Changes made to the manuscript:

We added two brief statements to the manuscript that hopefully cover the questions asked by Referee 2.

Referee 1:

We thank the Referee for taking the time to read our manuscript and for their positive feedback.

Referee 2:

We thank the Referee for taking the time to review our paper. Please find the responses to your question below.

Referee:

As you mentioned in the paper, you compare the difference of the scaling parameter β depending on the altitude. Do you analyze its change with time? What is the suitable strategy to choose the scaling parameter β ?

Authors:

We determine the β parameter profile for each 60s integration window separately. The β profiles shown in Figure 4 are the median profiles of the respective campaigns. The β value does not show a significant trend over the course of one campaign (few hours) at any altitude. Since the β parameter is introduced to account for technical differences between the UHF and VHF systems, changes within a few hours are not expected. However, there are distinct outliers for some integration windows, presumably during which one of the instruments failed to measure a clear ISR spectrum allowing for analysis. Therefore, median statistics was chosen as the appropriate strategy to determine the scaling parameter β .

Referee:

If the frequency of two ISRs is close. Does the frequency difference of ISR effect the measurements?

Authors:

The important parameter here is not the difference of radar frequencies but their ratio ξ . As described in Equation 3, the simultaneous UHF and VHF measurements are similar to two UHF measurements at v_{in} and $\xi \cdot v_{in}$. This causes the difference of the two spectra. For a ξ ratio close to unity, the difference spectrum is extremely weak and overshadowed by measurement uncertainties. Inferring the ion-neutral collision frequency is therefore only possible for an ξ ratio distinctly larger than 1 (4.2 for the EISCAT systems).