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Abstract. Statistical bias adjustment is commonly applied to climate models before using their results in impact studies.

However, different methods, based on a distributional mapping between observational and model data, can change the simulated

trends, as well as the spatiotemporal and inter-variable consistency of the model, and are prone to misuse if not evaluated

thoroughly. Despite the importance of these fundamental issues, researchers who apply bias adjustment currently do not have

the tools at hand to compare different methods or evaluate the results sufficiently to detect possible distortions. Because of5

this, widespread practice in statistical bias adjustment is not aligned with recommendations from the academic literature. To

address the practical issues impeding this, we introduce ibicus, an open-source Python package for the implementation of

eight different peer-reviewed and widely used bias adjustment methods in a common framework and their comprehensive

evaluation. The evaluation framework introduced in ibicus allows the user to analyse changes to the marginal, spatiotemporal

and inter-variable structure of user-defined climate indices and distributional properties, as well as any alteration of the climate10

change trend simulated in the model. Applying ibicus in a case study over the Mediterranean region using seven CMIP6

global circulation models, this study finds that the most appropriate bias adjustment method depends on the variable and

impact studied and that even methods that aim to preserve the climate change trend can modify it. These findings highlight the

importance of a use-case-specific choice of method and the need for a rigorous evaluation of results when applying statistical

bias adjustment.15

1 Introduction

Even though climate models have greatly improved in recent decades, simulations of present-day climate of both global and

regional climate models still exhibit biases Vautard et al. (2021). This means that there are systematic discrepancies between

statistics of the model output and observational distribution Maraun (2016). These discrepancies in the two distributions be-

come especially relevant when using the output of climate models for local impact studies that often require focus on specific20

threshold metrics such as dry days, for example when running hydrological Hagemann et al. (2011) or crop models Galmarini

et al. (2019).
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To account for and potentially correct these biases, it has become common practice to post-process climate models using

statistical bias adjustment before using their output for impact studies. The idea behind statistical bias adjustment is to calibrate

a statistical transfer function between the observed and climate model distribution of a chosen variable. A variety of statistical25

bias adjustment methods have been developed and published in recent years, ranging from simple adjustments to the mean,

to trend-preserving adjustments by quantile and further multivariate adjustments (Michelangeli et al., 2009; Li et al., 2010;

Cannon et al., 2015; Vrac and Friederichs, 2015; Maraun, 2016; Switanek et al., 2017; Lange, 2019, and more). While this

paper focuses primarily on methods that are applied at each grid cell individually, the use of multivariate methods is further

discussed in section 5.30

Despite widespread use both within the scientific community (see, for example, IPCC, 2021, 2022), as well as by climate

service providers and practitioners (see, for example, climate scenarios used by central banks across the world, NGFS, 2021),

bias adjustment is known to suffer from fundamental issues. These issues have been highlighted, among others, by Maraun

et al. (2017) who show that bias adjustment not only has limited potential to correct misrepresented physical processes in

the climate model but can also introduce new artefacts and destroy the spatiotemporal and inter-variable consistency of the35

climate model. To avoid misuse, Maraun et al. (2017) recommend the evaluation of non-calibrated aspects, the development

of process-informed bias adjustment methods based on an understanding of climate model errors, and the selection of climate

models that represent the large-scale patterns and feedback relevant to the impact sufficiently well.

We argue that the remedies mentioned above are not common practice due to practical issues with statistical bias adjustment.

As Ehret et al. (2012); Maraun (2016); Casanueva et al. (2020) highlight, different bias adjustment approaches are appropriate40

for different use cases. However, methods that exist in the academic literature are published either only as papers, bias adjusted

datasets (Dumitrescu et al., 2020; Mishra et al., 2020; Navarro-Racines et al., 2020; Xu et al., 2021, and more) or as stand-alone

packages across multiple programming languages (Iturbide et al., 2019; Lange, 2021b; Michelangeli, 2021; Cannon, 2023, and

more), often without accompanying evaluation or evaluation frameworks. This gives users who are not necessarily experts in

these methods limited options to choose the bias adjustment method most appropriate for their use case and evaluate the results45

sufficiently to detect issues.

In this paper, we introduce ibicus, an open-source Python package for the implementation, comparison and evaluation of bias

adjustment for climate model outputs. The contribution of ibicus is two-fold: For one, it introduces a unique unified interface to

apply eight different peer-reviewed and widely used bias adjustment methodologies. The implemented methods include Scaled

Distribution Mapping (Switanek et al., 2017), CDFt (Michelangeli et al., 2009), Quantile Delta Mapping (Cannon et al., 2015)50

and ISIMIP3BASD (Lange, 2019). Further, it develops an evaluation framework for assessing distributional properties and user-

defined climate indices (covering but not limited to the ETCCDI indices – Zhang et al., 2011) not only along marginal but also

temporal, spatial and multivariate dimensions. Applying ibicus in a case study over the Mediterranean region, we find that the

most appropriate method indeed depends on the variable and impact studied and that the evaluation of spatiotemporal metrics

can identify issues with bias adjustment that would not be found when only marginal, i.e. calibrated aspects are evaluated.55

Further, we find that even methods that aim to preserve the trend of the climate model can modify it, and that bias adjustment

modifies the overall climate model ensemble spread.
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The remainder of this paper is structured as follows. Section 2 gives an introduction to statistical bias correction methodolo-

gies and section 3 presents ibicus, covering both the details of different bias adjustment methodologies and evaluation metrics

implemented, as well as the software design of the package. In section 4, we present the results of the case study before drawing60

conclusions in section 5.

2 Background

2.1 Statistical bias adjustment of climate models

Climate model biases can be defined as “systematic difference between a simulated climate statistic and the corresponding

real-world climate statistic” (Maraun, 2016). These biases mostly stem from the imperfect representation of physical processes65

such as orographic drag, convection, or land-atmosphere interactions. This leads to the incorrect representation of features such

as the mean and variance of observed temperature or the spatial properties of extreme rainfall over a certain area.

Bias adjustment methods for climate models have their origin in methods developed for the post-processing of Numerical

Weather Prediction (NWP) models. The rationale is to calibrate an statistical transfer function between model simulations and

observations over the historical period, that is then applied to the model simulation for the period of interest, often in the future.70

However, in contrast to NWP models, there is no direct correspondence between the time series of observations and the climate

model in historical simulations. This means that typical regression-based approaches used for NWP are not applicable. Rather,

properties of the statistical distribution of the two variables, such as the mean or quantiles, are mapped to each other when bias

adjusting climate models. Furthermore, the magnitude of biases in climate models can be much larger, whereas NWP forecasts

are tightly constrained by recent observations.75

The most common approaches to the bias adjustment of climate models include a simple adjustment of the mean (Linear

Scaling), a mapping of the two entire cumulative distribution functions (Quantile Mapping), or more advanced methods that

also aim to preserve the trend projected in the climate model (such as CDFt or ISIMIP3BASD). Most of these methods,

however, should rather be seen as method families that have some core characteristics - quantile mapping, for example, always

implements a correction in all quantiles - as well as some interchangeable components, such as their handling of dry days,80

that they might share with other methods. The distinction between core characteristics and interchangeable components varies

from method to method, as will be discussed in more detail in the description of the software package. An alternative approach,

often termed Delta Change method, adjusts the historical observations to incorporate the climate model trend (see, for example,

Olsson et al., 2009; Willems and Vrac, 2011; Maraun, 2016). The practice of using bias adjustment methods to also downscale

the climate model has been criticised in various publications (von Storch, 1999; Maraun, 2013; Switanek et al., 2022), therefore85

this paper focuses on bias adjustment of climate models purely for the purpose of reducing biases at constant resolution.

The use of bias adjustment methods has become standard practice in academic climate impact studies, and increasingly

outside of academia in national assessment reports or other climate services. For example, the ISIMIP3BASD methodology

(Lange, 2019) is implemented as the only bias adjustment method as a standard pre-processing step in the Inter-Sectoral Impact

Model Intercomparison Project (ISIMIP) impact modelling framework that is used in the climate risk scenarios published by90
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central banks (NGFS, 2021). However, applying statistical bias adjustment to climate models raises a number of important

considerations and issues which we categorize into fundamental and practical issues for the purpose of this paper.

2.2 Fundamental issues with statistical bias adjustment and evaluation

Climate model biases in statistics at the grid-cell level can stem from larger-scale biases of the model such as biases in larger

drivers such as El Niño, the lack of local feedback to these drivers or the misplacement of storm tracks in a region. However,95

univariate statistical bias adjustment methods are only as capable as their assumptions and input data and therefore correct only

the impact these larger-scale biases have on the distribution of the variables at grid cell level (Maraun et al., 2017).

Univariate bias adjustment might also deteriorate the spatial, temporal or multivariate structure of the climate model. This is

particularly problematic for compound events which have been argued to be of particularly high societal relevance due to their

elevated impacts and neglect in standard extreme event evaluation approaches (Zscheischler et al., 2018, 2020). As this issue100

will not be detected in location-wise cross-validation approaches, it is necessary to evaluate bias adjusted data with a particular

focus on spatial, temporal and multi-variable components (Maraun et al., 2017; Maraun and Widmann, 2018a).

Furthermore, bias adjustment can modify the climate change trend simulated by the model, in particular, that of threshold-

sensitive climate indices such as dry days (Dosio, 2016; Casanueva et al., 2020). This holds in general for non-trend-preserving

methods, but can also be the case for any trend-preserving methods such as ISIMIP3BASD. Reasons for the modification of105

the trend by ‘trend-preserving’ methods can be traced to the underlying statistical method and assumptions, such as the specific

treatment of values between a variable bound and another threshold, or parametric and non-parametric distribution fits used in

different stages of the bias adjustment.

To justify any kind of trend modification by the bias adjustment method, it is necessary to make an assumption about

how present-day bias relates to biases in the future period (Christensen et al., 2008). This can be based on the assumption110

that climate model biases are stationary in time (Gobiet et al., 2015): for example, based on this assumption, Ivanov et al.

(2018) developed a theoretical model to justify future trend modifications by the bias adjustment method based on present-day

biases. However, Chen et al. (2015); Hui et al. (2019), show that while temperature biases can be approximated as stationary,

precipitation biases cannot. Similarly, Van de Velde et al. (2022) show a clear impact of non-stationarity on bias adjustment, in

particular for precipitation. Trend-preserving bias adjustment methods on the other hand assume, at least to some degree, that115

the raw climate model trend constitutes our best available knowledge for subsequent impact studies. In line with this, Maraun

et al. (2017) argue that the modification of the trend of a climate model based purely on statistical reasoning is not defendable,

and should, rather be based on physical process understanding and reasoning about the large-scale drivers involved.

There are some options available to cope with these fundamental issues in impact studies: the first is to discard climate

models that misrepresent large-scale circulation relevant to the problem at hand. The second is to conduct a careful evaluation120

of multivariate aspects of the bias adjusted climate model to identify potential artefacts and discard methods that introduce

these before proceeding with the impact study. The third is to develop process-informed multivariate bias adjustment methods

that for example include large-scale covariates such as weather patterns (Maraun et al., 2017; Verfaillie et al., 2017; Manzanas

and Gutiérrez, 2019). These more elaborate methods require an even more careful case-by-case model selection and evaluation.
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2.3 Practical issues with bias adjustment and the availability of open-source software125

Addressing these fundamental issues and improving the application of bias adjustment is impeded by a number of practical

issues.

The first practical issue is that the comparison of different bias adjustment methods and their adaptation to a specific applica-

tion is not easily possible for a user. This is because the code to implement different methodologies is published, if at all, across

different software packages and languages, impeding interoperability. Users also have the option of downloading already bias130

adjusted datasets which improves ease of access but does not allow for any custom adjustments (Dobor et al., 2015; Famien

et al., 2018; Dumitrescu et al., 2020; Xu et al., 2021). The second practical issue is that available software packages are not

accompanied by evaluation methods beyond marginal aspects. As the evaluation of bias adjustment is not straightforward, this

makes it difficult for a user to detect artefacts or identify improper results by assessing multivariate properties of the climate

model, rendering bias adjustment prone to misuse (Maraun et al., 2017).135

These practical issues jeopardize the current implementation of statistical bias adjustment. Addressing these issues does not

solve the more fundamental issues but can improve common practice and enhance transparency.

An example of good practice is the MIdAS package which introduces a new bias adjustment method that is compared to

other methods in Berg et al. (2022). However, even though the package is in principle extendable, other methods are not

implemented in practice, nor is an adjustable evaluation framework developed.140

3 ibicus – an open-source software package for bias adjustment

To address the practical issues outlined in the previous section we introduce ibicus, an open-source Python package for the

bias adjustment of climate models and evaluation thereof. ibicus introduces a unified, modular, software architecture within

which eight state-of-the-art peer-reviewed and widely used bias adjustment methodologies are implemented. This enables

researchers to apply different methods through a common interface, and modify components of the methods, such as the145

treatment of dry days, based on region and impact of interest. The code implementation of each methodology is based on the

cited academic publication, as well as available accompanying code that was re-written and modularised to fit the developed

interface. Consistency with the original implementation was ensured through rigorous testing and correspondence with the

authors of the different methodologies. The package provides an extensive evaluation framework covering spatial, temporal

and multivariate aspects. As part of this, we develop a generalized threshold metric class that allows the user to evaluate150

both frequently used climate metrics such as frost days or dry days, as well as define their own threshold metrics targeted to

the specific impact study. The spatiotemporal evaluation of threshold metrics enables the user to detect artefacts and evaluate

compound events before and after bias adjustment. ibicus is designed to be flexible and easy to use, facilitating both the “off the

shelf” use of methods as well as their customization and allowing use in notebook environments all the way up to the integration

with high-performance computing (HPC) packages such as dask (Rocklin, 2015). This section provides an overview of the key155

features of ibicus. A more complete user guide and tutorials can be found on the documentation page of the package.
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3.1 Data input

Bias adjustment requires observational data and climate model simulations during the same historical period and climate

model simulation for the (future) period of interest. ibicus operates on a numerical level, taking three-dimensional (time,

latitude, longitude) numpy arrays as input and returning arrays of the same shape and type. This choice was made to ensure160

interoperability with different geoscientific computing packages such as xarray (Hoyer and Hamman, 2017) or iris (Met Office,

2010), as well as operation in different computing environments and integration with dask (Rocklin, 2015).

3.2 Bias adjustment

ibicus represents each bias adjustment methodology as a class which inherits generic functionalities from a base ‘debiaser‘

class, such as the common initialization interface and a function applying the ‘debiaser‘ in parallel over a grid of locations. The165

base ‘debiaser‘ class makes the package easily extendable, as a new bias adjustment methodology can inherit these generic

functionalities and requires only the specification of a function which applies the methodology for a given location (‘ap-

ply_location‘).

Each ‘debiaser’ object is initialized separately for each variable and requires several class parameters. These are specific

to the bias adjustment methodology and include parameters such as the distribution used for a parametric fit or the type of170

trend preservation applied. For a number of methodology-variable combinations, default settings exist that are described in the

documentation. Default settings are labeled ‘experimental’ if they have not been published in the peer-reviewed literature but

are proposed by the package authors after extensive evaluation. It is possible and encouraged to modify the parameters even

when default settings exist to adapt the method to a given use case. For example, if precipitation extremes are of special interest,

the user could choose to modify the parametric fit for this variable as the gamma distribution – an often used default – might175

underestimate precipitation extremes (Katz et al., 2002). After initialization, each debiaser object has an ‘apply’ method to

apply bias adjustment to climate model data. This takes a 3-dimensional numpy array of observations, as well as historical and

future climate model simulations as input, together with optional date information for running windows. The apply function

can be run in parallel to speed up execution and integrates with dask for deployment in HPC environments.

Table A1 provides an overview of the methodologies currently implemented in ibicus, chosen to cover some of the most180

widely used bias adjustment methods in current practice. These methods are based on different assumptions, making them

suitable for different applications. For example, ISIMIP3BASD is a parametric trend preserving quantile mapping which might

be appropriate if the variable approximately follows a known parametric structure and the climate change trend in all quantiles

is judged to be realistic. If these assumptions are not valid, a non-parametric method such as CDFt or a non-trend preserving

method such as Quantile Mapping might be more appropriate. Alternatively, if changes in extremes are of special interest, a185

parametric method based on extreme value theory might be adequate. As noted in the background section, different methods

should rather be viewed as method families that have core characteristics and interchangeable components in their ibicus

implementation. An example of this is the treatment of dry days in different methods: While the treatment of dry days is

entangled in the method design for SDM, CDFt and ISIMIP and cannot be changed by the user, QM methods allow for different
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Table 1. Distinctions between different bias adjustment methods and important considerations motivating the choice.

Statistic /

quantiles

Methods for bias adjustment range from simple adjustments to the mean (Linear Scaling – LS) or mean and variance

(LS) to adjustments to all quantiles of the distribution.

Parametric or

non-

parametric

Method

Non-parametric methods are restricted to the range of observed/modelled data in their “historical period” and might not

handle extremes well, while parametric methods introduce additional assumptions. ibicus allows users to implement all

methods non-parametrically by modifying method attributes. Based on the default arguments, QM, QDM, ECDFM and

SDM are parametric methods while CDFt is non-parametric and ISIMIP3BASD is semi-parametric. For each method

using a parametric distribution, it is possible to exchange it with a different one.

Time-

window

Some methods include a running window to calculate different transfer functions depending on seasonality (QDM,

ISIMIP3BASD, CDFt is applied by month) whilst others do not account for seasonality explicitly.

Trend-

preservation

and

stationarity

assumption

Methods such as quantile mapping can modify the trend in the climate model. This might be sensible if the trends are

taken to be unrealistic and related to present-day biases, as discussed in the background section (Boberg and Christensen,

2012; Gobiet et al., 2015; Doblas-Reyes et al., 2021). However, in other cases, the trend might be considered credible

and should be preserved. Methods can be designed to preserve trends in the mean (DC, LS, dQM), mean and variance

(dQM) or all quantiles (CDFt, ECDFM, QDM, ISIMIP3BASD, SDM) - although even then they are not guaranteed

to do so. Often trends are distinguished between additive trends (as for temperature) and multiplicative trends (as for

precipitation where trends in intensity occur), however not all methods share this distinction. The question of trend

preservation is related to the assumption made that the bias is ’stationary’, as mentioned in the background section. The

assumption is explicitly made by Quantile Mapping. SDM explicitly relaxes the assumption, CDFt and QDM account

for it by including a running window over the future period in addition to one over the year.

Treatment of

dry days and

extremes

Methods have different ways of handling certain aspects of the distribution such as extreme values or dry days in the

case of precipitation. For extremes some methods use an extrapolation based on parametric distribution, which can be

modified by the user for example should a mapping based on extreme value theory be required. For dry days the ISIMIP,

SDM and CDFt methods provide an explicit handling that might be appropriate in some situations but not in others.

QDM treats the mapping of dry days as a censoring problem and adjusts them together with the body of the distribution

whilst for methods like QM and ECDFM the user has the choice of different treatment methods.

treatment of dry days depending on the use-case. Table 1 highlights further methodological considerations differentiating190

different method families. A detailed description of each individual component of each method is beyond the scope of this

paper but can be found in the detailed ibicus software documentation provided online.

3.3 Evaluation

Physical consistency in space, time or between variables is not ensured when using univariate bias adjustment methods. Fur-

thermore, the trend of the climate model might be modified, and the bias of some statistics or impact metrics might be increased195

through some bias adjustment methods – even if it is removed in certain quantiles. The ibicus evaluation framework offers a
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Table 2. Attributes of the threshold metrics class.

Threshold Attribute Description

Name Name of the threshold

Value(s) Values defining the threshold (to compare climate model or observations against).

Description Brief description of the threshold.

Type Whether values shall fall above, below, outside or between threshold(s).

Scope Whether the threshold(s) is defined daily, monthly, seasonally, or overall (different for each time category, or not).

Locality Whether the threshold is defined location-wise or globally (different at each location or not).

collection of tools to identify these issues and compare the performance of different bias adjustment methods for variables

of interest, building on previous efforts such as the VALUE evaluation framework for statistical downscaling (Maraun et al.,

2019).

3.3.1 Metrics and design200

The evaluation framework consists of two components: 1) the evaluation of bias adjustment on a validation/testing period

that enables comparison of the bias adjusted model with observations, and 2) the analysis of trend preservation between the

validation and future, or any two future periods. The latter component is necessary as bias adjustment methods can modify the

climate change trend, even with methods that are designed to preserve it, as demonstrated by the case study in section 4. In

the absence of evidence to the contrary, trend-preserving methods should be preferred as statistical bias adjustment methods205

usually do not have an underlying physical reasoning for modifying a particular trend.

In both components of the evaluation framework, there are two kinds of metrics that can be evaluated using ibicus, termed

statistical properties and threshold metrics. Statistical properties allow the user to compare properties of the observational

distribution and the climate model distribution - such as the mean or different quantiles - before and after bias adjustment.

Threshold-based climate indicators are often of special interest for climate impact studies – for example, frost days, by time210

of year, could be of interest for agricultural or biodiversity impacts – and where the success of bias adjustment methods

is particularly desirable (Dosio et al., 2012; Dosio, 2016). A number of threshold metrics are implemented by default in

the package. A new threshold metric can be specified by the user along the dimensions in table 2. Accumulations such as

monthly total precipitation can also be estimated. Using these definitions, the evaluation module covers but is not limited to the

indices developed by the Expert Team on Climate Change Detection and Indices (ETCCDI - Zhang et al., 2011) used in many215

application studies.

Since location-wise evaluation is not sufficient to decide whether a bias adjustment method is fit for the use-case, the module

offers the functionality to evaluate location-wise, as well as spatiotemporal and multivariate metrics both in terms of threshold

metrics and statistical properties. The table 3 gives an overview of the implemented methods.
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Table 3. Overview of evaluation categories implemented in ibicus.

Statistical Properties Threshold Metrics

Location-

wise

Calculation: location-wise bias (absolute and percentage)

in different distributional properties (quantile, mean) of

climate model before and after applying different bias ad-

justment methods.

Visualization: boxplot across locations and spatial plot.

Plotting functions for visual inspection of observed and

climate model distribution (histogram and CDF).

Calculation: location-wise bias (absolute in days/year and

percentage) in the frequency of singular threshold ex-

ceedance events in climate model before and after bias ad-

justment methods.

Visualization: boxplot across locations and spatial plot.

Temporal - Calculation: distribution of spell lengths of threshold ex-

ceedances (for example dry spell length).

Visualization: plot of empirical CDF.

Spatial RMSE of between spatial correlation matrices at each lo-

cation.

Calculation: distribution of spatial cluster size of thresh-

old exceedances (for example spatial size of heatwaves).

Visualization: plot of empirical CDF.

Spatio-

temporal

- Calculation: distribution of spatiotemporal cluster size of

threshold exceedances (for example spatiotemporal extent

of heatwaves).

Visualization: plot of empirical CDF.

Multivariate Calculation: correlations between chosen pair of vari-

ables at each location.

Visualization: spatial plot.

Calculation: conditional probability of threshold co-

occurrence (such as dry and hot days) in observations and

climate model before and after bias adjustment.

Visualization: boxplot.

Trend Calculation: location-wise bias in the multiplicative or additive trend of a threshold metric or distributional property

(mean, quantiles) – percentage change between climate model before and after bias adjustment.

Visualization: boxplot across locations and spatial plot.

Finally, different bias adjustment methods rely on different assumptions such as certain parametric distributions providing220

suitable fits. The evaluation framework includes functions to assess the fit of parametric distributions and the seasonality of the

variable to help the user make decisions on how to customize the bias adjustment method to their application.

4 Implementation of ibicus in the Mediterranean region

We demonstrate the comparison and evaluation of different bias adjustment methods by applying ibicus over the Mediterranean.

Rather than conducting a comprehensive evaluation for a single use case, our aim is to highlight the use-case dependency of the225

method choice more broadly and hence the necessity of targeted evaluation beyond marginal aspects. We, therefore, choose to
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limit this case study to the bias adjustment of global climate models, even though specific impact studies often but not always

(IPCC, 2021) use higher-resolution models over the target region.

4.1 Data and Methods

We consider the Mediterranean region, between 35-45°N latitude and 18°W to 45°E longitude and apply bias adjustment to230

seven Coupled Model Intercomparison Project Phase 6 (CMIP6) models, selected based on the use in previous studies in the

Mediterranean region (Zappa and Shepherd, 2017; Babaousmail et al., 2022). The chosen models include ACCESS-CM2,

CMCC-ESM2, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-LR, MRI-ESM2-0 and NORESM2-MM. Table B1 in the appendix

provides more details on these models. We used the historical runs as well as the SSP5-8.5 experiments. We compare four

widely used bias adjustment methods that are implemented in ibicus: ISIMIP3BASD (Lange, 2019), applied amongst others by235

Jägermeyr et al. (2021); Pokhrel et al. (2021) as well as impact models run under the ISIMIP framework), Scaled Distribution

Mapping (Switanek et al. (2017), applied amongst others as pre-processing step to assess changes in high impact weather

events over the UK in Hanlon et al. (2021)), as well as Quantile Mapping (applied in impact studies such as Babaousmail

et al., 2022) and Linear Scaling as reference methods. These four methods are applied to daily total precipitation (pr) and

daily minimum near-surface air temperature (tasmin), chosen to cover two different types of variables (bounded vs unbounded,240

different distributions etc) that are both highly relevant for many impact studies. The bias adjustment methods are used with

their ibicus default settings for both variables (for more details see table A1 and the software documentation). This means

that the ISIMIP and SDM methods provide an explicit adjustment of dry day frequencies, whilst for QM they are treated as

censored and the method based on Cannon et al. (2015) is applied and LS provides no explicit adjustment, scaling all values.

We use ERA5 reanalysis data (Hersbach et al., 2020) as an observational reference, conservatively regridded to match the245

resolution of the selected climate models. The historical data ranges from January 1st, 1959 to December 31st, 2005, with the

data from January 1st 1959 to December 31st 1989 serving as the historical/reference period and used as a training dataset and

the subsequent period: January 1st 1990 to December 31st 2005 used for validation purposes. Bias adjustment is applied to the

validation period as well as the future period: January 1st 2080 to December 31st 2100,

We demonstrate four bespoke impact metrics related to daily minimum temperature and daily total precipitation, defined250

using the ibicus threshold metrics class.

– tasmin < 10°C (283.15K) which was chosen based on Droulia and Charalampopoulos (2022) who estimate climate

impacts to viniculture noting that above >10°C grapevines are in their optimal photosynthesis zone.

– tasmin greater than the seasonal 95th percentile of the daily minimum temperature in each grid cell during the historical

period (1959- 1989). This can be an indicator of the impacts of heatwaves (Raei et al., 2018).255

– Dry days (daily precipitation <1mm) and very wet days (daily precipitation >10mm) as two ETCCDI indices.
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Figure 1. Distribution across locations of marginal minimum daily temperature bias of the ACCESS-CM2 climate model before bias adjust-

ment (raw) and after applying the ISIMIP3BASD bias adjustment method (ISIMIP), Quantile Mapping (QM), Scaled Distribution Mapping

(SDM) and Linear Scaling (LS). The left panel displays the distribution of the absolute bias (in Kelvin) in the mean and 0.05 and 0.95

quantiles. The right panel displays the distribution of the absolute bias in the threshold metrics: minimum daily temperature below 10°C and

minimum daily temperature above the 95th seasonal percentile defined for this grid cell, both in units of days per year. Bias (location-wise)

is defined as the difference between the metric for the (bias adjustment) climate model in the validation period and the metric for the obser-

vational data in the validation period (in each grid cell, metrics calculated in the temporal dimension). This figure shows the standard ibicus

output distribution of location-wise bias for a set of specified statistics and threshold metrics. The boxplot shows the median, the first and

third quartiles as a box, the outer range (defined as Q1 - 1.5 × IQR and Q3 + 1.5 × IQR) as whiskers, and any points beyond this as diamonds.

4.2 Results

4.2.1 Evaluation of the location-wise bias on the validation period

Figures 1-3 show the marginal bias of the climate model with respect to observations over the validation period before and

after bias adjustment across locations in the study area.260

We find that most methods reduce but do not eliminate the marginal bias in the mean, shown for the ACCESS-CM2 model

and minimum daily temperature in figure 1, while the range of reduction is varied: ISIMIP and Linear Scaling achieve more

significant reductions in the bias than Quantile Mapping or Scaled Distribution Mapping. This result also holds for extremal

quantiles and threshold metrics, and we even observe a slight inflation of the raw climate model bias observed in certain

instances for both Quantile Mapping and Scaled Distribution Mapping.265

11



Figure 2. Distribution of marginal bias across locations before bias adjustment (raw) and after applying the ISIMIP3BASD bias adjustment

method (ISIMIP), Quantile Mapping (QM), Scaled Distribution Mapping (SDM) and Linear Scaling (LS). Three climate models (MPI-

ESM1-2-LR, MIROC6 and IPSL-CM6A-LR) and three threshold metrics (minimum daily temperature below 10°C, dry days defined as total

precipitation below 1mm and very wet days defined as total precipitation above 10mm) are evaluated. The bias in minimum temperature

<10°C of the climate models after applying quantile mapping is particularly large, exceeding 300%. For improved readability of the plot, we

have omitted this bias adjustment - metric combination here but show the full plot in the appendix.

Furthermore, in figure 2 we see that that the success of a bias adjustment method depends on the use case, meaning the

variable, metric and climate model studied. While Scaled Distribution Mapping somewhat reduces the median bias in dry

days for two of the climate models, it inflates the bias in dry days for the third. On the other hand, the method reduces

bias in the minimum temperature threshold metric for the IPSL-CM6A-LR model but inflates the bias in this metric for the

MIROC6 model. ISIMIP3BASD on the other hand reduces the bias in dry days for the MPI-ESM1-2-LR model but increases270

it for the MIROC6 model. Quantile Mapping performs reasonably well for the wet-day metric but quite badly for the dry-

day and minimum temperature metrics. These differences in the performance of bias adjustment methods can be due to their

assumptions (a parametric distribution fit might not replicate the correct tail behaviour), and method (whether they are tailored

to a specific variable or whether event frequency adjustment is implemented), as well as the physical source of the bias in the

climate model.275

When investigating the spatial distribution of the bias (figure 3), we find that certain methods can homogenize the spatial

pattern of the bias across climate models. For example, linear scaling (LS) shifts climate models to an overestimation of very

wet days in similar regions, even models like NORESM2-MM which previously underestimated these days. In other cases,

methods can perform well in certain regions, but not in others. Quantile mapping (QM) seems to perform reasonably well over

the Iberian peninsula, but has difficulties over Italy, especially for MPI-ESM1-2-LR where a strong underestimation is shifted280
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Figure 3. Spatial plot of marginal absolute bias in very wet days defined as total precipitation above 10mm given in [days / year]. Results

are shown for seven climate models (ACCESS-CM2, CMCC-ESM2, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-LR, MRI-ESM2-0 and

NORESM2-MM) before bias adjustment (raw) and after applying the ISIMIP3BASD bias adjustment method (ISIMIP), Quantile Mapping

(QM), Scaled Distribution Mapping (SDM) and Linear Scaling (LS).

into a strong overestimation. This highlights the importance of investigating the spatial distribution of the marginal bias as this

varies across the different regions in the Mediterranean.

4.2.2 Evaluation of the bias in spatiotemporal characteristics on the validation period

Moving on to the investigation of spatiotemporal characteristics, figures 4 and 5 show the cumulative distribution of spell

length and spatial extent for the dry-day and minimum temperature heatwave days metric, respectively. The plots depict the285

standard visualization output that the ibicus software package produces for this type of evaluation.

The spatiotemporal characteristics investigated exhibit biases between the reanalysis data and raw climate model output. For

example, it is ∼1.6 times more likely for a dry spell to exceed 20 days in the raw climate model IPSL-CM6A-LR compared to

the reanalysis data.

We find that the bias in these spatiotemporal metrics can be reduced with some bias adjustment methods: for example,290

ISIMIP3BASD reduces the spell length bias for dry days, and Scaled Distribution Mapping reduces the bias in both spell

length and spatial extent for minimum temperature heatwave days. However, this result is again inconsistent across methods

and variables, and different bias adjustment methods frequently appear to increase the spatiotemporal bias: Scaled Distribution
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Figure 4. Cumulative distribution functions of spell length (left panel) and spatial extent of dry days (right panel). The spell length is defined

as the length of a temporal sequence longer than three days during which a single grid cell exceeds the specified threshold. The spatial

extent is defined as the fraction of cells exceeding the specified threshold, given that a single cell exceeds the threshold. This plot shows the

cumulative distribution function of individual spell lengths and spatial extents at single points in time across the entire Mediterranean region

in the observational data (ERA5), in the climate model IPSL-CM6A-LR before bias adjustment (raw) and after applying the ISIMIP3BASD

bias adjustment method (ISIMIP), Quantile Mapping (QM), Scaled Distribution Mapping (SDM) and Linear Scaling (LS).

Mapping increases the bias in spell length and spatial extent of dry days, as do Quantile Mapping and ISIMIP3BASD when

investigating the spatial extent.295

These results are to some extent expected, as the selected methods are univariate methods, meaning they are calibrated

location-wise and do not incorporate spatiotemporal information. However, the results highlight the need to evaluate how bias

adjustment changes spatiotemporal characteristics, as these are often implicitly used in impact downstream impact studies.

4.2.3 Evaluation of the climate change trend before and after bias adjustment

As mentioned in the background section, the modification of the climate change signal through bias adjustment has been300

reported and discussed in various publications and stimulated the development of methods that aim to preserve the climate

signal.

In the analysis of the dry day trend, shown in figure 6, we find that a non-trend-preserving method such as quantile mapping

significantly alters the climate change trend. The axes in figure 6 were limited to +-100 for the sake of readability, however,
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Figure 5. As Figure 4, but investigating the threshold of minimum daily temperature exceeding its 95th seasonal percentile defined per grid

cell for the climate model ACCESS-CM2.

a limited number of data points show even larger biases after applying quantile mapping. The unrestricted version of this plot305

can be found in the appendix.

We also find that methods that aim to preserve the trend such as ISIMIP3BASD or Scaled Distribution Mapping modify

it up to 100% at some locations. For the ISIMIP method, this is presumably due to the fact that the ‘future observations’

through which the trend preservation is implemented are mapped using empirical CDFs, whereas the bias adjustment itself is

parametric. It has been argued that the normal distribution for temperature or the gamma distribution for precipitation might310

not adequately capture the tail behaviour of these variables (Katz et al., 2002; Nogaj et al., 2006; Sippel et al., 2015; Naveau

et al., 2016). This is particularly relevant when investigating the trend of high or low quantiles, as well as threshold metrics that

do not sit at the centre of the distribution. Additionally, for bounded variables such as precipitation, the frequency beyond two

outer thresholds is adjusted separately in the ISIMIP3BASD methodology which could lead to the change in the dry day trend

shown in figure 6.315

We find a much smaller change in the trend of the mean minimum daily temperature across methods, shown in figure 7. In

fact, linear scaling barely modifies the trend at all, which is to be expected since the method only subtracts the mean bias from

the future and the validation period, based on the strong assumption that the bias affects the mean only and is stationary over

time.
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Figure 6. Distribution of location-wise change in the additive climate trend in dry days introduced through the bias adjustment method,

computed by computing the additive trend between the validation period and the future period in both the raw and the bias adjusted model

and taking the percentage difference between the two trends. The magnitude of the raw projected change in dry days depends on the climate

model and, across different locations, lies between 10 fewer and 30 more dry days on average per year.

4.2.4 Evaluation of the variation in the climate model ensemble before and after bias adjustment320

Figure 8 shows that the climate model ensemble spread of the trend of mean seasonal precipitation is modified in different ways

by different bias adjustment methods which is in line with previous findings in the literature (Maraun and Widmann, 2018b;

Lafferty and Sriver, 2023). Interestingly the variation (often interpreted as the uncertainty range) is not necessarily narrowed

as has been postulated by some authors (Ehret et al., 2012), but even extended and shifted in some cases. From this finding, it

follows that the range of uncertainty and possible worst-case scenarios analysed in subsequent impact studies might depend on325

the bias adjustment method used to pre-process the climate model.

The interpretation of this shift in uncertainty is related to the previously discussed questions on trend preservation, namely

whether the change in the climate model trend through a statistical bias adjustment method is justified or not. This issue was

mentioned by Maraun and Widmann (2018), who discuss that a minimum requirement to justify a change in the uncertainty

spread through bias adjustment should be a critical evaluation of the validity of the results and the assumptions of the underlying330

statistical model. Given the finding in the previous section, namely that the best bias adjustment method depends on the

variable, region and impact variable studied, it follows that indiscriminately applying a bias adjustment method across regions

and variables without evaluation can shift the spread of the results of subsequent impact studies in a non-justified manner.
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Figure 7. As Figure 6 but for the trend in mean minimum daily temperature. The magnitude of the raw projected change in mean minimum

daily temperature again depends on the climate model and, across different locations, lies between 2-5K.

5 Conclusions

Statistical bias adjustment is a useful method when working with climate models to understand future climate impacts. How-335

ever, there are fundamental as well as practical issues in how bias adjustment is currently used both in academic research and by

practitioners in the private and government sector. One practical issue impeding good practice is the availability of open-source

software to compare different bias adjustment methods and evaluate non-calibrated aspects.

This paper demonstrates that the success of a bias adjustment method depends on the variable and impact studied, and bias

adjustment should therefore be evaluated and adapted targeted to the region and use-case at hand. Depending on the climate340

model and variable of interest different methods can reduce or also increase biases by a large range, can impair or leave

spatiotemporal coherence relatively unaffected. This is non-systematic across bias adjustment methods, climate models and

variables/metrics of interest. Furthermore, we find that even trend-preserving methods can modify the trend in statistical prop-

erties and climate indices, and each bias adjustment method changes the climate model ensemble spread slightly differently.

With the Python package ibicus, we aim to provide a resource to address some of these practical issues. For one, the eval-345

uation framework allows users to evaluate non-calibrated aspects and identify potential issues in bias adjusted data. Second,

the common interface developed for different bias adjustment methods allows for a relatively easy comparison between dif-

ferent methods, and the selection of the method most appropriate for the use-case. Finally, the ibicus software implementation

modularises certain components of different methods, such as the treatment of dry days. This allows the user to examine the
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Figure 8. Ensemble spread of seven selected climate models (ACCESS-CM2, CMCC-ESM2, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-LR,

MRI-ESM2-0 and NORESM2-MM), showing the trend in average seasonal precipitation between the validation and future period, without

applying bias adjustment (raw) and after applying ISIMIP3BASD, Quantile Mapping and Scaled Distribution Mapping.

impact of detailed methodological choices for their application and select the most appropriate option, which has so far not350

been possible due to the dispersed implementations of different methodologies.

So far, the package implements univariate bias adjustment methods, meaning that the bias adjustment is calibrated and

applied on each grid point separately. Multivariate bias adjustment methods that correct spatial, temporal, or inter-variable

structures next to marginal aspects have been published, amongst others by Piani and Haerter (2012); Vrac and Friederichs

(2015); Sippel et al. (2016); Cannon (2016, 2018); Vrac (2018); François et al. (2020). We have so far chosen to focus on355

univariate methods as the need for careful model selection and evaluation becomes even more pertinent when using multivariate

methods (Maraun et al., 2017; François et al., 2020; Van de Velde et al., 2022). Our aim was therefore to first establish a robust

workflow and evaluation for widely used univariate methods, thereby addressing one of the key practical issues impeding more

rigorous evaluation.

The package remains under active development and maintenance and we would like to invite collaboration from the com-360

munity to extend and further develop its functionalities. Aside from adding further methods, the modularity of the different

methods can be further improved, enabling an even more flexible use of different methods by the user. In addition, a systematic

review of different available software tools and methods for bias adjustment could be of use to the community. Furthermore,

the implications of bias adjustment on the outcomes of impact modelling studies could be examined based on the evaluation

and comparison of different methods within the ibicus package. The ibicus evaluation can also be used as a starting point to365
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further examine physical sources of climate model biases which can inform improvements in the representation of physical

processes within the climate model itself. Also, both the choice of validation period as well as the choice of observational

dataset and uncertainty therein have been shown to affect the results of bias adjustment (Casanueva et al., 2020). While this is

not explicitly explored in this publication or package, the evaluation tools available through ibicus enable the investigation of

these issues.370

Finally, the results presented in this paper raise a number of important broader questions regarding the use and future

development of bias adjustment methods. The finding that different bias adjustment methods lead to very different results

raises the question of whether bias adjustment should be seen as an additional source of uncertainty, as suggested by Lafferty

and Sriver (2023). However, the paper also shows that different methods perform better or worse depending on the region and

variable studied, which constitutes a clear reason to evaluate and select the bias adjustment targeted to the use case rather than375

viewing different methods as another source of uncertainty. This then raises questions about whether choosing a ‘standard’

bias adjustment method to render results comparable is valid and useful in many applications. These questions can serve

as a starting point to re-consider both the application of bias adjustment, as well as initiate future development on methods

suitable to address the different fundamental issues facing bias adjustment. Existing research avenues include approaches to

post-process the entire climate model ensemble (Chandler, 2013; Rougier et al., 2013; Sansom et al., 2021) or conditioning the380

bias adjustment on specific relevant large-scale processes (Maraun et al., 2017; Verfaillie et al., 2017; Manzanas and Gutiérrez,

2019).

Code and data availability. The current version of ibicus is available from PyPI (https://pypi.org/project/ibicus/) under the Apache Li-

cense Version 2.0, and described in detail under https://ibicus.readthedocs.io/en/latest/. The source code is available via GitHub (https:

//github.com/ecmwf-projects/ibicus). The exact version of ibicus used to produce the results used in this paper is archived on Zenodo385

(doi:10.5281/zenodo.8101898, Spuler and Wessel, 2023), as are input data and scripts to run ibicus and produce the plots for all the simula-

tions presented in this paper (doi:10.5281/zenodo.8101842, Wessel and Spuler, 2023). The ERA5 and CMIP6 data used were accessed via

the Copernicus Climate Data Store under the Copernicus licence: https://doi.org/10.24381/cds.143582cf and https://doi.org/10.24381/cds.
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Table A1. Bias adjustment methods currently implemented in ibicus with variables covered and details on their functioning. Here x refers to

observations xobs or climate model values during the historical / reference xcm, hist or future period xcm, fut and F to a Cumulative Distribution

Function (CDF) fitted either parametrically or non-parametrically. Covered variables indicate variables for which the bias adjustment method

currently has default settings and climatic variables with a * are variables with experimental default settings. Those are settings that were

not published in the peer-reviewed literature but were found to give good performance. The references given are the references used for the

implementation of the method in the ibicus package.

Name References Details

ISIMIP3BASD Hempel et al.

(2013); Lange

(2019, 2021a)

Method: semi-parametric quantile mapping-based method that aims to be trend-preserving in

all quantiles. Generates “pseudo future observations” by applying the models’ climate change

trend to observations either additively, multiplicatively or in an alternative way. Applies quantile-

mapping between the modelled future values and the pseudo future observations, either non-

parametrically or parametrically, depending on the variable, optionally with an event likelihood

adjustment as in Switanek et al. (2017). The core method is applied in a running window to

account for seasonality, and trends in both observations and model are removed prior to applying

the method.

Covered variables: hurs, pr, prsnratio, psl, rlds, rsds, sfcWind, tas, tasrange, taskew.

CDFt Michelangeli

et al. (2009);

Vrac et al.

(2012, 2016);

Famien et al.

(2018)

Method: non-parametric quantile mapping that aims to be trend-preserving in all quantiles. CDFt

constructs a CDF of future observations and then applies a quantile mapping between the CDF

of the future climate model values and the CDF of the future observations:

xcm, fut → F−1
obs, fut(Fcm, fut(xcm, fut)) = F−1

cm, fut(Fcm, hist(F
−1
obs, hist(Fcm, fut(xcm, fut)))).

Because non-parametric CDFs will not be able to map values outside the range of the data an

additive or multiplicative shift can be applied to the future and historical climate model data prior

to fitting CDFs: the additive or multiplicative bias in the mean can be subtracted / divided out

first. CDFt can be run separately for each month of the year to account for seasonality as well as

in a running window over the future period, to smooth discontinuities and relax the stationarity

assumption. To correct precipitation occurrences in addition to amounts Stochastic Singularity

Removal (Vrac et al., 2016) is applied.

Covered variables: hurs*, pr, psl*, rlds*, rsds*, sfcwind*, tas, tasmin, tasmax, tasrange*,

taskew*.

Scaled

Distribution

Matching

(SDM)

Switanek et al.

(2017)

Method: parametric quantile mapping that aims to be trend-preserving in all quantiles. Con-

ceptually similar to Quantile Delta Mapping and ECDFM. Scales CDFs by projected absolute

(temperature) or relative (precipitation) changes, whilst at the same time also adjusting the like-

lihood of individual events, by adjusting return intervals, prior to mapping.

Covered variables: pr, tas, tasmin*, tasmax*.
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Table A2. Table A1 cont.

Name References Details

(Detrended)

Quantile

Mapping (dQM)

Cannon et al.

(2015); Maraun

(2016)

Method: quantile by quantiles mapping of observational and climate model distribution. Forms

the basis of most other methods listed. Trends in the mean can be adjusted for using detrended

quantile mapping, removing trends before quantile mapping and reapplying them afterwards,

either additively or multiplicatively.

xcm, fut → F−1
obs (Fcm, hist(xcm, fut)).

Covered variables: hurs*, pr, psl*, rlds*, sfcWind*, tas, tasmin*, tasmax*.

Quantile Delta

Mapping

(QDM) /

Equidistant

CDF Matching

(ECDFM)

Li et al. (2010);

Wang and Chen

(2014); Cannon

et al. (2015)

Method: parametric quantile mapping methods that aim to be trend preserving in all quantiles,

with special focus on high quantiles. Quantile Delta Mapping applies the following transforma-

tion to the future climate model values xcm, fut if relative changes are to be preserved (eg. for

precipitation):

xcm, fut, bc(t) = xcm, fut(t) ·
F−1

obs (F̂
(t)
cm, fut(xcm, fut(t)))

F−1
cm, hist(F̂

(t)
cm, fut(xcm, fut))

,

and the following for absolute changes (eg. for temperature):

xcm, fut, bc(t) = xcm, fut(t)+F−1
obs (F̂

(t)
cm, fut(xcm, fut(t)))−F−1

cm, hist(F̂
(t)
cm, fut(xcm, fut)).

Quantile Delta Mapping for absolute changes is equivalent to the ECDFM method by Li et al.

(2010), however the parameters chosen, especially the distributions used for the CDF fits are

different. In Quantile Delta Mapping the CDF for future climate model values is fitted in a

running window going over the future period to account for long term changes in the trend. Also

a running window over the year is included to account for seasonality. This is not the case for

ECDFM.

Covered variables: hurs*, pr, psl*, rlds*, sfcwind*, tas, tasmin*, tasmax*.

Linear Scaling

(LS)

Maraun (2016) Method: simple correction method adjusting biases in the mean (additive case):

xcm, fut → xcm, fut − (x̄cm, hist − x̄obs),

or mean and variance (multiplicative case):

xcm, fut → xcm, fut ·
x̄obs

x̄cm, hist
.

Covered variables: hurs*, pr, psl*, rlds*, rsds*, sfcWind*, tas, tasmin, tasmax.

Delta Change

(DC)

Maraun (2016) Method: technically not a bias adjustment method. Adds a climate model trend to observations

either additively or multiplicatively. Similar to Linear Scaling, however it adjusts the observa-

tions and not the climate model.

Covered variables: hurs*, pr, psl*, rlds*, rsds*, sfcWind*, tas, tasmin, tasmax.
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Table A3. Treatment of precipitation (pr) dry days of bias adjustment methods currently implemented in ibicus.

Method Treatment of dry days

ISIMIP3BASD Explicit adjustment of future dry day frequencies as outlined in Lange (2019) and Lange (2021a).

CDFt Either mapping using the Stochastic Singularity Removal technique (Vrac et al., 2016, default) or using the

empirical CDFs.

Scaled Distribution

Matching (SDM)

Adjustment as in Switanek et al. (2017): Set all values below a certain threshold to zero and explicitly calculate

the amount of bias corrected future rainy days. Note: the current method does not support correcting the number

of precipitation days upwards, so to transform dry days into wet days.

(Detrended)

Quantile Mapping

(dQM)

Flexible:

– Mapping using a censored CDF as in the QDM method.

– Mapping using a precipitation hurdle model.

– Adjustment of intensities only.

Quantile Delta

Mapping (QDM)

Adjustment as in Cannon et al. (2015): 1) Randomize values between 0 a a fixed threshold, 2) Fit censored

parametric CDFs assuming values below the fixed threshold are censored, 3) Apply the QDM method using the

CDFs and set values under the threshold to zero again.

Equidistant CDF

Matching (ECDFM)

Flexible:

– Mapping using a censored CDF as in the QDM method.

– Mapping using a precipitation hurdle model.

– Adjustment of intensities only.

Linear Scaling (LS) Currently no explicit adjustment of dry days.

Delta Change (DC) Currently no explicit adjustment of dry days. The number of dry days stays the same as in the observations.
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Table B1. Overview of CMIP6 models and their model developers used in the case study in section 4.

Model Name Institution

ACCESS-CM2 Commonwealth Scientific and Industrial Research Organisation / Australia

CMCC-ESM2 Euro-Mediterranean Centre on Climate Change / Italy

IPSL-CM6A-LR Institut Pierre-Simon Laplace / France

MIROC6 Japan Agency for Marine-Earth Science, University of Tokyo, National Institute for Environmental and RIKEN

Centre for Computational Science / Japan

MPI-ESM1-2-LR Max Planck Institute for Meteorology / Germany

MRI-ESM2-0 Meteorological Research Institute / Japan

NORESM2-MM Norwegian Climate Centre / Norway
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Figure A1. As figure 2, but including Quantile Mapping for minimum temperature.

Figure A2. As figure 6, but without axis limits at +-100.
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