

1 **Rocks Really Rock: Electronic field trips via Web Google-Earth can**
2 **Generating positive impacts in the attitudes toward Earth sciences,**
3 **in middle and high school students' attitudes toward geology via Web**
4 **Google-Earth electronic field trips.**

5 Carolina Ortiz-Guerrero¹, Jamie Loizzo²

6 ¹Department of Geological Sciences, University of Florida, Gainesville-Florida, 32611, United States

7 ²College of Agricultural and Life Sciences, University of Florida, Gainesville-Florida, 32611, United States

8 Correspondence to: Carolina Ortiz-Guerrero (cog790@gmail.com)

9 **Abstract.** Earth Sciences (ES) are relevant to society and its relationship to the Earth system. However,
10 ES education, in K-12 environments in the United States, face several challenges including limited
11 exposure to ES, lack of awareness of ES careers, and low ES literacy. International associations have
12 recognized these challenges and recommended that Earth scientists improve the public's perception of
13 the relevance of ES. In recent years, informal science communication/outreach platforms such as the
14 "Streaming Science" model of electronic field trips (EFT), which connect K-12 classrooms with STEM
15 professionals, have gained popularity as an educational technology tool. EFTs are inexpensive, have
16 spatiotemporal benefits, and have proven an effective informal science education pathway for
17 introducing STEM content into formal classrooms to increase positive attitudes and interest in STEM
18 careers. Nevertheless, EFTs in ES for K-12 environments have not been widely disseminated, and their
19 impact in ES education has yet to be studied.

20 This study presents the creation and implementation of an EFT in geology called "Rocks Really Rock:
21 An Electronic Field Trip across Geological Time." The program was implemented in seven schools in
22 Spring 2022. The EFT was built in web Google Earth and had six stops that featured pre-recorded
23 videos recorded in different locations in Idaho-U.S. The lead presenter/author used multimedia and
24 science-communication strategies such as storytelling to develop and teach concepts related to geologic
25 time, rock formation, and landscape-forming geological process. The content aligned with four specific
26 topics listed in the National Science Foundation's Earth Sciences Literacy Principles and intersected
27 with the Next Generation Science Standards for middle school classrooms.

28 Participating students (n = 120) completed a post-assessment after the program implementation to
29 evaluate its impact. Results showed the EFT positively impacted students' attitudes toward geology,
30 geology careers, and their perceptions of geology literacy. We identified the three main factors that
31 determined positive attitude change of K-12 students toward ES were: 1) the use of videos and Web
32 Google Earth platform for creating outreach materials for K-12 students, 2) the use of storytelling to
33 craft the content of the EFT, and 3) the asynchronous interactions between teacher-student-scientist.
34 The results indicated a statistically significant positive change in attitudes toward geology, suggesting
35 that participating in the EFT increased students' positive attitudes toward ES. These findings

36 demonstrate the potential of expanding EFT to other ES fields and reaching middle/high school
37 students. We suggest that EFTs are effective outreach tools that can address the challenges in ES
38 education and can be extended to other ES areas and distributed to students in middle/high schools and
39 homeschools, to support science educators in ES education.

40 **1 Introduction**

41 Earth Sciences (ES) education in U.S. K-12 environments faces multiple challenges such as: 1) low
42 exposure to ES in the science curricula, 2) low awareness of ES careers, and 3) poor literacy of ES
43 concepts (Adetunji et al., 2012; Hoisch & Bowie, 2010; LaDue & Clark, 2012). K-12 is used in
44 reference to the US education system for students from ages 5-18, attending grades between
45 kindergarten to 12th grade, but this is not solely a US reality. In fact, international associations, ES
46 educators, and K-12 teachers have recognized these barriers (GSA Position Statement- Promoting
47 Earth Science Literacy for Public Decision Making, 2013; King, 2013; LaDue & Clark, 2012; Petcovic
48 et al., 2018), and they have emphasized the need to strengthen K-12 ES education, develop ES-literate
49 citizens, and advocate for the implementation of informal science-learning strategies (outreach) in K-12
50 environments. However, there are few studies that have quantitatively assessed the impact of individual
51 ES' outreach strategies on students.
52 ES outreach via electronic field trips (EFTs) is a potentially effective way to address some of the
53 challenges in ES K-12 education. In recent years, the outreach format of EFTs has grown in popularity,
54 engaging K-12 students and teachers in two-way conversations with subject matter experts. EFT models
55 such as the Streaming Science model, have proven to be an effective outreach pathway for delivering
56 science, engineering, technology, and mathematics (STEM) content to formal education environments
57 such as K-12 classrooms (Adedokun et al., 2011; Beattie et al., 2020; Loizzo et al., 2019). The
58 adaptability of delivering content in multiple formats (e.g., live-stream or pre-recorded video) and the
59 ability of EFTs to use science-communication (scicomm) strategies (e.g., digital multimedia,
60 storytelling) have proven to have a positive impact on students' perceptions and attitudes toward
61 scientists, science careers, and science overall (Beattie et al., 2020; Dahlstrom, 2014; Loizzo et al.,
62 2019). These changes in attitudes and perceptions can simultaneously influence interest in related
63 careers and learning (Lyon et al., 2020; McNeal et al., 2014). Collectively, these findings demonstrate
64 that the use of EFTs provides a unique opportunity to develop informal ES learning tools and bring
65 them into formal K-12 education environments.
66 In the following study, we present the creation, implementation, and evaluation of a pre-recorded EFT
67 in geology topics created in web Google-Earth called Rocks Really Rock: An Electronic Field Trip
68 across Geologic Time. The EFT introduced middle-school and high-school students to the concepts of
69 geologic time, rock formation, and landscape-forming geologic processes. The EFT had six designed
70 stops shown on a map of the United States. Each stop featured a pre-recorded video of the lead author
71 who used science communication storytelling strategies to explain geology-related topics that aligned
72 with four specific topics listed in the Earth Sciences Literacy Principles (ESLP) (Wysession et al.,
73 2012). The geology topics intersected with the Next Generation Science Standards for middle school
74 classrooms (NGSS Lead States, 2013). In addition, we examined the implementation of the EFT using a

75 quantitative design and evaluated the impacts of the program on K-12 school students via a post-
76 assessment survey in three main areas: a) attitudes toward geology, b) attitudes toward geology careers,
77 and c) perceptions of geology literacy.

78 **2. Background Literature**

79 **2.1 Challenges of ES education and the role of outreach and science communication**

80 Literacy and awareness of ES topics (e.g. atmospheric sciences, climate sciences, planetary sciences,
81 environmental sciences, geology, and oceanography) are essential to understanding critical societal
82 challenges related to the Earth system including climate change, natural resource management, natural
83 hazards, access to reliable and safe mineral and energy sources, and planetary exploration, among others
84 (Clary, 2018; Tillinghast et al., 2019; Wysession et al., 2012). Building an ES-literate society depends
85 on high-quality education, and K-12 school settings have the potential to reinforce positive attitudes
86 toward ES content and careers and build ES literacy (King, 2013; Levine et al., 2007; St. John et al.,
87 2021; Tillinghast et al., 2019). However, only a small percentage of students receive formal education
88 in ES, even in developed countries such as in the UK and the United States (Gates & Kalcynski, 2016;
89 Rogers et al. 2023). In the latter, for example, receive formal education in ES, and literacy in ES is
90 particularly low compared to other scientific disciplinessee fieldins and other countries (Gates &
91 Kalcynski, 2016; Gonzales & Keane, 2011; LaDue & Clark, 2012; Programme for International
92 Student Assessment & Organisation for Economic Co-operation and Development, 2019). Furthermore,
93 in countries located in southern Europe and Latin America, geology courses must share teaching time
94 with other science disciplines, and in countries such as Australia, geology courses are only available as
95 additional or optional courses (Roca et al., 2020, Dawborn-Gundlach et al., 2017).

96 Low exposure to ES content in K-12 environments also impacts the lack of awareness of ES careers
97 among both students and teachers, and the difficulty students have connecting science classroom
98 content to career pathways (Brown & Clewell, 1998; Levine et al., 2007; Gonzales & Keane, 2011;
99 Sherman-Morris et al., 2013; McNeal et al., 2014; Locke et al., 2018, King et al., 2021). Recent
100 international comparative studies show that three quarters of the countries surveyed recorded that
101 students have very little, or no careers advise related to ES (King et al., 2021). For example, geology, a
102 branch of ES, has had the lowest numbers for major recruitment compared to other STEM careers in the
103 last decades (Levine et al., 2007; Locke et al., 2018), which may be related to an international overall
104 reduction of university-level ES careers and courses (Geoscience on the chopping block 2021, Rogers et
105 al 2023).

106 SomeSeveral studies suggested that students who choose to study STEM majors generally make the
107 decision during high school and even earlier (Maltese & Tai, 2011; Tai et al., 2006, Villaseñor et al.,
108 2020). Thus, growing interest in ES and improving recruitment to ES careers should begin with
109 increased exposure to engaging STEM content, careers/majors, and raised awareness of future pathways
110 during middle and high school.

111 Several strategies have been developed to support formal ES education and increase awareness and
112 literacy such as integrating ES literacy standards into traditional science courses (Hanks et al., 2007;

113 Levine et al., 2007; McNeal et al., 2014). For example, in 2011, various Earth scientists and educators
114 created the Earth Sciences Literacy Principles (ESLP) (Wysession et al., 2012).
115 The American Geosciences Institute (AGI) ~~has been in charge of~~ disseminating~~ed~~ the ~~ESLP~~
116 principles~~s~~, which define the important and essential ES information to be taught, to K-12 ES teachers
117 (Wysession et al., 2012). Furthermore, in the ~~United States~~, the Framework for K-12 Education
118 (National Research Council, 2012), and the subsequent release of the Next Generation Science
119 Standards (NGSS) created a guide for the core ideas and practices that all K-12 students should learn
120 before graduating from high school (NGSS Lead States, 2013). The implementation of these standards
121 introduced a significant amount of ES content into the high school curriculum and increased the emp-
122 hasis on ES (LaDue & Clark, 2012; Lyon et al., 2020). However, even though the NGSS has placed ES
123 as a core component of the secondary science curriculum, several challenges remain, including the lack
124 of understanding or misunderstanding of ES-related concepts among college-bound students (Pyle et al.,
125 2018), the deficiency of ES instructional resources, the lack of support for school-level ES instruction
126 from the science education community, and the lack of ES-focused teacher training (King, 2013).
127 Altogether, these challenges in ES education call for a need for new approaches to support the ES K-12
128 curriculum (King, 2013), such as the reinforcement of students' positive attitudes toward ES through
129 outreach and scicomm. Positive attitudes toward science are a set of affective behaviours such as (1) the
130 manifestation of favourable attitudes toward science and scientists, (2) the enjoyment of science
131 learning experiences, (3) the development of interest in science and science-related activities, and (4)
132 the interest in pursuing a career in science. These behaviours can influence students' interest in science
133 careers and in STEM learning (Fitzakerley et al., 2013; Lyon et al., 2020; McNeal et al., 2014; Osborne
134 et al., 2003). Researchers have commonly measured attitudes toward science using questionnaires with
135 Likert-scale items, which ask students to use a rating scale to indicate a favourable or unfavourable
136 opinion about a statement. The ability to use these responses in statistical analysis has made them a
137 widely used and reliable tool for measuring attitudes toward science topics (Osborne et al., 2003).
138 Moreover, Outreach and scicomm have the potential to have a positive impact on the development of
139 positive attitudes toward ES careers and ES literacy. Outreach refers to the activities or processes whose
140 main objective is to promote awareness of STEM in real life, the pursuit of STEM careers, and to
141 motivate non-experts to learn STEM topics (Crawford et al., 2021; Jeffers et al., 2004; Vennix et al.,
142 2017). Outreach programs can take place in person or virtually, and can be structured in a variety of
143 ways, and formats (Crawford et al., 2021). Examples of outreach initiatives include science art
144 installations in nontraditional locations such as public parks (Arcand & Watzke, 2010), the creation of
145 audiovisual material distributed through social media platforms (Gurer et al., 2023), hands-on
146 experiences in nature preserves (Lacey HB, 2016) or museums (Stocklmayer S, 2005), among others.
147 Regardless of their structure or format, Outreach activities can use scicomm strategies to achieve these
148 goals, as they because they have the potential to increase the comprehension (literacy), interest, and
149 engagement of non-expert science learners' comprehension (literacy), interest, and engagement
150 (Dahlstrom, 2014), and can be used to increase positive attitudes toward STEM subjects and careers
151 (Burns et al., 2003; Choi et al., 2020; Schmidt & Kelter, 2017). In addition, if the scicomm strategies
152 are aligned with specific learning goals, they can have a positive impact in content area literacy
153 (Hildenbrand GM, 2022).

154 **2.2 Electronic Field Trips (EFTs)**

155 Digital outreach strategies such as EFTs have shown the potential to extend scientific research and
156 information about science concepts and careers to a range of formal, informal, and non-formal
157 audiences, allowing viewers to visit virtually any locations around the globe (Beattie et al., 2020;
158 Cassady & Kozlowski, 2008; Evelpidou et al., 2021). For example, The Streaming Science Project is a
159 [globally available](#) online outreach platform that includes college-student-created EFTs and other
160 multimedia to introduce audiences to STEM topics and experts ~~and~~. The Streaming Science EFT
161 model (Loizzo et al., 2019) connects science-experts with K-12 students by showcasing live webcasts or
162 pre-recorded videos from various science fields. Using this approach, the Streaming Science EFT model
163 has positively impacted students' perceptions and attitudes about scientists, science careers, and science
164 in general (Barry et al., 2022; Beattie et al., 2020; Loizzo et al., 2019). [Wordpress analytics show that](#)
165 [more than 137 countries have viewed the Streaming Science overall website since the project began in](#)
166 [2016, and the Rocks Really Rock EFT website had 697 views during 2022-2023 when it was heavily](#)
167 [promoted to schools. Science communication materials and outreach programs are publicly available](#)
168 [and free as they are often supported through grant funding and faculty and college student research.](#)
169 EFTs can follow different technology formats, from partially to fully immersive augmented reality
170 experiences (usually referred to as virtual field trips), to both pre-recorded and live-streaming video
171 broadcasts, and they can be created using different platforms (e.g., ArcGis Stories, desktop and web-
172 Google-Earth, and virtual reality platforms). Previous studies have shown that students can benefit from
173 virtual field experiences, which have several advantages over in-person field trips, such as: 1)
174 accessibility to learners with all types of abilities and socioeconomic backgrounds, 2) accessibility from
175 any part of the world with an Internet connection, 3) suppression of logistics of in-person field trips
176 such as time, transportation and high costs, 4) availability when sites cannot be visited due to safety
177 conditions, time, weather, or health reasons, and 5) the ability for the audience to move through the
178 content at their own pace (Carabajal et al., 2017; Cliffe, 2017; Evelpidou et al., 2021; Pugsley et al.,
179 2022).
180 EFTs in ES-related topics have been created for formal education at the college level, collecting and
181 processing visual, spatial, and informational data of a geological site of interest with which the user can
182 interact to varying degrees (Barth et al., 2022; Dolphin et al., 2019). Some of these virtual field trips
183 have been created to substitute classic field guides (e.g., Streetcar to Subduction to the San Francisco
184 Bay Area) or to provide remote alternatives to real, in-person field trips in formal ES field education
185 (e.g., virtual field trips during the COVID-19 pandemic) (Bond et al., 2022). These virtual experiences
186 combine digital narratives with geological fieldwork observations, introduce information about a
187 geologic field site, and provide an authentic sense of being at real geological sites (Cliffe, 2017;
188 Dolphin et al., 2019; Granshaw & Duggan-Haas, 2012). Nevertheless, most of these EFTs have been
189 used as an alternative education in ES majors, but they have not been designed with outreach in K-12
190 environments in mind. Thus, EFTs have the potential to become a widely used outreach strategy in both
191 informal and formal learning environments, following pre-established models for K-12 outreach
192 through EFTs, such as the Streaming Science model (Beattie et al., 2020; Loizzo et al., 2019).

193 This study examined the development, implementation, and assessment of an EFT called Rocks Really
194 Rock: An Electronic Field Trip across Geologic Time. The EFT followed the Streaming Science EFT
195 model (Loizzo et al., 2019) and a quantitative design to assess the impact of the program on K-12
196 school students through a post-survey in three main areas: a) attitudes towards geology, b) attitudes
197 towards geology careers, and c) perceptions of geology literacy. The collaboration between scientists
198 and K-12 environments, which this model has successfully tested in several contexts (Aenlle et al.,
199 2022; Barry et al., 2022), provided a platform to positively impact students' attitudes and perceptions
200 toward ES and ES careers using EFTs. In the next section, we describe the development of the EFT and
201 the survey data collection in detail.
202

203 **3. Methods**

204 **3.1 EFT context and content development**

205 This study developed, implemented, and assessed an EFT called Rocks Really Rock: An Electronic
206 Field Trip across Geologic Time whose target audience was middle and high school students. The EFT
207 consisted of six single-presenter explanatory videos (recorded in Idaho-US in Summer 2021) embedded
208 in a Web Google Earth project, an open-access tool that allows project creators to geotag locations
209 around the Earth and embed multimedia content. Each of the videos was linked to a specific
210 geographical stop with geological significance within the context of the EFT content (Figure 1). The
211 lead author used a storytelling approach to present the content at each of the stops, following a
212 chronological order to tell the story of geological changes on Earth that can be observable in the rocks
213 found in the field. The entire EFT took approximately 40 to 45 minutes and was publicly available
214 online (See supplement link).

215 The expertise of the subject matter expert (this article's lead author) in the field of geology of Idaho was
216 instrumental in developing the EFT. Ortiz-Guerrero has an academic background in geology and was in
217 the process of finalizing her Ph.D. when she developed the program and assessment. This academic
218 pursuit allowed her to acquire in-depth knowledge and expertise in the subject of the EFT. Furthermore,
219 the EFT content featured her rock research and field sites in Idaho, thus she had familiarity with the
220 regional geological features and their history, which allowed the authors to create a targeted and
221 engaging learning experience for the K-12 students.

222 The EFT geology content was designed to align with the Next Generation Science Standards (NGSS)
223 learning objectives in the Middle School Earth Sciences (MSESS) disciplinary core ideas, from three
224 subcategories: 1) The History of Planet Earth, 2) Earth's Material and Systems, and 3) Plate Tectonic
225 and Large-Scale System Interactions (National Research Council, 2012; NGSS Lead States, 2013).
226 These NGSS standards also intersect with several of the Big Ideas listed in the National Science
227 Foundation's (NSF) Earth Sciences Literacy Principles (ESLP) (Wysession et al., 2012). Table 1
228 summarizes the integration of these educational and Big Idea standards, which resulted in the design of
229 the EFT to incorporate four key Big Ideas from the ESLP. The characteristics of each video, the

230 recording location, and the associated ESLP and NGSS objectives are summarized in Table 2. A unique
231 sub-website for the EFT was created on the Streaming Science platform, which included a description
232 of the program, links to a registration form, and the teacher's guide. The teacher's guide was designed
233 as a stand-alone document that included instructions for K-12 educators to go implement the EFT in
234 their classrooms.

235 Storytelling applied to science invites scientists to share their research and learning experiences with
236 audiences through narrative and storytelling, making science more accessible and engaging. The overall
237 goal of using storytelling to explain geology literacy content was to explain describe selected concepts
238 from the NGSS, in the context of geochronology and geology careers. Geochronology, referred to by
239 some as "the heart of the earth sciences" (Harrison et al., 2015), is the discipline that frames the
240 geological events of the earth in a chronological order. Therefore, by framing the chosen geological
241 concepts within a geochronological order, the audience was able to follow a narrative arc structure of
242 beginning, middle, and end, allowing the audience to follow the simple idea of what happened next and
243 learn through the story of Earth's changes. In summary, the script was constructed to give the audience a
244 reason and a causal connection between the different geological events at each of the stops, distilling the
245 information to construct a compelling story, in a non-formal language appropriate to our target
246 audience. In addition to the geologic story, we introduced the audience to geologic careers by
247 explaining the work of a geologist using the "AND-BUT-THEREFORE" (ABT) conceptual storytelling
248 structure (Olson, 2015).

249 The ABT storytelling strategy structures the flow of information by forming a narrative arc in the
250 audience's mind, avoiding an expository flow of information. In this method, the beginning of the story
251 presents facts that are connected by "ANDs," which represent an agreement between the facts. In the
252 middle of the story, the antithesis or problem of the story is introduced by the word "BUT". Finally, the
253 end of the story follows the antithesis with a solution and is introduced by the word "THEREFORE"
254 (Olson, 2015). This part gives way to the beginning of the journey, the consequence that leads the
255 storyteller to the explanation of why we do what we do. To apply this structure in this project, the
256 ANDs were communicated as geological scientific facts, for example: "The history of the earth is
257 recorded in the rocks of the earth". The BUT is communicated as an antithesis. For example, "But
258 geological processes take place on non-human time scales, so we cannot see them. Finally, the
259 THEREFORE is communicated as a solution: "Therefore, geologists, study the Earth by going into the
260 field and looking at rocks to study the Earth's history.

261 **3.2 Research Design**

262 **3.2.1 Participant Recruitment**

263 Teacher and student recruitment was conducted after approval by the Institutional Review Board for
264 Human Subjects Research at the University of Florida. Teachers in K-12 schools in the U.S. were
265 recruited to participate in the EFT using the following methods: 1) direct email invitation through the
266 Streaming Science educators' listserv in MailChimp, 2) direct email invitation to educators through the
267 Scientist in Every Florida School program of the Thompson Earth Systems Institute at the Florida

268 Museum of Natural History, 3) Streaming Science social media accounts, and 4) word of mouth through
269 the lead author's personal contacts.

270 After teachers registered their classrooms for the EFT and indicated their interest in participating in the
271 research, they were emailed a link to the website, teacher's guide, and EFT content. Approved opt-out
272 consent forms were sent home to parents informing them of their child's participation in the EFT and in
273 the anonymous research. Parents who did not want their child to participate had the option of signing
274 and returning the forms to the school. After the forms were returned, teachers implemented the EFT and
275 completed the post-surveys as part of their normal classroom instruction.

276 **3.2.2 Survey Design**

277 The student' post-assessment followed a quantitative design to evaluate the impact of the program on
278 K-12 school students through a post-survey in three main areas: a) attitudes toward geology, b) attitude
279 towards ~~g~~eology careers, and c) perceptions of geology literacy. We used a post-retrospective survey
280 design approach which consisted of a questionnaire completed by the students after completing the
281 program. Students were asked to use a rating scale to indicate a favorable or unfavorable opinion about
282 a statement (also known as Likert-scale items). The ability to use these responses in statistical analysis
283 has made them a widely used and reliable tool for measuring attitudes toward science in outreach
284 research (Adedokun et al., 2011; Aenlle et al., 2022; Barry et al., 2022; Lyon et al., 2020; Osborne et
285 al., 2003). In addition, a teacher post-assessment was also implemented to evaluate the teachers'
286 perceptions of the EFT, and to collect suggestions for improving the program. This survey included one
287 open question.

288 Several questions and statements for the post-retrospective assessment were adapted from previous ES'
289 education studies and EFT studies related to The Streaming Science Project (Adedokun et al., 2011;
290 Lyon et al., 2020; Tillinghast et al., 2019). The student and teacher surveys ~~are~~is available as
291 Supplementary Material (SM1 and SM2). Surveys were implemented using Qualtrics, an online survey
292 platform. The survey link was distributed via email to teachers who had registered to participate.
293 Teachers and had their students completed the survey electronically or through paper copies that were
294 scanned and sent to the researchers.

295 **3.2.3 Data Analysis**

← Formatted: Heading 3

296 Descriptive statistics were used to analyze the quantitative survey data. Paired T-tests with means and
297 p-values were calculated to compare the before and after student responses to the same question. The t-
298 test compares the means between two related groups on the same continuous dependent variable. The
299 greater the magnitude of the t-value, the greater the difference between the means. Conversely, the
300 closer the t-value to 0, the more likely it is that there isn't a significant difference between the means⁴.
301 Each t-value has an associated p-value that indicates the statistical significance of the t, with p<0.05
302 being a statistically significant analysis. The selected valid responses were coded as a data set and
303 analyzed in the SPSS (Statistical Package for the Social Sciences) software to calculate means, standard
304 deviations, t-tests, and p-values.

305 Several limitations were identified in this study. First, the sample size of participating schools. Although
306 forty-one teachers/classrooms expressed interest in the program, only six classrooms completed the
307 program. Second, some of the students did not complete the entire survey nor did they answer all the
308 questions, which reduced the amount of useful data. Third, there were problems with the audio quality
309 in some of the pre-recorded videos in the EFT due to the wind interfering with the microphones during
310 the field recording portion. The noise, which interfered with the presenters' voice, could have made it
311 difficult for subjects to understand certain parts of the EFT. However, this difficulty was present in less
312 than 10% of the materials. Fourth, the limitation of having only one presenter. Although the presenter
313 had experience with outreach and scicomm, this may have led to audience fatigue. Finally, there was no
314 detailed demographic assessment which prevented us from distinguishing results between individuals
315 from different backgrounds.

316 **4. Results**

317 The first pilot of the Rocks Really Rock program took place in April and May 2022. Forty-one teachers
318 initially responded to the Google Form recruitment survey expressing interest in participating in the
319 program. Six teachers/classrooms participated in the entire program, from EFT presentation to post-
320 survey distribution and completion. Three classrooms were located in Florida, one classroom in New
321 York City (homeschool), one classroom in North Dakota, and one classroom in Virginia. Six teachers
322 answered the whole assessment as reported in Table 7. A total of 120 students participated in the EFT,
323 and 120 surveys were completed via Qualtrics and paper-copies, which were distributed by teachers
324 after completion of the EFT to students who did not opt-out of the program.

325 All the responses were downloaded from Qualtrics and coded as one data set for analysis in SPSS
326 (Statistical Package for the Social Sciences) software. Surveys with less than 90% of complete
327 responses were not used for the data analysis. A total of 83 usable student surveys were included in the
328 data analysis. The survey responses are included as a spreadsheet in Supplementary Materials (SM33).
329 Figure 3 shows the classroom-grade distribution of participants who completed the post-survey as well
330 as the gender distribution. Most of the participating students were female. The grade range was 5th-12th
331 grade. All fifth-grade subjects were from the homeschool participant class. As observed, most of the
332 participants were middle-school students (6th- 8th grade), and they made up 82% of the sample.
333

334 **4.1 Assessing EFT impact on students' attitudes toward geology.**

335 The first part of the survey attempted to determine how students' attitudes toward geology changed over
336 the course of the EFT. Students were asked about their attitudes toward geology before and after the
337 EFT on a scale of 1-6, where 1=unexciting, mundane, and unappealing, and 6 =exciting, fascinating,
338 and appealing. Table 3 shows the means (M) for the responses to each of the statements for N valid
339 responses, and the standard deviation (SD) from each mean. The results of the paired t-tests for the
340 statements are reported for N-t valid responses. Overall, the results show a significant change in
341 students toward more positive attitudes toward geology after the EFT, as indicated by t-tests and p-

342 values <0.05 . The statement that showed the greatest (and significant) change toward a more positive
343 attitude was Geology is appealing/unappealing (t-test: -5.58 , $p=0.00$). The statement that showed the
344 least change toward a more positive attitude was Geology is exciting/unexciting (t-test: -5.02 , $p=0.00$).

345 **4.2 Assessing EFT impact on students' attitudes toward geology careers.**

346 The second part of the survey attempted to determine how the students' attitudes toward geology
347 careers changed due to their participation in the EFT. Students were asked about their attitudes toward
348 geology careers before and after the EFT via a post-retrospective survey using a 5-point Likert-scale
349 with the following range: 1.00=Strongly disagree, 2.00 =somewhat disagree, 3.00=neither agree nor
350 disagree, 4.00 somewhat agree, and 5.00=strongly agree. Table 4 shows the means (M) for the
351 responses to each of the statements for N valid responses, and the standard deviation (SD) from each
352 mean. The results of the paired t-tests for the statements are reported for N-t valid responses, which are
353 the number of answers that can be paired and compared through the test. Statements 2, 3, and 4 showed
354 a statistically significant change in perception, all having p-values <0.05 . On the contrary, the t-test for
355 statement 1 is not statistically significant according to the p-value >0.05 . The statement that showed the
356 greatest (and significant) change toward a more positive attitude was Geology is important (t-test= -5.31 ,
357 $p=0.00$). The statement that showed the least change toward a most positive attitude was Geology is a
358 science (t-test= -2.47 , $p=0.02$).

359 **4.3 Assessing impact of the EFT on students' perceptions of geology literacy.**

360 The third part of the survey attempted to determine how the students' perceptions of geology literacy
361 changed due to the EFT. Students were asked about their attitudes toward geology careers-literacy,
362 before and after the EFT using a 5-point Likert-scale with the following range: 1.00=Strongly disagree,
363 2.00 =somewhat disagree, 3.00=neither agree nor disagree, 4.00 somewhat agree, 5.00=strongly agree
364 Table 5 shows the means (M) for the responses to each of the statements for "N" valid responses. The
365 results of the paired t-tests for the statements are reported for N-t valid responses. All results showed a
366 statistically significant positive change with p-values <0.05 . The statement that showed the greatest
367 change was I have a great deal of knowledge about geology ($t=-8.36$, $p=0.00$).
368 In addition, students were asked about their knowledge of rocks before and after the EFT on a 5-point
369 Likert-scale with the following range: 1.00=nothing, 2.00=not much, 3.00=a little, 4.00=a lot, and
370 5.00=everything. Table 6 shows the means (M) for the responses for one question for "N=82" valid
371 responses. The mean score for the question Before the electronic field trip how much did you know
372 about rocks? was $M=2.93$ ($SD=0.80$), which is between "not much" and "a little," and the mean score
373 for the question After the electronic field trip, how much do you know about rocks? was $M=3.62$
374 ($SD=0.75$) which is between "a little" and "a lot." The results of a paired t-test for this statement, for N-
375 t valid responses, showed a positive change in attitude with statistical significance.

376 **4.4 Assessing teachers' perceptions of the EFT.**

377 The teachers' survey attempted to determine the teachers' perceptions of the EFT, and to know their
378 opinions about the program. Teachers were asked to evaluate their level of agreement or disagreement
379 with thirteen statements using a 5-point Likert-scale with the following range: 1.00=Strongly disagree,
380 2.00=somewhat disagree, 3.00=neither agree nor disagree, 4.00=somewhat agree, 5.00=strongly agree
381 Table 7 shows the means (M) for the responses to each of the statements for "N" valid responses. The
382 teachers' perceptions regarding the students' attitudes was the most positive regarding to the statement
383 "The scientist communicated at a level that I understood". The lowest mean score reported by the
384 teachers was regarding to the statement "The virtual tour inspired my students to want to learn more
385 about careers in geology". In addition, one open question about opinions and possible improvements
386 was included, and the answers are reported in Table 8.

Formatted: Font: 11 pt

388 **5. Discussion**

389 According to the Council of Advisors on Science and Technology of the President of the United States,
390 there will be a shortage of nearly one million STEM professionals in the coming years. Their
391 projections show that STEM fields will need to increase their recruitment by 34% (Crawford et al.,
392 2021; Olson & Riordan, 2012). As noted previously, this situation may be more challenging for ES
393 careers given the lack of exposure/awareness of ES disciplines among K-12 students, in addition to the
394 low ES literacy of the general population. For this reason, given that high-quality education in K-12
395 school settings have the potential to reinforce positive attitudes toward STEM content and careers, the
396 role of these environments is very important in building an ES-literate society and increasing ES career
397 awareness (Locke et al., 2018). Furthermore, science educators can effectively support these formal
398 educational settings through outreach activities, which have the potential to increase students' positive
399 attitudes toward STEM and related careers and increase the motivation to engage in STEM activities
400 (Vennix et al., 2017, 2018).

401 The purpose of this study was to determine the impact of an EFT in web Google-Earth on ES topics for
402 K-12 students. To do so, we built a web Google-Earth EFT using pre-recorded videos called Rocks
403 Really Rock: An Electronic Field Trip across Geological Time and assessed it with students from seven
404 middle and high Schools in the United States. Our results showed that EFTs in ES are effective tools
405 that can be created by Earth scientists to develop outreach projects and support K-12 science educators
406 to: 1) generate positive attitudes toward the ES, 2) positively impact interest in ES careers, and 3)
407 reinforce positive perceptions in ES literacy. In the following section we present our considerations of
408 this type of EFT and discuss the findings in relation to our research objectives.

409 **5. 1 Changes in students' attitudes towards Earth sciences using EFT**

410 The results of this study, in light of the existing literature on STEM and ES outreach, support the
411 following factors that we believe determine a positive change in K-12 students' attitudes toward ES

412 using EFTs: 1) the use of pre-recorded videos in the Web Google-Earth platform, 2) the two-way
413 asynchronous interactions between teacher-student-scientist, and 3) the use of storytelling to design the
414 content of the EFT. Here, we lay out the main considerations that led us to propose these factors.

415 **5.1.1 Use of pre-recorded videos in Web Google-Earth.**

416 There are several advantages (for both creators and users) of Web Google-Earth as a platform for
417 creating virtual field trips in the ES, such as: the effective and user-friendly format and interface of the
418 platform, the easy way to distribute via direct web link, the ability to geotag the different field trip stops
419 in one single project, the 3D view navigation of the locations providing opportunities for independent
420 exploration, among others (Barth et al., 2022; Evelpidou et al., 2021; Mahan et al., 2021; Wyatt &
421 Werner, 2019). In addition, EFTs through Web Google-Earth do not limit the experience to the
422 geotagged locations, but also allow the creator to include links to supporting materials (e.g., links to
423 publications, maps, field guides, among others) and display multimedia content (photos, videos, satellite
424 images, slides) that allow the user to further explore the studied area (Evelpidou et al., 2021).
425 One of the more powerful outreach benefits of Web Google Earth is the use of multimedia, particularly
426 video. Several studies have shown that multimedia in both science education and outreach can present
427 science materials effectively, efficiently, and more interestingly, which helps students engage with
428 science content and achieve learning outcomes (Morris & Lambe, 2017; Syawaludin et al., 2019; Wang
429 et al., 2022). For example, pre-recorded videos in ES are known to increase interest in STEM because
430 they provide a way to present content knowledge to the public using images, text, multimedia, etc.,
431 which can also create a different pedagogical experience (Wang et al., 2022). We suggest that ES
432 outreach programs through Web Google Earth can benefit from the possibility of combining two tools:
433 pre-recorded ES videos and geotagged locations. This allows students to follow the presenter's
434 explanations, experience the presenter's field observations at each site, and explore the geotagged
435 locations where the videos were filmed. The pre-recorded videos also allowed us to embed explanatory
436 graphics and videos from other creators. Our videos can be easily found by other ES educators on
437 YouTube and can be used in various teaching and learning environments, as accessible support
438 materials for other ES educators around the world (Maynard, 2021; Welbourne & Grant, 2016).

439 **5.1.2 Asynchronous interactions between teacher-student-scientist.**

440 The benefits of interactions between students, teachers, and scientists have been previously evaluated
441 and found to be an essential part of science outreach by positively changing students' perceptions of
442 science and science-related careers (Barry et al., 2022; Painter et al., 2006, [Rogers et al., 2023](#)).
443 International organizations Science organizations, researchers and K-12 science educators across the
444 globe believe that there is a need for scientists to be involved in science education (GSA Position
445 Statement- Promoting Earth Science Literacy for Public Decision Making, 2013; King, 2013; Levine et
446 al., 2007). Currently, several ES K-12 outreach strategies for students and teachers focus on in-person
447 visits from professional scientists, visits to science fairs, visits to science museums, and field trips
448 (Abramowitz et al., 2021; Onstad, 2021; Tillinghast et al., 2019). However, many of these outreach

449 strategies have limitations, including lack of funding for in-person visits, time-consuming
450 transportation, or accessibility.
451 Our results showed that outreach through EFTs in Web Google Earth is an asynchronous alternative for
452 interactive learning experiences in formal educational environments (K-12 classrooms). This mode of
453 EFT has the potential to create positive attitudes toward ES and ES careers, similar to previous
454 synchronous interactions through EFTs via the Streaming Science model (Barry et al., 2022; Loizzo et
455 al., 2019). Because the core of the EFT activity is asynchronous, it has the advantage of being used
456 multiple times by students and teachers after the class activity, and it allows the teacher to view it prior
457 to the class activity. This is supported also by one of the responses to the teachers' survey: "The EFT
458 went well because we could complete it at our pace. I could go to the places on the map that my
459 students wanted to look at". Additionally, the asynchronous, pre-recorded nature of the EFT reduces
460 barriers for students and teachers who may face barriers to accessing field-based outreach events due to
461 financial limitations or physical disabilities (among others), allowing for inclusive participation in
462 outreach activities.

463 5.1.3 The use of storytelling to craft the content of the EFT.

464 Several studies have highlighted that ES is a challenging set of sciences to communicate to non-expert
465 audiences (Scherer et al., 2017; Sell et al., 2006). Wang et al. (2022) proposed three categories to
466 explain the challenges of communicating ES topics: 1) Earth processes operate at unobservable
467 locations and nonhuman "deep timescales," 2) ES information is more relevant to some locations than
468 others, and 3) ES topics involve complex and dynamic systems. Therefore, regardless of the accuracy of
469 the content of an ES outreach strategy, it may not always be effective in positively impacting the
470 learning experience of non-expert audiences or in engaging them with scientific content. However, there
471 are several science communication tools that geoscientists can use to effectively communicate ES to the
472 public, such as science storytelling (McNeal et al., 2014; Stewart & Hurth, 2021). and within
473 storytelling several tools that may help science stories to engage the targeted audience, such as the ABT
474 structure (Olson R, 2015).
475 Our research indicated supports previous research that suggests that science communication through
476 storytelling is an effective strategy for achieving positive impacts through ES outreach initiatives
477 (Dahlstrom, 2014; Joubert et al., 2019; Martinez-Conde & Macknik, 2017; Rogers et al., 2023). In this
478 study, the presenter used a storytelling approach using a chronological narrative to go present facts and
479 evidence about Earth's history, allowing students to go through the science content as if they were by in
480 the section 3 being told the story of Earth through time. In addition, applying the "ABT" structure to
481 showcase geology careers, provided a framework to justify the role of geologists in understanding the
482 history of Earth. Our results show overall that the content fo our pre-recorded videos were was effective
483 in promoting interest with the ES and ES careers, suggesting that storytelling may contribute
484 significantly when developing asynchronous science outreach material for K-12 students.

485 **5.2 Addressing the challenges in ES education and ES careers through outreach**

486 The study discussed in this article focused on the evaluation of attitudes toward geology and Earth
487 sciences (ES) education using an Earth Field Trip (EFT) intervention. The results of t-tests indicated a
488 statistically significant positive change in attitudes toward geology, suggesting that participating in the
489 EFT increased students' positive attitudes toward ES. These findings demonstrate the potential of
490 expanding EFT to other ES fields and reaching middle/high school students. These findings align with
491 previous research on STEM education and outreach, emphasizing the significance of positive attitudes
492 and well-informed perceptions in fostering interest in ES learning and pursuit of ES careers. In the
493 following section we discuss the following topics. 1) the role of EFTs in students' attitudes toward
494 Earth sciences, and 2) The role of EFT in Earth sciences in the perception of ES literacy.

495

496 **5.2.1 The role of EFTs in students' attitudes toward Earth sciences.**

497 The t-tests in the evaluation regarding attitudes toward geology (e.g., Geology is unexciting/exciting,
498 Geology is mundane/fascinating, and Geology is appealing/unappealing) showed a statistically
499 significant positive change, indicating that attitudes toward ES increased after students participated in
500 EFT. These findings demonstrate the feasibility of expanding EFT to other ES fields (not just geology)
501 and to middle/high school (and home) students. Thus, EFT may help science educators change negative
502 or neutral attitudes toward ES to positive attitudes. In addition, EFT may address teacher
503 unpreparedness for ES content and the paucity of available interactive ES instructional resources that
504 prevent and limit ES instruction in various K-12 settings (King, 2013).
505 Based on our findings, the lack of awareness of ES may not be as much of a challenge for ES education
506 (as reported in the literature) as the lack of enthusiasm for ES among K-12 students. Our results showed
507 that there was no statistically significant change when we measured awareness, as most students were
508 aware of geology as a science and where geologists might work before the EFT. However, the t-tests
509 related to the statements measuring attitudes toward geology and geology careers all showed significant
510 positive results.

511 Research has shown that students considering geology careers do so as early as middle school (Lyon et
512 al., 2020). Thus, the use of EFT in this stage can become a powerful intervention strategy to influence
513 ES career choices in a positive way. Based on our findings, there was a significant positive change after
514 following the EFT, on attitudinal statements about geology careers in both the student and the teachers
515 survey (e.g. A job as a geologist would be interesting, I would consider geology as a major, and
516 Geology is important. The virtual tour inspired my students to want to learn more about careers in
517 geology). Therefore, Such EFTs can combine K-12 ES topics (linking learning goals to ESLPs or
518 NGSS) with real-world career scenarios to increase students' interest in ES careers. These EFTs can
519 address students' difficulties connecting science content to career pathways, as well as educators' lack of
520 knowledge about realistic role models in these careers (Jahn & Myers, 2015; Levine et al., 2007; Lyon
521 et al., 2020; McNeal et al., 2014; Petcovic et al., 2018). We recognize that the implementation of this
522 EFT in the science classroom did not necessarily indicate successful recruitment of students into an ES

523 major, but the data demonstrated that the EFT was successful in positively impacting students' thoughts
524 about choosing a geology major.

525 All findings discussed in this article support previous STEM education and outreach research in ES and
526 other STEM fields. Prior research has shown that an EFT as outreach strategy can support STEM
527 education by fostering positive attitudes toward science, which tends to encourage youth to pursue
528 STEM careers and build a skilled STEM workforce (Barry et al., 2022; Loizzo et al., 2019). Similarly,
529 several studies in ES education remind us that positive attitudes and well-informed perceptions about
530 the field of geology and other ES fields influence middle and high school students' interest in ES
531 learning and desire to pursue ES careers (Kurtis, Kimberly, 2009; Lyon et al., 2020; McNeal et al.,
532 2014).

533 5.2.2 The role of EFT in Earth sciences in the perception of ES literacy.

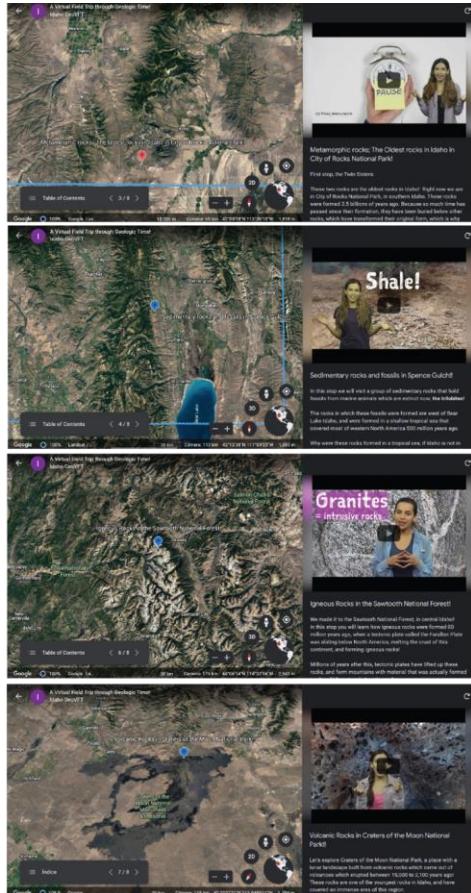
534 Our study found that an EFT built in web Google Earth covering ES topics had a positive impact on
535 students' perceptions of geology literacy and their interest in learning geology topics. After students
536 completed the retrospective self-assessment of their knowledge of ES, there was a statistically
537 significant positive difference in the pre-post statements. The change in the statement I have a great deal
538 of knowledge about geology indicated that the EFT had a positive impact on the students' perception of
539 their knowledge of ES, and that this perception improved. Similarly, the change in the statement I
540 would like to learn more about geology showed that students had an increased desire to learn and an
541 increased interest in geology after the EFT.

542 Our study contrasts to other studies that have assessed students' perceptions and interest in ES literacy
543 by exposing K-12 students to ES content but have not necessarily obtained positive attitudinal changes
544 after the programs. For example, Lyon et al. (2020) used the statement I would like to learn more about
545 geology in an attitudinal survey program in ninth graders who had been exposed to a Geosciences
546 course with content aligned to the NGSS. Their data showed a decrease in interest in geology on the
547 post-survey after had taken the course. The authors considered that one of the main challenges may
548 have been in "translating material covered in class into something they (the students) value" (Lyon et
549 al., 2020). The difference in results between an ES course and an ES outreach program such as our EFT
550 supports our previously mentioned premise about how ES topics are communicated (using storytelling
551 and multimedia) and supports the idea that in K-12 settings, ES outreach using multimedia and science
552 communication tools may be more effective in generating positive attitudes toward geology than
553 exposing students to ES courses.

554 Although our study focused on the U.S. education system, several challenges of ES education and
555 careers are shared by several other countries, as mentioned above. Thus, this strategy has the potential
556 to be implemented globally and to complement or cover gaps in the ES curriculum at the primary and
557 secondary levels and to work towards improving awareness of ES careers (King et al., 2021). For
558 example, in countries such as Chile, researchers have found that the ES K-12 school curriculum is not
559 relevant and have therefore called for the implementation of educational experiences related to ES
560 (Villaseñor et al., 2020), for which EFTs may also work.

561 **5.3 Recommendations: How can the implementation of Earth Sciences electronic field trips be improved?**

562 Based on this pilot study using web Google-Earth for ES outreach in K-12 environments we consider a
563 number of recommendations for EFT creators, users, as well as for further research. Creators, especially
564 scientists with no experience multimedia creation, may find it useful to allocate funding to work with
565 expert multimedia editors to fund the participation of other subject-matter-experts during the video
566 recordings, to integrate dialogue and conversation among the presenters, as noted by one of the
567 responses to the teachers' survey. Funding may also be allocated to improve the video and audio quality
568 of the delivered content. In addition, more content can be added to each site between longer-form
569 videos if there is an opportunity to explore more sites in the area. By making more content available at
570 multiple geo-tagged locations, students and teachers will be able to engage with the application in a
571 more interactive way.
572 The EFT is adaptable to many ways of class instruction, whether it is more individual or group-focused. -
573 We also suggest that the teachers first go through the Google Earth web program on their own
574 before presenting it in their classrooms, and if deemed appropriate, design exercises using the concepts
575 learned in the EFT that can complement the activity before, during, or after the EFT is presented to
576 students, similarly to this teacher's idea: "When we visit again, I will create a work sheet for the
577 students to take notes during the presentation and another to sum up what they have learned." -Teachers
578 can also network with the creators and participate in annual research to assess the impact of these EFTs
579 at different K-12 levels to determine which groups of students are more or less impacted. These
580 strategies, altogether, may potentially reduce the impact of our previously-identified limitations to the
581 outreach program, such as the technical difficulties of recording videos in the outdoors, or the audience
582 fatigue that may be caused by single presenter videos, both included on the recommendations teachers
583 gave to this first pilot program (Table 8).


584 **6. Conclusions**

585 Earth Sciences are relevant to society and its relationship to the Earth system. However, ES education in
586 U.S. K-12 environments faces multiple challenges such as 1) limited exposure to ES, 2) lack of
587 awareness of ES careers, and 3) low ES literacy. Interactions between science educators, students, and
588 scientists are an essential part of science outreach. PreviousPrevious studies have shown that successful
589 outreach programs leading to positive attitudinal changes toward STEM in students can help students
590 understand how science can explain the natural world around them.

591 This study found that outreach through EFTs in Web Google Earth is an asynchronous alternative to
592 synchronous interactive learning experiences in formal education environments (K-12 classrooms.) Our
593 study showed that web Google-Earth EFTs have the potential to increase positive attitudes toward ES
594 (specifically geology), interest in ES careers, and perceptions of ES-literacy, providing several
595 advantages for ES K-12 outreach. ItThe use of EFT for ES outreach presents a unique opportunity for
596 Earth Scientists located not only in the United States but anywhere in the globe, to network with K-12
597 educators and address these challenges, creating interactions between scientists and K-12 classrooms.
598 Our findings indicated that one of the major problems in ES education is not a lack of awareness but a

599 lack of excitement among K-12 students about ES topics, and therefore scicomm tools such as
600 storytelling and use of multimedia in platforms such as web Google Earth, provide an effective strategy
601 for creating outreach content that generates engagement with science topics and increases positive
602 attitudes toward science.

603 Figures:

604
605

606 Figure 1. Screenshots from the EFT “Rocks Really Rock, and EFT Across Geological Time”. Adapted
607 from: <https://earth.google.com/earth/d/1btfkYpOkcsqQktfy-t0pYJLT1e2JSP?usp=sharing> © Google
608 Earth 2023. Recovered: September 19, 2023

Home News Communication Engagement NCLADigital Research Partners Behind the Science

Rocks Really Rock!

An electronic field trip across geologic time

Register for the EFT (April 2022)

Rocks Really Rock! is a Shelly-Beth electronic field trip (EFT) curated by University of Florida doctoral student Carolina Orla-Bueno. Middle school teachers, please follow this link to sign up for the EFT.

Register Here

What hidden stories about Earth do rocks in Idaho carry with them?

Over millions of years, the North American continent has changed, and so have the environments where rocks have formed. Just like a film, Idaho rocks record sea-level changes that took place 800 million years ago, as well as changes in the position of tectonic plates that led to the formation of the region's mountains.

From now-extinct fossils to relatively young volcanic rocks, Idaho's geology is a real wonder! You can travel billions of years in geological time if you know which rock to have a look at.

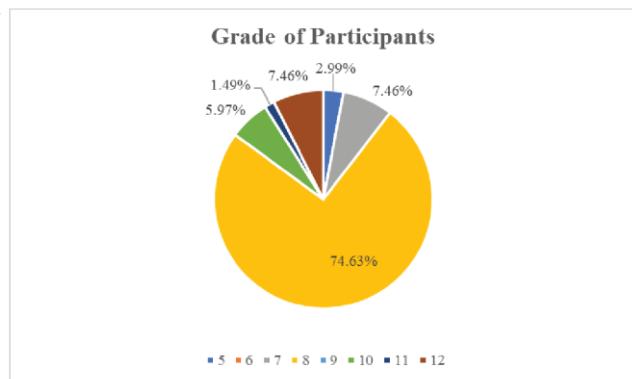
Meet Carolina Orla-Bueno, a geologist working in the region. She is a science communicator and Ph.D. Student from the Department of Geological Sciences at the University of Florida. Carolina will take you to four famous geological spots to teach you about rock and plate tectonics in North America through our Shelly-Beth electronic field trip (EFT).

609

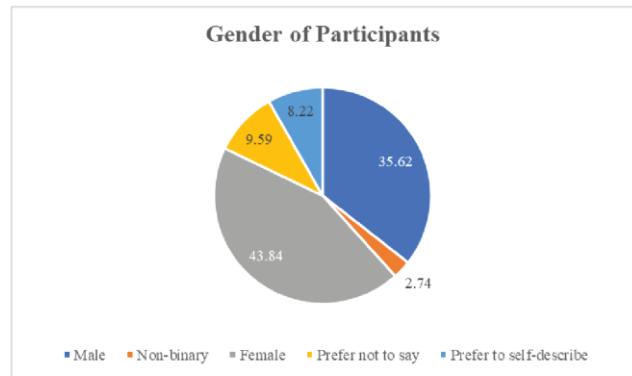
610 Figure 2. Screenshot from Streaming Science web page for "Rocks Really Rock EFT". Adapted from:

611 <https://streamingscience.com/rocks-really-rock-an-electronic-field-trip-across-geologic-time/>

612 Recovered: September 19, 2023


613

614


615

616

A

B

619 Figure 3. A) Grade distribution from participant students. B) Gender distribution from participant
 620 students.

629 Tables

630 Table 1. List of *Earth Sciences Literacy Principles* (ESLP) and *Next Generation Science Standards* (NGSS) used for content literacy in “Rocks Really Rock” EFT

ESLP	Middle School Earth Sciences (MS-ESS) NGSS standards used in content creation
Big Idea 2 (Earth is 4.6 billion years old)	MS-ESS1.C - The History of Planet Earth. MS-ESS2.A - Earth’s Material and Systems MS-ESS2.B - Plate Tectonic and Large-Scale System Interactions
Big Idea 3 (Earth is a complex system of interacting rock, water, air, and life).	MS- ESS1.C - The History of Planet Earth. MS-ESS2.A - Earth’s Material and Systems MS-ESS2.B - Plate Tectonic and Large-Scale System Interactions
Big Idea 4 (Earth is continuously changing)	MS- ESS1.C - The History of Planet Earth. MS-ESS2.B - Plate Tectonic and Large-Scale System Interactions
Big Idea 6 (Life evolves on a dynamic Earth and continuously modifies Earth).	MS- ESS1.C - The History of Planet Earth.

632

633 Table 2. Structure of “Rocks Really Rock” EFT

Video/ Duration (mins/secs)	Recording Location	Covered Topics, Earth Science Literacy Principle (ESLP), and Next Generation Science Standard (NGSS)	Learning Objectives
1. Intro (2m 24s)	Studio	<p>This module is an introduction into the program and to the concepts of geologic time, and plate tectonics.</p> <p>ESLP=Big Idea 2 (Earth is 4.6 billion years old), and Big Idea 3 (Earth is a complex system of interacting rock, water, air, and life).</p> <p>NGSS=MS- ESS1.C, The History of Planet Earth.</p>	1. Recall what is the geologic timescale.

634

635 Table 2. Continued

Video/ Duration (mins/secs)	Recording Location	Covered Topics, Earth Science Literacy Principle (ESLP), and Next Generation Science Standard (NGSS)	Learning Objectives
2. Stop 1 “City of Rocks, Looking for the oldest rocks in Idaho” (5m 29s)	Twin Sisters rocks at City of Rocks National Park (Idaho- US) +Studio	This module covers three different topics: 1) The age of the oldest rocks in Idaho, 2) The differences between today’s Earth and Earth 2-billion years ago, and 3) the concept of metamorphism. ESLP=Big Idea 2 (Earth is 4.6 billion years old), and Big Idea 4 (Earth is continuously changing). NGSS= MS- ESS1.C, The History of Planet Earth., and MS-ESS2.A-Earth’s Material and Systems	1. Recall what is a metamorphic rock. 2. Recall how old are the oldest rocks in Idaho.

636

637 Table 2. Continued

Video/ Duration (mins/secs)	Recording Location	Covered Topics, Earth Science Literacy Principle (ESLP), and Next Generation Science Standard (NGSS)	Learning Objectives
3. Stop 2 “Cambrian Fossils”. (5m 21s)	Spence Gulch (Idaho-US) +Studio	<p>This module covers four different topics: 1) Changes in Earth from 2000-500 Ma, 2) The Cambrian Earth and the Cambrian explosion 3) Formation of sedimentary rocks, and 4) Formation of fossils, and ichno-fossils.</p> <p>ESLP=Big Idea 2 (Earth is 4.6 billion years old), Big Idea 4 (Earth is continuously changing), and Big Idea 6: Life evolves on a dynamic Earth and continuously modifies Earth.</p> <p>NGSS= MS- ESS1.C, The History of Planet Earth., and MS-ESS2.A-Earth’s Material and Systems. and MS-ESS2.B Plate Tectonic and Large-Scale System Interactions .</p>	<ol style="list-style-type: none"> 1. Recall what is a sedimentary rock 2. Recall what is a fossil, and what is a trilobite. 3. Recall what was the Cambrian explosion.

638
639
640

641 Table 2. Continued

Video/ Duration (mins/secs)	Recording Location	Covered Topics, Earth Science Literacy Principle (ESLP), and Next Generation Science Standard (NGSS)	Learning Objectives
4. Subduction Zone and Plate Tectonics (2m57s)	Studio	<p>This module explains the formation of subduction zones, and the occurrence of a subduction zone in the Cretaceous in western North America.</p> <p>ESLP=Big Idea 2 (Earth is 4.6 billion years old), and Big Idea 4 (Earth is continuously changing)</p> <p>NGSS= MS- ESS1.C, The History of Planet Earth., and MS-ESS2.A-Earth's Material and Systems. and MS-ESS2.B Plate Tectonic and Large-Scale System Interactions</p>	<p>1. Recall the effect of the movement of plate tectonics, in changing the shape of continents.</p>

642

643 Table 2. Continued

Video/ Duration (mins/secs)	Recording Location	Covered Topics, Earth Science Literacy Principle (ESLP), and Next Generation Science Standard (NGSS)	Learning Objectives
5. Stop 3 “Igneous Rocks in the Sawtooth Moutain” (6m13s)	Sawtooth Lake at the Sawtooth National Forest (Idaho-US) +Studio	This module covers three topics: 1) Plate tectonics 80 million years ago in The Cretaceous, 2) Formation of igneous rocks in subduction zones, 3) Minerals forming granitic rocks, and 4) geology methods for outcrop rock observation. ESLP=Big Idea 2 (Earth is 4.6 billion years old), and Big Idea 4 (Earth is continuously changing) NGSS= MS- ESS1.C, The History of Planet Earth., and MS-ESS2.A-Earth’s Material and Systems. and MS-ESS2.B Plate Tectonic and Large-Scale System Interactions	1. Recall what is a subduction zone, and the effects on mountain formation. 2. Recall what an igneous rock is.
6. Stop 4 “Origin of volcanic rocks” (6m14s)	Craters of the Moon National Park (Idaho- US) +Studio.	This module covers two topics: 1) Formation of volcanic extrusive rocks, and 2) Formation of lava tubes. ESLP= Big Idea 4 (Earth is continuously changing). NGSS= MS- ESS1.C, The History of Planet Earth.,	1. Recall what type of rock a basalt is. 2. Recall what are lava tubes.

644

645

646

647 Table 3. Survey results about attitudes towards geology before and after EFT. Ranking Scale: 1 =
648 unexciting, mundane, unappealing // 6=exciting, fascinating, appealing.

Statements	Mean score (Standard Deviation)	T-test befor	P- value
------------	------------------------------------	-----------------	-------------

	BEFORE the 'Rocks really rock' electronic field trip, I thought Geology was	AFTER the 'Rocks really rock' electronic field trip, I now think Geology is	N	e & after	(Sig. 2- tailed)	N-t
unexciting-exciting	2.99 (1.27)	3.72 (1.36)	83	- 5.02	0.000	82
mundane-fascinating	3.33 (1.35)	4.00 (1.36)	83	- 5.08	0.000	82
unappealing-appealing	3.23 (1.43)	4.01 (1.38)	83	- 5.58	0.000	82

650 Table 4. Survey results about attitudes about geology careers. Scale: 1 = Strongly disagree,
 651 2=Somewhat disagree, 3=Neither agree nor disagree, 4=Somewhat agree, 5=Strongly Agree

Statements	Mean score (Standard Deviation)		N	T before & after	P- value (Sig. 2- tailed)	N-t
	BEFORE participating in the Rocks really Rock EFT, I thought	AFTER participating in the Rocks really Rock EFT, I now think				
1.Geologists can work outdoors	4.49 (0.79)	4.61 (0.71)	83	-1.32	0.19	82
2.Geology is a science	4.26 (0.89)	4.49 (0.77)	82	-2.47	0.02	81
3.Geology is important	3.71 (1.02)	4.23 (0.85)	83	-5.31	0.00	82
4.A job as a geologist would be interesting	2.66 (1.07)	3.12 (1.14)	82	-3.93	0.00	81
5.I would consider geology as a major	2.09 (1.06)	2.43 (1.17)	81	-3.64	0.00	80

652
 653
 654 Table 5. Survey results about perceived literacy in geology Pt1. Scale: 1 = Strongly disagree,
 655 2=Somewhat disagree, 3=Neither agree nor disagree, 4=Somewhat agree, 5=Strongly Agree

Student's attitudes	Mean scores (Standard Deviation)	T before	P-value
---------------------	-------------------------------------	-------------	---------

	BEFORE participating in the Rocks really Rock EFT, I thought	AFTER participating in the Rocks really Rock EFT, I now think	N	& after	(Sig. 2- tailed)	N-t
I have a great deal of knowledge about geology.	2.66 (1.00)	3.46 (0.89)	83	-8.36	0.00	82
I would like to learn more about geology	2.84 (1.07)	3.40 (1.20)	82	-5.54	0.00	81

656

657

658

659 Table 6. Survey results about attitudes about perceived literacy in geology before and after the EFT Pt2.
660 Scale: 1= Nothing, 2= Not much, 3=A little, 4=A lot, 5=Everything

661

	Mean score (Standard Deviation)	N
Students' attitudes		
Before the Electronic Field Trip how much did you know about rocks?	2.92 (0.80)	82
After the Electronic Field Trip how much do you know about rocks?	3.62 (0.75)	82
T-test	-9.53	
P-value	0.00	
N-t	81	

662

663

664

665 Table 7. Survey results about teachers' perceptions of the EFT. Scale: 1 = Strongly disagree,
 666 2=Somewhat disagree, 3=Neither agree nor disagree, 4=Somewhat agree, 5=Strongly Agree

Statements	Mean score (Standard Deviation)	N	Formatted: Left Formatted Table
<u>The topic was interesting.</u>	<u>4.83</u> <u>(0.41)</u>	<u>6</u>	Formatted: Left
<u>The scientist was interesting.</u>	<u>4.83</u> <u>(0.41)</u>	<u>6</u>	Font: (Default) Times New Roman, 10 pt, English (United States) Formatted: Left
<u>The scientist talked about something I did not already know.</u>	<u>4.33</u> <u>(0.82)</u>	<u>6</u>	Formatted: Left
<u>The scientist communicated at a level that I understood.</u>	<u>5</u>	<u>6</u>	Formatted: Left
<u>The scientist was knowledgeable about the topic.</u>	<u>4.83</u> <u>(0.41)</u>	<u>6</u>	Formatted: Left
<u>The scientist gave an interesting demonstration to explain the origin of rocks.</u>	<u>4.33</u> <u>(1.21)</u>	<u>6</u>	Formatted: Left
<u>It is important that we learn about Earth's history.</u>	<u>4.83</u> <u>(0.41)</u>	<u>6</u>	Formatted: Left
<u>I learned about careers in geology from the scientist.</u>	<u>4.17</u> <u>(0.75)</u>	<u>6</u>	Formatted: Left
<u>I would recommend this electronic field trip to other classes.</u>	<u>4.66</u> <u>(0.52)</u>	<u>6</u>	Formatted: Left
<u>My students were engaged with the virtual tour.</u>	<u>3.83</u>	<u>6</u>	Formatted: Left

(0.98)

The virtual tour inspired my students to ask questions about geology.

3.83
(0.41)

6
← Formatted: Left

The virtual tour inspired my students to want to learn more about careers in geology.

3.17
(0.75)

6
← Formatted: Left

The electronic field trip was easy to hear.

4.33
(1.21)

6
← Formatted: Left

669
670

Table 8. Survey results about teachers' opinions of the EFT

<u>Respondent</u>	<u>Please leave a comment about what went well and didn't go well by using the EFT. If you have any suggestions for improving the program, write them below.</u>
1	<u>It is best to share the EFT as whole class. Using ipads or chromebooks has issues with school wifi. It would be neat to have a live virtual EFT.</u>
2	<u>They EFT went well because we could complete it at our pace. I could go to the places on the map that my students wanted to look at.</u>
3	<u>I enjoyed the multiple sites. The camera and mic quality were great. The conversation was a little stiff and could use a second scientist to converse with.</u>
4	<u>No problems with using the link or the videos. The sound quality when outdoors was sometimes a little difficult to hear/understand due to the wind. The indoor recording had echo. I presented the EFT on a SmartBoard so all students could watch.</u> <u>[..]</u>
5	<u>The students liked seeing the rocks in their natural habitat. When we visit again, I will create a work sheet for the students to take notes during the presentation and another to sum up what they have learned. A link to more information would be helpful too. Some of the students commented that the volume changed and that you could hear the wind. A fluffy microphone might help with that. Overall, we liked the trip and I plan on using it again in the future.</u>
6	<u>Using EFT was very easy and instructions were clear in how to navigate through it and what to do to prepare and send opt-out options for parents. Some of the information was hard to hear with the way some of the videos were recorded.</u>

Formatted: Font: Bold

Formatted Table

671
672

þ73

674 **Video Supplement**

675 The following link contains the public web-address to the electronic field trip “Rocks Really Rock”
676 which take viewers to the web-Google Earth application
677 <https://earth.google.com/earth/d/1btfkYpOkcsqQktfkY-t0pYJLT1e2lJSP?usp=sharing>→

678 **Author contribution**

679 COG and JL: concept, data collection, research, writing, edition and manuscript revision.
680 Competing interests: The authors declare that they have no conflict of interest.

681 **Ethical statement**

682 The data used in this study was collected on a voluntary and anonymous basis. Identification of
683 individual participants in the questionnaire is impossible. Ethics approval was obtained through the
684 University of Florida’s Institutional Review Board (IRB).

685 **Acknowledgements**

þ86 We thank ~~þ~~The Streaming Science ~~p~~roject for providing website hosting and the list-serve for
87 participant recruitment. We thank Dr. Megan Borel and Laura Mulrooney from the University of
88 Florida for their help during the field production and recording of the videos. Also, we would like to
89 thank Dr. Anita Marshall and the Library of Inclusive Field Technology for providing the technical
90 support and recording devices. Finally, thanks to all participant teachers/classrooms/students for
91 engaging in the program and helping us collect the required information for this project. We appreciate
92 [the enlightening reviews by Edward McGowan and Janine Krippner which improved this manuscript.](#)
93 Proofreading and grammar correction of the manuscript was done using DeepL writing tool.

694 **Financial Support**

695 This study was supported by [a research grant provided by the](#)~~the~~ [Florida Chapter of the](#) Association of
696 Women Geologists ~~[Florida Chapter Research Grant](#)~~, and the Department of Geological Sciences at the
697 University of Florida.

698 **Data Availability**

699 The authors confirm that the data supporting the findings of this study are available within the article
700 and its supplementary materials.

701 **References**

702 Abramowitz, B., Ennes, M., Killingsworth, S., Antonenko, P., MacFadden, B., & Ivory, A. (2021).
703 Science in School: Transforming K-12 Outreach through Scientist Teacher Partnerships [Preprint].
704 Scientific Communication and Education. <https://doi.org/10.1101/2021.07.27.453770>

705 Adedokun, O., Parker, L. C., Loizzo, J., Burgess, W., & Robinson, J. P. (2011). A Field Trip without
706 Buses: Connecting Your Students to Scientists through a Virtual Visit. *Science Scope*, 34(9), 52–57.
707 Retrieved June 24, 2023 from <https://www.learntechlib.org/p/50422/>.

708 Adetunji, O. O., Ba, J.-C. M., Ghebreab, W., Joseph, J. F., Mayer, L. P., & Levine, R. (2012).
709 Geosciences Awareness Program: A Program for Broadening Participation of Students in Geosciences.
710 *Journal of Geoscience Education*, 60(3), 234–240. <https://doi.org/10.5408/10-208.1>

711 Aenlle, J. V., Loizzo, J., Bunch, J. C., Stone, W., Meredith, M., & Ray, K. (2022). Conservation
712 conversation: An arts-based approach to examine impacts of a live video webcast on youth viewers'
713 conceptualizations of forest ecosystems. *Applied Environmental Education & Communication*, 21(3),
714 221–237. <https://doi.org/10.1080/1533015X.2022.2034554>

715 Arcand, K., & Watzke, M. (2010). Bringing the universe to the street. A preliminary look at informal
716 learning implications for a large-scale non-traditional science outreach project. *Journal of Science*
717 *Communication*, 9(2), A01.

718 Barry, S., Stofer, K. A., Loizzo, J., & DiGennaro, P. (2022). High school students' perceptions of
719 science and scientists improve following university-based online DNA day. *Journal of Biological*
720 *Education*, 1–16. <https://doi.org/10.1080/00219266.2021.2012228>

721 Barth, N. C., Stock, G. M., & Atit, K. (2022). From a virtual field trip to geologically reasoned
722 decisions in Yosemite Valley. *Geoscience Communication*, 5(1), 17–28. <https://doi.org/10.5194/gc-5-17-2022>

723 Beattie, P. N., Loizzo, J., Kent, K., Krebs, C. L., Suits, T., & Bunch, J. C. (2020). Leveraging Skype in
724 the Classroom for Science Communication: A Streaming Science – Scientist Online Approach. *Journal*
725 *of Applied Communications*, 104(3). <https://doi.org/10.4148/1051-0834.2328>

726 Bernard, R. E., & Cooperdock, E. H. (2018). No progress on diversity in 40 years. *Nature*
727 *Geoscience*, 11(5), 292-295.

728 Bond, C. E., Pugsley, J. H., Kedar, L., Ledingham, S. R., Skupinska, M. Z., Gluzinski, T. K., & Boath,
729 M. L. (2022). Learning outcomes, learning support, and cohort cohesion on a virtual field trip: An
730 analysis of student and staff perceptions. *Geoscience Communication*, 5(4), 307–323.
731 <https://doi.org/10.5194/gc-5-307-2022>

732 Brown, S. V., & Clewell, B. C. (1998). Project talent flow: The non-SEM field choices of Black and
733 Latino undergraduates with the aptitude for science, engineering and mathematics careers. Report
734 Presented to the Alfred P. Sloan Foundation.

Formatted: Font: 11 pt

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font color: Custom Color(RGB(34,34,34)),
Pattern: Clear (White)

Formatted: Font: 11 pt

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font color: Custom Color(RGB(34,34,34)),
Pattern: Clear (White)

736 Burns, T. W., O'Connor, D. J., & Stocklmayer, S. M. (2003). Science Communication: A
737 Contemporary Definition. *Public Understanding of Science*, 12(2), 183–202.
738 <https://doi.org/10.1177/09636625030122004>

739 Carabajal, I. G., Marshall, A. M., & Atchison, C. L. (2017). A Synthesis of Instructional Strategies in
740 Geoscience Education Literature That Address Barriers to Inclusion for Students With Disabilities.
741 *Journal of Geoscience Education*, 65(4), 531–541. <https://doi.org/10.5408/16-211.1>

742 Cassady, J., & Kozlowski, A. (2008). Electronic Field Trips as Interactive Learning Events: Promoting
743 Student Learning at a Distance. *Journal of Interactive Learning Research*, 19(3) . 439-454. Waynesville,
744 NC: Association for the Advancement of Computing in Education (AACE). Retrieved June 24, 2023
745 from <https://www.learntechlib.org/primary/p/24187/>.

746 Choi, Y.-S., Choe, S.-U., & Kim, C.-J. (2020). Examining Middle School Students' Gestures on
747 Geological Field Trips. *Asia-Pacific Science Education*, 6(1), 97–115.
748 <https://doi.org/10.1163/23641177-BJA10002>

749 Clary, R. M. (2018). Can the history of geology inform geoscience education and public reception of
750 climate change? Lessons from the history of glacial theory. *Geosphere*, 14(2), 642–650.
751 <https://doi.org/10.1130/GES01461.1>

752 Cliffe, A. D. (2017). A review of the benefits and drawbacks to virtual field guides in today's
753 Geoscience higher education environment. *International Journal of Educational Technology in Higher
754 Education*, 14(1), 28. <https://doi.org/10.1186/s41239-017-0066-x>

755 Crawford, A. J., Hays, C. L., Schlichte, S. L., Greer, S. E., Mallard, H. J., Singh, R. M., Clarke, M. A.,
756 & Schiller, A. M. (2021). Retrospective analysis of a STEM outreach event reveals positive influences
757 on student attitudes toward STEM careers but not scientific methodology. *Advances in Physiology
758 Education*, 45(3), 427–436. <https://doi.org/10.1152/advan.00118.2020>

759 Dahlstrom, M. F. (2014). Using narratives and storytelling to communicate science with nonexpert
760 audiences. *Proceedings of the National Academy of Sciences*, 111(supplement_4), 13614–13620.
761 <https://doi.org/10.1073/pnas.1320645111>

762 Dawborn-Gundlach ML, Pesina J, Rochette E, Peter Hubber P, Gaff P, Henry D, Gibson M, Kelly L, Redman C (2017) Enhancing pre-service teachers' concept of earth science through an immersive, conceptual museum learning program (reconceptualising rocks). Teach Teach Educ 67:214–226

763 Dolphin, G., Dutchak, A., Karchewski, B., & Cooper, J. (2019). Virtual field experiences in
764 introductory geology: Addressing a capacity problem, but finding a pedagogical one. *Journal of
765 Geoscience Education*, 67(2), 114–130. <https://doi.org/10.1080/1089995.2018.1547034>

766 Dolphins, G., Dutchak, A., Karchewski, B., & Cooper, J. (2019). Virtual field experiences in
767 introductory geology: Addressing a capacity problem, but finding a pedagogical one. *Journal of
768 Geoscience Education*, 67(2), 114–130. <https://doi.org/10.1080/1089995.2018.1547034>

769 Evelpidou, N., Karkani, A., Saitis, G., & Spyrou, E. (2021). Virtual field trips as a tool for indirect
770 geomorphological experience: A case study from the southeastern part of the Gulf of Corinth, Greece.
771 *Geoscience Communication*, 4(3), 351–360. <https://doi.org/10.5194/gc-4-351-2021>

772 Fitzakerley, J. L., Michlin, M. L., Paton, J., & Dubinsky, J. M. (2013). Neuroscientists' Classroom
773 Visits Positively Impact Student Attitudes. *PLoS ONE*, 8(12), e84035.
774 <https://doi.org/10.1371/journal.pone.0084035>

Formatted: Font: Times New Roman

Formatted: Font: 11 pt

Formatted: Font: (Default) Times New Roman

Formatted: Font color: Custom Color(RGB(34,34,34)),
Pattern: Clear (White)

775 Gates, A. E., & Kalczynski, M. J. (2016). The Oil Game: Generating Enthusiasm for Geosciences in
 776 Urban Youth in Newark, NJ. *Journal of Geoscience Education*, 64(1), 17–23.
 777 <https://doi.org/10.5408/10-164.1>

778 GSA Position Statement- Promoting Earth Science Literacy for Public Decision Making, (2013).

779 Gonzales, L., & Keane, C. (2011). Status of the geoscience workforce. The American Geological
 780 Institute (AGI), American Geological Institute Workforce Program.

781 Granshaw, F. D., & Duggan-Haas, D. (2012). Virtual fieldwork in geoscience teacher education: Issues,
 782 techniques, and models. In S. J. Whitmeyer, J. E. Bailey, D. G. De Paor, & T. Ornduff, *Google Earth*
 783 and Virtual Visualizations in Geoscience Education and Research. Geological Society of America.
 784 [https://doi.org/10.1130/2012.2492\(20\)](https://doi.org/10.1130/2012.2492(20))

785 [Gürer, D., Hubbard, J., & Bohon, W. \(2023\). Science on social media. *Communications Earth & Environment*, 4\(1\), 148.](#)

786 [Hanks, C., Levine, R., Gonzalez, R., Wartes, D., & Fowell, S. \(2007\). Survey Development for Measuring the Near-term Effectiveness of a Program to Recruit Minority Geoscientists. *Journal of Geoscience Education*, 55\(3\), 244–250. <https://doi.org/10.5408/1089-9995-55.3.244>](#)

787 [Harrison, M., S. Baldwin, M. Caffee, G. Gehrels, B. Schoene, D. Shuster, and B. Singer \(2015\). Geochronology: It's about time, *Eos*, 96,doi:10.1029/2015EO041901. Published on 28 December 2015.](#)

788 [Hildenbrand, G. M. \(2022\). Explaining jargon using clear communication strategies. *Communication Teacher*, 36\(1\), 10–13. <https://doi.org/10.1080/17404622.2021.1906924>](#)

789 [Hoisch, T. D., & Bowie, J. I. \(2010\). Assessing Factors that Influence the Recruitment of Majors from Introductory Geology Classes at Northern Arizona University. *Journal of Geoscience Education*, 58\(3\), 166–176. <https://doi.org/10.5408/1.3544297>](#)

790 [Jahn, J. L. S., & Myers, K. K. \(2015\). “When Will I Use This?” How Math and Science Classes Communicate Impressions of STEM Careers: Implications for Vocational Anticipatory Socialization. *Communication Studies*, 66\(2\), 218–237. <https://doi.org/10.1080/10510974.2014.990047>](#)

791 [Jeffers, A., Safferman, A., & Safferman, S. \(2004\). Understanding K–12 engineering outreach programs. *Journal of professional issues in engineering education and practice*, 130\(2\), 95–108.](#)

792 [Joubert, M., Davis, L., & Metcalfe, J. \(2019\). Storytelling: The soul of science communication. *Journal of Science Communication*, 18\(05\), E. <https://doi.org/10.22323/2.18050501>](#)

793 [King, C. \(2013\). Geoscience education across the globe – results of the IUGS-COGE/IGEO survey. *Episodes*, 36\(1\), 19–30. <https://doi.org/10.18814/epiugs/2013/v36i1/004>](#)

794 [King, C., Gorfinkel, D., & Frick, M. \(2021\). International comparisons of school-level geoscience education—the UNESCO/IGEO expert opinion survey. *International Journal of Science Education*, 43\(1\), 56–78.](#)

795 [Kurtis, Kimberly. \(2009\). Minority college student attitudes toward the geological sciences: Unearthing barriers to enrollment. California State University, Long Beach.](#)

796 [Lacey, H. B. \(2016\). Impacts of ecology-themed interpretation programs at a Colorado open space preserve on attitudes, beliefs, and knowledge.](#)

797 [LaDue, N. D., & Clark, S. K. \(2012\). Educator Perspectives on Earth System Science Literacy: Challenges and Priorities. *Journal of Geoscience Education*, 60\(4\), 372–383. <https://doi.org/10.5408/11-253.1>](#)

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font color: Custom Color(RGB(34,34,34)), Pattern: Clear (White)

Formatted: Font: (Default) Times New Roman, Font color: Auto, Pattern: Clear

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font color: Custom Color(RGB(34,34,34)), Pattern: Clear (White)

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman

816 Levine, R., González, R., Cole, S., Fuhrman, M., & Le Floch, K. C. (2007). The Geoscience Pipeline: A
817 Conceptual Framework. *Journal of Geoscience Education*, 55(6), 458–468.
818 <https://doi.org/10.5408/1089-9995-55.6.458>

819 Locke, S. L., Bracey, G., Foster, T., Fraine, S., Hu, S., Lacombe, K., & Wilson, C. (2018). Connecting
820 formal and informal learning to enhance elementary teacher preparation in geosciences. *Terrae Didatica*,
821 14(3), 282–288. <https://doi.org/10.20396/td.v14i3.8653527>

822 Loizzo, J., Harner, M. J., Weitzenkamp, D. J., & Kent, K. (2019). Electronic Field Trips for Science
823 Engagement: The Streaming Science Model. *Journal of Applied Communications*, 103(4).
824 <https://doi.org/10.4148/1051-0834.2275>

825

826 Lyon, E., Freeman, R. L., Bathon, J., Fryar, A., McGlue, M., Erhardt, A. M., Rosen, A., Sampson, S.,
827 Nelson, A., & Parsons, J. (2020). Attitudinal impediments to geology major recruitment among ninth
828 graders at a STEM high school. *Journal of Geoscience Education*, 68(3), 237–253.
829 <https://doi.org/10.1080/1089995.2019.1700593>

830 Mahan, K. H., Frothingham, M. G., & Alexander, E. (2021). Virtual mapping and analytical data
831 integration: A teaching module using Precambrian crystalline basement in Colorado's Front Range
832 (USA). *Geoscience Communication*, 4(3), 421–435. <https://doi.org/10.5194/gc-4-421-2021>

833 Maltese, A. V., & Tai, R. H. (2011). Pipeline persistence: Examining the association of educational
834 experiences with earned degrees in STEM among U.S. students. *Science Education*, 95(5), 877–907.
835 <https://doi.org/10.1002/sce.20441>

836 Martinez-Conde, S., & Macknik, S. L. (2017). Finding the plot in science storytelling in hopes of
837 enhancing science communication. *Proceedings of the National Academy of Sciences*, 114(31), 8127–
838 8129. <https://doi.org/10.1073/pnas.1711790114>

839 Maynard, A. D. (2021). How to Succeed as an Academic on YouTube. *Frontiers in Communication*, 5,
840 572181. <https://doi.org/10.3389/fcomm.2020.572181>

841 McNeal, K. S., Spry, J. M., Mitra, R., & Tipton, J. L. (2014). Measuring Student Engagement,
842 Knowledge, and Perceptions of Climate Change in an Introductory Environmental Geology Course.
843 *Journal of Geoscience Education*, 62(4), 655–667. <https://doi.org/10.5408/13-111.1>

844 Morris, N. P., & Lambe, J. (2017). Multimedia interactive eBooks in laboratory bioscience education.
845 Higher Education Pedagogies, 2(1), 28–42. <https://doi.org/10.1080/23752696.2017.1338531>

846 National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting
847 concepts, and core ideas. National Academies Press.

848 NGSS Lead States. (2013). Next generation science standards: For states by states. The National
849 Academies Press.

850 Olson, R. (2015). *Houston, we have a narrative: Why science needs story*. University of Chicago Press.

851 Onstad, C. (2021). Earth Science Education #6. Lessons Learned: Organizing a Geoscience Outreach
852 Program at the University of Saskatchewan. *Geoscience Canada*, 48(3).
853 <https://doi.org/10.12789/geocanj.2021.48.178>

854 Osborne, J., Simon, S., & Collins, S. (2003). Attitudes towards science: A review of the literature and
855 its implications. *International Journal of Science Education*, 25(9), 1049–1079.
856 <https://doi.org/10.1080/0950069032000032199>

Formatted: Font: (Default) Times New Roman, 12 pt

857 Painter, J., Jones, M. G., Tretter, T. R., & Kubasko, D. (2006). Pulling Back the Curtain: Uncovering
858 and Changing Students' Perceptions of Scientists. *School Science and Mathematics*, 106(4), 181–190.
859 <https://doi.org/10.1111/j.1949-8594.2006.tb18074.x>

860 Petcovic, H. L., Cervenec, J., Cheek, K., Dahl, R., & Price, N. (2018). Research on Elementary, Middle,
861 and Secondary Earth and Space Sciences Teacher Education.
862 https://doi.org/10.25885/GER_FRAMEWORK/4

863 Programme for International Student Assessment, & Organisation for Economic Co-operation and
864 Development (Eds.). (2019). PISA 2018 results. OECD.

865 Pugsley, J. H., Howell, J. A., Hartley, A., Buckley, S. J., Brackenridge, R., Schofield, N., Maxwell, G.,
866 Chmielewska, M., Ringdal, K., Naumann, N., & Vanbervliet, J. (2022). Virtual field trips utilizing
867 virtual outcrop: Construction, delivery and implications for the future. *Geoscience Communication*,
868 5(3), 227–249. <https://doi.org/10.5194/gc-5-227-2022>

869 Pyle, E. J., Darling, A., Kreager, Z., & Conrad, S. H. (2018). Research on Students' Conceptual
870 Understanding of Geology/Solid Earth Science Content [Application/pdf].
871 https://doi.org/10.25885/GER_FRAMEWORK/2

872 [Roca, N., Garcia-Valles, M. Trainee Teacher Experience in Geoscience Education: Can We Do](#)
873 [Better?.](#) *Geoheritage* 12, 92 (2020). <https://doi.org/10.1007/s12371-020-00518-8>

874 [Rogers, S. L., Giles, S., Dowey, N. J., Greene, S. E., Bhatia, R., Van Landeghem, K., & King, C.](#)
875 [\(2023\). "you just look at rocks, and have beards" Perceptions of geology from the UK: a qualitative](#)
876 [analysis from an online survey.](#)

877

878 Scherer, H. H., Holder, L., & Herbert, B. (2017). Student Learning of Complex Earth Systems:
879 Conceptual Frameworks of Earth Systems and Instructional Design. *Journal of Geoscience Education*,
880 65(4), 473–489. <https://doi.org/10.5408/16-208.1>

881 Schmidt, K., & Kelter, P. (2017). Science Fairs: A Qualitative Study of Their Impact on Student
882 Science Inquiry Learning and Attitudes toward STEM. *Science Educator*, 25(2), 26-132.

883 Sell, K. S., Herbert, B. E., Stuessy, C. L., & Schielack, J. (2006). Supporting Student Conceptual Model
884 Development of Complex Earth Systems Through the Use of Multiple Representations and Inquiry.
885 *Journal of Geoscience Education*, 54(3), 396–407. <https://doi.org/10.5408/1089-9995-54.3.396>

886 Sherman-Morris, K., Brown, M. E., Dyer, J. L., McNeal, K. S., & Rodgers, J. C. (2013). Teachers'
887 Geoscience Career Knowledge and Implications for Enhancing Diversity in the Geosciences. *Journal of*
888 *Geoscience Education*, 61(3), 326–333. <https://doi.org/10.5408/11-282.1>

889 St. John, K., McNeal, K. S., MacDonald, R. H., Kastens, K. A., Bitting, K. S., Cervato, C., McDaris, J.
890 R., Petcovic, H. L., Pyle, E. J., Riggs, E. M., Ryker, K., Semken, S., & Teasdale, R. (2021). A
891 community framework for geoscience education research: Summary and recommendations for future
892 research priorities. *Journal of Geoscience Education*, 69(1), 2–13.
893 <https://doi.org/10.1080/1089995.2020.1779569>

894 Stewart, I. S., & Hurth, V. (2021). Selling planet Earth: Re-purposing geoscience communications.
895 Geological Society, London, Special Publications, 508(1), 265–283. <https://doi.org/10.1144/SP508-2020-101>

Formatted: Font: Times New Roman

Formatted: Font color: Custom Color(RGB(34,34,34))

897 [Stocklmayer, S. \(2005\). Public awareness of science and informal learning: a perspective on the role of](#)
898 [science museums. *The Informal Learning Review*, 72, 14-19](#)

899 Syawaludin, A., Gunarhadi, G., & Rintayati, P. (2019). Development of Augmented Reality-Based
900 Interactive Multimedia to Improve Critical Thinking Skills in Science Learning. *International Journal of*
901 *Instruction*, 12(4), 331–344. <https://doi.org/10.29333/iji.2019.12421a>

902 Tai, R. H., Qi Liu, C., Maltese, A. V., & Fan, X. (2006). Planning Early for Careers in Science. *Science*,
903 312(5777), 1143–1144. <https://doi.org/10.1126/science.1128690>

904 Tillinghast, R. C., Petersen, E. A., Kroth, W., Powers, G., Holzer, M., Osowski, J., & Mansouri, M.
905 (2019). Bringing Geosciences to K-12 Classrooms: A Teacher Training Program Developed by the
906 Sterling Hill Mining Museum. *2019 IEEE Integrated STEM Education Conference (ISEC)*, 69–75.
907 <https://doi.org/10.1109/ISECon.2019.8882052>

908 Vennix, J., den Brok, P., & Taconis, R. (2017). Perceptions of STEM-based outreach learning activities
909 in secondary education. *Learning Environments Research*, 20(1), 21–46.
910 <https://doi.org/10.1007/s10984-016-9217-6>

911 Vennix, J., den Brok, P., & Taconis, R. (2018). Do outreach activities in secondary STEM education
912 motivate students and improve their attitudes towards STEM? *International Journal of Science*
913 *Education*, 40(11), 1263–1283. <https://doi.org/10.1080/09500693.2018.1473659>

914 [Villaseñor, T., Celis, S., Queupil, J. P., Pinto, L., & Rojas, M. \(2020\). The influence of early](#)
915 [experiences and university environment for female students choosing geoscience programs: a case study](#)
916 [at Universidad de Chile. *Advances in Geosciences*, 53, 227-244](#)

917 Wang, N., Clowdus, Z., Sealander, A., & Stern, R. (2022). Geonews: Timely geoscience educational
918 YouTube videos about recent geologic events. *Geoscience Communication*, 5(2), 125–142.
919 <https://doi.org/10.5194/gc-5-125-2022>

920 Welbourne, D. J., & Grant, W. J. (2016). Science communication on YouTube: Factors that affect
921 channel and video popularity. *Public Understanding of Science*, 25(6), 706–718.
922 <https://doi.org/10.1177/0963662515572068>

923 Wyatt, S., & Werner, J. (2019). Using Google Earth to Support Active Learning in an Online Geology
924 Course. *Distance Learning*, 16(1), 3–5.

925 Wysession, M. E., LaDue, N., Budd, D. A., Campbell, K., Conklin, M., Kappel, E., Lewis, G.,
926 Raynolds, R., Ridky, R. W., Ross, R. M., Taber, J., Tewksbury, B., & Tuddenham, P. (2012).
927 Developing and Applying a Set of Earth Science Literacy Principles. *Journal of Geoscience Education*,
928 60(2), 95–99. <https://doi.org/10.5408/11-248.1>

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font color: Custom Color(RGB(34,34,34)),
Pattern: Clear (White)

Formatted: Font: 11 pt