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Abstract. Describing the coupling of nitrogen (N), phosphorus (P), and carbon (C) cycles of land ecosystems requires un-

derstanding microbial element use efficiencies of soil organic matter (SOM) decomposition. These efficiencies are studied by

the soil enzyme steady allocation model (SESAM) at decadal scale. The model assumes that the soil microbial communi-

ties and their element use efficiencies develop towards an optimum where the growth of the entire community is maximized.

Specifically, SESAM approximated this growth optimization by allocating resources to several SOM degrading enzymes pro-5

portional to the revenue of these enzymes, called the Relative approach. However, a rigorous mathematical treatment of this

approximation has been lacking so far.

Therefore, in this study we derive explicit formulas of enzyme allocation that maximize total return from enzymatic pro-

cessing, called the Optimal approach. Further, we derive another heuristic approach that prescribes the change of allocation

without the need of deriving a formulation for the optimal allocation, called the Derivative approach. When comparing pre-10

dictions across these approaches, we found that the Relative approach was a special case of the Optimal approach valid at

sufficiently high microbial biomass. However, at low microbial biomass, it overestimated allocation to the enzymes having

lower revenues compared to the Optimal approach. The Derivative-based allocation closely tracked the Optimal allocation.

These findings increases our confidence into conclusions drawn from SESAM studies. Moreover, the new developments

extend the range of conditions at which valid conclusions can be drawn. Further, based on these findings we formulated15

the constrained enzyme hypothesis. This hypothesis provides a complementary explanation why some substrates in soil are

preserved over decades although often being decomposed within a few years in incubation experiments.

This study shows how optimality considerations lead to simplified models, new insights and new hypotheses. It is another

step in deriving a simple representation of an adaptive microbial community, which is required for coupled stoichiometric CNP

dynamic models that are aimed to study decadal processes beyond ecosystem scale.20

1 Introduction

The soil enzyme steady allocation model (SESAM) studies the effect of an adaptive soil microbial community on the coupling

of element cycles in aerated soils at decadal time scale. The coupling of the cycles of nitrogen (N), phosphorus (P), and

1



carbon (C) is especially strong in soils because the stoichiometric requirements of soil organic matter (SOM) decomposers is

much less flexible than the stoichiometric requirements of plants (Robert W. Sterner, 2002; Mooshammer et al., 2014b). The25

stoichiometric requirements, in turn, together with the stoichiometry of consumed substrates determine decomposer’s carbon

and nutrient use efficiencies, which are important controls on ecosystem dynamics. Carbon use efficiency (CUE) are
:
is
:
key

to control how much of the litter input is stored in soil or respired again to the atmosphere (Manzoni et al., 2017). Similarly,

nitrogen use efficiency affects how much N in litter inputs is stored in organic matter or mineralized and made available for

plant nutrition (Mooshammer et al., 2014a). These element use efficiencies are also affected by properties of the microbial30

community. Furthermore, microbial community is hypothesized to adapt to changing environment, such as increased litter

inputs or litter stoichiometry or nitrogen deposition (Manzoni, 2017; Manzoni et al., 2021).

However, there is a gap between knowledge
::
of microbial processes at smaller and effect at larger scales. On the one hand,

knowledge of the complex microbial ecology and community adaptations accumulates at the soil pore scale. On the other hand,

dynamic SOM models, which rely on nutrient efficiencies of the decomposers, focus on SOM changes at ecosystem to global35

scale. Hence, we need to find ways to incorporate effects of soil microbial community adaptations on element use efficiencies

(Kaiser et al., 2014) without the need to model all the microbial populations and microbial details.

Therefore, the SESAM model abstracts from microbial details by assuming that community composition develops towards

maximizing growth of the entire microbial community. This assumption is in line with arguments from system ecology (Nielsen

et al., 2020), which realized that open systems with positive internal feedback develop towards best exploiting a gradient of40

potential energy (Ulanowicz, 2002). This exploitation of the gradient is usually associated with maximizing entropy production

that can supports internal structure of the system (Kondepudi, 1998). For soil systems this mainly translates into efficiently de-

grading the chemical energy input provided by plant litter and rhizodeposition. In a first approximation this efficient degradation

is achieved by maximum growth and respiration of soil microbes. This focus on system perspective leads to complementary

insights, compared to focusing on competition, and opens up a new ways of studying living systems (Ulanowicz, 2009). One of45

the problems of this argument is the question at which scale to apply the maximum entropy production hypothesis. Application

at different scales leads to different predictions of optimal system dynamics (Dewar, 2010). Hence, the optimal community

growth assumption is rational, but it is still an assumption to be challenged.

The heuristic approach of how community growth is optimized in SESAM requires a more rigorous treatment. The heuristics

that is applied in SESAM 3.0 assumes the proportion of allocation into enzyme Z to be proportional to its revenue, i.e. return50

per investment. Wutzler et al. (2017, Appendix B) provide a rationale of this approach, which argues that exploiting of the full

range of resources is beneficial. However, this attempt does not sufficiently well explain why this leads to optimal community

growth. Hence, a better, i.e more rigorous rationale is required to increase confidence into assumptions made in SESAM.

Such a rigorous treatment of the optimal enzyme allocation has recently
::::
now become possible because of recent model

developments. The model developments of Wutzler et al. (2022) comprise a new formulation of decomposition based on55

quasi-steady state of enzymes and the new formulation of revenue with limitation-weighted enzyme investments. They make

it possible to express the revenue directly as a function of the enzyme allocation. This functional expression now allows us,
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Figure 1. The SESAM model: Microbial biomass B produces enzymes that depolymerize substrate pools (L and R) that differ in their

elemental ratios. Adaptive microbial community enzyme allocation α determines which part of the microbial community depolymerizes

L versus R by producing respective depolymerizing enzymes EL, ER, and a biomineralizing enzyme EP cleaving phosphate groups.

Microbes take up dissolved organic matter (DOM) and use it for synthesizing new biomass, new enzymes, or for catabolic respiration. A part

of microbial turnover (tvr) adds to the residue pool, another part is mineralized, and another part adds to DOM and is recycled into microbial

biomass. Stoichiometric imbalance between DOM and B is resolved by mineralizing the excess element or immobilizing required element

(ΦB) from inorganic N and P pools (I). There are additional fluxes from L and R to the inorganic pools, I , and additional plant uptake and

leaching fluxes drawing from the inorganic pools, I , which are not shown in this figure. Boxes correspond to pools, disks to fluxes. Solid lines

represent fluxes of C,N, and P, while dotted and dashed lines represent separate C,N or P fluxes respectively. Red ellipses denote changes

from the Wutzler 2022 version.

in this study, to derive optimal community allocation by maximizing the total return from enzymatic processing. Further, it

inspired another simpler heuristic optimality approach.

The aim of this study is to present and compare three approaches of computing enzyme allocation, i.e. the rigorous Op-60

timal approach, the previously applied heuristic Relative approach, and the new heuristic Derivative, approach. We compare

approaches based on several scenarios of dynamic simulation and discuss the resulting insights and implications. One of those

insights is the constrained enzyme hypothesis.

2 Methods

In this section, we first summarize the SESAM model and re-state the equations that are most relevant for the optimality65

approaches (subsection 2.1). Next, we present the three optimality approaches (subsection 2.2). Finally, we describe the setup

of the simulation experiments (subsection 2.3).

2.1 The SESAM model

SESAM is described in the previous paper of this incremental model description paper series (Wutzler et al., 2022). A summary

of the model is presented by Fig. 1 and state variables, model drivers, model parameters and other symbols used in SESAM70
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Figure 2. Community allocation, α controls the partitioning of the enzyme synthesis. This in turn, affects the depolymerization and biomin-

eralization fluxes of labile (L) and residue organic matter (R). α adapts in such a way, so that the sum of the returns from degradation fluxes

dZ is maximized. Specifically, its the part of the degradation fluxes that reaches microbial biomass B by direct and indirect uptake, νTE , of

elements E ∈ {C,N,P}, and the sum is weighted by current elemental limitation of the microbes and the elemental investments required to

synthesize the enzymes. Dotted lines denote controls. Other line types and shapes correspond to Fig. 1.

are listed with tables 1, 2 and 3. Symbol d with a subscripts denotes a form of decomposition or return flux, while the symbol

d without subscripts denotes the derivative operator. The model version used in this study already anticipates ongoing unpub-

lished model developments, which include phosphorus (P) cycling and microbial P-limitation. While P is generally handled the

same way as nitrogen (N), there is an additional class of P biomineralizing enzymes, EP , that does not depolymerize substrates

in stoichiometric quantities, but cleaves phosphate groups. Moreover, EP , is not only produced by microbes but also by plant75

roots. Those P related developments will be described in its
::::
their

:
own paper, but this manuscript presents formulas that can

account for this new type of enzymes.

This study focuses on approximating the optimal microbial community allocation, α. It modifies eq. 3 in Wutzler et al.

(2022) and compares several variants. SESAM substrate decomposition is controlled by the quantity of enzymes, which in

turn, are controlled by the microbial community that adapts their allocation to different enzymes in order to maximize growth80

(Fig. 2). Allocation into different enzymes adapts to the return and revenue, i.e. return/investment, of those enzymes.

The details of how SESAM computes the return of an enzyme are restated in the following section, while revenue is described

in section 2.2.1.

2.1.1 Depolymerizing enzymes

The return of an enzyme, EZ , which depolymerizes substrate, SZ , is the elemental-limitation-weighted average of the returns85

for the modeled elements required for microbial growth. The return equals the depolymerization flux that is taken up by

microbes.
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Table 1. State variables and model drivers. Values correspond to FACE simulation experiment initial steady state for Optimal approach.

Symbol Definition Value Unit

L,LN ,LP C, N, and P in labile substrate 109 ·βE iL
(0) gm−2

R,RN ,RP C, N, and P in residue substrate 3687 ·βE iR
(0) gm−2

B Microbial biomass C 30.46 gm−2

IN Inorganic N 0.194 gm−2

IP Inorganic P 2157∗∗ gm−2

αL, αR, αP Allocation to enzyme Z ∈ {L,R,P} 0.74, 0.26, 0.0 (-)

iL(t) labile C input 400.0 gm−2yr−1

βN iL
(t) C:N ratio of labile inputs 28 g g−1

βN iR
(t) C:N ratio of residue inputs 10 g g−1

βP iL
(t) C:P ratio of labile inputs 120 g g−1

βP iR
(t) C:P ratio of residue inputs 40.3 g g−1

iIN (t) inorganic N input 0.0714 gm−2yr−1

iIP (t) inorganic P input 0 gm−2yr−1

kIEP (t) plant uptake of inorganic E per IE 100∗ yr−1

uIE ,max(t) max plant uptake of E = iL/βE iL
+ iIE

∗∗ gm−2yr−1

eP plant production of biomineralizing en-

zyme

0 gm−2yr−1

∗ arbitrary high value so that plant uptake is constraint by uIE,max(t)
∗∗ balancing nutrient input to the system

C depolymerization flux, dZC is described by reverse Michaelis-Menten kinetics (Schimel and Weintraub, 2003), which

is first order to the source pool, kZSZ , and saturating with the amount of the respective enzyme. By assuming enzymes to

be near quasi-steady state at larger than month’s time scale, their amount is proportional to microbial enzyme production90

flux (αZaEB). This enzyme production flux then is used in the Michaelis-Menten kinetics together with a lumped affinity

parameter, kmNZ .

dZC = kZSZ
αZaEB

kmNZ +αZaEB
(1)

Nutrient, E ∈ {N,P}, depolymerization fluxes are derived by dividing the C flux by the C:E ratio, βEZ , of the source pool.

These depolymerization fluxes are then converted to C units by C:E ratio of microbial biomass, βEB , so that a weighted return,95

dZw, can be computed. Further the depolymerization fluxes are multiplied by a dynamically computed proportion, νTE , that

describes what part of the flux currently reaches microbes rather than plants, leaching, or sequestration at minerals (Wutzler

et al., 2022, Appendix B).
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Table 2. Model parameters. Values correspond to FACE simulation experiment initial steady state for Optimal approach.

Symbol Definition Value Unit

βNB C:N ratio of microbial biomass 11 g g−1

βNEnz C:N ratio of extracellular enzymes 3.1 g g−1

βPB C:P ratio of microbial biomass 40 g g−1

βPEnz C:P ratio of extracellular enzymes 50 g g−1

βPm C:P ratio of a substrate at which the biomineralization decreased to 1/2 500 g g−1

kL maximum decomposition rate of L 5.0 yr−1

kR maximum decomposition rate of R 0.0318 yr−1

aE enzyme production per microbial biomass 0.365 yr−1

kmN product of enzyme half saturation constant and enzyme turnover 3.0 gm−2 yr−1

τ microbial biomass turnover rate 6.1 yr−1

m specific rate of maintenance respiration 5.84 yr−1

ϵ anabolic microbial C substrate efficiency 0.68 (-)

ϵtvr microbial turnover other than respiration and enzyme production
::::::
fraction

::
of

:::::::
microbial

:::::::
turnover

:::
that

:
is
:::
not

:::::::::
mineralized

:
0.3 (-)

νN aggregated microbial organic N use efficiency 0.9 (-)

νP aggregated microbial organic P use efficiency 0.0 (-)

iBN maximum microbial uptake rate of inorganic N 0.4 yr−1

iBP maximum microbial uptake rate of inorganic P 100∗ yr−1

lN inorganic N leaching rate 0.96 yr−1

lP inorganic P leaching rate 0.001∗ yr−1

∗ arbitrary high/low value so that system is not constrained by P

dZN = dZC/βNZ

dZP = dZC/βP Z

dZw = wCdZC νTC +wNdZN νTNβNB +wP dZP νTPβPB

=
kZSZ αZaEB

kmNZ +αZaEB

(
wCνTC +wNνTN

βNB

βNZ

+wP νTP
βNB

βP Z

)
The limitation weighted return can be expressed as a potential return, dZ , multiplied a factor that reduces return due to low100

enzyme levels. Hence, potential return denotes the return potentially achieved at infinitely high enzyme levels. It is the potential

C-substrate depolymerization flux, multiplied by the combined elemental weighting factor ωZ .
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Table 3. Further symbols

Symbol Definition Unit

S ∈ {L,R} Soil organic matter substrates, labile or residues gm−2

Z ∈ {L,R,P} Enzyme classes for depolymerizing substrates L and R or biomineralizing phosphorus from both substrates gm−2

wE Weight of limitation of microbial growth by element E ∈ {C,N,P} (eq. 4) −

dZw(αZ) Elemental-limitation-weighted return of enzyme Z gm−2yr−1

dZ Elemental-limitation-weighted potential return for unlimited concentration of enzyme Z gm−2yr−1

ωZ Elemental-limitation factor for return of enzyme Z −

ωEnz Elemental-limitation factor for total enzyme synthesis in C units, aEB −

uT Total return =
∑

Z dZw(αZ) gm−2yr−1

revZ Revenue, i.e. return per investment, of enzyme Z gm−2yr−1

synB C for microbial biomass synthesis gm−2yr−1

νTE total proportions of the mineralization that are taken up by microbial biomass, νE +(1− νE)pimmo,E . −

::::
tvrB :::::::

microbial
::::::
biomass

::
C
:::::::
turnover

:
in
:::::::
addition

::
to

::::::
enzyme

::::::::
production,

::::::
mostly

:::::::
mortality gm−2yr−1

dZw = dZ
αZaEB

kmNZ +αZaEB
(2a)

dZ = kZSZωZ (2b)

ωZ = wCνTC +wNνTN
βNB

βNZ

+wP νTP
βPB

βPZ

(2c)105

Similarly to defining an elemental-weighted limitation factor for enzyme returns, such an elemental-weighted factor is

defined for enzyme synthesis flux (3).

ωEnz = wC +wN
βNB

βNEnz

+wP
βPB

βPEnz

(3)

The elemental weights, wE are the same in both, ωZ and ωEnz . Therefore, they do not need to be normalized in ratios of

these two quantities, e.g. the revenue calculation in section (2.2.1).110

How strongly microbial biomass is limited by either of the elements E ∈ {C,N,P}, is described by the elemental limitation

weights (4) (Wutzler et al., 2022, A15).

wE = exp

(
−δ

CsynBE − synB
tvrB

)
, (4)

It exponentially decreases with the difference between flux potentially available for microbial biomass synthesis by this

element, CsynBE, and the actual synthesis flux, synB , which is constrained also by other elements. To derive a unitless quantity,115
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it is scaled by the microbial turnover flux, tvrB . Parameter δ controls, how steep is the transition near co-limitation by several

elements. For an more detailed presentation of the elemental limitation we refer the reader to Wutzler et al. (2022).

2.1.2 Biomineralizing enzymes

The phosphatases only cleave phosphate groups from soil organic matter. Hence, they make available only P for uptake,

without making available C and N. They attack both labile and residue organic matter. Although the P-cycle in SESAM will120

be described in its own manuscript, here, we state the return and revenue.

The potential return of action of P-degrading enzymes, dP , includes the P-limitation weights wP only, contrary to the

depolymerizing enzymes (2), Moreover, it does not divide by the C:P ratio of the substrate, as the mineralization flux is already

expressed in P units:

dPw = dP
αPaEB

kmNP +αPaEB
(5a)125

dP = ωP (kLP lβP L
LP + kRP lβP R

RP ) (5b)

ωP = wP νPβPB (5c)

lβP S
=

1

1+βP S/βPm

=
βPm

βPm +βP S

(5d)

In addition, a limitation factor lβP S
∈ (0,1) decreases the potential rate of a biomineralizing enzyme with increasing C:P ratio,

βP S , of substrate S. Parameter βPm is the C:P ratio at which the limitation factor decreased to 1/2.130

Moreover, these phosphatases are also produced by plant roots at a rate eP . Hence, one needs to calculate the return of

microbe-produced enzymes, dPm, by subtracting the flux due to plant-produced enzymes, from total biomineralization flux

(Table B1).

2.2 Allocation optimization approaches

The derivative of the total return, uT , with respect to each enzyme allocation share, αZ , for short called ’the derivative’ is135

the central quantity to inspect. The differences across those derivatives across enzymes determine the direction of changes

in enzyme allocation, i.e. changes in microbial community. Allocation is changed towards the enzyme Z with the highest

derivative, i.e. highest increase in return per additional allocation, at the expense of decreasing allocation to enzymes
::::
with

::
the

:
lowest derivative. Hence, derivatives are equal at the optimum (Appendix B1). The derivatives decrease with increasing

allocation because the return saturates at high enzyme levels. Therefore, it is often beneficial for the community to distribute140

investment into enzymes across different enzymes rather than investing solely into the enzyme with the highest potential return

(Fig. 3).

The revenue of allocation to enzyme Z, another important quantity, is the return from enzymatic processing (sections 2.1.1

and 2.1.2) divided by the investment into enzyme production: uZ = dZw(αZ)
αZωEnzaEB . The investment is the share, αZ , invested

into production of enzyme Z, multiplied by total elemental-limitation-weighted carbon flux allocated to enzyme production,145

ωEnzaEB.
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Figure 3. The derivative of total return with respect to enzyme allocation, duT
dαZ

, decreases with increasing share of allocation αZ . Therefore,

when going from zero allocation proportions (αL = αR = 0) towards complete allocation (αL +αR = 1), in the shown example, microbes

first increase allocation to labile enzymes
:::
that

::::::
degrade

::::
labile

::::::::
substrates, αL, which yields the highest positive change in return. However,

starting at levels αL > 0.25 (indicated by the dotted horizontal line crossing the labile
::::
solid

::::::
"Labile"

:
derivative line), the increase in return

with only increasing αL is less or equal to the increase in return when also allocating something to residue degrading enzymes, αR > 0.

Optimal allocation is attained when both derivatives are equal and allocation proportions add up to one (indicated by dashed horizontal line).

This happens here at allocation about 1/3 to residue depolymerizing enzymes (αR = 1/3) and 2/3 to labile pool depolymerizing enzymes

(αL = 2/3).

Hence total return and revenue depend on the potential decomposition flux, i.e. the amount and the decomposition rate of the

substrate, as well as its stoichiometry via weighting by current elemental limitation of the microbes. In addition, they depend

on enzyme levels, i.e. the size of the microbial biomass producing the enzymes, and on the current enzyme allocation, i.e. the

shares of total enzyme production into the alternative enzymes.150

Three approaches of estimating the time development of enzyme allocation, α are presented in this study. The Optimal

approach is the mathematically exact formulation of the hypothesis of maximum return of enzyme investment, but is only

practical for simple cases. Therefore, two heuristic approximations are added. First, the Relative approach assumes that the

optimal allocation can be estimated by setting the allocation proportional to the revenue. Second, the Derivative approach

describes the direction of change in allocation without explicitly computing the optimal allocation.155

The optimum, to which microbial community in SESAM develops towards, is characterized by maximum growth of the

entire microbial community, which in turn is achieved when the return from extracellular enzymatic processing is maximized.

2.2.1 Total return of enzyme action

We seek the enzyme allocation α that maximizes the total limitation-weighted return, i.e. the action of enzymes, depolymeriza-

tion and biomineralization. We exclude the trivial case of investing only into a single enzyme, (αZ = 1), and exclude enzymes160

that are not allocated to (αZ = 0).
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The total return that is optimized is the the sum of each revenue multiplied by enzyme investment.

uT = ωEnzaEB
∑
Z

αZ revZ (6)

uT fulfills the conditions of Lemma 1 (Appendix B1). Therefore, potential optima are located at the borders or at condition
d(αZ revZ)

dαZ
= C3. This implies that the derivatives of total return, duT

dαZ
= ωEnzaEB

d(αZ revZ)
dαZ

, are equal at the optimum.165

The revenue for a depolymerizing enzyme and its derivative are

revZ(αZ) =
return

investment
=

dZw

αZωEnzaEB

= dZ
αZaEB

kmNZ +αZaEB

1

αZωEnzaEB

=
dZ

ωEnz

1

kmNZ +αZaEB
(7a)

d(αZ revZ)

dαZ
=

dZ
ωEnz

(kmNZ +αZaEB)−αZaEB

(kmNZ +αZaEB)2
170

=
dZ

ωEnz

kmNZ

(kmNZ +αZaEB)2
(7b)

Revenue revP and its derivative of a biomineralizing enzyme are slightly more complex due to plant enzyme production

but, they are similar to the ones of the depolymerizing enzymes. They are presented by appendix Table B1.

2.2.2 Optimal approach

The Optimal approach computes the target allocation that maximizes total return by computing where the derivatives of total175

return across the set of allocated enzymes are equal (Appendix B1). Such a derivative of the return with respect to enzyme

allocation αZ is proportional to the derivative of the allocation times the revenue, duT

dαZ
∝ d(αZ revZ)

dαZ
(section 2.2.1). While the

maximum change of return is realized at an arbitrarily small allocation ρZmax = d(αZ revZ)
dαZ

∣∣
αZ→0

, the optimal allocation α∗

often involves several enzymes (Fig. 3). However, if the maximum change of return for an enzyme Zj is lower than the return

of allocating only to other enzymes, the optimal allocation to this enzyme is zero, i.e. it is excluded from the set of allocated180

enzymes. The set of allocated enzymes, i.e. enzymes among which to distribute resources, can be found by the following

algorithm.

1. Order the enzymes according to their maximum change in return, ρZmax, index them by i, set i= 1 and start with a mix

that includes only the most efficient enzyme {Z1}.

2. Solve for the optimal allocation strategy αi equalizing derivatives:

duT

dαZ
∝ d(αZ revZ)

dαZ
= ρi for all Z ∈ {Z1, . . . ,Zi}

and allocate nothing to enzymes that are not part of the current mix.185
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3. For ρi computed in step 2, if ρi > ρZi+1max
stop and report the found optimum α∗ =αi. Otherwise increase i, i.e.

include enzyme Zi+1 in the mix and go to step 2.

Step 2 needs explicit solutions for different numbers and types of enzymes in the mix. Appendix B3 provides such explicit

solutions for up to three enzymes across depolymerizing and biomineralizing enzymes.

2.2.3 Relative approach190

The Relative approach, which was used up to SESAM version 3.0 (Wutzler et al., 2022), estimates optimal allocation to be

proportional to revenue based on current allocation (8).

αZ,Opt =
revZ∑
i revi

(8)

where revZ is the revenue for enzyme Z.

Appendix C shows that it is a special case of the Optimal approach given several assumptions. It well approximates optimal195

allocation for the case of sufficiently high microbial biomass levels.

2.2.4 Derivative approach

The Derivative approach computes the rate change of αZ over time. It assumes that enzymes allocation changes faster, the larger

the corresponding derivative is away from the average, i.e. the optimal state where all derivatives are equal. More precisely,

it assumes the change rate of allocation over time to be dαZ

dt ∝ duT

dαZ
−meani

(
duT

dαi

)
across the enzymes in the current mix200

(Appendix D). It does not rely on an optimal solution α∗. This is beneficial, because formulas in the Optimal approach for a

higher number of enzymes or more types of enzymes quickly grow and involve higher-order polynomials of αZ with multiple

roots and additional mathematically possible solutions outside the reasonable bound αZ ∈ [0,1].

The Derivative approach assumes that higher increase in total return lead to faster shifts of allocation towards this enzyme.

It takes care, similar to the Optimal approach, to compute the average only across enzymes that are part of the current mix205

(Appendix D1).

2.3 Simulation experiments

In order to study the effects of using different allocation optimization approaches on model behavior, we set up different

simulation experiments and compared differences in predictions among the approaches.

2.3.1 Immediate response: Prescribed potential returns210

The Prescribed potential returns simulation experiment fixed the direct inputs to the function computing allocation changes. It

neglected all other model feedback and focused and compared computation of optimum allocation for prescribed conditions.
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Specifically, the experiment prescribed elemental-limitation-weighted potential return fluxes, dZ (section 2.1.1), which oth-

erwise had been dynamically computed in the model from pools and parameters. It assigned values for enzymes decomposing

residue litter and biomineralizing phosphorus of dR = 0.7gCm−2 yr−1, dP = 0.5gCm−2 yr−1, and varied the flux for en-215

zymes decomposing labile substrates dL ∈ {0 . . .1} in units gCm−2 yr−1. It simulated the allocation state until it converged

to its estimated optimum for each dL. For complete reference we list the other relevant parameters without further expla-

nation here: aE = 0.1yr−1,B = 1gCm−2,eP = 0gCm−2 yr−1, τ = 365/30yr−1,kmN = aEB/2,ωEnz = 1. The experiment

included further runs with five-fold increased microbial biomass levels, B.

2.3.2 Decadal-term: FACE220

The FACE simulation experiment simulated the decadal-term response of the system to increased labile carbon
:::::::
substrate inputs.

It started with model pools in steady-state with litter inputs. Next it prescribed a jump of labile carbon
:::::::
substrate inputs by 20%

simulated for 50 years and prescribed another jump of labile carbon
:::::::
substrate

:
inputs to initial values. It simulated N-limited

conditions and excluded P-limitation by prescribing an arbitrary high value of potential P immobilization and very low P

leaching (Table 2). The experiment included two additional scenarios where parameters with the Relative approach had been225

adjusted to match the initial steady-state conditions of the Optimal approach. These additional scenarios allowed testing if the

differences in predictions could be compensated by other model parameters.

2.3.3 Sub-annual: Incubation

The Incubation simulation experiment added a portion of labile litter
:::::::
substrate

:
to a previously labile-depleted

::::::::::::::::::::
labile-substrate-depleted

soil. Next, it tracked the carbon use efficiency (CUE) of the microbial community over time and across different C:N ratios230

of the added labile organic matter
:::::::
substrate. Specifically, it first simulated model pools in steady state with continuous annual

inputs, then simulated no inputs for one year in order to deplete the labile
::::::::
substrate pool, and next it simulated a step-increase

of the labile
:::::::
substrate C and N pools. In addition to the three scenarios that differed by optimality approach, it simulated a

scenario where microbial community allocation was fixed to αR = 0.5. This scenario allowed comparing results to a model

where microbial community is not adaptive.235

We do not expect simulating a correct time-dynamics with SESAM at this short time scale, because SESAM explicitly omits

detailed microbial processes that are relevant at this scale such as storage, resting stages, or dynamics of the enzyme pools.

However, the experiment allows inspecting general dynamics with smooth annual changes and differences between model

variants as the labile
:::::::
substrate pool gets depleted.

3 Results240

In this section, we present the results of the simulation experiments in turn.
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Figure 4. In the Prescribed potential returns simulation experiment, all allocation approaches predicted the same pattern of increasing

allocation to
::
the

:::::::
enzymes

:::::::
degrading

:::
the

:
labile depolymerizing enzyme

::::::
substrate, αL with increasing potential return from depolymerizing

labile OM
:::::::
substrate and a corresponding decrease of allocation to the other enzymes, αR (residue depolymerizing)) and αP (phophorus

biomineralizing) respectively. The Derivative approach (dashed lines) and the Optimal approach (same predictions as Derivative, not shown)

allocated nothing to the L depolymerizing enzyme at low potential returns at moderate microbial biomass levels. The Relative approach

(dash-dotted lines) predicted very similar allocation as the Derivative approach at higher microbial biomass levels (indicated by overplotting

of the thick lines), but overestimated allocation to enzymes of low revenue at moderate biomass levels (thin lines).

3.1 Prescribed potential returns experiment

The Derivative approach yielded the same allocation as the Optimal approach with the Prescribed potential returns simulation

experiment. The Relative approach yielded similar results as the Optimal approach for high microbial biomass levels, i.e.

levels that resulted in an enzyme synthesis flux of 10 times the half-saturation constant of enzyme action kmN:
,
:::::
which

:::
in245

:::::::
SESAM

::
is

:
a
::::
flux,

::::::::::
specifically

:::
the

:::::::
product

::
of

:
a
:::::::::::::
half-saturation

::::::
enzyme

::::::::::::
concentration

:::
and

:::::::
enzyme

:::::::
turnover

::::
rate. For moderate

microbial biomass levels it overestimated allocation to the enzymes with low revenue (Fig. 4). With the Optimal and Derivative

approaches there was no investment into enzymes with very low revenue at moderate biomass levels.

Since all state variables are held constant in this experiment, there is no change in respiration, microbial growth, CUE, as

well as C in key model compartments. These subsequent changes are explored in the following experiments.250
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Figure 5. In the FACE simulation experiment all three allocation approaches predicted the same pattern of increased labile OM
::::::
substrate

:
(L

in gCm−2) and a shift towards mineralization of residue OM
::::::
substrate

:
(R normalized by initial steady state values). The Derivative approach

yielded the same predictions as the Optimal approach (indicated by dashed line overplotting the solid line). The Relative approach (dash-

dotted line) slightly overestimated allocation to the residue degrading enzymes, αR. This resulted in lower initial R stocks and a smaller

decrease in the period of higher carbon inputs between year 10 and 60.

3.2 Decadal-term: FACE

The Derivative approach yielded the same allocation as the Optimal approach with the FACE simulation experiment. The

Relative approach differed by overestimating the allocation to the enzyme with lowest revenue, αR. Hence, it predicted smaller

initial steady state stocks but also predicted relatively less mining of residue OM during period of increased carbon inputs (Fig.

5). By adjusting parameters related to organic matter decomposition in the simulation with the Relative approach, the same255

steady state stocks were simulated, but still the decrease of residue OM was smaller (Fig. A1).

3.3 Sub-annual: Incubation

The difference between optimization approaches were small compared to the differences to the variant without adaptation (Fig.

6). All three optimization approaches showed decreased fluctuations of CUE, both in time, as well as across C:N ratios of added

labile litter
:::::::
substrate

:
compared to a non-optimized fixed allocation. The Derivative approach’s predictions matched the Optimal260

approach’s predictions, while the Relative approach initially slightly underestimated allocation to the residue degrading enzyme

(αR) resulting in decreased biomass synthesis (Fig. 7).

The Relative approach’s predictions differed from Optimal approach after one year of incubation when microbial biomass

and enzyme levels declined (Fig. 8). It still allocated to the labile degrading enzymes
:::::::
enzymes

:::::::::
degrading

:::::
labile

::::::::
substrate

(αR < 1), while with the Optimal approach, microbial community did not invest into degrading the small labile
:::::::
substrate265

pool anymore. Hence, some of the labile
::::::::
substrate pool was not decomposed, i.e. was apparently persistent with the Optimal

approach.
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Figure 7. In the Sub-annual incubation simulation experiment the three optimization approaches yielded a higher biomass synthesis, synB

(gCm−2yr−1), than Fixed, i.e. not adapting allocation. They allocated relatively more resources to the residue degrading enzymes αR during

the initial N-limitation. This resulted in lower overflow respiration, respO (gCm−2yr−1). The Relative approach initially underestimated

αR resulting in slightly lower biomass synthesis compared to the Optimal approach. Shown predictions correspond to an amendment with

C:N ratio of 50 g/g.
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Figure 8. In the Incubation simulation experiment after some time microbial biomass, B (gCm−2) decreased to low levels and allocation

shifted towards residue degrading enzymes only, αR = 1 with the Optimal approach (solid line). Hence, decomposition of a small remaining

pool of labile organic matter
:::::::
substrate, L (gCm−2), stopped.

4 Discussion

The purpose of this work was to more rigorously define and implement the optimal growth hypothesis for SESAM and study

the consequences of two simplifications. We found that the previously used Revenue approach could be derived from the more270

rigorous Optimal approach for a set of conditions. Therefore, we are more confident into conclusions drawn from previous

SESAM studies. Further, we found no or only marginal differences between the Derivative and Optimal approaches. There-

fore, we will use the Derivative approach to further develop the SESAM. The following section discusses the optimization

approaches in more detail.

4.1 Optimization approaches275

The Optimal approach constitutes the mathematical formalization of the hypothesis of community enzyme allocation optimiz-

ing microbial biomass growth for SESAM. The Relative approach has been used in previous SESAM versions. It has been

shown in this study to be a special case of the mathematically formalized Optimal approach. It is valid for enzyme alloca-

tion fluxes larger than the half-saturation constant in the decomposition equation, which is usually the case at not too small

microbial biomass. The Derivative approach is another heuristic of optimal enzyme allocation that relies on derivatives of the280

enzyme returns but does not require explicit formulas for the optimal allocation.

The three approaches predicted the same patterns in long-term as well as sub-annual scale simulation experiments. Hence,

the conclusions drawn with SESAM so far were corroborated. Specifically, the following patterns emerge as a consequence

of microbial community adaptation of enzyme allocation: The priming effect (Kuzyakov et al., 2000) and the N banking
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mechanism (Perveen et al., 2014), (Fig. 5), and the dampening of CUE fluctuations with an adaptive microbial biomass (Kaiser285

et al., 2014) (Fig. 6).

While the Optimal approach is exact, it is tedious to implement and to update with further developments of SESAM. It

requires the developers to derive explicit formulas for the optimal allocation for each combination of enzyme types in the

mix of enzymes allocated to. With including more enzymes or more types of enzymes, the formulas grow complex and an

increasing number of potential optima need to be checked and compared. Therefore, we also consider the simpler Relative and290

Derivative approaches and discuss their effect on model predictions.

The Derivative approach yielded predictions that were so close to the predictions of the Optimal approach that they can

hardly be spotted in the plots (Figs. 5, 7). However, it works similar to gradient based numerical optimization schemes and

also shares its risks. First, it might result in limit cycles, where residue organic matter and microbial biomass oscillate instead

of converge to a stable optimal allocation. We argue that this actually may really happen in soil, although perturbations with295

fluctuating litter input and decomposition fluxes changing with environmental conditions may quickly shift the decomposer

system into states away from the basin of such a limit cycle (Strogatz, 1994). If the Derivative approach yields predictions

with a decadal-scale limit cycle, perturbations of model drivers are expected to drive the simulation away from the limit cycle.

Second, the Derivative approach might get stuck in local optima and saddle points where the derivative of the return approaches

zero. Gradient based optimization schemes implement some notion of momentum to get past such points. There is also some300

momentum in the soil system, because enzyme levels need some time to develop towards its quasi-steady state and microbes

use storage compounds to support developments in hourly to weekly time scale where returns from enzymatic processing

do not support further growth. Because SESAM explicitly tries to abstract from such microbial details that are important for

reacting on short-term fluctuations, the Derivative approach is prone to this risk of getting stuck at saddle points. We did not

encounter such conditions at our simulations yet. However, in case such issues pose a problem, we need to think of ways how305

to implement simple notions of momentum in SESAM.

The Relative approach yielded predictions that differed from the predictions of the Optimal approach, specifically for low

microbial biomass levels and for enzymes with low revenue. This was expected with the derivation of the conditions where the

Relative approach is valid (Appendix C). Although small differences in enzyme allocation yield also only small differences in

relative steady-state stocks, a small relative difference in the stock of the residue pool can result in considerable differences of310

total soil organic matter stocks. Such behaviour is observed in the FACE simulation experiments (Fig. 5). With this experiment,

the Relative approach predicted an initial share of enzyme allocation towards residue degrading enzymes of 30% compared to

about 26% with the Optimal approach. This led to a decrease of residue steady state stocks from about 3600 to about 3400

gCm−2 (Fig. A1), which is an absolute difference that was larger than the entire labile
::::::::
substrate pool. This, in turn, resulted in a

predicted relative change of residue stocks with the FACE simulation experiment that significantly differed from the predictions315

with the Optimal approach (Fig. 5)

Based on these findings, we will continue developing SESAM focusing on the Derivative approach.
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Figure 9. Constrained enzyme hypothesis: At low microbial concentrations, it is not beneficial for the microbial community to allocate to

different enzymes types. There are some substrates for which no enzymes are synthesized. Hence, some substrates, which may be quickly

decomposed at higher microbial concentrations, become apparently persistent. This apparent persistence only indirectly depends on the

properties and accessibility of the substrates and depends more on the relative availability of alternative substrates.

4.2 The constrained enzyme hypothesis

The Optimal approach’s predictions differed most from the previously used Relative approach’s predictions at low microbial

biomass levels. The Optimal approach excluded enzymes with low revenue from the set of enzymes to allocate to. For example,320

the allocation to the enzyme depolymerizing the labile
:::::::
substrate

:
pool was zero for a potential return of this enzyme below 0.2

gm−2yr−1 in the Prescribed potential returns simulation (Fig. 4). The optimal enzyme allocation is determined primarily

by availability of carbon and nutrients from organic and inorganic uptake. However, with the Optimal approach, the optimal

enzyme allocation in addition depends on the size of the microbial biomass, because they control the relative size of the

enzyme pools compared to saturating levels. The lower the microbial biomass, the farther away is enzyme production from325

levels where organic matter decomposition saturates. Hence at low microbial biomass it is not beneficial to distribute enzyme

allocation across several enzymes including enzymes with low potential revenue. Similarly, the Optimal approach predicted in

the Incubation simulation experiment that a small fraction of added organic matter, L is not decomposed (Fig. 8). This insight

into optimal allocation with SESAM generates an additional hypothesis why we observe high ages of some organic matter

in soil and an additional insight into priming mechanisms (Fig. 9): Microbial community expresses a smaller set of enzyme330

types at low biomass levels. This hypothesis predicts that some organic matter is not decomposed in the presence of microbes

that potentially can decompose it, if biomass levels are low and if there are alternative substrates decomposable with higher

revenue.

The constrained enzyme hypothesis is able to account for observed rhizosphere priming (Cheng et al., 2014) or increased

SOM loss after disturbance. When microbial biomass grows, e.g. by making enough labile substrate available, the focus on335

solely the enzymes with highest revenue is not beneficial any more and the optimal microbial community also invests into

decomposition of the organic matter with lower revenue. Apparently persistent organic matter becomes decomposed.
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This non-investment into enzymes of relatively low revenue is a complementary hypothesis to the existing hypotheses of

SOM preservation (von Lützow et al., 2006, 2008). After the chemical recalcitrance hypothesis has largely been dismissed

(Schmidt et al., 2011; Dungait et al., 2012; Kögel-Knabner, 2017) most hypotheses focus on restricted accessibility of SOM to340

soil microbial decomposition. One set of hypotheses emphasizes protection by association with minerals (Schrumpf et al., 2013;

Ahrens et al., 2015; Mathieu et al., 2015; Woolf and Lehmann, 2019), another set emphasizes protection inside soil aggregates

(Six et al., 2000; Lehmann, 2007; Schrumpf et al., 2013), another set emphasizes soil heterogeneity and spatial separation

(Ekschmitt et al., 2005, 2008; Salome et al., 2009) or environmental conditions (Or et al., 2007; Keiluweit et al., 2017).

They are related to the hypothesis of microbial energy limitation and are modified by inputs of fresh organic matter, i.e. the345

priming effect (Keiluweit et al., 2015; Henneron et al., 2022). Recently, the diversity hypothesis has gained attention for SOM

preservation (Lehmann et al., 2020; Weverka et al., 2023), which has formerly been discussed in aquatic literature (Jannasch,

1967; Jiao et al., 2010; Arrieta et al., 2015). It emphasizes the low return on investment for very heterogeneous substrates and

the associated required investment into a broad set of enzymes. The constrained enzyme hypothesis goes beyond the diversity

hypothesis. While in the diversity hypothesis, the preservation is controlled by the heterogeneity of available substrates, the350

constrained enzyme hypothesis predicts that preservation additionally depends on the amount or density of microbial biomass

and on the availability of alternative substrates.

Very similar conclusions have been drawn by a modeling study that was published shortly after the discussion paper of this

study. Weverka et al. (2023) modeled the revenue of intracellular enzymes or metabolic pathways that need to be expressed to

assimilate a diverse set of substrates. Similar to Wutzler et al. (2017), they compared different strategies of microbes investing355

into different enzymes including a strategy of investing only into the enzyme with highest revenue and a strategy the corre-

sponds to the relative/revenue approach. They also assumed microbes to maximize growth. Their model structures, formulas

for allocation and insights are comparable to this study. They differ by focusing on assimilation and intracellular enzymes,

rather than decomposition and extracellular enzymes, and they focus on the number of different substrates rather than stoi-

chiometry of substrates. Instead of computing optimal allocation they assumed that microbes would not invest into enzymes360

where change in return was less than investments (Harvey et al., 2016).

Similar to this study, they observed in their model that substrates at low concentration persist because it is not beneficial

for microbes to produce respective enzymes. Moreover, they explained cometabolization of substrate of low revenue by the

assumptions that assimilation/degradation saturates at high enzyme levels and that is therefore beneficial for microbes to

distribute their investments also into enzymes of lower potential return (Fig. 3). The current study differs from Weverka et al.365

(2023) by actually computing the optimal enzyme allocation, and consequently predicts different allocation and conditions, at

which specific enzymes are produced.

4.3 Optimality assumptions

The conclusions of this paper depend on several assumptions. First, they depend on the formulation of depolymerization (1)

and biomineralization (5). Specifically, they depend on the assumption that the decomposition fluxes saturate at high enzyme370

levels (Schimel and Weintraub, 2003; Tang and Riley, 2019). With alternative formulations (Wutzler and Reichstein, 2008)
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that assume a linear dependence of decomposition on enzyme levels (or alternatively microbial biomass) it would be optimal

to allocate to the single enzyme that yields the highest decomposition flux of the currently limiting element.

Moreover, we assumed that the instantaneous growth rate of the microbial community is optimized. Alternatively, to in-

stantaneous growth, the cumulative growth over a microbial characteristic time-span could be optimized, e.g. the time for375

decomposing a single portion of carbon (Manzoni et al., 2023). The instantaneous strategy is sub-optimal to dynamical strate-

gies if legacy effects are present that are internal to the optimized system. At the same time the two strategies yield similar

performance when legacy effects are external to the optimized system (Feng et al., 2022), because competition alters the trade-

off between current and future gains. Hence, optimizing at a different system boundary, which is usually associated with a

different time scale, results in different optimal strategies (Dewar, 2010). The focus of SESAM on the entire microbial com-380

munity calls for a dynamic strategy because it renders many factors internal, compared to a focus on competing microbial

populations that renders soil organic matter an external factor. However, SESAM is intended to model decadal-term changes

and to be driven with annually averaged drivers. The two strategies will presumably converge at such conditions. This is be-

cause enzyme pools and decomposition develop towards a quasi-steady state where current and future gains are similar within

a sub-annual timescale of microbial growth.385

SESAM focused on the partitioning of allocation of the total enzyme investment towards different enzymes. In addition, the

total allocation into enzyme production can be a trait that adapts to optimize microbial growth (Calabrese et al., 2022). Future

SESAM developments will explore if a joint optimization of total allocation and allocation partitioning can be derived, and

whether such a joint optimization alters the consequences for the long-term dynamics of SOM stocks.

4.4 Observational evidendence390

The constrained enzyme hypothesis is a consequence of several model assumptions. It was derived without reference to ob-

served patterns. However, there is already some observational evidence supporting the hypothesis of lower diversity of ex-

pressed enzymes at low microbial activity.

Metatranscriptomics (Carvalhais et al., 2012) directly studies functional diversity of expressed enzymes in soils. Evidence

for the constrained enzyme hypothesis resulting from such studies are mixed. Straw amendmends increased microbial activity395

diversity of an agricultural soil and let microbes upregulate several enzyme families (Kozjek et al., 2023). This result is in line

with the constrained enzyme hypothesis. Contrary, microbes downregulated enzyme families with straw amendmend to a soil

of an already diverse grassland soil in the same study.

A novel approach combines isotopically labeled measurements of microbial growth with quantitative stable isotope probing

(Hungate et al., 2015). It can assess microbial diversity of the active part of the microbial community. It revealed a reduction of400

diversity of actively growing microorganisms with lower microbial activity under drought (Richter, 2023), which is in line with

expected reduction in diversity of expressed enzymes with lower microbial biomass as predicted with the constrained enzyme

hypothesis. However, low diversity of actively growing microorganisms under drought could also be due to stress-induced

shifts toward non-active conditions rather than due to optimal allocation with lower active microbial biomass.
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Analysis of potential activities of specific enzymes (Marx et al., 2001) and its spatially resolved zymography version (Spohn405

et al., 2013) do not directly tell about the diversity of enzyme expression, because only specific enzymes are analyzed. However,

in line with the constrained hypothesis, zymography of a temperate forest soil revealed that common enzymes are hardly

expressed outside hotspots and before fostering microbial growth by amendments (Heitkötter and Marschner, 2018).

In summary, studies that specifically look at enzyme diversity in relation to microbial biomass levels are still lacking.

However, we can find observations from other studies that are in line with the constrained enzyme hypothesis.410

5 Conclusions

The Optimal approach is the mathematical formulation of the hypothesis that microbial community enzyme allocation develops

in a way that optimizes growth in SESAM. The finding of similar predictions by the heuristic approaches compared to the

Optimal approach increases our confidence into conclusions drawn with SESAM. The heuristic Relative approach is shown to

be a special case of the Optimal approach valid at sufficiently high microbial biomass levels. The Derivative approach, another415

heuristic of the Optimal approach, is valid also for low microbial biomass levels. Given that the Derivative approach is a good

heuristic of the Optimal approach that is better scalable to more enzyme types than the Optimal approach, we will continue the

SESAM developments with the Derivative approach.

The Optimal and Derivative approaches yield predictions at low microbial biomass that differ from the predictions of the

Relative approach. Specifically, they predict that enzymes with low revenue are not expressed at low microbial biomass. This420

finding generated the constrained enzyme hypothesis for the preservation of organic matter in soils.

Code availability. SESAM (v3.1) is available coded in R at https://github.com/bgctw/sesam (last access: February 19th 2024) (doi: 10.5281/zen-

odo.8026318) and coded in Julia at https://github.com/bgctw/Sesam.jl (last access: February 19th 2024) (doi:10.5281/zenodo.8026366). R

source code is released using the GPL-2 licence, because it uses other GPL libraries. Julia code is released using the more permissive MIT

License.425

The simulation experiments are part of the R repository. They use the derivSesam3P model variant. The Prescribed potential returns

code is provided in "Allocation" section of file develop/23_optimAlloc/sesamess/sesam_LRP_deriv.Rmd. The Decadal-term FACE code is

provided with file develop/23_optimAlloc/Face1_3P.Rmd. The Seaonsal Incubation code is provided with file SimBareSoilPulse_opt.Rmd.

Appendix A: Additional figures

This section provides figures that detail some of the results and provide consistent presentation of main quantities across the430

experiments. The consistent presentation of all the quantities can not avoid some overplotting.

First, predictions of the FACE simulations experiment for non-normalized residue pool, R, and for additional scenarios with

adjusted decomposition parameters are shown in Fig. A1.
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Figure A1. Relative approach simulated with a decreased decomposition rate of the residue pool, kR or an increased kmNR, in the FACE

simulation experiment, matched the initial steady state stocks but still underestimated the decrease of residue stocks, R (gCm−2), during the

period of higher carbon inputs.

Next, figures A2, A3, and A4 present common quantities across experiments. They also include a "Fixed" scenario, where

enzyme allocation is not adaptive but constant, where specifying the initial value corresponds to specifying another model435

parameter.

Appendix B: Optimal enzyme allocation

This section derives explicit formulas of optimal enzyme allocation by finding the allocation that maximizes total return. It

starts with a lemma that states conditions for which the optimum is attained when derivatives are equal. The lemma is then

used in subsequent derivations of optimal allocation.440

B1 Optima at equality of derivatives

Lemma 1: Let uT (α) = C2

∑
Z αZ revZ be a function that is a weighted sum of components revZ up to some constant C2 ̸= 0,

where weights αZ ∈ (0,1) add up to one:
∑n

Z αZ = 1 and component revZ may depend on weight αZ but not on the other

weights. Further, let revZ be differentiable to αZ and let potential optima ∈ (0,1). Then at the optima of uT (α) all derivatives
d(αZ revZ)

dαZ
are equal.445

Proof: Because of the sum-to-one constraint, we express one of the weights as a function of the other weights and have only

n− 1 free weights.
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Figure A2. Additional quantities and Fixed scenario of the decacal-term
::::::::::
decadal-term experiment compared to Fig. 5. αR(gg

−1): propor-

tion of enzyme allocation to Residue degrading enzyme, B(gm−2): microbial biomass, synB(gm
−2yr−1): C flux for microbial biomass

synthesis, CUE(gg−1): Carbon use efficiency, L and R (gm−2): C in Labile and Residue
::::::
substrate

:
pool, resp(gm−2yr−1): respired C flux.

The results based on the Optimal and Drivative are so close togehter
:::::

together
:
that they overplot.

αn = 1−
n−1∑
Z=1

αZ

dαn

dαZ
=−1

We are interested in the optima of uT away from the borders, i.e. αOpt ∈ (0,1). In the derivative to αZ all terms vanish

except the term involving revZ and the term involving revn, because there αn is a function of αZ . By the chain rule we have:450

duT

dαZ
= 0 = C2

(
d(αZ revZ)

dαZ
+

d(αn revn)

dαn

dαn

dαZ

)
= C2

(
d(αZ revZ)

dαZ
− d(αn revn)

dαn

)
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Figure A3. Additional quantities and Fixed scenario of the sub-annual experiment compared to Fig. 7. Facets, colors, and linestyles corre-

spond to Fig. A2.

Hence, for C2 ̸= 0 each d(αZ revZ)
dαZ

has to be equal to d(αn revn)
dαn

, i.e. all these derivatives have to be equal.

B2 Return, revenue, and derivative for a biomineralizing enyzme

The return, revenue and its derivative of a biomineralizing enzyme are slightly more complex than the corresponding quantities

of a depolymerizing enzymes (sections 2.1.2 and 2.2.1). They are presented in Table B1 because of the one-columm constraint455

of normal text in this journal.

B3 Explicit optimum formulas

We seek the community composition, here represented by enzyme allocation, α, that maximizes total return. This maximizer

is located either at the borders of the domain or at a location where all derivatives of the total return are zero. We only look at

cases where we know which several enzymes take part in the mix with positive allocation, i.e. having αZ ∈ (0,1) and therefore460

do not need to look at the borders.
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Figure A4. Additional quantities and Fixed scenario of the sub-annual experiment compared to Fig. 8. Facets, colors, and linestyles corre-
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The strategy is first to find the small set of allocations where all the derivatives are zero, which includes maxima, minima,

and saddle points. Second, we constrain the set to conditions αZ ∈ (0,1) and select that element that results in highest return.

To simplifying
::
In

::::
order

::
to
::::::::
simplify formulas, we make the assumption that all half-saturation parameters are equal: kmNZ =

kmN .465

B3.1 Two depolymerizing enzymes

Utilizing Lemma 1 (Appendix B1) we have:

d(αL revL)

dαL
=

d(αR revR)

dαR

dL
(kmN +αLaEB)2

=
dR

(kmN +(1−αL)aEB)2

where αR = 1−αL
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Table B1. Equations of return, dPm, revenue, revP , and derivative, d(αP revP )
dαP

, of a biomineralizing enyzme. Note, that the last one has the

same form as the one of the depolymerizing enzyme ( d(αz revZ)
dαZ

in section 2.1.1). It differs, however, in the half-saturation constant of the

Michaelis-Menten term which now includes the plant enzyme production: (eP + kmNP ).

dPm = dP
eP +αP aEB

kmNP + eP +αP aEB
− dP

eP
kmNP + eP

= dP
(eP +αP aEB)(kmNP + eP )− eP (kmNP + eP +αP aEB)

(kmNP + eP +αP aEB)(kmNP + eP )

= dP
eP kmNP +αP aEBkmNP + e2P +αP aEBeP − (eP kmNP + e2P +αP aEBeP )

(kmNP + eP )2 +αP aEB(kmNP + eP )

= dP
αP aEBkmNP

(kmNP + eP )2 +αP aEB(kmNP + eP )

= dP
kmNP

eP + kmNP

αP aEB

(eP + kmNP )+αP aEB

revP =
dP

ωEnz

kmNP

eP + kmNP

1

(eP + kmNP )+αP aEB

d(αP revP )

dαP
=

dP
ωEnz

kmNP

eP + kmNP

d

dαP

(
αP

(eP + kmNP )+αP aEB

)
=

dP
ωEnz

kmNP

eP + kmNP

(eP + kmNP )+αP aEB)−αP aEB

((eP + kmNP )+αP aEB)2

=
dP

ωEnz

kmNP

(eP + kmNP +αP aEB)2

This provides a quadratic equation of αL, which one can solve. We used the Sympy symbolic math tool. That one of the two470

roots where αL ∈ (0,1) and that yields a higher uT (αL) provides the optimal αL.

αL1,2 =
aEBdL + kmN (dL + dR)±

√
dLdR (aEB+2kmN )

aEB (dL − dR)

B3.2 Depolymerizing and biomineralizing enzyme

d(αL revL)

dαL
=

d(αP revP )

dαP

dL
(kmN +αLaEB)2

=
dP

((eP + kmN )+ (1−αL)aEB)2

αL1,2 =
(aEB+ eP + kmN )dL + kmNdP ±

√
dLdP (aEB+ eP +2kmN )

aEB (dL − dP )
475

B3.3 Two depolymerizing and one biomineralizing enzyme

We set αR = 1−αL −αP and have equations of table. B2.

That one of the four roots where αP ∈ (0,1) and derived αL(αP ) ∈ (0,1) and that yields a highest uT (α) provides the

optimal α.
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Table B2. Potential optima for two depolymerizing and one biomineralizing enzyme

d(αL revL)

dαL
=

d(αR revR)

dαR
=

d(αP revP )

dαP

dL
(kmN +αLaEB)2

=
dR

(kmN +(1−αL −αP )aEB)2
=

dP
((eP + kmN )+αP aEB)2

We first compute αL given αP using the first equality.

αL1,2 =
aEB(1−αP )dL + kmN (dL + dR)±

√
dLdR (aEB(1−αP )+ 2kmN )

aEB (dL − dR)

Next we insert the both roots of αL(αP ) in equating the first and third utility to solve for αP .

For the first root of αL we get:

αP 1,2 = (A1 ±D1)/B1

A1 = 2Bad
3
2
LdP

√
dR −Bad2LdP −BadLdP dR +4d

3
2
LdP

√
dRkmN − d3LeP − d3LkmN

− 2d2LdP kmN +2d2LdReP +2d2LdRkmN − 2dLdP dRkmN − dLd
2
ReP − dLd

2
RkmN

D1 =
√
dP (Ba+ eP +3kmN )

√
−2d

9
2
L

√
dR +4d

7
2
Ld

3
2
R − 2d

5
2
Ld

5
2
R + d5L − d4LdR − d3Ld

2
R + d2Ld

3
R

B1 =Ba

(
2d

3
2
LdP

√
dR + d3L − d2LdP − 2d2LdR − dLdP dR + dLd

2
R

)
For the second root of αL we get:

αP 3,4 = (A2 ±D2)/B2

A2 = 2Bad
3
2
LdP

√
dR +Bad2LdP +BadLdP dR +4d

3
2
LdP

√
dRkmN + d3LeP + d3LkmN

+2d2LdP kmN − 2d2LdReP − 2d2LdRkmN +2dLdP dRkmN + dLd
2
ReP + dLd

2
RkmN

D2 =
√
dP (Ba+ eP +3kmN )

√
2d

9
2
L

√
dR − 4d

7
2
Ld

3
2
R +2d

5
2
Ld

5
2
R + d5L − d4LdR − d3Ld

2
R + d2Ld

3
R

B2 =Ba

(
2d

3
2
LdP

√
dR − d3L + d2LdP +2d2LdR + dLdP dR − dLd

2
R

)

B4 Excursion: replacing revenue by relative profit480

Revenue, here, is defined as return per investment, revZ = dZw/invZw. One could argue that one should rather maximize the

profit, i.e. return - investment and corresponding profit revenue, revpZ , i.e. profit/investment by optimizing enzyme allocation.

Here we show, that optimizing the profit yields the same optimal allocation as optimizing the return.

revpZ = (dZw − invZw)/invZw = revZ−1

d(αZrevpZ)

dαZ
=

d(αZ revZ)

dαZ
− dαZ

dαZ
=

d(αZ revZ)

dαZ
− 1
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The total profit is the sum of profit revenues multiplied by total enzyme investment, invw.485

uTp(α) = invw
∑
Z

αZrevpZ(αZ)

This equation fulfills the conditions of Lemma 1 (Appendix B1) and at the optima all derivatives are equal.

d(αirevpi)

dαi
=

d(αjrevpj)

dαj

d(αi revi)

dαi
− 1 =

d(αj revj)

dαj
− 1

d(αi revi)

dαi
=

d(αj revj)

dαj

The last line corresponds to the same condition as when optimizing returns. Hence, they lead to the same optima.

Appendix C: Derivation of the relative approach490

The Relative approach approximates optimal allocation by setting optimal allocation proportional to revenue (2.2.3). Hence,

we seek the conditions for which the following relationship holds:

αj

αi
≈ revj

revi

At the solution of the Optimal approach all the derivatives of (revenue times α) for all enzymes in the mix are equal

(Appendix 2.2.1). By using d(αZ revZ)
dαZ

≈ revZ
eZ+kmNZ

αZaEB , as shown below, for any two enzymes i, j we have:495

d(αi revi)

dαi
=

d(αj revj)

dαj

revi
ei + kmNi

αiaEB
≈ revj

ej + kmNj

αjaEB

αj

αi
≈ revj

revi

ej + kmNj

ei + kmNi

αj

αi
≈ revj

revi

The last approximation holds only for similar half-saturation parameters across enzymes kmNZ ≈ kmN , and plant enzyme

production being low compared to this half-saturation: eZ ≪ kmN .

The first approximation in the second line is only valid for an enzyme production flux that is not larger than the half-

saturation, kmNZ (see below). This is violated at low microbial biomass or very low αZ .500

Hence, the optimal allocation is approximately proportional to the revenue for the combination of the following conditions:

– all enzymes have a non-negligible share
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– microbial biomass is sufficiently high

– plant biomineralizing enzyme production is low.

The derivation above used the following relationship that still needs to be shown: d(αZ revZ)
dαZ

≈ revZ
eZ+kmNZ

αZaEB .505

For depolymerizing enzymes we use the following approximations. For αZaEB ≫ kmNZ , i.e. 2kmNZ+αZaEB ≈ αZaEB,

the half-saturation kmNZ can be neglected in the denominator of the revenue. Note that αZaEB ≫ kmNZ implies (αZaEB)2 ≫
k2mNZ .

revZ =
dZ

ωEnz

1

kmNZ +αZaEB

≈ dZ
ωEnz

1

αZaEB

d(αZ revZ)

dαZ
=

dZ
ωEnz

kmNZ

(kmNZ +αZaEB)2

=
dZ

ωEnz

kmNZ

k2mNZ +2kmNZαZaEB+(αZaEB)2

≈ dZ
ωEnz

kmNZ

αZaEB(2kmNZ +αZaEB)

= revZ
kmNZ

2kmNZ +αZaEB

≈ revZ
kmNZ

αZaEB

where the first two relationships have been derived in Appendix 2.1.1. For depolymerizing enzymes we have, eZ = 0, because510

they are not produced by plant roots.

Similarly, for biomineralizing enzymes we require αZaEB ≫ kmNZ + eZ , where eZ is the production of enzyme Z by

plants.

revZ =
dZ

ωEnz

kmNZ

eZ + kmNZ

1

eZ + kmNZ +αZaEB

≈ dZ
ωEnz

kmNZ

eZ + kmNZ

1

αZaEB

d(αZ revZ)

dαZ
=

dZ
ωEnz

kmNZ

(eZ + kmNZ +αZaEB)2

=
dZ

ωEnz

kmNZ

(eZ + kmNZ)2 +2(eZ + kmNZ)αZaEB+(αZaEB)2

≈ dZ
ωEnz

kmNZ

αZaEB(2(eZ + kmNZ)+αZaEB)

= revZ
eZ + kmNZ

2(eZ + kmNZ)+αZaEB

≈ revZ
eZ + kmNZ

αZaEB
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Appendix D: Derivative-based change of community allocation515

SESAM assumes that microbial community develops in a way to maximize growth of the entire community. Growth increases

with uptake and hence increases with decomposition flux for given enzyme allocation. The revenue of allocation to enzyme

Z is revZ = dZw(αZ)
αZωEnzaEB . The return dZw is a limitation-weighted mineralization flux or uptake flux of nutrients and carbon

(sections 2.1.1 and 2.1.2). The investment is the share, αZ , invested into production of enzyme Z multiplied by total limitation-

weighted flux, ωEnzaEB, allocated to enzyme production.520

Although it is possible to derive explicit formula for the allocation that optimizes total return for simple cases, the formulas

quickly grow and involve higher-order polynomials of α with several solutions outside the reasonable bound αZ ∈ [0,1].

Here we follow an alternative local approach were we assume the rate change of αZ over time to be proportional to the

deviation of the derivative of change of total return with respect to αZ to the average across the derivatives for different

enzymes. The higher the increase in total return for shifting allocation towards a specific enzyme, the faster the community525

changes in this direction.

The total return is a weighted sum of enzyme revenues, and derivatives of d(αZ revZ)
dαZ

have been derived for depolymerizing

and biomineralizing enzymes (section 2.2.1).

uT = ωEnzaEB
∑
Z

αZ revZ(αZ)

duT

dαZ
= ωEnzaEB

∑
Z

d(αZ revZ)

dαZ

We assume that the larger the change in return with increasing allocation, i.e. the derivative to allocation coefficient αZ ,530

the larger is the change in allocation. In addition to the assumption of proportionality to the derivative, we assume that the

community changes at a rate of the same magnitude as synthesis and turnover of microbial biomass.

dαZ

dt
∝ duT

dαZ
−mdu

=

(
|synB |

B
+ τ

) duT

dαZ
−mdu

mdu

mdu =meani

(
duT

dαi

)
where mdu is the average across derivatives of return across enzymes that are allocated to. If all changes are the same, i.e. equal

to the mean, the allocation is optimal because it does not increase in any direction.535

We want the change to be proportional to the change in return compared to the average return. Subtracting this mean ensures

that the sum of all the changes in α sums to zero so that the sum across α is preserved. The proportionality factor normalizes

the change in return and multiplies this relative change by the rate of microbial turnover, composed of biomass synthesis and

biomass turnover.
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D1 Exclude enzymes whose negative relative change is larger than its share540

Community may not allocate to all enzymes. Hence, mdue (an updated version of mdu) averages only across a subset of

enzymes. The derivative optimization strategy assumes that nothing is allocated to an enzyme if its normalized change towards

zero is larger than than its current share, i.e. is more negative than −αZ .

Z0 =

{
Z|

duT

dαZ
−mdue

mdue
<−αZ

}

dαZ

dt
=

(
|synB |

B
+ τ

)−αZ for Z ∈ Z0
duT
dαZ

−mdue

mdue
otherwise

=

(
|synB |

B
+ τ

)
max

(
duT

dαZ
−mdue

mdue
,−αZ

)

mdue =

∑
ζ /∈Z0

duT

dαζ

|{Z} \Z0|+
∑

ζ∈Z0
αζ

Where |{Z}\Z0| denotes the number of enzymes allocated to, i.e. the cardinality of the set of all enzymes without those in Z0545

The relative change of those excluded enzymes is set to −αZ , resulting in negative changes going to zero as αZ approaches

zero. Hence, the relative change is lower-bounded by −αZ .

mdu has to be adjusted to mdue, so that
∑

i
dαi

dt = 0 holds.

∑
ζ /∈Z0

duT

dαZ
−mdue

mdue
+
∑
ζ∈Z0

−αζ = 0

This definition is recursive, because mdue is computed across a set that is defined using mdue. In order to determine Z0550

one can start with the empty set and add all enzymes that fulfill the condition. If enzymes were added then the mean across

remaining derivatives increases, and the condition has to be checked again. Hence, adding enzymes to Z0 is repeated until no

more enzymes fulfill the condition and the mean does not change any more.
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