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Abstract. Stable carbon isotopic signatures of methane emissions are broadly used for methane source identification, 

apportionment, and global-scale modelling of methane sources and sinks. Thus, accurate and precise isotopic measurements 

of methane are crucial for methane studies from the local to global scale. To answer the need for robust and verified 

measurement methods, we aim at defining the best practice to determine isotopic signatures of methane sources, considering 

accessibility, practicality, costs, accuracy, and precision. Using Keeling and Miller-Tans methods, we verify the impact of 20 

linear fitting methods, averaging approaches, and, for Miller-Tans method, differently defined backgrounds. Verification is 

carried out for measurement sets using Isotope Ratio Mass Spectrometry and Cavity Ring Down Spectroscopy (CRDS). The 

use of AirCore for sampling, with subsequent measurements by CRDS, is also examined. Different analytical strategies 

introduce bias in determining isotopic signatures of methane sources, and the crucial role of rejection criteria is 

demonstrated. Overall, the most robust results are obtained for non-averaged data using fitting methods, which include 25 

uncertainties on x- and y-axis values. 

1. Introduction 

To better understand the global CH4 budget, additional tracers, such as alkanes (e.g. ethane) or stable isotopic signatures, can 

be measured alongside the CH4 mole fraction, as they provide additional information about CH4 source apportionment (e.g. 

Simpson et al. 2012; Rella et al. 2015; Sherwood et al. 2017; Turner, Frankenberg, and Kort 2019; Basu et al. 2022). 30 

Typically, stable carbon isotopic signatures of methane emissions (expressed as δ13CH4) measurements are widely used, 

from local to global scales to characterise emission sources from individual sites to better constrain CH4 budget changes 
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(Phillips et al., 2013; Rella et al., 2015; Röckmann et al., 2016; Lopez et al., 2017; Hoheisel et al., 2019; Maazallahi et al., 

2020; Menoud et al., 2020, 2021; Defratyka et al., 2021; Al-Shalan et al., 2022). However, δ13CH4 values of individual 

methane sources from one sector (e.g. landfill, natural gas) vary globally, depending on numerous factors, like formation 35 

processes, locations, or management (e.g. Whiticar 1999; Chanton et al. 2000; Sherwood et al. 2017; Menoud et al. 2022). 

Moreover, δ13CH4 of some sectors are spread across a wide range and overlap with δ13CH4 for other sectors (e.g. Menoud et 

al. 2022; Sherwood et al. 2017; Fernandez et al. 2022). Therefore, a better understanding of δ13CH4 source signatures can 

improve source attribution in top-down emission studies (atmospheric observation combined with the inverse modelling), 

(e.g. Saunois et al. 2020; Varga et al. 2021; Basu et al. 2022) to verify emissions from bottom-up approaches, which use 40 

process-based models, inventories and data extrapolation (Rigby et al., 2012; Schwietzke et al., 2016; Lan et al., 2021).  

Regarding individual sectors, (e.g., natural gas, agriculture, landfill), δ13CH4 can be measured in the atmosphere in near-

source conditions (i.e., downwind of a CH4 source). In this case, isotopic signatures can be sampled from ambient air by 

taking bag/canister samples and measured afterward in the laboratory (e.g. Townsend-Small et al. 2012; 2016; Lowry et al. 

2020; Bakkaloglu et al. 2021; 2022;). An alternative is to deploy in-situ instruments, for example, a Cavity Ring Down 45 

Spectroscopy (CRDS) instrument equipped with an AirCore (air storage tool) (Karion et al., 2010; Rella et al., 2015) to 

increase sampling precision (Lopez et al. 2017; Hoheisel et al. 2019; Defratyka et al. 2021). Calculating a source’s δ13CH4 

signature is complicated by ‘background’ air, i.e. the atmospheric air that exists before mixing and being influenced by a 

source. To extract background δ13CH4 from the near-source ambient air samples, a Keeling method (Keeling, 1961; Pataki 

et al., 2003) or Miller-Tans method (Miller and Tans 2003) can be used. These methods are based on the principle of mass 50 

balance conservation. Both methods use a linear regression to determine δ13CH4 methane sources. As such, the calculation 

method of choice has an impact on determining a source’s isotopic signature and can potentially bias determined δ13CH4 

(Miller and Tans 2003; Zobitz et al. 2006; Wehr and Saleska 2017).  

To the best of our knowledge, the verification of the use of Keeling and Miller-Tans methods to determine δ13CH4 from 

near-source measurements has never been conducted under controlled and realistic field conditions. To fill this gap and 55 

better understand these methods, as well as derive a more universal approach, isotopic measurement and sample collection 

were included within a controlled release experiment. The experiment focused on the methods applied during mobile, 

vehicle-based methane measurements. Samples collected over five days of the experiment were used to compare Isotope 

Ratio Mass Spectrometry (IRMS) and CRDS measurement techniques. Moreover, the studies were focused on a 

comprehensive inter-comparison of Keeling and Miller-Tans methods, including the impact of averaging clusters, and for 60 

Miller-Tans method, the impact of chosen backgrounds. Finally, data were re-analysed using different linear fitting methods.  

As δ13CH4 measurements are now widely used in understanding atmospheric methane, both on source (Menoud et al., 2022) 

and global scale (Nisbet et al., 2019), improved determinations of δ13CH4 source signatures could refine the constraint to 

infer CH4 source distributions from regional to global scales. The measurement and data analysis techniques developed in 

this study could also be useful for those studying additional problems in greenhouse gas and carbon cycle science by 65 
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improving the understanding of the contribution of different emission sources. We also expect the result to generalize to 

other applications beyond mobile measurements of methane, such as continuous time series studies. 

2. Controlled release experiment and sampling methodology 

2.1. Controlled release set up  

The controlled release experiment allows an evaluation of the accuracy and precision of mobile near-source measurements of 70 

CH4 emission rate, C2H6:CH4 and δ13CH4 under strictly supervised conditions. The experiment lasted over 5 days in 

September 2019 at Bedford Aerodrome, UK. Pure methane was released from a manifolded multi-cylinder pack, of twelve 

cylinders containing 999.6 ± 10.0 mmol mol-1. The impurities in cylinders came from ethane (48 ± 10 µmol mol-1) and 

propane (0.149 ± 0.30 µmol mol-1). The methane release rate varied up to 70 L min-1. During the release, CH4 was mixed 

with ethane (C2H6) in a varying ratio, giving C2H6:CH4 ratios from 0.00 to 0.07. The purity of the C2H6 was 999.9 ± 10.0 75 

mmol mol-1,, with impurities mostly from methane (2.27 ± 0.46 µmol mol-1) and propane (7.5 ± 1.5 µmol mol-1). The details 

of the experimental setup configuration, particularly about gas blending and control centre can be found in Gardiner et al. 

2017. All 12 cylinders were filled at the same time from the same CH4 source, ensuring δ13CH4 remained stable over the 

entire measurement period. Overall, the controlled release experiment involved 24 releases, each lasting about 45 minutes. 

Throughout the paper, the units of ‰ represent δ13CH4 and are not an indication of relative error in the results. 80 

2.2. Direct sampling from cylinder batch to determine δ13CH4 

To directly determine δ13CH4 of the source gas, a sample cylinder was filled directly from the multi-cylinder pack after the 

end of the experiment. Then, the sample was diluted to approximately 600 µmol mol-1 and measured using laser 

spectrometry (Rennick et al., 2021). In the next step, 600 µmol mol-1 sample was diluted to 2.5 µmol mol-1 and measured 

using IRMS at Royal Holloway, University of London (Fisher et al., 2006). δ13CH4 measured by laser spectrometry is equal 85 

to -41.45 ± 0.06 ‰ (1 Standard Deviation - 1SD), while δ13CH4 measured by IRMS achieved -41.27 ± 0.06 ‰ (1SD) 

(Rennick et al., 2021). Direct measurements for δ13CH4 by laser spectrometry and IRMS are compatible within 2SD and was 

used as a true δ13CH4 signature of the multi-cylinder pack. The true δ13CH4 signature was compared with results from 

samples collected using mobile systems, described in section 2.3. 

2.3. Mobile sampling methodology set-up 90 

The controlled release experiment gave the opportunity to validate the mobile laboratories of Royal Holloway, University of 

London (RHUL) and the Laboratory for Sciences of Climate and Environment (LSCE). The RHUL mobile laboratory used 

for this experiment was in operation between 2013 and 2020 (Lowry et al., 2020). This vehicle was equipped with a Picarro 

CRDS G2301 analyser for CH4 mole fraction measurements, a Los Gatos Research Ultraportable Methane Ethane Analyzer 
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(LGR UMEA) and a manually operated diaphragm pump for air sample bag filling. Three air cylinders were measured and 95 

calibrated against the NOAA scale by the Max-Plank Institute for Biogeochemistry Jena, which were used to calibrate the 

Picarro G2301 before and after the measurement campaign to the WMO X2004A CH4 scale (Lowry et al., 2020; France et 

al., 2016; Zazzeri et al., 2015). 

The LSCE mobile laboratory was previously used during mobile studies (Defratyka et al. 2021), and it is similar to other 

mobile laboratories equipped with a Picarro CRDS G2201-I (henceforth referred to as CRDS), capable of in-situ 100 

measurements of CH4 mole fraction and δ13CH4 (e.g. Rella et al. 2015; Lopez et al. 2017; Hoheisel et al. 2019). The mobile 

set-up of LSCE is supplied with an AirCore sampler for tripling sampling frequency during in-situ measurements of δ13CH4 

(Defratyka et al., 2021). The LSCE instrument was calibrated using a 3-point mole fraction and isotopic composition 

calibration, just before instrument’s shipment to the UK. After calibration, CH4 mole fraction is reported using the WMO 

X2004A scale and δ13CH4 is reported using international Vienna Pee Dee Belemnite (VPDB) standard (Craig, 1957). 105 

During mobile near-source measurements, the sampling method was based on driving through a plume of CH4. At the start 

of the release, a vehicle intersected the plume perpendicular to the wind multiple times. Then, for the case of the RHUL 

mobile laboratory, bag samples were collected by pumping air into 3 litre Flexfoil bags (SKC) within the CH4 plume, where 

the largest enhancement was observed. During the experiment, at least two bag samples from each CH4 plume, plus a 

background sample were collected per day. Bag samples, collected by RHUL, were measured afterward in the laboratory, 110 

using Picarro 1301 to determine CH4 mole fraction and using continuous flow gas chromatography isotope ratio mass 

spectrometry (CF-GC-IRMS Isoprime mass spectrometer with Elementar Trace Gas module, henceforth called IRMS) to 

determine δ13CH4 (Fisher et al., 2006).  

For LSCE sampling, if during CH4 plume intersection, the largest CH4 enhancement achieved at least 500 nmol mol-1 above 

background, the intersected CH4 plume was re-sampled using air collected and stored in the AirCore (see Appendix A). Data 115 

collected using the AirCore are henceforth called AirCore samples. During the three initial releases, bag samples were 

collected to be measured afterwards on the CRDS instead of on the in-situ AirCore sampler, as batteries issue occurred at 

LSCE mobile laboratory. Over the 24 releases, during 12 of them, AirCore sampling was performed. For most of the 

releases, more than one AirCore sample was collected. In total, 31 AirCore samples were collected. 

Significant cross sensitivities between C2H6 and δ13CH4 in the absorption spectrum can lead to bias in the measured δ13CH4 120 

by CRDS (details in Appendix A). The effect is inversely proportional to the CH4 mole fraction and proportional to the C2H6 

mole fraction in the sample and has been previously quantified (Rella et al. 2015; Assan et al. 2017; Defratyka 2021, chapter 

2). During this study, bag samples measured by LSCE, were collected when only CH4 was released (C2H6:CH4 = 0.00), thus 

the C2H6 on δ13CH4 correction was not applied for bag samples measured by CRDS. In the case of AirCore studies, data 

treatment to determine δ13CH4 source signatures is repeated twice. First, without applying the C2H6 on δ13CH4 correction, 125 

and second, with the applied C2H6 on δ13CH4 correction, to verify the impact of the C2H6 on δ13CH4 correction for in-situ 

mobile measurement of δ13CH4. 
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2.4. Mass conservation methods 

During mobile near-source measurements, the observed CH4 mole fraction and δ13CH4 were a mixture of atmospheric 

background CH4 and the CH4 from the source. To determine the isotopic signature of the source, the mass conservation 130 

principle can be used. This principle is widely applied either by using the Keeling method or the Miller-Tans method 

(Hoheisel et al. 2019; Menoud et al. 2020; Defratyka et al. 2021; Fernandez et al. 2022). In the Keeling method (Keeling, 

1961; Pataki et al., 2003), δ13CH4 is plotted against the inverse of CH4 mole fraction and the y-intercept of the fitted linear 

regression is interpreted as the δ13CH4 of the observed source: 

δ13CH4 obs =
CH4 bckg

CH4 obs
∙ (δ13CH4 bckg − δ13CH4 s) + δ13CH4 s (1),  135 

where subscripts obs, bckg and s refer to observed, background and source values.  

The Miller-Tans method (Miller and Tans, 2003) is another mass conservation approach, where the mole fraction and the 

isotopic signature of atmospheric background are assumed to be well known. The isotopic signature of the source is 

represented by the slope of a fitted linear regression, where, after background subtraction, δ13CH4 multiplied by CH4 mole 

fraction is plotted against CH4 mole fraction: 140 

δ13CH4 obs ∙  CH4 obs  −  δ13CH4 bckg ∙  CH4 bckg  = δ13CH4 s ∙ (CH4 obs − CH4 bckg) (2). 

The Miller-Tans method can be useful to interpret studies, where the Keeling method assumption of stable background is 

unfulfilled or unknown, e.g. when studies are conducted over a long period of time (Lowry et al., 2020; Al-Shalan et al., 

2022). 

3. Analytical methods of the acquired measurements 145 

Statistical properties of the δ13CH4 source signatures determined, with methods detailed in section 2, can be verified with a 

few steps to find the best analytical strategy for signature determination (Fig. 1). For this purpose, data collected using 

different mobile sampling strategies (bag samples measured on IRMS, bag samples measured on CRDS and CRDS AirCore 

in situ sampling) are analysed, both using Keeling method and Miller-Tans method, while different backgrounds (Sect. 3.1), 

linear fitting methods (Sect. 3.2) and averaging strategies (Sect. 3.3) are employed.  150 

3.1. Background determination for Miller-Tans method 

To evaluate the impact of a chosen background CH4 mole fraction and δ13CH4  signature, differently defined backgrounds are 

subtracted for Miller-Tans method. For bag samples measured on IRMS, as a first attempt, an “individual background” was 

subtracted, defined as a background bag sample collected directly after the release, when bag samples were collected within 

CH4 enhancement. For example, for all bag samples collected during first day, the background sample collected on the first 155 

day was subtracted. For the next calculation, an “averaged background” is subtracted, which is defined as the average of all 

background bag samples collected over whole experiment. Next, to verify the sensitivity of Miller-Tans method for a 
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differently defined background, calculations for two backgrounds with lower CH4 mole fraction and δ13CH4 than during the 

experiment were conducted: “global” and “random” background. A global background is an average global CH4 mole 

fraction observed in September 2019, equals to 1.8707 ± 0.0011 µmol mol-1 (NOAA/ESRL). As δ13CH4 observed at Mace 160 

Head in September 2019 was equal to -47.9 ‰, what was similar to background δ13CH4 measured during controlled 

experiment, global δ13CH4 was defined using value from Brownlow et al., as -47.2 ± 0.2 ‰ (2017). For random background, 

the CH4 mole fraction is set up the same as the global background, but the δ13CH4 was randomly set to -42.7 ± 0.2 ‰ to 

significantly differ from other δ13CH4 backgrounds to better test the sensitivity of Miller-Tans method to subtracted 

background. 165 

For bag samples measured on CRDS, Miller-Tans method is implemented three times, while differently defined backgrounds 

are subtracted. The backgrounds have been chosen similarly as for IRMS analysis. Thus, analysis is implemented three times 

where individual, averaged, and global background is subtracted. Background CH4 mole fraction and δ13CH4 for bag samples 

measured on IRMS and CRDS are presented in Appendix A.  

In the case of in-situ AirCore sampling, for the Miller-Tans method, data were analysed twice. First, subtracted background 170 

is calculated individually for each AirCore, as an average of AirCore data of an individual AirCore sample, observed directly 

before and after CH4 elevation (Miller-Tans 1). Second, averaged background of bag samples measured on CRDS is 

subtracted for every AirCore sample (Miller-Tans 2).  

3.2. Linear Fitting method 

Both Keeling and Miller-Tans methods rely on linear regression fitting. Thus, to quantify the impact of the fitting method, 175 

we apply the different methods to the varying datasets across sampling techniques (Fig. 1). Our analysis is focused on 

methods which were used in the past to determine δ13CH4 from near-source mobile measurement campaigns: Ordinary Least 

Squares (OLS) (Defratyka et al. 2021), Major Axis (MA) (Menoud et al., 2022), York fitting (Hoheisel et al., 2019) and 

Bivariate Correlated Errors and Intrinsic Scatter (BCES) Orthogonal (e.g. Fernandez et al. 2022). The MA method is also 

known as Orthogonal Distance Regression (ODR) or Deming regression. Most of the tested fitting are calculated using built 180 

in packages and functions in R: OLS using lm() function, OLS II and MA using lmodel2() function and York fitting using 

York() function from package IsoplotR. As there is no available package to calculate BCES fitting in R, BCES fitting is 

calculated using the lnr module in python. 

OLS method minimizes distance only on y-axis between fitted line and data points, using the principle of least squares to 

minimise the sum of the vertical distances from the regression line, what is also known as model I regression method 185 

(Legendre and Legendre 1998, chapter 10). In the presence of measurement errors in both x and y variables, the OLS method 

can be only used if the x value is measured with little error, compared to the y value error. According to Legendre and 

Legendre (1998), if the error rate on y axis is more than three times than on x, OLS is the most efficient method to estimate 

slope of linear fitting. Thus, using lmodel2() function, OLS can be also calculated, what was done here (further OLS II). It 
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allows for comparison of OLS results obtained by two different functions (lm() and lmodel2()), which supposes to give the 190 

same results for OLS and OLS II methods.  

If both x and y variables are not controlled by the researcher or measured with an error, using OLS can cause an 

underestimation of the slope inferred by the linear regression (Legendre and Legendre 1998, chapter 10). Thus, the model II 

linear regression methods are recommended because they minimize the distance both of x and y from the regression line. 

MA method minimize the sum of the squared Euclidean distances (x and y distances) from the regression line and it is 195 

examined here as an example of model II linear regression methods. Geometric mean regression (GMR) is another model II 

linear regression method, but is not tested in this study as it is expected to deliver similar results to the MA method (Zobitz et 

al., 2006). Details about standard errors of OLS and MA methods are presented in Appendix A. 

In contrast to OLS and MA methods, York fitting (York et al., 2004) and BCES regression (Akritas and Bershady, 1993) 

allow inclusion of x and y errors. Overall, York fitting can be treated as a general linear regression method, while OLS and 200 

MA are special cases valid in particular conditions and can be obtained mathematically from York fitting when appropriate 

circumstances appears (York, 1966; York et al., 2004). In the York fitting method, the best slope fit is searched iteratively, 

where the initial slope value is assumed, e.g. using OLS. Then, computations are weighted, based on x and y measurement 

errors. Finally, computations are repeated until differences between iteration are smaller than tolerance level, e.g. 10-15 (York 

et al., 2004). 205 

BCES method is a direct extension of OLS and was a last verified linear fitting method. Within BCES, four sub-methods can 

be employed: BCES (Y|X), BCES (X|Y) and two symmetric lines: BCES bisector and BCES Orthogonal (Akritas and 

Bershady, 1993). BCES (Y|X) assume x as the independent variable. BCES bisector was shown to be self-inconsistent and 

should not be used (Hogg et al., 2010). Finally, BCES Orthogonal is a line which minimizes orthogonal distances and should 

be particularly used when it is not clear which variable is supposed to be treated as the independent value. Our study is 210 

focused on the application of BCES Orthogonal, as this method was broadly implemented in previous studies (e.g. Zazzeri et 

al. 2015; Lowry et al. 2020; Fernandez et al. 2022). Additionally, to examine the difference between two BCES methods, 

BCES (Y|X) is also tested, as both methods could be implemented to determine δ13CH4. 

To arrive to the final uncertainty of x- and y-axis, error propagation was applied, both for Keeling and Miller-Tans methods. 

Details of used error propagation are presented in Appendix A. 215 

3.3. Data averaging  

3.3.1. Data averaging bag samples measured by IRMS and CRDS 

In the long-term perspective, on some sites multiple visits are made over a few years to collected bag samples (e.g. Lowry et 

al. 2020). To report δ13CH4 source signature from multiple visits, determined δ13CH4 are averaged. Thus, in this study we 

verify the impact of the chosen averaging strategy on averaged δ13CH4. In a “treatment 1” averaging approach, δ13CH4 is 220 

calculated separately for each individual day and the final δ13CH4 is calculated as an average of determined δ13CH4 source 
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signatures for individual days. In a “treatment 2” averaging approach, the bag samples results are treated as one data set and 

δ13CH4 of methane source with its uncertainty is determined directly from the linear regression.  

3.3.2. Data averaging AirCore in-situ sampling 

For AirCore in-situ sampling, the observed δ13CH4 is still noisy and their fluctuation can have a potential impact in 225 

determining δ13CH4 source signatures using mass conservation methods. To check if data smoothing improves determined 

δ13CH4, data are cumulated and averaged in clusters before being analysed. In total, 6 data sets have been prepared from each 

AirCore sample and are analysed using mass conversion methods: raw data, three clusters based on CH4 mole fraction bins, 

with steps of 10 nmol mol-1, 50 nmol mol-1 and 100 nmol mol-1 and two time average clusters with 10 s and 15 s time 

averaging steps (Fig. 1). Examined clusters are chosen arbitrarily as a compromise between smoothing and potential bias due 230 

to over-averaging. 

Typically, individual AirCore samples contains between 50-80 measurement points, where both CH4 mole fractions and 

δ13CH4 change over time. Similar to Hoheisel et al. 2019, AirCore sample measurement errors of individual data points are 

linearly interpolated based on laboratory tests (details in Appendix A). The interpolated uncertainty of individual points is 

used as the uncertainty for the clusters of raw data, for both CH4 mole fraction and δ13CH4. However, when data points are 235 

clustered based on CH4 bins or time averaging, a total uncertainty of clustered data points are a combination of both the 

uncertainty of clustering and clustered individual points (details in Appendix A). Interpolated uncertainties for raw data and 

total uncertainty for clustered data are used for York fitting and BCES regression as uncertainty of individual AirCore 

samples. 

3.4. Rejection criteria for AirCore samples 240 

After determination of δ13CH4 and its uncertainty, rejection criteria are applied to every AirCore sample, to select which 

result should be kept for further analysis and comparison. For all mass conservation method, determined δ13CH4 is rejected if 

the standard error of the fitted regression line is bigger than empirically chosen 5 ‰, based on Picarro CRDS performance. 

Based on previous studies (Defratyka 2021), an additional criterium, based on the value of r2 parameter was also applied for 

Miller-Tans method and the results are rejected also if r2< 0.85 to achieve a good quality of the retained δ13CH4 values. This 245 

additional criterium was not previously applied for Keeling method CH4 measurements, so here we look closer at the 

variance of r2 via Keeling method to examine if r2 criterium can be applied for Keeling method analysis.  

Eventually, all non-rejected AirCore δ13CH4, from one analytical strategy (cluster, mass conservation approach, fitting 

method) are averaged as a final δ13CH4 for an individual strategy and are used to compare results from different analytical 

approaches (Fig. 1). 250 
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3.5. Analytical methods recapitulation 

Figure 1 presents the steps to analyse statistical properties of determined δ13CH4 of methane source. For bag samples 

measured on IRMS and CRDS, determination of δ13CH4 using six regression methods (OLS, OLS II, MA, York, BCES 

(Y|X) and BCES Orthogonal) and treatment 1 and treatment 2 averaging approach was implemented, both using Keeling 

method and Miller-Tans method. For Miller-Tans method, calculations are repeated using different backgrounds. 255 

For each AirCore sample, 6 differently clustered datasets were analysed using Keeling and Miller-Tans methods. For Miller-

Tans method, two different backgrounds were subtracted: individual AirCore background and averaged bag samples 

background. The analysis is repeated using different regression methods: OLS, OLS II, MA, York, BCES (Y|X) and BCES 

Orthogonal (Fig. 1).  

The main objective of this ensemble of analyses is to find the best strategy to determine δ13CH4 of a methane source from 260 

near-source mobile measurements. As we tested numerous techniques (Fig. 1), for clarification and simplicity, we present 

only the most meaningful results in the result section. A more exhaustive analysis is presented in Appendixes B and C. 

4. Results 

4.1. Bag samples measured on IRMS and CRDS 

After rejection of the 11 µmol mol-1 bag sample, which biased IRMS results (see Appendix B), IRMS data from 21 bag 265 

samples were analysed using different mass conservation methods (Table 1). CH4 mole fraction in remaining samples varied 

between 1.94 µmol mol-1 and 7.52 µmol mol-1. For Keeling method, differences between determined δ13CH4 using 

different fitting methods are statistically insignificant. The largest uncertainty is observed for OLS II and MA for treatment 

1, where uncertainty is calculated from 95% confidence intervals. The smallest uncertainty is observed for York fitting for 

both averaging approaches.  270 

In the next step, IRMS data are analysed using the Miller-Tans method while different backgrounds are subtracted (Table 1). 

In the case of subtracting an individual background, the results of averaging treatment 1 method gives the same results as 

Keeling method, while the results of averaging treatment 2 are about 0.20 ‰ enriched (but York fitting), however still within  

1SD agreement for all fitting methods. As with the Keeling method, for Miller-Tans with subtracted individual backgrounds, 

the smallest discrepancy between treatment 1 and 2 is observed for York fitting. Afterward, IRMS data are further assessed 275 

using Miller-Tans analysis, where three different backgrounds are subtracted: averaged, global, and random. Overall, no 

significant differences between the results of Miller-Tans with different backgrounds subtracted are observed (Table 1).  

Afterward, bag samples measured using CRDS were analysed (Table 2) with Keeling and Miller-Tans methods with three 

different backgrounds subtracted: individual, averaged, and global. Overall, except for the BCES Orthogonal method, all 

CRDS results were more depleted, about ~0.7 ‰ or more than IRMS results. Also, as IRMS δ13CH4 precision is better than 280 

CRDS instrumentation, uncertainty of determined δ13CH4 is larger for CRDS result (Fig. 2). Comparing Keeling and 
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Miller-Tans methods with different subtraction backgrounds, both treatment 1 and 2 results are in good agreement between 

each other, despite MA fitting for Keeling method and BCES Orthogonal for all mass conservation methods.  

Additionally, for both IRMS and CRDS, BCES (Y|X) and BCES Orthogonal are compared. For IRMS, depending on 

analytical strategy, no difference or slight difference in determined δ13CH4 are observed (Table 1). A different situation is 285 

observed for CRDS data, possibly due to the significant uncertainty of CRDS data points. While BCES (Y|X) is in good 

agreement with other linear fittings, results from BCES Orthogonal are biased significantly toward more depleted or more 

enriched values, depending on analytical strategy (Table 2). Possibly, observed bias using BCES Orthogonal is caused by 

forces symmetry implemented in this fitting method. As a conclusion, BCES Orthogonal should not be used for CRDS data. 

Finally, comparing results from bag samples measured on IRMS and CRDS, it is clearly visible that uncertainties of CRDS 290 

results are higher than of IRMS, due to the lower precision of the instrument (Fig. 2). Additionally, δ13CH4 determined 

using CRDS is more depleted, about ~0.7‰, compared to IRMS results. As CRDS instrument was calibrated before the 

experiment, observed difference is related to the CRDS performance during bag samples measurement. Note that treatment 2 

introduces some bias toward more enriched values for Miller-Tans methods, thus this averaging method should not be used 

in the future.  295 

4.2. In-situ CRDS AirCore measurements 

As well as for bag sampling, data from in-situ measurements using CRDS with the AirCore are analysed to verify the impact 

of different analysis strategies used for larger data sets with lower precision than for IRMS studies. In total, 31 AirCore 

samples were collected, but two of them were rejected for further analysis, due to CRDS cavity pressure and temperature 

instability during specific measurements (Appendix B). Here, we analysed the data using both the Keeling and Miller-Tans 300 

methods (Table 3), following steps presented in Fig. 1. To determine the best analytical strategy for AirCore studies, δ13CH4 

from IRMS bag samples equal to -40.25 ± 0.09 ‰ were treated as a reference value.  

First, the C2H6 on δ13CH4 correction was not applied. Overall, including data from all measurement days, for most analytical 

strategies, the determined δ13CH4 was more depleted from AirCore studies than from IRMS, while observed bias depended 

on chosen strategy. As expected, due to the lower precision of CRDS than IRMS, the uncertainty of determined δ13CH4 was 305 

higher than for IRMS bag samples.  

Considering raw data clustering (Table 3, Fig. 3), for OLS, OLS II, York and BCES (Y|X) the observed δ13CH4 was about 1 

‰ depleted compared to the IRMS results, and slight differences were observed between the Keeling and the two Miller-

Tans methods. However, for these fitting methods, observed differences were statistically irrelevant and the results were in 

good agreement within each other. Similar to bag samples measured on CRDS, larger and significant discrepancies were 310 

observed using MA and BCES Orthogonal methods. Notable, only for BCES Orthogonal fitting, results from Miller-Tans 1 

and Miller-Tans 2 were significantly different, which appears unrealistic. Regarding observed biases, MA and BCES 

Orthogonal should not be used to analyse CRDS AirCore data. These methods force symmetry between x- and y- axis, 
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which causes bias in the determined slope and intercept of the fitted line, as y-axis values are less precise and vary more than 

on the x-axis. 315 

Subsequently, the impact of clustering data on the final averaged δ13CH4 was tested (see Appendix C). Overall, our study 

shows that averaging causes a changeable bias, which depends on the clustering method and the linear fitting. Additionally, 

clustering increases the uncertainty of the final, averaged δ13CH4. Furthermore, depending on the clustering method and the 

linear fitting used, the amount of rejected individual AirCore samples varies. The largest discrepancies between raw and 

clustered data are observed for the MA and BCES Orthogonal linear fitting methods. As clustering has a negative impact for 320 

the results, our recommendation here is to only use raw data for further analysis. 

Based on previous experience (Defratyka et al. 2021), for Miller-Tans method, individual AirCore sample results are 

rejected if their uncertainty is greater than 5 ‰, and if r2 is less than 0.85, in order to balance precise results and the quality 

of the retained values. Here, for Keeling method, only criterium of uncertainty lower than 5‰ is applied, and an attempt has 

been made to find the best r2 value, below which AirCore results should be rejected. However, for CRDS AirCore studies, 325 

the r2 values remain low, mostly ranging between 0.1 and 0.3, with no visible trend of increasing r2 values as the Keeling 

method results approach IRMS bag samples results. Thus, due to low r2 values, it was not possible to find a satisfying r2 

rejection criterium, which could possibly introduce some bias using the Keeling method to CRDS AirCore results. 

Additionally, as the only uncertainty criterium is applied to Keeling method results, δ13CH4 of individual AirCore samples is 

more spread (Fig. 3), which increases the uncertainty of the final, averaged δ13CH4. Thus, we recommend using the Miller-330 

Tans method instead of the Keeling method mass conservation approach to determine δ13CH4 while using CRDS with an 

AirCore. 

Afterward, all analyses were repeated when C2H6 on δ13CH4 correction is applied (Fig. 4). By applying a C2H6 correction, for 

all analytical strategies, the final averaged δ13CH4 is shifted towards more carbon 13 depleted values compared to 

uncorrected data. For raw data (Fig. 4, Appendix C), this bias toward negative values reaches ~2 ‰ or more, depending on 335 

the type of linear regression. Therefore, the C2H6 on δ13CH4 correction introduces additional bias, resulting in the final 

averaged δ13CH4 to be more biased compared to the IRMS reference value. This leads us to recommend refraining from 

using C2H6 on δ13CH4 corrections for CRDS AirCore measurements, even in the presence of C2H6 in the AirCore sample. 

The negative impact of C2H6 on δ13CH4 corrections can come from the method to determine the correction, which includes 

correction due to cross sensitives of C2H6 with H2O, CH4 and CO2. Notably, H2O has the biggest impact for C2H6 reported 340 

by CRDS G2201-i. Possibly, in the case of sampling dried air, C2H6 has neglected impact on δ13CH4, thus using C2H6 on 

δ13CH4 correction biased data, which initially do not require C2H6 correction.  

Finally, we observed that individual AirCore values for samples collected on days 4 and 5 of the controlled release 

experiment are more depleted than samples collected in days 2 and 3 (Fig. 3). It is possible, that an unnoticed problem 

occurred with the instrument calibration or encountered mobile set-up leaks during those days. Based on this, we recommend 345 

measuring the calibration gases on each measurement day, both before and after the fieldwork. Due to observed shifts during 

the last two days, the final calculated averaged δ13CH4 only included days 2 and 3 measurements (Table 4). As a result, for 
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uncorrected data and using Miller-Tans method with OLS, OLS II, York and BCES (Y|X) linear regressions, the difference 

between the IRMS reference and AirCore δ13CH4 values are statistically non-significant (Fig. 4).  

4.3. Direct δ13CH4 measurements 350 

As a final step of data analysis, the sample taken directly from the cylinder was compared with indirect, near-source IRMS 

and CRDS measurements. δ13CH4 measured by laser spectrometry is equal to -41.45 ± 0.06 ‰ (1SD), while δ13CH4 

measured by IRMS achieved -41.27 ± 0.06 ‰ (1SD) (Rennick et al., 2021). The value difference between these two 

instruments is equal to 0.18 ‰. Discrepancy between laser spectrometry and IRMS can be ignored, according to Umezawa 

et al. (2018) the variability between different IRMS instruments can be up to 0.5‰, depending on the calibration, correction 355 

strategy, and type of the instrument. 

Compared to our indirect, near-source measurements, direct δ13CH4 measurements resulted in more depleted values. For 

IRMS bag samples, the discrepancy between direct and indirect studies achieves ~ 1 ‰. As the uncertainty of both methods 

are small (1SD = 0.06 ‰ for direct studies and uncertainty for York fit = 0.014 ‰ for indirect studies), such observed 

discrepancies for direct and indirect measurements of δ13CH4 are significant. The averaged CRDS AirCore δ13CH4 from days 360 

2 and 3, shows a similar discrepancy to the direct studies as observed for the IRMS bag samples. However, uncertainties of 

CRDS AirCore results are much larger than for IRMS results (2.62 ‰ for York fitting). CRDS bag samples are more 13C 

depleted than other indirect methods (-41.02 ± 6.68 ‰), making these indirect measurements compatible with the direct ones 

(because of larger errors). 

Notably, direct and indirect samples were collected in different conditions. For indirect studies, the gas was released 45 365 

minutes from cylinder at high speeds (up to 70 l min-1), what was causing cooling of the released gas. For direct sampling, 

gas was released from one cylinder to another in less than two minutes, thus the change of the temperature was negligible. 

Potentially, these two different sampling collection approaches could cause different fractionation effects, which would 

explain the observed discrepancies. Since all releases had release speed between 35 and 70 l min -1, it was not possible to 

compare the impact of high and low speeds. As this observed discrepancy was not expected before the experiment, the 370 

potential impact of released gas temperature was not tested in this study. Further studies on possible isotopic fractionation 

during gas release are planned in the future to verify this hypothesis. 

5. Discussion 

5.1. Recommendation for the best analytical strategy 

Our study aims to find a unified analytical strategy for determining δ13CH4 source signatures, eliminating the need to choose 375 

between biased methods or switch between methods depending on the conditions. With the increasing popularity of CRDS 

instruments for measuring source signatures, it is crucial to evaluate the performance of both IRMS and CRDS in 

determining δ13CH4. The novelty of the study is the comprehensive inter-comparison between (i) indirect studies of δ13CH4 
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using bag sampling measured afterwards both by IRMS and CRDS, (ii) in-situ CRDS with an AirCore storage tool and (iii) 

direct measurements from gas cylinders. We observe that due to high precision and accuracy of IRMS instruments, the 380 

chosen mass balance approach and linear fitting method do not significantly affect IRMS results. However, as CRDS 

instrument is less precise, more precaution should be taken to assure robust reporting of δ13CH4 measurements.  

Overall, due to the observed bias compared to IRMS results and higher uncertainty, we do not recommend measuring bag 

samples using CRDS. Thus, we strongly recommend using only IRMS for analysing bag samples. To analyse IRMS data, 

both Keeling and Miller-Tans methods can be used. However, in the case of the Miller-Tans method, individual background 385 

should be subtracted. Bag samples collected during different days should not be treated as one dataset. Instead, δ13CH4 

should be calculated for individual days and then averaged. We have found that δ13CH4 determined using in-situ CRDS 

AirCore measurements agrees well with the IRMS results. For CRDS AirCore studies, we recommend using the Miller-Tans 

method, with the subtraction of the individual background. To obtain robust and accurate results, raw, non-clustered data 

should be analysed. As C2H6 on δ13CH4 correction introduces bias compared to the IRMS results, we do not recommend 390 

using the correction developed for CRDS during AirCore studies. For consistency, we recommend using either York or 

BCES (Y|X) fitting methods for both IRMS bag samples and CRDS AirCore, as they include the uncertainty of measurement 

points and give the most consistent results. The OLS method can also be applied to determine δ13CH4, as differences 

between York, BCES (Y|X) and OLS fitting methods are statistically irrelevant. However, in the case of a lower CH4 range 

or higher uncertainty of measured δ13CH4, the discrepancy between York and OLS methods can increase. For CRDS AirCore 395 

studies, we strongly discourage the use of the MA and BCES Orthogonal methods as their forced symmetry introduces 

varying biases. Following these recommendations will decrease the risk of obtaining inaccurate and imprecise δ13CH4 source 

signatures. 

5.2. Comparison with previous studies 

Few studies have been conducted to find the best strategy for applying Keeling or Miller-Tans methods to determine isotopic 400 

signatures, and they focused on continuous measurements of CO2 (Pataki et al., 2003; Miller and Tans, 2003; Zobitz et al., 

2006; Wehr and Saleska, 2017). Pataki et al. (2003) concentrated on the application of Keeling method for δ13C of CO2. 

However, as they highlighted in their paper, this method can be used also for methane and other isotopic ratios, where each 

application has its own constraints. Pataki et al. (2003), and Miller and Tans (2003) recommend using the model II (e.g. MA) 

fitting method for mass conservation because the OLS method could introduce a systematically bias, especially if the linear 405 

fitting r2 value is low. However, Zobitz et al. (2006) showed that model II can also introduce some bias, especially if the 

range of the CO2 mole fraction is low (e.g. CO2 enhancement above background is lower than 20 µmol mol-1) and if 

variability on the x-axis is much lower than in y-axis. Geometric mean regression (GMR) is another model II linear 

regression method that has not been tested in our study, as it is expected to yield similar results to the MA method (Zobitz et 

al., 2006). In our study, we did observe bias for the MA method for CRDS studies, where uncertainty and fluctuation of the 410 
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measured δ13CH4 is greater than for CH4 mole fractions. Here, measured CH4 mole fraction exceeds by at least 0.5 µmol 

mol-1 of the background mole fraction. Thus, providing a signal-to-noise ratio which was large enough to not introduce 

biases in the case of high precision IRMS measurements using model II method. However, bias due to low signal-to-noise 

ratio can occur when observing lower enhancements. For example, this is typically the case for measurement stations located 

at some distance from the source conducting continuous measurements. 415 

Finally, Wehr and Saleska (2017) proposed using York fitting to determine δ13CH4, as it is the most general regression 

method, which also accounts for uncertainties of both the x- and y-axis. Based on Monte Carlo simulations, used to 

determine the isotopic signatures of CO2, they presented that York fitting produces the closest reality results, compare to 

OLS and GMR methods. Their conclusion aligns with our study, as the York fitting method consistently provides robust 

results for all examined analytical approaches. Additionally, we observe smaller discrepancies between OLS and York fitting 420 

methods compared to the studies of Wehr and Saleska (2017). This can be explained by the larger CH4 enhancements 

relative to CO2 enhancements experienced in our study compared to theirs. 

5.3. Possible improvements and further applications 

Based on our study, there are several analytical details worth special attention during measurements of δ13CH4. First, the 

CRDS instrument was used in the CO2-CH4 simultaneous mode. According to the manufacturer, conducting measurements 425 

in CH4 isotope-only mode would increase instrument precision and frequency, therefore improving results of CRDS 

measurements. Furthermore, we observe that bag sample dilution introduced a bias for IRMS analysis, and therefore, we 

decided to exclude it from IRMS data. Thus, we recommend carrying out the dilution in a controlled, well-examined way to 

avoid introducing any fractionation.  

Remarkably, we observed about a 1 ‰ discrepancy between directly and indirectly measured δ13CH4. We expect that this 430 

observed discrepancy is caused by a CH4 fractionation occurring due to different conditions of gas releasing during direct 

and indirect sampling. Thus, it is important to examine the way in which the gas is released into the atmosphere to assess 

whether the speed and temperature of released gas can cause any fractionation effects and potentially biases in the 

determined δ13CH4 source signatures. 

In our study, we focus entirely on finding the best analytical strategy for near-source mobile measurements to determine 435 

δ13CH4 source signatures. However, we anticipate that the results can be generalize to other applications where similar 

isotopic mixing lines are appropriate. For example, the same conclusions should apply for the determination of δD-CH4 and 

stable isotope ratios of CO2. Also, our conclusions should be applicable for continuous isotopic measurements, both for CO2 

and CH4. Before expanding our conclusion to other isotopes or continuous measurement studies, it is important to consider 

that the range of observed mole fractions, signal-to-noise ratios, precision, and variability of y-axis could potentially 440 

introduce biases depending on their magnitudes and on the chosen fitting methods. Based on our study, York and BCES 

(Y|X) are good candidate methods to apply in different contexts, as they exhibited the least variability and incorporate 

uncertainties of the x- and y-axis. Furthermore, establishing rejection criteria for individual applications, such as the size of 
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uncertainty or the r2 parameter, can identify outliers and improve the accuracy and precision of determining δ13CH4 source 

signatures. 445 

6. Conclusions 

This study is focused on an in-depth analysis of statistical methods for the determination of δ13CH4 signatures in near-source 

conditions. We observed good agreement between Keeling and Miller-Tans methods for IRMS bag sample measurements. 

We recommend using the Miller-Tans method instead of the Keeling method for CRDS AirCore studies, as the Keeling 

method results indicated more bias compared to the IRMS results, chosen as a reference in this study. We do not recommend 450 

using the CRDS instrument for bag samples, as results are less precise and accurate compared to the other methods 

examined. We observed that MA and BCES Orthogonal methods introduce a bias to the result for CRDS data, due to forced 

symmetry. Thus, we recommend using the York and BCES (Y|X) linear fitting, especially as they also incorporate the 

uncertainty of both the x- and y- axis. We also demonstrated that OLS provides sufficiently robust results and, for simplicity, 

can be used to determine δ13CH4 in near-source conditions. In the case of CRDS AirCore studies, we recommend analysing 455 

raw data and refraining from applying a C2H6 correction to δ13CH4, especially when sampling dry air. 

The conclusions of our work provide a robust starting point for other applications that utilize isotopic mixing lines. However, 

the range of observed mole fractions, signal-to-noise ratios, and precision and fluctuation of isotopic signatures have the 

potential to introduce biases depending on their magnitude and the chosen analytical and fitting methods. Thus, as 

demonstrated in our study , the applied analytical strategy must be chosen carefully. 460 

APPENDIX A 

Mobile laboratories used during controlled release experiment 

 RHUL mobile laboratory 

RHUL’s mobile kit consisted of a 4WD petrol SUV (since been replace with a hybrid Toyota RAV4 AWD) rigged out 

continuous measurement instrumentation, air sample collection equipment, and a mounted mast supporting a high-precision 465 

GPS unit, 3 inlet lines (1.8 m from ground level). The GPS was connected to a Picarro CRDS G2301, measuring CH4, CO2, 

and H2O mixing ratios (~3 second frequency), equipped with a Picarro A0941 Mobile Module for matching mixing ratio 

measurements and GPS coordinates in real-time. This combo is powered by four 12V-110Ah batteries which last up to 9 

hours. Two of the inlets connect to CRDS instruments, the Picarro and a Los Gatos Research Ultra-Portable CH4, C2H6 

analyser (not used in this study). The third inlet is attached to a manually operated 6-12V diaphragm pump powered by a 470 

rechargeable battery for collecting air outside air into 5-3L SKC FlexFoil sample bags. 
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 LSCE mobile laboratory 

The mobile laboratory of LSCE uses a GPS receiver Navilock NL-602U and Picarro CRDS G2201-i which measures CO2, 

δ12CO2, CH4, δ13CH4, and H2O. The gas flow of the instrument was adjusted to ~160 sccm to ensure a faster response during 

mobile measurements. The instrument frequency achieved ~0.27 Hz. The instrument was calibrated using a 3-point mole 475 

fraction and isotopic composition calibration, just before instrument’s shipment to the UK. After calibration, CH4 mole 

fraction is reported using the WMO X2004A scale and δ13CH4 is reported using international Vienna Pee Dee Belemnite 

(VPDB) standard (Craig, 1957). The measurements were made in high precision mode, and both CH4 and CO2 were 

measured (CO2-CH4 simultaneous mode). According to producent specification, high precision mode allows for more 

precise measurements of CH4, than high dynamic range mode, achieving 1 standard deviation (1SD) for 30 s average equal 480 

to 5 nmol mol-1 + 0.05% of reading 12CH4 and 1 nmol mol-1 + 0.05% of reading 13CH4 (Picarro, Inc., Santa Clara, CA). 

Based on laboratory tests (Defratyka 2021, chapter 2), used G2201-i achieves a δ13CH4 precision ~3.5 ‰ for ambient air 

level of CH4 mole fraction. However, the precision improves up to 0.7 ‰ for CH4 mole fraction about 10 µmol mol-1.  

The mobile set-up of LSCE is equipped with an AirCore sampler for higher precision during in-situ measurements of δ13CH4 

(Karion et al., 2010). Here, AirCore sampler consist of 50 m storage tube and valves which allow to easily switch between 485 

“monitoring” and “replay” mode (e.g. Rella et al. 2015; Defratyka et al. 2021). In monitoring mode, the car is moving and 

CH4 elevation is observed. The air is continuously measured by the analyser and, at the same time, stored in the AirCore 

(Fig. A.1). Once CH4 mole fraction returns to the background level, the car is stopped, and the air stored in AirCore is 

measured in replay mode. Based on previous studies (Rella et al. 2015; Lopez et al. 2017; Hoheisel et al. 2019; Defratyka et 

al. 2021), 500 nmol mol-1 elevation above background was used as a threshold to determine if observed CH4 elevation is 490 

suitable to be remeasured in replay mode. Here, for AirCore in-situ studies, measurements made in replay mode, which are 

analysed afterwards, correspond to tripling the sampling frequency, compared to monitoring mode. Data collected in the 

replay mode are further called AirCore samples.  

In the case of CRDS measurements, stable cavity pressure and temperature are crucial to maintain robust measurements. To 

assure stability of the instrument and repeatability of the measurements, data points where cavity pressure was between 495 

147.9 Torr and 148.1 Torr and cavity temperature between 44.994 °C and 45.006 °C were kept for further analysis. In this 

study, two AirCore samples did not fulfil required instrument stability and were rejected from further analysis. 

C2H6 on δ13CH4 correction 

Significant cross sensitivities between C2H6 and δ13CH4 in the absorption spectrum cases bias in the measured isotopic 

signature by CRDS G2201-i. The effect is inversely proportional to the sample CH4 mole fraction, as well as proportional to 500 

the C2H6 mole fraction in a sample and was already quantified in previous studies (Rella et al. 2015; Assan et al. 2017; 

Defratyka 2021). As presented on Fig. A.2, to apply the correction, dry air should be measured and the observed C2H6 must 

first be corrected from interferences from H2O, CH4 and CO2. In the next step, corrected C2H6 values must be calibrated 
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against a gas standard with a known C2H6 mole fraction before applying the C2H6 on δ13CH4 correction. Also, the CH4 mole 

fraction and δ13CH4 should be calibrated before applying a C2H6 on δ13CH4 correction. Determined correction values do not 505 

change over time, thus corrections calculated in April 2019 were applied to the data from the controlled release experiment. 

Based on laboratory testes made by Assan et al. (2017): 

C2H6 corr = C2H6 raw + A ∙ H2O + B ∙ CH4 + C ∙ CO2        (A.1), 

Where A, B, C correction parameters are taken from Assan et al. (2017), for low humidity (<0.16% of water in sampled gas) 

case, for H2O (%), CH4 (µmol mol-1) and µmol mol-1 CO2 are measured by CRDS G2201-i: 510 

A = 0.44 ± 0.03 µmol mol-1 C2H6/% H2O, 

B = 8·10-3 ± 2·10-3 µmol mol-1 C2H6/ µmol mol-1 CH4, 

C = 1·10-4 ± 1·10-5 µmol mol-1 C2H6/ µmol mol-1 CO2. 

After the correction of C2H6 mole fractions due to interferences with H2O, CH4 and CO2, observed by CRDS G2201-i, the 

C2H6 mole fraction must be calibrated to a common scale. Finally, after calibration, C2H6 mole fractions can be used to 515 

correct measured δ13CH4. Here, after laboratory tests, the C2H6 calibration and the C2H6 correction on δ13CH4 are calculated 

in one step: 

δ13CH4 corr =  δ13CH4 raw −
E∙C2H6 corr

CH4
         (A.2), 

Where E is equal to 24 ± 1 ‰ µmol mol-1 CH4/ µmol mol-1 C2H6, for CRDS G22401-i used during controlled release 

experiment (Defratyka 2021, chapter 2). Then, the corrected δ13CH4 should be calibrated to the VPDB scale, using 520 

calibration gases. 

More details of particular corrections and calibration steps necessary to calculate C2H6 on δ13CH4 corrections can be found in 

Assan et al. 2017. 

Background for Miller-Tans method for bag samples 

Applied uncertainties for OLS and MA linear fitting methods 525 

For OLS method, the standard error of slope and y-intercept are calculated as: 

SEslope = √
∑(yi−ŷi)2

n−2
∙

1

√∑(xi−xmean)2
 (A.3),   SEintercept = √

∑(yi−ŷi)2

n−2
∙ (

1

n
+  

xmean
2

∑(xi−xmean)2)   (A.4), 

Where: 

n – total sample size, 

yi – actual y axis value, 530 

ŷi – predicted from linear regression value of y axis, 

xi – actual x axis value, 
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xmean – mean x axis value. 

The outputs from the used lmodel2() function, implemented to calculated MA and OLS II linear fitting, include the slope and 

y-intercept with their 95% confidence intervals (CI). Here, for MA method and OLS II, the standard error of slope and y-535 

intercept are calculated from CI, where 3.92 is a student t-factor for 95% CI and i represent slope and intercept: 

SEi = (CIi upper − CIi lower)/3.92           (A5). 

Uncertainty propagation for Keeling and Miller-Tans methods 

Using Keeling and Miller-Tans methods, propagation of uncertainties must be considered, as the x- and y-axis are 

determined by the measured CH4 mole fraction and δ13CH4 which inherently vary across the range of measurements. The 540 

error propagation of new variable f (i.e. x- and y-axis for Keeling or Miller-Tans method) is calculated using common 

uncertainty propagation formula (Ku, 1966): 

u(f) = √(
∂f

∂x
) u(x)2

2

+ (
∂f

∂y
)

2

u(y)2 + ⋯         (A.6) 

Calculated in this way uncertainties can be implemented in York fitting and BCES regression. Based on eq. (A.6) for 

Keeling method: 545 

x =
1

CH4
, u(x) =

u(CH4)

(CH4)2   (A.7),           y = δ13CH4,     u(y) = u(δ13CH4) (A.8), 

where:  

CH4 – CH4 mole fraction in µmol mol-1, 

u(CH4) – measurement uncertainty of CH4 in µmol mol-1, 

δ13CH4 – δ13CH4 isotopic signature in ‰, 550 

u(δ13CH4) – measurement uncertainty of δ13CH4 isotopic signature in ‰. 

In the case of Miller-Tans method background is subtracted, both for CH4 and δ13CH4. The approximation that Δδ13CH4 is 

equal to δ13CH4 of the sample minus background δ13CH4 is used. Thus, for Miller-Tans method, propagated uncertainties of 

x- and y- axis are equal: 

x = ∆CH4 = CH4 − CH4 bckg (A.9),          u(x) = √(u(CH4))
2

+  (u(CH4 bckg))
2

 (A.10) 555 

y = ∆(δ13CH4 ∙ CH4) = δ13CH4 ∙ CH4 − δ13CH4 bckg ∙ CH4 bckg (A.11), 

u(y) =

√(CH4 ∙ u(δ13CH4))
2

+ (δ13CH4 ∙ u(CH4))
2

+ (CH4 bcgd ∙ u(δ13CH4 bckg))
2

+ (δ13CH4 bckg ∙ u(CH4 bckg))
2

 (A.12), 

where: 
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CH4, u(CH4), δ13CH4, u(δ13CH4) represent the same variables as for eq. A.7 and eq. A.8, 560 

CH4 bckg – subtracted background CH4 mole fraction in µmol mol-1, 

u(CH4 bckg) – subtracted background measurement uncertainty of CH4 in µmol mol-1, 

δ13CH4 bckg –  subtracted background δ13CH4 isotopic signature in ‰, 

u(δ13CH4 bckg) – subtracted background measurement uncertainty of δ13CH4 isotopic signature in ‰. 

δ13CH4 uncertainty for bag and AirCore samples 565 

In a “treatment 1” averaging approach, δ13CH4 is calculated separately for each individual day. Then, the final δ13CH4 is 

calculated as an average of determined δ13CH4 for individual days and the final standard error of δ13CH4 is calculated as: 

u(δ13CH4)treatment 1 =
√∑ u(δ13CH4)individual day

2

√n
         (A.13),  

where n represents number of individual days. 

Typically, an individual AirCore sample contains between 50-80 measurement points, where both CH4 mole fraction and 570 

δ13CH4 changes over time. Similarly to Hoheisel et al. 2019, the measurement errors of individual data points of an AirCore 

sample are linearly interpolated based on laboratory tests. Here, calibration standards containing 2 µmol mol-1 (low standard) 

and 10 µmol mol-1 (high standard) of CH4 from natural gas were measured on 23rd August 2019 (Defratyka 2021, chapter 2). 

For δ13CH4, the uncertainties measured by G2201-i achieved 3.4 ‰ and 0.7 ‰ for low and high standard, respectively. Then, 

the uncertainty of individual points of an AirCore sample is calculated as the linear interpolation between 3.4 ‰ and 0.7 ‰, 575 

depending on CH4 mole fraction of the individual point. The same approach was taken to determine uncertainty of individual 

points of an AirCore sample for CH4 mole fraction. 

For clustered AirCore sample data, uncertainty of clustering comes from the variability of measured individual points 

captured within one cluster. For CH4 mole fraction, it is defined as the difference between CH4 of individual points with 

maximum and minimum CH4 mole fraction of points gathered in one cluster. Then, the difference is divided by student t-580 

factor for number of individual data points in the cluster to reflects impact of number of clustered points. Accordingly, 

δ13CH4 clustering uncertainty is defined as the difference between δ13CH4 of individual points with maximum and minimum 

CH4 divided by student-factor: 

ui_clustering =
imax CH4−imin CH4

tn
           (A.14),  

where i stands for CH4 or δ13CH4 cumulated in one cluster and  585 

tn – student t-factor for number of individual points captured in the cluster . 

Then, each of the clustered points has its own uncertainty, calculated from linear interpolation. Thus, the uncertainty of 

clustered individual points is propagated from uncertainties of individual points. The uncertainty of clustered individual 
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points is calculated based on uncertainties of individual points with minimal and maximal CH4 mole fraction within the 

cluster, which are used to calculate uncertainty of clustering: 590 

ui_clustered individual points = √(u(imax CH4
))

2
+ (u(imin CH4

))
2
      (A.15),  

where u(imax) and u(imin) come from a linear interpolation and stands for CH4 or δ13CH4 cumulated in one cluster. 

Finally, the total uncertainty of clustered data points is an addition in quadrature of uncertainty of clustering and uncertainty 

of clustered individual points: 

ui_total = √ui_clustering
2 + ui_clustered individual points

2       (A.16). 595 

In the case of clustering into mole fraction bins, some clusters contain only one data point. In this case, the uncertainty of 

clustered individual points is equal to uncertainty of individual data point from linear interpolation, as this situation is 

equivalent to cluster of raw data.  

Total uncertainty for clusters with several data points (eq. A.16) or interpolated uncertainty for clusters with one data point, 

are used for York fitting and BCES regression as uncertainty of individual AirCore sample. In the case of raw data, 600 

interpolated uncertainty is used for York fitting and BCES regression as uncertainty of an individual AirCore sample (Fig. 

A.3). 

Eventually, all non-rejected AirCore δ13CH4, from one analytical strategy (cluster, mass conservation approach, fitting 

method) are averaged as a final determined δ13CH4 for an individual strategy and used to compare results from different 

analytical approaches (Fig. 1). The final averaged δ13CH4 of an individual analytical strategy, uncertainty u(δ13CH4)AirCore is 605 

calculated as:  

u(δ13CH4)AirCore =
√∑(u(δ13CH4)individual AirCore

2
)

√n
       (A.17), 

where n is number of averaged AirCore results for individual analytical strategy. 

APPENDIX B 

Bag samples results 610 

Impact of 11 µmol mol-1 bag sample  

Overall, bag samples where CH4 mole fractions were over 8 µmol mol-1 must be diluted to be measured on the IRMS at 

RHUL due to detection limit. Potentially, the dilution could cause some fractionation effects and measured δ13CH4 could be 

biased, while comparing to undiluted bag samples. As a linear regression is more sensitive toward extreme values, biased 
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maximum data point could significantly affect determined δ13CH4 source signature. To verify a possible impact of dilution of 615 

bag samples above 8 µmol mol-1 of CH4 mole fraction, we compare results for dataset with and without 11 µmol mol-1 bag 

sample, using 5 linear fitting methods. Overall, for each linear fitting method, the bias toward more carbon 13 enriched 

values is observed if 11 µmol mol-1 bag sample is included in dataset. Note, the bias does not affect uncertainty of 

determined δ13CH4. Obtained results show that dilutions can indeed bias calculated δ13CH4. Thus, used dilution technique 

should be carefully chosen to not introduce potential fractionation and bias and may be required for future verification. 620 

Based on the comparison, the bag sample with higher CH4 mole fraction, equal to ~ 11 µmol mol-1 is rejected from further 

analysis.  

Results for bag samples measured on IRMS and CRDS for all examined linear fitting methods 

APPENDIX C 

CRDS AirCore results 625 

 Impact of data clustering 

For the CRDS AirCore results, comparing raw and clustered data, for OLS and OLS II, results for clustered data are more 

depleted for clustering using CH4 mole fraction (10 nmol mol-1, 50 nmol mol-1, 100 nmol mol-1) and the lowest value is 

observed for Miller-Tans method for data clustered into 50 nmol mol-1 bins. In the case of clusters based on time averaging 

(10 s and 15 s), the difference between a reference value (IRMS bag samples, equal to -40.25 ± 0.09 ‰) and an averaged 630 

AirCore value from Miller-Tans method is slightly less for 10 s clustered data and significantly lower for 15 s clustered data. 

For these two clusters, Keeling method averaged results are biased toward more enriched values. Additionally, clustering 

data significantly increases uncertainty of the final averaged δ13CH4 for Miller-Tans method. For the Keeling method, this 

increase is negligible. Notably, only for raw data and 10 nmol mol-1 cluster obtained results are the same for OLS and OLS II 

methods. Surprisingly, fewer individual AirCore results were rejected if data are clustered than for raw data in the case of 635 

Miller-Tans method.  

Regarding the York fitting, due to clustering, more individual AirCore results are rejected than for raw data. In the case of 50 

nmol mol-1 and 100 nmol mol-1 clusters, only one individual AirCore result remains for both clusters. Overall, for Miller-

Tans method, for York fitting, due to clustering final averaged δ13CH4 is more enriched than reference value and the bias 

varies, depends on clustering method. For Keeling methods, bias toward negative values is observed and it also varies, 640 

depend on clustering. Also, for York fitting, the uncertainty of final, averaged δ13CH4 increases using clustering.  

In the case of BCES (Y|X) linear fitting, fewer individual results are rejected for clustered than for raw data, in the case of 

Miller-Tans method. For, both Keeling and Miller-Tans method, final, averaged δ13CH4 for clustered data are more depleted 

than for raw data. Their uncertainties are larger than for raw data of Miller-Tans and the change is statistically irrelevant for 

Keeling method. 645 
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Finally, regarding MA and BCES Orthogonal linear regression, the observed bias is much larger than for other fitting 

methods, more individual AirCore results are rejected applying rejection criteria and for some clustering all individual 

AirCore results are rejected. For MA, similarly to other fitting methods, uncertainty increases with clustering, while for 

BCES Orthogonal, Keeling method uncertainties decrease. 
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Figure 1. Flow chart of steps to find the best analytical strategy for determination of δ13CH4 source signature 

Figure 2 Comparison of bag samples measured on IRMS (left) and CRDS (right). Keeling method and Miller-Tans method with 835 
individual background subtracted are compared. Treatment 1 and treatment 2 averaging techniques are presented. 
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Figure 3 Individual AirCore samples without a C2H6 on δ13CH4 correction. Size of data points corresponds to CH4 mole fraction 

exceed above background mole fraction in µmol mol-1. Left: Keeling method, Right: Miller-Tans method. Black line represents 

IRMS reference value with its uncertainty (grey line). The y-axis scale differs on left and right scale. 

Figure 4 Individual AirCore samples for days 2 and 3 of controlled release experiment. Points size corresponds to CH4 mole 840 
fraction exceeding above background mole fraction in µmol mol-1. Black line represents IRMS reference value with uncertainty 

(grey line). Left: without a C2H6 on δ13CH4 correction. Right: C2H6 on δ13CH4 correction applied. Top: Keeling method, bottom: 
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Miller-Tans method, individual background removed. The y -axis scale differs on left and right scale and between Keeling and 

Miller-Tans methods. 

Figure A.1. Scheme of mobile measurement set-up. The blue arrows show the airflow in monitoring mode. The green arrows show 845 
the airflow in the replay mode.  

Figure A.2. Flow chart of steps involved to determine C2H6 correction on δ13CH4. 

Figure A.3. Flow chart of uncertainty calculation to use in York and BCES fitting for AirCore samples. 
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Figure B.1 Comparison of bag samples measured on IRMS (left) and CRDS (right). Keeling method and Miller-Tans methods 

with different backgrounds are compared. Treatment 1 and treatment 2 averaging techniques are presented. BCES O - BCES 850 
Orthogonal, BCES Y - BCES (Y|X). 

Figure C.1 AirCore samples from Miller-Tans when individual background was subtracted. Size of data points corresponds to 

CH4 mole fraction exceed above background mole fraction in µmol mol-1. Left: C2H6 on δ13CH4 correction was not applied. Right: 
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C2H6 on δ13CH4 correction was applied. The y-axis scale differs on left and right scale and between Keeling and Miller-Tans 

method. 855 

 

Table 1 Keeling and Miller-Tans method results from 21 IRMS bag samples. Miller-Tans results reflect the application of 4 used 

subtraction backgrounds. 

Linear Fitting 
Averaging 

Treatment 

δ13CH4 ± u(δ13CH4) (‰) 

Keeling 

method 

Miller-Tans 

method 

individual 

background 

Miller-Tans 

method 

averaged 

background 

Miller-Tans 

method global 

background 

Miller-Tans 

method 

random 

background 

OLS 1 -40.24 ± 0.21 -40.21 ± 0.17 -40.21 ± 0.17 -40.21 ± 0.17 -40.21 ± 0.17 

OLS II 1 -40.24 ± 0.98 -40.21 ± 0.48 -40.21 ± 0.48 -40.21 ± 0.48 -40.21 ± 0.48 

MA 1 -40.22 ± 1.29 -40.21 ± 0.48 -40.21 ± 0.48 -40.21 ± 0.48 -40.21 ± 0.48 

York 1 -40.25 ± 0.09 -40.23 ± 0.14 -40.22 ± 0.33 -40.22 ± 0.27 -40.22 ± 0.27 

BCES 

Orthogonal 
1 -40.25 ± 0.14 -40.23 ± 0.09 -40.20 ± 0.09 -40.20 ± 0.09 -40.20 ± 0.09 

BCES (Y|X) 1 -40.24 ± 0.12 -40.23 ± 0.10 -40.23 ± 0.10 -40.23 ± 0.10 -40.23 ± 0.10 

OLS 2 -40.22 ± 0.16 -40.02 ± 0.10 -40.05 ± 0.11 -40.05 ± 0.11 -40.05 ± 0.11 

OLS II 2 -40.22 ± 0.17 -40.02 ± 0.11 -40.05 ± 0.12 -40.05 ± 0.12 -40.05 ± 0.12 

MA 2 -40.16 ± 0.17 -40.02 ± 0.11 -40.05 ± 0.12 -40.05 ± 0.12 -40.05 ± 0.12 

York 2 -40.24 ± 0.03 -40.18 ± 0.05 -40.10 ± 0.09 -40.10 ± 0.08 -40.10 ± 0.08 

BCES 

Orthogonal 
2 -40.16 ± 0.15 -40.00 ± 0.10 -40.00 ± 0.10 -40.00 ± 0.09 -40.00 ± 0.09 

BCES (Y|X) 2 -40.22 ± 0.15 -40.00 ± 0.10 -40.00 ± 0.09 -40.00 ± 0.09 -40.00 ± 0.09 

 

Table 2 Keeling and Miller-Tans method results from 8 CRDS bag samples. Miller-Tans results reflect the application of 3 used 860 
subtraction backgrounds. 

Linear Fitting Averaging 

δ13CH4 ± u(δ13CH4) (‰) 

Keeling 

method 

Miller-Tans 

method 

individual 

background 

Miller-Tans 

method 

averaged 

background 

Miller-Tans 

method global 

background 

OLS 1 -41.00 ± 0.89 -41.03 ± 0.69 -41.03 ± 0.69 -41.03 ± 0.69 
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OLS II 1 -41.00 ± 1.94 -41.03 ± 1.52 -41.03 ± 1.52 -41.03 ± 1.52 

MA 1 -40.73 ± 4.66 -41.05 ± 1.53 -41.05 ± 1.53 -41.05 ± 1.53 

York 1 -41.00 ± 4.80 -41.02 ± 6.68 -41.01 ± 5.40 -41.00 ± 4.81 

BCES 

Orthogonal 
1 -46.26 ± 6.05 -36.85 ± 2.97 -38.40 ± 1.95 -38.95 ± 1.56 

BCES (Y|X) 1 -41.01 ± 0.60 -41.05 ± 0.76 -41.05 ± 0.57 -41.05 ± 0.76 

OLS 2 -40.99 ± 0.56 -40.72 ± 0.36 -41.05 ± 0.38 -41.05 ± 0.38 

OLS II 2 -40.99 ± 0.70 -40.72 ± 0.45 -41.05 ± 0.47 -41.05 ± 0.47 

MA 2 -40.66 + 0.75 -40.74 ± 0.45 -41.07 ± 0.47 -41.07 ± 0.47 

York 2 -41.00 ± 1.87 -40.70 ± 2.62 -41.01 ± 2.12 -41.00 ± 1.88 

BCES 

Orthogonal 
2 -46.28 ± 0.64 -39.40 ± 0.62 -40.20 ± 0.55 -40.40 ± 0.52 

BCES (Y|X) 2 -40.99 ± 0.43 -40.70 ± 0.42 -41.00 ± 0.44 -41.00 ± 0.44 

 

Table 3 CRDS AirCore samples for raw cluster data. NAirCore represents number of AirCore samples used to determine averaged 

δ13CH4 after applying rejection criterium. C2H6 on δ13CH4 correction not applied. 

Linear Fitting 

δ13CH4 ± u(δ13CH4) (‰) nAirCore 

Keeling 

method 

nAirCore 

Miller-

Tans 1 

nAirCore 

Miller-

Tans 2 

Keeling 

method 

Miller-Tans 

method 1 

Miller-Tans 

method 2 

OLS -41.15 ± 3.03 -41.22 ± 1.48 -41.22 ± 1.48 22 12 12 

OLS II -41.44 ± 2.93 -41.22 ± 1.50 -41.22 ± 1.50 21 12 12 

MA -24.18 ± 3.38 -44.95 ± 1.68 -44.95 ± 1.68 2 12 12 

York -41.67 ± 2.80 -41.04 ± 2.72 -40.91 ± 2.07 21 12 12 

BCES Orthogonal -46.45 ± 1.02 -35.51 ± 2.24 -39.84 ± 1.89 19 9 12 

BCES (Y|X) -41.47 ± 2.78 41.23 ± 1.46 -41.22 ± 1.46 25 12 12 

 865 

Tab A.1. Subtracted background values used for Miller-Tans method for bag samples measurements. 

IRMS background/ 

CRDS background  

CH4 (µmol mol-1) 

IRMS bag 

samples 

δ13CH4 (‰) 

IRMS bag 

samples 

CH4 (µmol mol-1) 

CRDS bag samples 

δ13CH4 (‰) 

CRDS bag samples 

individual day 1 2.0589 ± 0.0007 -47.77 ± 0.10  - - 

individual day 3 1.9634 ± 0.0010 -48.12 ± 0.04  - - 

individual day 4 1.9403 ± 0.0007 -48.08 ± 0.06  - - 
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individual day 5 1.9950 ± 0.0012 -48.30 ± 0.02  - - 

individual release 1 - - 1.9619 ± 0.0003 -47.99 ± 3.53 

individual releases 2 - - 1.9810 ± 0.0003 -48.82 ± 3.45 

averaged  1.9894 ± 0.0009 -48.07 ± 0.23  1.9715 ± 0.0003 -48.41 ± 1.87 

global 1.8707 ± 0.0011 -47.2 ± 0.2  1.8707 ± 0.0011 -47.2 ± 0.2  

random 1.8707 ± 0.0011 -42.7 ± 0.10  - - 

 

Table B.1 IRMS bag samples results. Comparison of Keeling method and Miller -Tans individual background method with and 

without 11 µmol mol-1 bag sample 

Linear Fitting Averaging 

δ13CH4 ± u(δ13CH4) (‰) 

Keeling 

method 

without 11 

µmol mol-1 

Keeling 

method with 

11 µmol mol-1 

Miller-Tans 

method 

individual 

background 

without 11 

µmol mol-1 

Miller-Tans 

method 

individual 

background 

with 11 µmol 

mol-1 

OLS 1 -40.24 ± 0.21 -40.02 ± 0.26 -40.21 ± 0.17 -39.82 ± 0.13 

OLS II 1 -40.24 ± 0.98 -40.02 ± 1.00 -40.21 ± 0.48 -39.82 ± 0.45 

MA 1 -40.22 ± 1.29 -39.99 ± 1.30 -40.21 ± 0.48 -39.82 ± 0.45 

York 1 -40.25 ± 0.09 -39.89 ± 0.09 -40.23 ± 0.14 -39.91 ± 0.13 

BCES 

Orthogonal 
1 -40.25 ± 0.14 -39.92 ± 0.23 -40.23 ± 0.09 -39.83 ± 0.08 

OLS 2 -40.22 ± 0.16 -39.89 ± 0.19 -40.02 ± 0.10 -39.33 ± 0.15 

OLS II 2 -40.22 ± 0.17 -39.89 ± 0.20 -40.02 ± 0.11 -39.33 ± 0.16 

MA 2 -40.16 ± 0.17 -39.80 ± 0.19 -40.02 ± 0.11 -39.34 ± 0.16 

York 2 -40.24 ± 0.03 -39.49 ± 0.02 -40.18 ± 0.05 -39.74 ± 0.04 

BCES 

Orthogonal 
2 -40.16 ± 0.15 -39.80 ± 0.22 -40.00 ± 0.10 -39.30 ± 0.28 

 870 

Table C.1 CRDS AirCore samples. NAirCore represents number of AirCore samples used to determine averaged δ13CH4 after 

applying rejection criterium. C2H6 on δ13CH4 correction not applied. 

Linear Fitting Data Cluster δ13CH4 ± u(δ13CH4) (‰) 

nAirCore 

Keeling 

method 

nAirCore 

Miller-

Tans 1 

nAirCore 

Miller-

Tans 2 
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Keeling 

method 

Miller-Tans 

method 1 

Miller-Tans 

method 2 
   

OLS raw -41.15 ± 3.03 -41.22 ± 1.48 -41.22 ± 1.48 22 12 12 

OLS II raw -41.44 ± 2.93 -41.22 ± 1.50 -41.22 ± 1.50 21 12 12 

MA raw -24.18 ± 3.38 -44.95 ± 1.68 -44.95 ± 1.68 2 12 12 

York raw -41.67 ± 2.80 -41.04 ± 2.72 -40.91 ± 2.07 21 12 12 

BCES 

Orthogonal 
raw -46.45 ± 1.02 -35.51 ± 2.24 -39.84 ± 1.89 19 9 12 

BCES (Y|X) raw -41.47 ± 2.78 41.23 ± 1.46 -41.22 ± 1.46 25 12 12 

OLS 10 nmol mol-1 -41.47 ± 2.80 -42.52 ± 2.22 -42.52 ± 2.22 19 17 17 

OLS II 10 nmol mol-1 -41.47 ± 2.91 -42.52 ± 2.30 -42.52 ± 2.30 19 17 17 

MA 10 nmol mol-1 -28.55 ± 4.38 -45.69 ± 2.57 -45.69 ± 2.57 1 17 17 

York 10 nmol mol-1 -41.86 ± 3.19 -41.61 ± 4.13 -41.52 ± 4.17 18 3 4 

BCES 

Orthogonal 
10 nmol mol-1 -46.50 ± 0.54 -26.71 ± 1.91 -7.33 ± 1.86 28 1 1 

BCES (Y|X) 10 nmol mol-1 -42.14 ± 2.70 -42.53 ± 2.02 -42.52 ± 2.02 21 17 17 

OLS 50 nmol mol-1 -42.46 ± 2.96 -44.05 ± 3.13 -44.05 ± 3.13 17 19 19 

OLS II 50 nmol mol-1 -42.46 ± 3.21 -43.30 ± 3.09 -43.30 ± 3.09 17 17 17 

MA 50 nmol mol-1 NA -46.13 ± 3.25 -46.13 ± 3.25 0 16 16 

York 50 nmol mol-1 -42.56 ± 3.54 -39.99 ± 3.45 -39.99 ± 3.34 14 1 1 

BCES 

Orthogonal 
50 nmol mol-1 -46.09 ± 0.56 NA NA 27 0 0 

BCES (Y|X) 50 nmol mol-1 -42.98 ± 2.88 -43.96 ± 2.73 -43.95 ± 2.73 21 20 20 

OLS 
100 nmol mol-

1 
-41.90 ± 3.44 -42.80 ± 3.39 -42.80 ± 3.39 22 21 21 

OLS II 
100 nmol mol-

1 
-42.28 ± 3.33 -42.98 ± 3.30 -42.98 ± 3.30 17 17 17 

MA 
100 nmol mol-

1 
-32.27 ± 4.79 -44.97 ± 3.23 -44.97 ± 3.23 1 14 14 

York 
100 nmol mol-

1 
-42.24 ± 3.51 -39.07 ± 4.54 -39.07 ± 4.40 9 1 1 

BCES 

Orthogonal 

100 nmol mol-

1 
-46.00 ± 0.56 NA NA 27 0 0 
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BCES (Y|X) 
100 nmol mol-

1 
-42.34 ± 2.76 -43.39 ± 2.65 -43.38 ± 2.65 22 21 21 

OLS 10 s -41.23 ± 3.22 -42.39 ± 2.45 -42.39 ± 2.45 21 19 19 

OLS II 10 s -40.18 ± 2.97 -41.20 ± 2.09 -41.20 ± 2.29 18 17 17 

MA 10 s -32.40 ± 2.36 -43.75 ± 2.29 -43.75 ± 2.29 2 17 17 

York 10 s -40.36 ± 3.93 -40.13 ± 3.53 -40.09 ± 3.70 9 4 5 

BCES 

Orthogonal 
10 s -47.29 ± 0.49 -34.04 ± 2.43 -33.76 ± 3.56 28 4 8 

BCES (Y|X) 10 s -41.45 ± 2.88 -42.41 ± 2.36 -42.40 ± 2.36 26 20 20 

OLS 15 s -41.19 ± 3.13 -41.66 ± 2.73 -41.66 ± 2.73 20 22 22 

OLS II 15 s -39.83 ± 3.09 -40.46 ± 2.61 -40.46 ± 2.61 18 20 20 

MA 15 s -7.58 ± 2.44 -42.70 ± 2.37 -42.70 ± 2.37 3 17 17 

York 15 s -40.41 ± 3.75 -39.39 ± 3.48 -39.53 ± 3.71 4 2 3 

BCES 

Orthogonal 
15 s -47.28 ± 0.50 -31.41 ± 3.00 -34.50 ± 3.14 28 3 4 

BCES (Y|X) 15 s -41.33 ± 3.12 -42.21 ± 2.14 -42.20 ± 2.14 27 21 21 

 

Table C.2 CRDS AirCore samples. NAirCore represents number of AirCore samples used to determine averaged δ13CH4 after 

applying rejection criterium. C2H6 on δ13CH4 correction applied. 875 

Linear Fitting Data Cluster 

δ13CH4 ± u(δ13CH4) 

nAirCore 

Keeling 

method 

nAirCore 

Miller-

Tans 1 

nAirCore 

Miller-

Tans 2 

Keeling 

method 

Miller-Tans 

method 1 

Miller-Tans 

method 2 
   

OLS raw -43.30 ± 2.96 -43.57 ± 1.61 -43.57 ± 1.61 21 13 13 

OLS II raw -43.30 ± 2.99 -43.57 ± 1.62 -43.57 ± 1.62 21 13 13 

MA raw -22.88 ± 4.66 -47.65 ± 1.83 -47.65 ± 1.83 1 13 13 

York raw -43.63 ± 2.80 -43.41 ± 2.89 -43.28 ± 2.17 21 13 13 

BCES 

Orthogonal 
raw 

-47.94 ± 1.47 -38.21 ± 2.37 -42.36 ± 1.88 11 10 13 

BCES (Y|X) raw -42.94 ± 2.58 -43.59 ± 1.49 -43.57 ± 1.49 23 13 13 

OLS 10 nmol mol-1 -43.67 ± 2.83 -44.56 ± 2.37 -44.56 ± 2.37 19 18 18 

OLS II 10 nmol mol-1 -43.67 ± 2.94 -44.56 ± 2.47 -44.56 ± 2.47 19 18 18 
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MA 10 nmol mol-1 NA -47.95 ± 2.77 -47.95 ± 2.77 0 18 18 

York 10 nmol mol-1 -44.06 ± 3.19 -44.05 ± 4.13 -43.97 ± 4.17 18 3 4 

BCES 

Orthogonal 
10 nmol mol-1 

-47.85 ± 0.55 -3037 ± 1.79 -30.94 ± 1.75 28 1 1 

BCES (Y|X) 10 nmol mol-1 -43.70 ± 2.67 -44.58 ± 2.17 -44.57 ± 2.17 21 18 18 

OLS 50 nmol mol-1 -44.46 ± 3.02 -45.24 ± 2.90 45.24 ± 2.90 17 17 17 

OLS II 50 nmol mol-1 -44.46 ± 3.27 -45.24 ± 3.14 -45.24 ± 3.14 17 17 17 

MA 50 nmol mol-1 NA -47.57 ± 3.00 -47.57 ± 3.00 0 14 16 

York 50 nmol mol-1 -44.50 ± 3.54 -42.75 ± 3.45 -42.74 ± 3.34 14 1 1 

BCES 

Orthogonal 
50 nmol mol-1 

-47.49 ± 0.58 NA NA 27 0 0 

BCES (Y|X) 50 nmol mol-1 -44.81 ± 2.80 -45.90 ± 2.69 -45.89 ± 2.69 20 19 19 

OLS 
100 nmol mol-

1 -43.82 ± 3.30 -44.51 ± 3.33 -44.51 ± 0.91 20 20 20 

OLS II 
100 nmol mol-

1 -44.05 ± 3.44 -44.85 ± 3.28 -44.85 ± 3.28 17 16 16 

MA 
100 nmol mol-

1 -41.53 ± 3.57 -46.96 ± 3.32 -46.95 ± 3.32 1 14 14 

York 
100 nmol mol-

1 -44.58 ± 3.51 -42.06 ± 4.54 -42.05 ± 4.40 9 1 1 

BCES 

Orthogonal 

100 nmol mol-

1 -47.39 ± 0.58 NA NA 27 0 0 

BCES (Y|X) 
100 nmol mol-

1 -44.29 ± 2.64 -45.10 ± 2.71 -45.09 ± 2.71 21 21 21 

OLS 10 s -43.35 ± 3.21 -44.29 ± 2.42 -44.29 ± 2.42 21 19 19 

OLS II 10 s -43.40 ± 3.13 -44.39 ± 2.34 -44.39 ± 2.34 19 18 18 

MA 10 s -35.76 ± 3.56 -45.77 ± 2.28 -45.77 ± 2.28 2 17 17 

York 10 s -42.81 ± 3.95 -42.48 ± 3.56 -42.41 ± 3.73 9 4 6 

BCES 

Orthogonal 
10 s 

-48.56 ± 0.48 -36.77 ± 2.32 -36.53 ± 3.55 28 4 9 

BCES (Y|X) 10 s -43.54 ± 2.71 -43.81 ± 2.21 -43.79 ± 2.21 25 19 19 

OLS 15 s -43.23 ± 3.10 -43.65 ± 2.70 43.65 ± 2.70 20 22 22 

OLS II 15 s -42.02 ± 3.09 -42.70 ± 2.62 -42.70 ± 2.62 18 20 20 
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MA 15 s -20.48 ± 2.95 -44.78 ± 2.34 -44.78 ± 2.34 3 17 17 

York 15 s -42.21 ± 3.26 -42.15 ± 3.50 -42.16 ± 3.76 3 2 3 

BCES 

Orthogonal 
15 s 

-48.53 ± 0.49 -34.44 ± 2.88 36.78 ± 2.12 28 3 3 

BCES (Y|X) 15 s -43.00 ± 2.92 -44.82 ± 2.25 -44.80 ± 2.25 25 22 22 
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