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Abstract. Describing the coupling of nitrogen (N), phosphorus (P), and carbon (C) cycles of land ecosystems requires un-
derstanding microbial element use efficiencies of soil organic matter (SOM) decomposition. These efficiencies are studied by
the soil enzyme steady allocation model (SESAM) at decadal scale. The model assumes that the soil microbial communi-
ties and their element use efficiencies develop towards an optimum where the growth of the entire community is maximized.
Specifically, SESAM approximated this growth optimization by allocating resources to several SOM degrading enzymes pro-
portional to the revenue of these enzymes, called the Relative approach. However, a rigorous mathematical treatment of this
approximation has been lacking so far.

Therefore, in this study we derive explicit formulas of enzyme allocation that maximize total return from enzymatic pro-
cessing, called the Optimal approach. Further, we derive another heuristic approach that prescribes the change of allocation
without the need of deriving a formulation for the optimal allocation, called the Derivative approach. When comparing pre-
dictions across these approaches, we found that the Relative approach was a special case of the Optimal approach valid at
sufficiently high microbial biomass. However, at low microbial biomass, it overestimated allocation to the enzymes having
lower revenues compared to the Optimal approach. The Derivative-based allocation closely tracked the Optimal allocation.

These findings increases our confidence into conclusions drawn from SESAM studies. Moreover, the new developments
extend the range of conditions at which valid conclusions can be drawn. Further, based on these findings we formulated
the constrained enzyme hypothesis. This hypothesis provides a complementary explanation why some substrates in soil are
preserved over decades although often being decomposed within a few years in incubation experiments.

This study shows how optimality considerations lead to simplified models, new insights and new hypotheses. It is another
step in deriving a simple representation of an adaptive microbial community, which is required for coupled stoichiometric CNP

dynamic models that are aimed to study decadal processes beyond ecosystem scale.

1 Introduction

The soil enzyme steady allocation model (SESAM) studies the effect of an adaptive soil microbial community on the coupling

of element cycles in aerated soils at decadal time scale. The coupling of the cycles of nitrogen (N), phosphorus (P), and
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carbon (C) is especially strong in soils because the stoichiometric requirements of soil organic matter (SOM) decomposers is
much less flexible than the stoichiometric requirements of plants (Robert W. Sterner, 2002; Mooshammer et al., 2014b). The
stoichiometric requirements, in turn, together with the stoichiometry of consumed substrates determine decomposer’s carbon
and nutrient use efficiencies, which are important controls on ecosystem dynamics. Carbon use efficiency (CUE) are-is key
to control how much of the litter input is stored in soil or respired again to the atmosphere (Manzoni et al., 2017). Similarly,
nitrogen use efficiency affects how much N in litter inputs is stored in organic matter or mineralized and made available for
plant nutrition (Mooshammer et al., 2014a). These element use efficiencies are also affected by properties of the microbial
community. Furthermore, microbial community is hypothesized to adapt to changing environment, such as increased litter
inputs or litter stoichiometry or nitrogen deposition (Manzoni, 2017; Manzoni et al., 2021).

However, there is a gap between knowledge of microbial processes at smaller and effect at larger scales. On the one hand,
knowledge of the complex microbial ecology and community adaptations accumulates at the soil pore scale. On the other hand,
dynamic SOM models, which rely on nutrient efficiencies of the decomposers, focus on SOM changes at ecosystem to global
scale. Hence, we need to find ways to incorporate effects of soil microbial community adaptations on element use efficiencies
(Kaiser et al., 2014) without the need to model all the microbial populations and microbial details.

Therefore, the SESAM model abstracts from microbial details by assuming that community composition develops towards
maximizing growth of the entire microbial community. This assumption is in line with arguments from system ecology (Nielsen
et al., 2020), which realized that open systems with positive internal feedback develop towards best exploiting a gradient of
potential energy (Ulanowicz, 2002). This exploitation of the gradient is usually associated with maximizing entropy production
that can supports internal structure of the system (Kondepudi, 1998). For soil systems this mainly translates into efficiently de-
grading the chemical energy input provided by plant litter and rhizodeposition. In a first approximation this efficient degradation
is achieved by maximum growth and respiration of soil microbes. This focus on system perspective leads to complementary
insights, compared to focusing on competition, and opens up a new ways of studying living systems (Ulanowicz, 2009). One of
the problems of this argument is the question at which scale to apply the maximum entropy production hypothesis. Application
at different scales leads to different predictions of optimal system dynamics (Dewar, 2010). Hence, the optimal community
growth assumption is rational, but it is still an assumption to be challenged.

The heuristic approach of how community growth is optimized in SESAM requires a more rigorous treatment. The heuristics
that is applied in SESAM 3.0 assumes the proportion of allocation into enzyme Z to be proportional to its revenue, i.e. return
per investment. Wutzler et al. (2017, Appendix B) provide a rationale of this approach, which argues that exploiting of the full
range of resources is beneficial. However, this attempt does not sufficiently well explain why this leads to optimal community
growth. Hence, a better, i.e more rigorous rationale is required to increase confidence into assumptions made in SESAM.

Such a rigorous treatment of the optimal enzyme allocation has reeently-now become possible because of recent model
developments. The model developments of Wutzler et al. (2022) comprise a new formulation of decomposition based on
quasi-steady state of enzymes and the new formulation of revenue with limitation-weighted enzyme investments. They make

it possible to express the revenue directly as a function of the enzyme allocation. This functional expression now allows us,
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Figure 1. The SESAM model: Microbial biomass B produces enzymes that depolymerize substrate pools (L and R) that differ in their
elemental ratios. Adaptive microbial community enzyme allocation o determines which part of the microbial community depolymerizes
L versus R by producing respective depolymerizing enzymes Er, Er, and a biomineralizing enzyme Ep cleaving phosphate groups.
Microbes take up dissolved organic matter (DOM) and use it for synthesizing new biomass, new enzymes, or for catabolic respiration. A part
of microbial turnover (tvr) adds to the residue pool, another part is mineralized, and another part adds to DOM and is recycled into microbial
biomass. Stoichiometric imbalance between DOM and B is resolved by mineralizing the excess element or immobilizing required element
(®p) from inorganic N and P pools (I). There are additional fluxes from L and R to the inorganic pools, I, and additional plant uptake and
leaching fluxes drawing from the inorganic pools, /, which are not shown in this figure. Boxes correspond to pools, disks to fluxes. Solid lines
represent fluxes of C,N, and P, while dotted and dashed lines represent separate C,N or P fluxes respectively. Red ellipses denote changes

from the Wutzler 2022 version.

in this study, to derive optimal community allocation by maximizing the total return from enzymatic processing. Further, it
inspired another simpler heuristic optimality approach.

The aim of this study is to present and compare three approaches of computing enzyme allocation, i.e. the rigorous Op-
timal approach, the previously applied heuristic Relative approach, and the new heuristic Derivative, approach. We compare
approaches based on several scenarios of dynamic simulation and discuss the resulting insights and implications. One of those

insights is the constrained enzyme hypothesis.

2 Methods

In this section, we first summarize the SESAM model and re-state the equations that are most relevant for the optimality
approaches (subsection 2.1). Next, we present the three optimality approaches (subsection 2.2). Finally, we describe the setup

of the simulation experiments (subsection 2.3).
2.1 The SESAM model

SESAM is described in the previous paper of this incremental model description paper series (Wutzler et al., 2022). A summary

of the model is presented by Fig. 1 and state variables, model drivers, model parameters and other symbols used in SESAM
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Figure 2. Community allocation, c controls the partitioning of the enzyme synthesis. This in turn, affects the depolymerization and biomin-
eralization fluxes of labile (L) and residue organic matter (R). o adapts in such a way, so that the sum of the returns from degradation fluxes
dz is maximized. Specifically, its the part of the degradation fluxes that reaches microbial biomass B by direct and indirect uptake, vr g, of
elements E € {C, N, P}, and the sum is weighted by current elemental limitation of the microbes and the elemental investments required to

synthesize the enzymes. Dotted lines denote controls. Other line types and shapes correspond to Fig. 1.

are listed with tables 1, 2 and 3. Symbol d with a subscripts denotes a form of decomposition or return flux, while the symbol
d without subscripts denotes the derivative operator. The model version used in this study already anticipates ongoing unpub-
lished model developments, which include phosphorus (P) cycling and microbial P-limitation. While P is generally handled the
same way as nitrogen (N), there is an additional class of P biomineralizing enzymes, E'p, that does not depolymerize substrates
in stoichiometric quantities, but cleaves phosphate groups. Moreover, Fp, is not only produced by microbes but also by plant
roots. Those P related developments will be described in its-their own paper, but this manuscript presents formulas that can
account for this new type of enzymes.

This study focuses on approximating the optimal microbial community allocation, c. It modifies eq. 3 in Wutzler et al.
(2022) and compares several variants. SESAM substrate decomposition is controlled by the quantity of enzymes, which in
turn, are controlled by the microbial community that adapts their allocation to different enzymes in order to maximize growth
(Fig. 2). Allocation into different enzymes adapts to the return and revenue, i.e. return/investment, of those enzymes.

The details of how SESAM computes the return of an enzyme are restated in the following section, while revenue is described

in section 2.2.1.
2.1.1 Depolymerizing enzymes

The return of an enzyme, £z, which depolymerizes substrate, Sz, is the elemental-limitation-weighted average of the returns
for the modeled elements required for microbial growth. The return equals the depolymerization flux that is taken up by

microbes.



90

95

Table 1. State variables and model drivers. Values correspond to FACE simulation experiment initial steady state for Optimal approach.

Symbol Definition Value Unit

L,Ln,Lp C, N, and P in labile substrate 109 -BE;, (0) gm™?

R,Rny,Rp  C,N, and P in residue substrate 3687 -BE; , (0) gm 2

B Microbial biomass C 30.46 gm 2

In Inorganic N 0.194 gm™?

Ip Inorganic P 2157 gm™?

ar, ag, ap  Allocation to enzyme Z € {L,R, P} 0.74, 0.26, 0.0 )

ir(t) labile C input 400.0 gm Zyr?

By, (1) C:N ratio of labile inputs 28 gg!

BNy, (t) C:N ratio of residue inputs 10 gg!

Bp;, (t) C:P ratio of labile inputs 120 gg!

Bpi, (1) C:P ratio of residue inputs 40.3 gg?

iy () inorganic N input 0.0714 gm ™ Zyr—!

irp (t) inorganic P input 0 gm ™ Zyr~!

krgp(t) plant uptake of inorganic F per I 100* yr—t

Ury max(t)  max plant uptake of E =ir/BE;, +irg™ gm Zyr—!

ep plant production of biomineralizing en- 0 gm Zyr—1
zZyme

* arbitrary high value so that plant uptake is constraint by w B maz (t)

** balancing nutrient input to the system

C depolymerization flux, dz is described by reverse Michaelis-Menten kinetics (Schimel and Weintraub, 2003), which
is first order to the source pool, kz Sz, and saturating with the amount of the respective enzyme. By assuming enzymes to
be near quasi-steady state at larger than month’s time scale, their amount is proportional to microbial enzyme production
flux (azagB). This enzyme production flux then is used in the Michaelis-Menten kinetics together with a lumped affinity

parameter, ky,N 7.

O (s .

Nutrient, £ € {N, P}, depolymerization fluxes are derived by dividing the C flux by the C:E ratio, Sg , of the source pool.
These depolymerization fluxes are then converted to C units by C:E ratio of microbial biomass, 8 5, so that a weighted return,
dz.,, can be computed. Further the depolymerization fluxes are multiplied by a dynamically computed proportion, vrg, that
describes what part of the flux currently reaches microbes rather than plants, leaching, or sequestration at minerals (Wutzler

et al., 2022, Appendix B).
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Table 2. Model parameters. Values correspond to FACE simulation experiment initial steady state for Optimal approach.

Symbol  Definition Value Unit
BN g C:N ratio of microbial biomass 11 gg !
BN gn,  C:Nratio of extracellular enzymes 3.1 gg!
Bpgp C:P ratio of microbial biomass 40 gg !
BPgn,  C:Pratio of extracellular enzymes 50 gg!
Bp,, C:P ratio of a substrate at which the biomineralization decreased to 1/2 500 gg !
kr, maximum decomposition rate of L 5.0 yr—t
kr maximum decomposition rate of R 0.0318 yr*
aE enzyme production per microbial biomass 0.365 yr?
kmnN product of enzyme half saturation constant and enzyme turnover 3.0 gm™?
T microbial biomass turnover rate 6.1 yrt
m specific rate of maintenance respiration 5.84 yrt
€ anabolic microbial C substrate efficiency 0.68 (-)
UN aggregated microbial organic N use efficiency 0.9 )
vp aggregated microbial organic P use efficiency 0.0 )
iIBN maximum microbial uptake rate of inorganic N 0.4 yr!
iBP maximum microbial uptake rate of inorganic P 100" yr!
In inorganic N leaching rate 0.96 yr—t
lp inorganic P leaching rate 0.001*  yr*

* arbitrary high/low value so that system is not constrained by P

dzy =dzc/Bny
dzp=dzc/Bry

dzw =wcdze vre +wndzy vTNBNg +wpdzp vTPBPE

_ kZSZ azagpB /BNB 6NB
S wevrce + WNVTN B +wprrp Br,

The limitation weighted return can be expressed as a potential return, dz, multiplied a factor that reduces return due to low

enzyme levels. Hence, potential return denotes the return potentially achieved at infinitely high enzyme levels. It is the potential

C-substrate depolymerization flux, multiplied by the combined elemental weighting factor w.
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Table 3. Further symbols

Symbol Definition Unit

Se{L,R} Soil organic matter substrates, labile or residues gm™2

Z € {L,R,P} Enzyme classes for depolymerizing substrates L and R or biomineralizing phosphorus from both substrates ~gm™>

WE Weight of limitation of microbial growth by element £ € {C, N, P} (eq. 4) —

dzw(az) Elemental-limitation-weighted return of enzyme Z gm Zyr~1

dz Elemental-limitation-weighted potential return for unlimited concentration of enzyme Z gm Zyr*

wz Elemental-limitation factor for return of enzyme Z —

WEnz Elemental-limitation factor for total enzyme synthesis in C units, ag B -

ur Total return = Y , dz, (cvz) gm Zyr*

revy Revenue, i.e. return per investment, of enzyme Z gm Zyr—!

Synpg C for microbial biomass synthesis gm Zyr?

VUTE total proportions of the mineralization that are taken up by microbial biomass, v + (1 — VE)pimmeo,E- -

g ‘microbial biomass C tumover in addition to enzyme production, mostly mortality gm *yr~!
g = dy— 2988 (2a)

kmNz +azapB
dZ:kzssz (2].’))
wz = wevre + WNVTN Onp + wPVTP@ (20)
BNz Bpz

Similarly to defining an elemental-weighted limitation factor for enzyme returns, such an elemental-weighted factor is

defined for enzyme synthesis flux (3).

e = we + wy LBy P8 3)
BNEnz BPEnz

The elemental weights, wg are the same in both, wz and wg,.. Therefore, they do not need to be normalized in ratios of
these two quantities, e.g. the revenue calculation in section (2.2.1).
How strongly microbial biomass is limited by either of the elements E € {C, N, P}, is described by the elemental limitation

weights (4) (Wutzler et al., 2022, A15).

Conpis —$
wp — exp (_asthir;ynB), )

It exponentially decreases with the difference between flux potentially available for microbial biomass synthesis by this

element, CyynpE, and the actual synthesis flux, syn g, which is constrained also by other elements. To derive a unitless quantity,
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it is scaled by the microbial turnover flux, tvr g. Parameter d controls, how steep is the transition near co-limitation by several

elements. For an more detailed presentation of the elemental limitation we refer the reader to Wutzler et al. (2022).
2.1.2 Biomineralizing enzymes

The phosphatases only cleave phosphate groups from soil organic matter. Hence, they make available only P for uptake,
without making available C and N. They attack both labile and residue organic matter. Although the P-cycle in SESAM will
be described in its own manuscript, here, we state the return and revenue.

The potential return of action of P-degrading enzymes, dp, includes the P-limitation weights wp only, contrary to the
depolymerizing enzymes (2), Moreover, it does not divide by the C:P ratio of the substrate, as the mineralization flux is already

expressed in P units:

_ apapB
dpu =dp knmnp+apapB oy
dppr(kLplBPLLp+kRplngRp) (5b)
wP:wpl/pﬂpB (SC)
1 6Pm

Prs 1+ Bps/BPm  Brm+BPs o

In addition, a limitation factor [3,, . € (0,1) decreases the potential rate of a biomineralizing enzyme with increasing C:P ratio,

Bpg, of substrate S. Parameter 5p,, is the C:P ratio at which the limitation factor decreased to 1/2.

Moreover, these phosphatases are also produced by plant roots at a rate ep. Hence, one needs to calculate the return of
microbe-produced enzymes, dp,,, by subtracting the flux due to plant-produced enzymes, from total biomineralization flux
(Table B1).

2.2 Allocation optimization approaches

The derivative of the total return, up, with respect to each enzyme allocation share, .z, for short called ’the derivative’ is
the central quantity to inspect. The differences across those derivatives across enzymes determine the direction of changes
in enzyme allocation, i.e. changes in microbial community. Allocation is changed towards the enzyme Z with the highest
derivative, i.e. highest increase in return per additional allocation, at the expense of decreasing allocation to enzymes with
the lowest derivative. Hence, derivatives are equal at the optimum (Appendix B1). The derivatives decrease with increasing
allocation because the return saturates at high enzyme levels. Therefore, it is often beneficial for the community to distribute

investment into enzymes across different enzymes rather than investing solely into the enzyme with the highest potential return

(Fig. 3).
The revenue of allocation to enzyme Z, another important quantity, is the return from enzymatic processing (sections 2.1.1
and 2.1.2) divided by the investment into enzyme production: uz = %&Z)B. The investment is the share, oz, invested
QAZWEnzQOE

into production of enzyme Z, multiplied by total elemental-limitation-weighted carbon flux allocated to enzyme production,

wEmaEB.
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Figure 3. The derivative of total return with respect to enzyme allocation , decreases with increasing share of allocation cz. Therefore,
when going from zero allocation proportions (a7, = ar = 0) towards complete allocation (o, + ar = 1), in the shown example, microbes
first increase allocation to tabile-enzymes that degrade labile substrates, az,, which yields the highest positive change in return. However,
starting at levels o, > 0.25 (indicated by the dotted horizontal line crossing the tabile-solid "Labile" derivative line), the increase in return
with only increasing «, is less or equal to the increase in return when also allocating something to residue degrading enzymes, aur > 0.
Optimal allocation is attained when both derivatives are equal and allocation proportions add up to one (indicated by dashed horizontal line).

This happens here at allocation about 1/3 to residue depolymerizing enzymes (g = 1/3) and 2/3 to labile pool depolymerizing enzymes

(ar =2/3).

Hence total return and revenue depend on the potential decomposition flux, i.e. the amount and the decomposition rate of the
substrate, as well as its stoichiometry via weighting by current elemental limitation of the microbes. In addition, they depend
on enzyme levels, i.e. the size of the microbial biomass producing the enzymes, and on the current enzyme allocation, i.e. the
shares of total enzyme production into the alternative enzymes.

Three approaches of estimating the time development of enzyme allocation, « are presented in this study. The Optimal
approach is the mathematically exact formulation of the hypothesis of maximum return of enzyme investment, but is only
practical for simple cases. Therefore, two heuristic approximations are added. First, the Relative approach assumes that the
optimal allocation can be estimated by setting the allocation proportional to the revenue. Second, the Derivative approach
describes the direction of change in allocation without explicitly computing the optimal allocation.

The optimum, to which microbial community in SESAM develops towards, is characterized by maximum growth of the

entire microbial community, which in turn is achieved when the return from extracellular enzymatic processing is maximized.
2.2.1 Total return of enzyme action

We seek the enzyme allocation «x that maximizes the total limitation-weighted return, i.e. the action of enzymes, depolymeriza-
tion and biomineralization. We exclude the trivial case of investing only into a single enzyme, (az = 1), and exclude enzymes

that are not allocated to (az = 0).



The total return that is optimized is the the sum of each revenue multiplied by enzyme investment.

UT = WEn-apB Z Qzrevy (6)
Z

up fulfills the conditions of Lemma 1 (Appendix B1). Therefore, potential optima are located at the borders or at condition

d(azrevy)

165 dlazrevz) _ zre

dUT —
dOLZ -

Cs. This implies that the derivatives of total return, dor

WEn-OEB , are equal at the optimum.

The revenue for a depolymerizing enzyme and its derivative are

return dz .

revz(az) = - =
(az) investment Qo zWgn.apDB

:dz aZaEB 1

kmnz+azagB azwen.apB

d 1
-2z (7a)
WEnz kmNz +azapB

d(azrevz) . dz (kmNZ+aZaEB)—aZaEB
doz WEnz (kmnz +azapB)?
dz kmn z

- 7b
Wenz (kmnz +azapB)? (7b)
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Revenue revp and its derivative of a biomineralizing enzyme are slightly more complex due to plant enzyme production

but, they are similar to the ones of the depolymerizing enzymes. They are presented by appendix Table B1.
2.2.2 Optimal approach

175 The Optimal approach computes the target allocation that maximizes total return by computing where the derivatives of total
return across the set of allocated enzymes are equal (Appendix B1). Such a derivative of the return with respect to enzyme

allocation avz is proportional to the derivative of the allocation times the revenue, g% x d(o‘jTr?Z) (section 2.2.1). While the

d(azrevy)

day ’azﬁo’ the optimal allocation a*

maximum change of return is realized at an arbitrarily small allocation pz,,,. =
often involves several enzymes (Fig. 3). However, if the maximum change of return for an enzyme Z; is lower than the return
180 of allocating only to other enzymes, the optimal allocation to this enzyme is zero, i.e. it is excluded from the set of allocated
enzymes. The set of allocated enzymes, i.e. enzymes among which to distribute resources, can be found by the following

algorithm.

1. Order the enzymes according to their maximum change in return, pz,,, ., index them by 4, set ¢ = 1 and start with a mix

that includes only the most efficient enzyme {Z; }.

2. Solve for the optimal allocation strategy o; equalizing derivatives:

dupr  d(agrevy)
o

=pforall Z € {Z1,...,Z;
daz daz pitora E{ ! }

185 and allocate nothing to enzymes that are not part of the current mix.

10
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3. For p; computed in step 2, if p; > pz stop and report the found optimum o* = ;. Otherwise increase ¢, i.e.

i+lmax

include enzyme Z; in the mix and go to step 2.

Step 2 needs explicit solutions for different numbers and types of enzymes in the mix. Appendix B3 provides such explicit

solutions for up to three enzymes across depolymerizing and biomineralizing enzymes.
2.2.3 Relative approach

The Relative approach, which was used up to SESAM version 3.0 (Wutzler et al., 2022), estimates optimal allocation to be

proportional to revenue based on current allocation (8).

revy
Q7 Opt = <
P g ;Tev;

®)

where revz is the revenue for enzyme Z.
Appendix C shows that it is a special case of the Optimal approach given several assumptions. It well approximates optimal

allocation for the case of sufficiently high microbial biomass levels.
2.2.4 Derivative approach

The Derivative approach computes the rate change of oz over time. It assumes that enzymes allocation changes faster, the larger
the corresponding derivative is away from the average, i.e. the optimal state where all derivatives are equal. More precisely,
it assumes the change rate of allocation over time to be dg—f o ZZ—E — mean; ((fzuTT) across the enzymes in the current mix
(Appendix D). It does not rely on an optimal solution o*. This is beneficial, because formulas in the Optimal approach for a
higher number of enzymes or more types of enzymes quickly grow and involve higher-order polynomials of oz with multiple
roots and additional mathematically possible solutions outside the reasonable bound vz € [0,1].

The Derivative approach assumes that higher increase in total return lead to faster shifts of allocation towards this enzyme.

It takes care, similar to the Optimal approach, to compute the average only across enzymes that are part of the current mix

(Appendix D1).
2.3 Simulation experiments

In order to study the effects of using different allocation optimization approaches on model behavior, we set up different

simulation experiments and compared differences in predictions among the approaches.
2.3.1 Immediate response: Prescribed potential returns

The Prescribed potential returns simulation experiment fixed the direct inputs to the function computing allocation changes. It

neglected all other model feedback and focused and compared computation of optimum allocation for prescribed conditions.

11



Specifically, the experiment prescribed elemental-limitation-weighted potential return fluxes, dz (section 2.1.1), which oth-

erwise had been dynamically computed in the model from pools and parameters. It assigned values for enzymes decomposing

215 residue litter and biomineralizing phosphorus of dg = 0.7gCm~2yr—!, dp = 0.5gCm~2 yr—!, and varied the flux for en-
zymes decomposing labile substrates dy, € {0...1} in units gCm~2 yr~!. It simulated the allocation state until it converged

to its estimated optimum for each dr. For complete reference we list the other relevant parameters without further expla-

1 1

nation here: ap = 0.1yr 1, B=1gCm~2,ep = 0gCm 2 yr~*,7 = 365/30yr !, k,,ny = ap B/2,wEn. = 1. The experiment

included further runs with five-fold increased microbial biomass levels, B.
220 2.3.2 Decadal-term: FACE

The FACE simulation experiment simulated the decadal-term response of the system to increased labile earbon-substrate inputs.
It started with model pools in steady-state with litter inputs. Next it prescribed a jump of labile earbon-substrate inputs by 20%
simulated for 50 years and prescribed another jump of labile earber-substrate inputs to initial values. It simulated N-limited
conditions and excluded P-limitation by prescribing an arbitrary high value of potential P immobilization and very low P
225 leaching (Table 2). The experiment included two additional scenarios where parameters with the Relative approach had been
adjusted to match the initial steady-state conditions of the Optimal approach. These additional scenarios allowed testing if the

differences in predictions could be compensated by other model parameters.
2.3.3 Sub-annual: Incubation

The Incubation simulation experiment added a portion of labile littersubstrate to a previously tabile-depleted-labile-substrate-depleted
230 soil. Next, it tracked the carbon use efficiency (CUE) of the microbial community over time and across different C:N ratios
of the added labile ergante-mattersubstrate. Specifically, it first simulated model pools in steady state with continuous annual
inputs, then simulated no inputs for one year in order to deplete the labile substrate pool, and next it simulated a step-increase
of the labile substrate C and N pools. In addition to the three scenarios that differed by optimality approach, it simulated a
scenario where microbial community allocation was fixed to g = 0.5. This scenario allowed comparing results to a model
235 where microbial community is not adaptive.
We do not expect simulating a correct time-dynamics with SESAM at this short time scale, because SESAM explicitly omits
detailed microbial processes that are relevant at this scale such as storage, resting stages, or dynamics of the enzyme pools.
However, the experiment allows inspecting general dynamics with smooth annual changes and differences between model

variants as the labile substrate pool gets depleted.

240 3 Results

In this section, we present the results of the simulation experiments in turn.

12
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Figure 4. In the Prescribed potential returns simulation experiment, all allocation approaches predicted the same pattern of increasing

allocation to the enzymes degrading the labile depelymerizing-enzymesubstrate, oy, with increasing potential return from depolymerizing

labile ©M-substrate and a corresponding decrease of allocation to the other enzymes, ar (residue depolymerizing)) and ap (phophorus
biomineralizing) respectively. The Derivative approach (dashed lines) and the Optimal approach (same predictions as Derivative, not shown)
allocated nothing to the L depolymerizing enzyme at low potential returns at moderate microbial biomass levels. The Relative approach
(dash-dotted lines) predicted very similar allocation as the Derivative approach at higher microbial biomass levels (indicated by overplotting

of the thick lines), but overestimated allocation to enzymes of low revenue at moderate biomass levels (thin lines).

3.1 Prescribed potential returns experiment

The Derivative approach yielded the same allocation as the Optimal approach with the Prescribed potential returns simulation
experiment. The Relative approach yielded similar results as the Optimal approach for high microbial biomass levels, i.e.
levels that resulted in an enzyme synthesis flux of 10 times the half-saturation constant of enzyme action k,,x, which in
SESAM is a flux, specifically the product of a half-saturation enzyme concentration and enzyme turnover rate. For moderate
microbial biomass levels it overestimated allocation to the enzymes with low revenue (Fig. 4). With the Optimal and Derivative
approaches there was no investment into enzymes with very low revenue at moderate biomass levels.

Since all state variables are held constant in this experiment, there is no change in respiration, microbial growth, CUE, as

well as C in key model compartments. These subsequent changes are explored in the following experiments.
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Figure 5. In the FACE simulation experiment all three allocation approaches predicted the same pattern of increased labile ©M-substrate (L
in gCm~2) and a shift towards mineralization of residue ©OM-substrate (R normalized by initial steady state values). The Derivative approach
yielded the same predictions as the Optimal approach (indicated by dashed line overplotting the solid line). The Relative approach (dash-
dotted line) slightly overestimated allocation to the residue degrading enzymes, acr. This resulted in lower initial R stocks and a smaller

decrease in the period of higher carbon inputs between year 10 and 60.

3.2 Decadal-term: FACE

The Derivative approach yielded the same allocation as the Optimal approach with the FACE simulation experiment. The
Relative approach differed by overestimating the allocation to the enzyme with lowest revenue, a . Hence, it predicted smaller
initial steady state stocks but also predicted relatively less mining of residue OM during period of increased carbon inputs (Fig.
5). By adjusting parameters related to organic matter decomposition in the simulation with the Relative approach, the same

steady state stocks were simulated, but still the decrease of residue OM was smaller (Fig. Al).
3.3 Sub-annual: Incubation

The difference between optimization approaches were small compared to the differences to the variant without adaptation (Fig.
6). All three optimization approaches showed decreased fluctuations of CUE, both in time, as well as across C:N ratios of added
labile Hitter-substrate compared to a non-optimized fixed allocation. The Derivative approach’s predictions matched the Optimal
approach’s predictions, while the Relative approach initially slightly underestimated allocation to the residue degrading enzyme
(ap) resulting in decreased biomass synthesis (Fig. 7).

The Relative approach’s predictions differed from Optimal approach after one year of incubation when microbial biomass
and enzyme levels declined (Fig. 8). It still allocated to the labile-degrading-enzymes-enzymes degrading labile substrate
(ar < 1), while with the Optimal approach, microbial community did not invest into degrading the small labile substrate
pool anymore. Hence, some of the labile substrate pool was not decomposed, i.e. was apparently persistent with the Optimal

approach.
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Figure 6. The differences in predicted carbon use efficiency (CUE) were small across optimization approaches (first two panels) compared to
non-adaptive Fixed allocation in the Incubation simulation experiment. Differences in allocation to residue degrading enzymes, ar(gg™ "),

are constrained to the very start and end of the experiment.
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Figure 7. In the Sub-annual incubation simulation experiment the three optimization approaches yielded a higher biomass synthesis, syn g
(gCm~2yr™"), than Fixed, i.e. not adapting allocation. They allocated relatively more resources to the residue degrading enzymes g during
the initial N-limitation. This resulted in lower overflow respiration, resp, (gCm™2yr™'). The Relative approach initially underestimated
ar resulting in slightly lower biomass synthesis compared to the Optimal approach. Shown predictions correspond to an amendment with

C:Nratio of 50 g/g.
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Figure 8. In the Incubation simulation experiment after some time microbial biomass, B (gCm~2) decreased to low levels and allocation
shifted towards residue degrading enzymes only, g = 1 with the Optimal approach (solid line). Hence, decomposition of a small remaining

pool of labile organie-mattersubstrate, L (gCm™2), stopped.

4 Discussion

The purpose of this work was to more rigorously define and implement the optimal growth hypothesis for SESAM and study
the consequences of two simplifications. We found that the previously used Revenue approach could be derived from the more
rigorous Optimal approach for a set of conditions. Therefore, we are more confident into conclusions drawn from previous
SESAM studies. Further, we found no or only marginal differences between the Derivative and Optimal approaches. There-
fore, we will use the Derivative approach to further develop the SESAM. The following section discusses the optimization

approaches in more detail.
4.1 Optimization approaches

The Optimal approach constitutes the mathematical formalization of the hypothesis of community enzyme allocation optimiz-
ing microbial biomass growth for SESAM. The Relative approach has been used in previous SESAM versions. It has been
shown in this study to be a special case of the mathematically formalized Optimal approach. It is valid for enzyme alloca-
tion fluxes larger than the half-saturation constant in the decomposition equation, which is usually the case at not too small
microbial biomass. The Derivative approach is another heuristic of optimal enzyme allocation that relies on derivatives of the
enzyme returns but does not require explicit formulas for the optimal allocation.

The three approaches predicted the same patterns in long-term as well as sub-annual scale simulation experiments. Hence,
the conclusions drawn with SESAM so far were corroborated. Specifically, the following patterns emerge as a consequence

of microbial community adaptation of enzyme allocation: The priming effect (Kuzyakov et al., 2000) and the N banking
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mechanism (Perveen et al., 2014), (Fig. 5), and the dampening of CUE fluctuations with an adaptive microbial biomass (Kaiser
etal., 2014) (Fig. 6).

While the Optimal approach is exact, it is tedious to implement and to update with further developments of SESAM. It
requires the developers to derive explicit formulas for the optimal allocation for each combination of enzyme types in the
mix of enzymes allocated to. With including more enzymes or more types of enzymes, the formulas grow complex and an
increasing number of potential optima need to be checked and compared. Therefore, we also consider the simpler Relative and
Derivative approaches and discuss their effect on model predictions.

The Derivative approach yielded predictions that were so close to the predictions of the Optimal approach that they can
hardly be spotted in the plots (Figs. 5, 7). However, it works similar to gradient based numerical optimization schemes and
also shares its risks. First, it might result in limit cycles, where residue organic matter and microbial biomass oscillate instead
of converge to a stable optimal allocation. We argue that this actually may really happen in soil, although perturbations with
fluctuating litter input and decomposition fluxes changing with environmental conditions may quickly shift the decomposer
system into states away from the basin of such a limit cycle (Strogatz, 1994). If the Derivative approach yields predictions
with a decadal-scale limit cycle, perturbations of model drivers are expected to drive the simulation away from the limit cycle.
Second, the Derivative approach might get stuck in local optima and saddle points where the derivative of the return approaches
zero. Gradient based optimization schemes implement some notion of momentum to get past such points. There is also some
momentum in the soil system, because enzyme levels need some time to develop towards its quasi-steady state and microbes
use storage compounds to support developments in hourly to weekly time scale where returns from enzymatic processing
do not support further growth. Because SESAM explicitly tries to abstract from such microbial details that are important for
reacting on short-term fluctuations, the Derivative approach is prone to this risk of getting stuck at saddle points. We did not
encounter such conditions at our simulations yet. However, in case such issues pose a problem, we need to think of ways how
to implement simple notions of momentum in SESAM.

The Relative approach yielded predictions that differed from the predictions of the Optimal approach, specifically for low
microbial biomass levels and for enzymes with low revenue. This was expected with the derivation of the conditions where the
Relative approach is valid (Appendix C). Although small differences in enzyme allocation yield also only small differences in
relative steady-state stocks, a small relative difference in the stock of the residue pool can result in considerable differences of
total soil organic matter stocks. Such behaviour is observed in the FACE simulation experiments (Fig. 5). With this experiment,
the Relative approach predicted an initial share of enzyme allocation towards residue degrading enzymes of 30% compared to
about 26% with the Optimal approach. This led to a decrease of residue steady state stocks from about 3600 to about 3400
gCrrf2 (Fig. A1), which is an absolute difference that was larger than the entire labile substrate pool. This, in turn, resulted in a
predicted relative change of residue stocks with the FACE simulation experiment that significantly differed from the predictions
with the Optimal approach (Fig. 5)

Based on these findings, we will continue developing SESAM focusing on the Derivative approach.
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Figure 9. Constrained enzyme hypothesis: At low microbial concentrations, it is not beneficial for the microbial community to allocate to
different enzymes types. There are some substrates for which no enzymes are synthesized. Hence, some substrates, which may be quickly
decomposed at higher microbial concentrations, become apparently persistent. This apparent persistence only indirectly depends on the

properties and accessibility of the substrates and depends more on the relative availability of alternative substrates.

4.2 The constrained enzyme hypothesis

The Optimal approach’s predictions differed most from the previously used Relative approach’s predictions at low microbial
biomass levels. The Optimal approach excluded enzymes with low revenue from the set of enzymes to allocate to. For example,
the allocation to the enzyme depolymerizing the labile substrate pool was zero for a potential return of this enzyme below 0.2
gm~2yr~! in the Prescribed potential returns simulation (Fig. 4). The optimal enzyme allocation is determined primarily
by availability of carbon and nutrients from organic and inorganic uptake. However, with the Optimal approach, the optimal
enzyme allocation in addition depends on the size of the microbial biomass, because they control the relative size of the
enzyme pools compared to saturating levels. The lower the microbial biomass, the farther away is enzyme production from
levels where organic matter decomposition saturates. Hence at low microbial biomass it is not beneficial to distribute enzyme
allocation across several enzymes including enzymes with low potential revenue. Similarly, the Optimal approach predicted in
the Incubation simulation experiment that a small fraction of added organic matter, L is not decomposed (Fig. 8). This insight
into optimal allocation with SESAM generates an additional hypothesis why we observe high ages of some organic matter
in soil and an additional insight into priming mechanisms (Fig. 9): Microbial community expresses a smaller set of enzyme
types at low biomass levels. This hypothesis predicts that some organic matter is not decomposed in the presence of microbes
that potentially can decompose it, if biomass levels are low and if there are alternative substrates decomposable with higher
revenue.

The constrained enzyme hypothesis is able to account for observed rhizosphere priming (Cheng et al., 2014) or increased
SOM loss after disturbance. When microbial biomass grows, e.g. by making enough labile substrate available, the focus on

solely the enzymes with highest revenue is not beneficial any more and the optimal microbial community also invests into

decomposition of the organic matter with lower revenue. Apparently persistent organic matter becomes decomposed.
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This non-investment into enzymes of relatively low revenue is a complementary hypothesis to the existing hypotheses of
SOM preservation (von Liitzow et al., 2006, 2008). After the chemical recalcitrance hypothesis has largely been dismissed
(Schmidt et al., 2011; Dungait et al., 2012; Kogel-Knabner, 2017) most hypotheses focus on restricted accessibility of SOM to
soil microbial decomposition. One set of hypotheses emphasizes protection by association with minerals (Schrumpf et al., 2013;
Ahrens et al., 2015; Mathieu et al., 2015; Woolf and Lehmann, 2019), another set emphasizes protection inside soil aggregates
(Six et al., 2000; Lehmann, 2007; Schrumpf et al., 2013), another set emphasizes soil heterogeneity and spatial separation
(Ekschmitt et al., 2005, 2008; Salome et al., 2009) or environmental conditions (Or et al., 2007; Keiluweit et al., 2017).
They are related to the hypothesis of microbial energy limitation and are modified by inputs of fresh organic matter, i.e. the
priming effect (Keiluweit et al., 2015; Henneron et al., 2022). Recently, the diversity hypothesis has gained attention for SOM
preservation (Lehmann et al., 2020; Weverka et al., 2023), which has formerly been discussed in aquatic literature (Jannasch,
1967; Jiao et al., 2010; Arrieta et al., 2015). It emphasizes the low return on investment for very heterogeneous substrates and
the associated required investment into a broad set of enzymes. The constrained enzyme hypothesis goes beyond the diversity
hypothesis. While in the diversity hypothesis, the preservation is controlled by the heterogeneity of available substrates, the
constrained enzyme hypothesis predicts that preservation additionally depends on the amount or density of microbial biomass
and on the availability of alternative substrates.

Very similar conclusions have been drawn by a modeling study that was published shortly after the discussion paper of this
study. Weverka et al. (2023) modeled the revenue of intracellular enzymes or metabolic pathways that need to be expressed to
assimilate a diverse set of substrates. Similar to Wutzler et al. (2017), they compared different strategies of microbes investing
into different enzymes including a strategy of investing only into the enzyme with highest revenue and a strategy the corre-
sponds to the relative/revenue approach. They also assumed microbes to maximize growth. Their model structures, formulas
for allocation and insights are comparable to this study. They differ by focusing on assimilation and intracellular enzymes,
rather than decomposition and extracellular enzymes, and they focus on the number of different substrates rather than stoi-
chiometry of substrates. Instead of computing optimal allocation they assumed that microbes would not invest into enzymes
where change in return was less than investments (Harvey et al., 2016).

Similar to this study, they observed in their model that substrates at low concentration persist because it is not beneficial
for microbes to produce respective enzymes. Moreover, they explained cometabolization of substrate of low revenue by the
assumptions that assimilation/degradation saturates at high enzyme levels and that is therefore beneficial for microbes to
distribute their investments also into enzymes of lower potential return (Fig. 3). The current study differs from Weverka et al.
(2023) by actually computing the optimal enzyme allocation, and consequently predicts different allocation and conditions, at

which specific enzymes are produced.
4.3 Optimality assumptions

The conclusions of this paper depend on several assumptions. First, they depend on the formulation of depolymerization (1)
and biomineralization (5). Specifically, they depend on the assumption that the decomposition fluxes saturate at high enzyme

levels (Schimel and Weintraub, 2003; Tang and Riley, 2019). With alternative formulations (Wutzler and Reichstein, 2008)
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that assume a linear dependence of decomposition on enzyme levels (or alternatively microbial biomass) it would be optimal
to allocate to the single enzyme that yields the highest decomposition flux of the currently limiting element.

Moreover, we assumed that the instantaneous growth rate of the microbial community is optimized. Alternatively, to in-
stantaneous growth, the cumulative growth over a microbial characteristic time-span could be optimized, e.g. the time for
decomposing a single portion of carbon (Manzoni et al., 2023). The instantaneous strategy is sub-optimal to dynamical strate-
gies if legacy effects are present that are internal to the optimized system. At the same time the two strategies yield similar
performance when legacy effects are external to the optimized system (Feng et al., 2022), because competition alters the trade-
off between current and future gains. Hence, optimizing at a different system boundary, which is usually associated with a
different time scale, results in different optimal strategies (Dewar, 2010). The focus of SESAM on the entire microbial com-
munity calls for a dynamic strategy because it renders many factors internal, compared to a focus on competing microbial
populations that renders soil organic matter an external factor. However, SESAM is intended to model decadal-term changes
and to be driven with annually averaged drivers. The two strategies will presumably converge at such conditions. This is be-
cause enzyme pools and decomposition develop towards a quasi-steady state where current and future gains are similar within
a sub-annual timescale of microbial growth.

SESAM focused on the partitioning of allocation of the total enzyme investment towards different enzymes. In addition, the
total allocation into enzyme production can be a trait that adapts to optimize microbial growth (Calabrese et al., 2022). Future
SESAM developments will explore if a joint optimization of total allocation and allocation partitioning can be derived, and

whether such a joint optimization alters the consequences for the long-term dynamics of SOM stocks.
4.4 Observational evidendence

The constrained enzyme hypothesis is a consequence of several model assumptions. It was derived without reference to ob-
served patterns. However, there is already some observational evidence supporting the hypothesis of lower diversity of ex-
pressed enzymes at low microbial activity.

Metatranscriptomics (Carvalhais et al., 2012) directly studies functional diversity of expressed enzymes in soils. Evidence
for the constrained enzyme hypothesis resulting from such studies are mixed. Straw amendmends increased microbial activity
diversity of an agricultural soil and let microbes upregulate several enzyme families (Kozjek et al., 2023). This result is in line
with the constrained enzyme hypothesis. Contrary, microbes downregulated enzyme families with straw amendmend to a soil
of an already diverse grassland soil in the same study.

A novel approach combines isotopically labeled measurements of microbial growth with quantitative stable isotope probing
(Hungate et al., 2015). It can assess microbial diversity of the active part of the microbial community. It revealed a reduction of
diversity of actively growing microorganisms with lower microbial activity under drought (Richter, 2023), which is in line with
expected reduction in diversity of expressed enzymes with lower microbial biomass as predicted with the constrained enzyme
hypothesis. However, low diversity of actively growing microorganisms under drought could also be due to stress-induced

shifts toward non-active conditions rather than due to optimal allocation with lower active microbial biomass.
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405 Analysis of potential activities of specific enzymes (Marx et al., 2001) and its spatially resolved zymography version (Spohn
et al., 2013) do not directly tell about the diversity of enzyme expression, because only specific enzymes are analyzed. However,
in line with the constrained hypothesis, zymography of a temperate forest soil revealed that common enzymes are hardly
expressed outside hotspots and before fostering microbial growth by amendments (Heitkotter and Marschner, 2018).

In summary, studies that specifically look at enzyme diversity in relation to microbial biomass levels are still lacking.

410 However, we can find observations from other studies that are in line with the constrained enzyme hypothesis.

5 Conclusions

The Optimal approach is the mathematical formulation of the hypothesis that microbial community enzyme allocation develops

in a way that optimizes growth in SESAM. The finding of similar predictions by the heuristic approaches compared to the

Optimal approach increases our confidence into conclusions drawn with SESAM. The heuristic Relative approach is shown to

415 be a special case of the Optimal approach valid at sufficiently high microbial biomass levels. The Derivative approach, another

heuristic of the Optimal approach, is valid also for low microbial biomass levels. Given that the Derivative approach is a good

heuristic of the Optimal approach that is better scalable to more enzyme types than the Optimal approach, we will continue the
SESAM developments with the Derivative approach.

The Optimal and Derivative approaches yield predictions at low microbial biomass that differ from the predictions of the

420 Relative approach. Specifically, they predict that enzymes with low revenue are not expressed at low microbial biomass. This

finding generated the constrained enzyme hypothesis for the preservation of organic matter in soils.

Code availability. SESAM (v3.1)is available coded in R at https://github.com/bgctw/sesam (last access: February 19th 2024) (doi: 10.5281/zen-
0d0.8026318) and coded in Julia at https://github.com/bgctw/Sesam.jl (last access: February 19th 2024) (doi:10.5281/zenodo.8026366). R
source code is released using the GPL-2 licence, because it uses other GPL libraries. Julia code is released using the more permissive MIT
425 License.
The simulation experiments are part of the R repository. They use the derivSesam3P model variant. The Prescribed potential returns
code is provided in "Allocation" section of file develop/23_optimAlloc/sesamess/sesam_LRP_deriv.Rmd. The Decadal-term FACE code is

provided with file develop/23_optimAlloc/Facel_3P.Rmd. The Seaonsal Incubation code is provided with file SimBareSoilPulse_opt.Rmd.

Appendix A: Additional figures

430 This section provides figures that detail some of the results and provide consistent presentation of main quantities across the
experiments. The consistent presentation of all the quantities can not avoid some overplotting.
First, predictions of the FACE simulations experiment for non-normalized residue pool, R, and for additional scenarios with

adjusted decomposition parameters are shown in Fig. Al.
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Figure Al. Relative approach simulated with a decreased decomposition rate of the residue pool, kr or an increased k., n r, in the FACE
simulation experiment, matched the initial steady state stocks but still underestimated the decrease of residue stocks, R (gCm~2), during the

period of higher carbon inputs.

Next, figures A2, A3, and A4 present common quantities across experiments. They also include a "Fixed" scenario, where
enzyme allocation is not adaptive but constant, where specifying the initial value corresponds to specifying another model

parameter.

Appendix B: Optimal enzyme allocation

This section derives explicit formulas of optimal enzyme allocation by finding the allocation that maximizes total return. It
starts with a lemma that states conditions for which the optimum is attained when derivatives are equal. The lemma is then

used in subsequent derivations of optimal allocation.
B1 Optima at equality of derivatives

Lemma 1: Letur(a) = C Y 5 aezrev z be a function that is a weighted sum of components rev z up to some constant C'y # 0,
where weights az € (0,1) add up to one: ) oz = 1 and component rev may depend on weight «zz but not on the other

weights. Further, let rev 7 be differentiable to cvz and let potential optima € (0,1). Then at the optima of ur () all derivatives

d(azrevy)

1o, areequal.

Proof: Because of the sum-to-one constraint, we express one of the weights as a function of the other weights and have only

n — 1 free weights.
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Figure A2. Additional quantities and Fixed scenario of the deeacal-term-decadal-term experiment compared to Fig. 5. o r(gg™"): propor-
tion of enzyme allocation to Residue degrading enzyme, B(gm~2): microbial biomass, synz(gm™2yr~!): C flux for microbial biomass
synthesis, CUE(gg™'): Carbon use efficiency, L and R (gm~2): C in Labile and Residue substrate pool, resp(gm ™ 2yr~1): respired C flux.
The results based on the Optimal and Drivative are so close togehter-together that they overplot.

n—1
Qp = 1-— E (64
Z=1

da, _ 1
daz

We are interested in the optima of ur away from the borders, i.e. aopt € (0,1). In the derivative to «z all terms vanish

450 except the term involving revz and the term involving rev,,, because there o, is a function of az. By the chain rule we have:

dur dlagrevy) d(aprevy) day,

day _0_02( day + day, day
_c d(agrevz) d(anrevy)
T2 day day,
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Figure A3. Additional quantities and Fixed scenario of the sub-annual experiment compared to Fig. 7. Facets, colors, and linestyles corre-

spond to Fig. A2.

Hence, for Cy # 0 each d(ajTreVZ) has to be equal to w, i.e. all these derivatives have to be equal.
z Qn
B2 Return, revenue, and derivative for a biomineralizing enyzme

The return, revenue and its derivative of a biomineralizing enzyme are slightly more complex than the corresponding quantities

of a depolymerizing enzymes (sections 2.1.2 and 2.2.1). They are presented in Table B1 because of the one-columm constraint

of normal text in this journal.
B3 Explicit optimum formulas

We seek the community composition, here represented by enzyme allocation, «, that maximizes total return. This maximizer
is located either at the borders of the domain or at a location where all derivatives of the total return are zero. We only look at
cases where we know which several-enzymes take part in the mix with positive allocation, i.e. having az € (0,1) and therefore

do not need to look at the borders.
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Figure A4. Additional quantities and Fixed scenario of the sub-annual experiment compared to Fig. 8. Facets, colors, and linestyles corre-

spond to Fig. A2.

The strategy is first to find the small set of allocations where all the derivatives are zero, which includes maxima, minima,
and saddle points. Second, we constrain the set to conditions cz € (0,1) and select that element that results in highest return.
To-simplifying-In order to simplify formulas, we make the assumption that all half-saturation parameters are equal: k,, N z =

465 kiy,N.

B3.1 Two depolymerizing enzymes

Utilizing Lemma 1 (Appendix B1) we have:

d(aprevy) d(agrrevg)

dOLL daR
dL dR

(kmn +arapB)?  (kny + (1 —ap)apB)?

where agr =1—
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Table B1. Equations of return, dp,,, revenue, rev p, and derivative, dloprevp) of 4 biomineralizing enyzme. Note, that the last one has the
d(azrevy)

dog in section 2.1.1). It differs, however, in the half-saturation constant of the

same form as the one of the depolymerizing enzyme (

Michaelis-Menten term which now includes the plant enzyme production: (ep + kmn p)-

ep+apagB ep
kmnp+ep+apapB F kmnp+ep
ep+apapB)(kmnp +ep) —ep(kmnp +ep+apapB)
(kmnp+ep+apapB)(kmnyp +ep)
epkmnp 4+ apapBkmnp + 5+ apapBep — (epkmn p + €5 + apar Bep)
(kmnp+ep)2+apapB(kmnp +ep)
apapBknnp
(kmnp+ep)?+apapB(kmnp +ep)
kmNp OépaEB
ep+kmnp (ep +kmnnp)+apasB
dp kmnNp 1
WEnz €p +kmnp (ep+kmnp) +apapB
d(aprevP) . dp kmNp d ap
dap " Wenz €p + kmn p dap ((ep +kmnp) +OzPaEB)
dp kmnp (ep+kmnp)+apapB)—apapB
WEnz €p + kmNp ((ep +kmnp)+apapB)?
dp kmNP
Wen= (ep +kmnp +apapB)?

dpm =dp

— dp !

=dp

=dp

=dp

revp =

This provides a quadratic equation of « 1, which one can solve. We used the Sympy symbolic math tool. That one of the two

roots where o, € (0,1) and that yields a higher ur (o) provides the optimal a,.

apBdp, + kN (dp +dg) £ Vdrdr (apB + 2knyN)
aEB (dL — dR)

dri12 =

B3.2 Depolymerizing and biomineralizing enzyme

d(aprevy) d(aprevp)

dOLL dOLP
dr, dp

(kmN + aLaEB)Q B ((eP + k'rrLN) + (1 - aL)a’EB)Q

(agB+ep+kmn)dr +kmndp £V drdp (aeB+ep + 2kmn)
CLEB (dL — dp)

aLp1,2 =
B3.3 Two depolymerizing and one biomineralizing enzyme

We set agr = 1 — a, — ap and have equations of table. B2.
That one of the four roots where ap € (0,1) and derived oy (ap) € (0,1) and that yields a highest ur (o) provides the

optimal .
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Table B2. Potential optima for two depolymerizing and one biomineralizing enzyme

d(arrevy) d(arrevr) d(aprevp)

day, dor dap
dr dr dp

(kmn +aragB)?  (kmy+(1—ar —ap)apB)?  ((ep +kmn) +aparB)?

We first compute oz, given ap using the first equality.
. aEB(l — Oép)dL + kmN(dL -|-dR) ++drdr (CLEB(I — Otp) + kaN)
aL1,2 =
’ agB(dr — dgr)

Next we insert the both roots of oz, (aep) in equating the first and third utility to solve for ap.

For the first root of ar, we get:

apio=(A1xD1)/B:
3 3
Ay =2Bad? dpvdr — Badidp — Badrdpdr +4d2 dpVdrkmn — dyep — dy kmn

—2d% dpkmn +2d2drep + 2d2drkmn — 2drdpdrkmy — drdsep — drdakmy

D1 =+/dp (Ba+ep +3kmn) \/—2d§ Vdr + 4d%d§ - QdEdI% +d3 —didr —d3d% +did3,
B1 = Ba (2d§dp\/£+ d¥ —d3dp —2d3dr —drdpdr + deg)
For the second root of a1, we get:
apsa=(A2£D2)/Bo
Ay = 2Bad; dp/dr + Bad2dp + Badydpdg + 4d? dpv/drkmy + dbep + d kmy
+2d2 dpkmn — 2d2drep — 2d3.drkmn + 2drdpdrkmy + drdrepr + drdskmy

9 7 3 5 5
Dy =+dp (Ba+ep+3km1v)\/2df\/dR—4dfd§+2dfd§ +d3 —didp — d3d2, + d2 d,

3
B> = Ba <2dg dpVdr —d} +didp +2d3dr +drdpdr — de§>

480 B4 Excursion: replacing revenue by relative profit

Revenue, here, is defined as return per investment, rev; = dz,,/invz,,. One could argue that one should rather maximize the
profit, i.e. return - investment and corresponding profit revenue, rev,, ., i.e. profit/investment by optimizing enzyme allocation.

Here we show, that optimizing the profit yields the same optimal allocation as optimizing the return.

rev. = Zw —1MVy Mvy,, =Irevy —
pz (d w i w)/ w 1

d(azrevy,) _d(agrevy) _dag d(agzrevy) _4

daz dOzZ daz daz
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485 The total profit is the sum of profit revenues multiplied by total enzyme investment, inv,,.

490

495

500

urp (o) = inv,, Z agrev, ,(az)
z

This equation fulfills the conditions of Lemma 1 (Appendix B1) and at the optima all derivatives are equal.

d(agrevy,) B d(ajl"eij)

dOti dOtj
d(o;rev;) d(ajrevy)
1= —1
dOéi dOéj

d(airev;)  d(ojrevy)

dozi dOéj

The last line corresponds to the same condition as when optimizing returns. Hence, they lead to the same optima.

Appendix C: Derivation of the relative approach

The Relative approach approximates optimal allocation by setting optimal allocation proportional to revenue (2.2.3). Hence,

we seek the conditions for which the following relationship holds:

ﬁ ~ I'er

(673 rev;

At the solution of the Optimal approach all the derivatives of (revenue times «) for all enzymes in the mix are equal

(Appendix 2.2.1). By using d(o‘thr?Z) ~Tevy %, as shown below, for any two enzymes i, j we have:
d(a;rev;)  d(ajrevy)
doy; - doy
e+ kmni ej +kmn;
rev; ~ rev;
aiaEB ajaEB

a; rev;e;+knn

|
2

o rev; e; +kmn;
OZj I‘GVj

|
2

o;  rev;

The last approximation holds only for similar half-saturation parameters across enzymes k,,n 7 ~ k., n, and plant enzyme
production being low compared to this half-saturation: ez < k., n-

The first approximation in the second line is only valid for an enzyme production flux that is not larger than the half-
saturation, k,,,n  (see below). This is violated at low microbial biomass or very low a .

Hence, the optimal allocation is approximately proportional to the revenue for the combination of the following conditions:

— all enzymes have a non-negligible share
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— microbial biomass is sufficiently high

— plant biomineralizing enzyme production is low.

505 The derivation above used the following relationship that still needs to be shown: d(ajTrZe"Z) ~revy %.

For depolymerizing enzymes we use the following approximations. For azag B > k., N z,1.e. 2k, Nz+azagB ~ azagB,

the half-saturation k,, v ; can be neglected in the denominator of the revenue. Note that v za g B > kv 7 implies (azap B)? >

2
kmNZ'

dz 1
WEnz kmNz +azagB

dZ 1
WEnz 0zapB
d(aerVz) o dz kmNZ

daz  wene (kmyz+ozapB)?
dy kmn z
WEnz k?nNZ + kaNZaZaEB + (azaEB)2

revy —

dZ kmNZ
WEnz 0zapB(2kmnz +azapB)

kmNZ
2kmNz +azapB
kmNZ
ozZaEB

=TIevy
R revy

510 where the first two relationships have been derived in Appendix 2.1.1. For depolymerizing enzymes we have, ez = 0, because
they are not produced by plant roots.

Similarly, for biomineralizing enzymes we require azagB > kN z + €z, where ez is the production of enzyme Z by

plants.
revy = dZ kmNZ 1
WEnz €z +kmNz €z +knNnz +azapB
dz kmnz 1
" Wens €z + kmnz azapB
d(azrevZ) _ dz kmnz
day " Wens (ez +kmNz +azapB)?
. dz kmNZ
" wan: (ez+kmnz)?2+2(ez + kmnz)azap B+ (azapB)?
_ dz kmn z
" Wen: azapB2(ez + kmnz) + azapB)
=Trevy €z + k:mNZ
2(ez + kmnz)+azagB
~royy Z T FmNz
azagB
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Appendix D: Derivative-based change of community allocation

SESAM assumes that microbial community develops in a way to maximize growth of the entire community. Growth increases

with uptake and hence increases with decomposition flux for given enzyme allocation. The revenue of allocation to enzyme

dz.,(az)

Zisrevy = P

The return dz,, is a limitation-weighted mineralization flux or uptake flux of nutrients and carbon
(sections 2.1.1 and 2.1.2). The investment is the share, oz, invested into production of enzyme Z multiplied by total limitation-
weighted flux, wg,.ap B, allocated to enzyme production.

Although it is possible to derive explicit formula for the allocation that optimizes total return for simple cases, the formulas
quickly grow and involve higher-order polynomials of o with several solutions outside the reasonable bound a7 € [0,1].

Here we follow an alternative local approach were we assume the rate change of az over time to be proportional to the
deviation of the derivative of change of total return with respect to avz to the average across the derivatives for different
enzymes. The higher the increase in total return for shifting allocation towards a specific enzyme, the faster the community
changes in this direction.

(azrevy)

The total return is a weighted sum of enzyme revenues, and derivatives of d doy have been derived for depolymerizing

and biomineralizing enzymes (section 2.2.1).

UT = WEn.agB g azrevy(ayz)

z
dur d(azrevy)
T opn.apBy 27T
dOLZ WEnzB ; dOéZ

We assume that the larger the change in return with increasing allocation, i.e. the derivative to allocation coefficient oz,
the larger is the change in allocation. In addition to the assumption of proportionality to the derivative, we assume that the

community changes at a rate of the same magnitude as synthesis and turnover of microbial biomass.

daZ dUT
— X —— =M
dt = day
_<synB| >;§z;—mdu
= (2Bl ) dez 7
B Mdu

duT
My, = Mean; | ——
dOél'

where my,, is the average across derivatives of return across enzymes that are allocated to. If all changes are the same, i.e. equal
to the mean, the allocation is optimal because it does not increase in any direction.

We want the change to be proportional to the change in return compared to the average return. Subtracting this mean ensures
that the sum of all the changes in o sums to zero so that the sum across « is preserved. The proportionality factor normalizes
the change in return and multiplies this relative change by the rate of microbial turnover, composed of biomass synthesis and

biomass turnover.
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540 D1 Exclude enzymes whose negative relative change is larger than its share

Community may not allocate to all enzymes. Hence, m g, (an updated version of myg,) averages only across a subset of
enzymes. The derivative optimization strategy assumes that nothing is allocated to an enzyme if its normalized change towards

zero is larger than than its current share, i.e. is more negative than —a.z.

duT
UL — g
d ue
Zo = 7)oz T
Mdue

daz |SynB‘ —Qy fOI‘ZEZO
at B 7)) o,
doz T otherwise
Mdue
duT
syn Too — Mdue
:<| Y B+T>max doz Ty
B Mdue
Z duT
C#Zo dog
Mdue =

HZ}\ Zo| + Zcezg o
545 Where [{Z}\ Zy| denotes the number of enzymes allocated to, i.e. the cardinality of the set of all enzymes without those in Z
The relative change of those excluded enzymes is set to —az, resulting in negative changes going to zero as «vz approaches

zero. Hence, the relative change is lower-bounded by —a.z.

Mg, has to be adjusted to M4y, SO that Zi dai — () holds.

dt
duT
dar — Mdue
DD DRV
Mdue
¢&Zo CE€EZy
550 This definition is recursive, because m,. is computed across a set that is defined using mgq. In order to determine Z,

one can start with the empty set and add all enzymes that fulfill the condition. If enzymes were added then the mean across
remaining derivatives increases, and the condition has to be checked again. Hence, adding enzymes to Zj is repeated until no

more enzymes fulfill the condition and the mean does not change any more.
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