Jacobsen, D., Jones, P. W., and Maltrud, M.: A multi-resolution
796 approach to global ocean modeling, *Ocean Model.*, 69, 211–232,
797 <https://doi.org/10.1016/j.ocemod.2013.04.010>, 2013.

798 Sallée, J.-B., Matear, R. J., Rintoul, S. R., and Lenton, A.: Localized subduction of anthropogenic carbon
799 dioxide in the Southern Hemisphere oceans, *Nat. Geosci.*, 5, 579–584,
800 <https://doi.org/10.1038/ngeo1523>, 2012.

801 Scholz, P., Sidorenko, D., Gurses, O., Danilov, S., Koldunov, N., Wang, Q., Sein, D., Smolentseva, M.,
802 Rakowsky, N., and Jung, T.: Assessment of the Finite-volumE Sea ice-Ocean Model (FESOM2.0) – Part 1:
803 Description of selected key model elements and comparison to its predecessor version, *Geosci. Model*
804 *Dev.*, 12, 4875–4899, <https://doi.org/10.5194/gmd-12-4875-2019>, 2019.

805 Scholz, P., Sidorenko, D., Danilov, S., Wang, Q., Koldunov, N., Sein, D., and Jung, T.: Assessment of the
806 Finite VolumE Sea Ice Ocean Model (FESOM2.0), Part II: Partial bottom cells, embedded sea ice and

807 vertical mixing library CVMIX, Climate and Earth system modeling, <https://doi.org/10.5194/gmd-2021-94>, 2021.

809 Sein, D. V., Koldunov, N. V., Danilov, S., Wang, Q., Sidorenko, D., Fast, I., Rackow, T., Cabos, W., and Jung, T.: Ocean Modeling on a Mesh With Resolution Following the Local Rossby Radius, *J. Adv. Model. Earth Syst.*, 9, 2601–2614, <https://doi.org/10.1002/2017MS001099>, 2017.

812 Semmler, T., Danilov, S., Rackow, T., Sidorenko, D., Barbi, D., Hegewald, J., Sein, D., Wang, Q., and Jung, T.: AWI AWI-CM1.1MR model output prepared for CMIP6 CMIP, <https://doi.org/10.22033/ESGF/CMIP6.359>, 2018.

815 Semmler, T., Danilov, S., Gierz, P., Goessling, H. F., Hegewald, J., Hinrichs, C., Koldunov, N., Khosravi, N., Mu, L., Rackow, T., Sein, D. V., Sidorenko, D., Wang, Q., and Jung, T.: Simulations for CMIP6 With the AWI Climate Model AWI-CM-1-1, *J. Adv. Model. Earth Syst.*, 12, e2019MS002009, <https://doi.org/10.1029/2019MS002009>, 2020.

819 Semmler, T., Danilov, S., Rackow, T., Sidorenko, D., Barbi, D., Hegewald, J., Sein, D., Wang, Q., and Jung, T.: CMIP6_supplemental CMIP AWI AWI-CM-1-1-MR, <https://doi.org/10.26050/WDCC/C6sCMAWAWM>, 2022a.

822 Semmler, T., Danilov, S., Rackow, T., Sidorenko, D., Barbi, D., Hegewald, J., Sein, D., Wang, Q., and Jung, T.: CMIP6_supplemental ScenarioMIP AWI AWI-CM-1-1-MR, <https://doi.org/10.26050/WDCC/C6sSPAWAWM>, 2022b.

825 Taburet, G., Sanchez-Roman, A., Ballarotta, M., Pujol, M.-I., Legeais, J.-F., Fournier, F., Faugere, Y., and Dibarboure, G.: DUACS DT2018: 25 years of reprocessed sea level altimetry products, *Ocean Sci.*, 15, 1207–1224, <https://doi.org/10.5194/os-15-1207-2019>, 2019.

828 Thiria, S., Sorror, C., Archambault, T., Charantonis, A., Bereziat, D., Mejia, C., Molines, J.-M., and Crépon, M.: Downscaling of ocean fields by fusion of heterogeneous observations using Deep Learning algorithms, *Ocean Model.*, 182, 102174, <https://doi.org/10.1016/j.ocemod.2023.102174>, 2023.

831 Wang, Q., Danilov, S., Sidorenko, D., Timmermann, R., Wekerle, C., Wang, X., Jung, T., and Schröter, J.: The Finite Element Sea Ice-Ocean Model (FESOM) v.1.4: formulation of an ocean general circulation model, *Geosci. Model Dev.*, 7, 663–693, <https://doi.org/10.5194/gmd-7-663-2014>, 2014.

834 Wang, Y., Claus, M., Greatbatch, R. J., and Sheng, J.: Decomposition of the Mean Barotropic Transport in a High-Resolution Model of the North Atlantic Ocean, *Geophys. Res. Lett.*, 44, 11,537–11,546, <https://doi.org/10.1002/2017GL074825>, 2017.

837 van Westen, R. M. and Dijkstra, H. A.: Ocean eddies strongly affect global mean sea-level projections, *Sci. Adv.*, 7, eabf1674, <https://doi.org/10.1126/sciadv.abf1674>, 2021.

840 Yu, X., Ponte, A. L., Lahaye, N., Caspar-Cohen, Z., and Menemenlis, D.: Geostrophy Assessment and Momentum Balance of the Global Oceans in a Tide- and Eddy-Resolving Model, *J. Geophys. Res. Oceans*, 126, e2021JC017422, <https://doi.org/10.1029/2021JC017422>, 2021.

842