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Abstract. Statistical bias adjustment is commonly applied to climate models before using their results in impact studies.
However, different methods, based on a distributional mapping between observational and model data, can change the simulated
trends, as well as the spatiotemporal and inter-variable consistency of the model, and are prone to misuse if not evaluated
thoroughly. Despite the importance of these fundamental issues, researchers who apply bias adjustment currently do not have
the tools at hand to compare different methods or evaluate the results sufficiently to detect possible distortions. Because of
this, widespread practice in statistical bias adjustment is not aligned with recommendations from the academic literature. To
address the practical issues impeding this, we introduce ibicus, an open-source Python package for the implementation of
eight different peer-reviewed and widely used bias adjustment methods in a common framework and their comprehensive
evaluation. The evaluation framework introduced in ibicus allows the user to analyse changes to the marginal, spatiotemporal
and inter-variable structure of user-defined climate indices and distributional properties, as well as any alteration of the climate
change trend simulated in the model. Applying ibicus in a case study over the Mediterranean region using seven CMIP6
global circulation models, this study finds that the most appropriate bias adjustment method depends on the variable and
impact studied and that even methods that aim to preserve the climate change trend can modify it. These findings highlight the
importance of a use-case-specific choice of method and the need for a rigorous evaluation of results when applying statistical

bias adjustment.

1 Introduction

Even though climate models have greatly improved in recent decades, simulations of present-day climate of both global and
regional climate models still exhibit biases Vautard et al. (2021). This means that there are systematic discrepancies between
statistics of the model output and observations that-observational distribution Maraun (2016). These discrepancies in the two
distributions become especially relevant when using the output of climate models for local impact studies that often require
focus on specific threshold metrics such as dry days, for example by-running agricultural-or hydrologieal-modelswhen running.
hydrological Hagemann et al. (2011) or crop models Galmarini et al. (2019).
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To account for and potentially correct these biases, it has become common practice to post-process climate models using
statistical bias adjustment before using their output for impact studies. The idea behind statistical bias adjustment is to calibrate
an-empirteala statistical transfer function between the observed and climate model distribution of a chosen variable. A variety
of statistical bias adjustment methods have been developed and published in recent years, ranging from simple adjustments to
the mean, to trend-preserving adjustments by quantile and multivariate-methedsfurther multivariate adjustments (Michelangeli
etal., 2009; Li et al., 2010; Cannon et al., 2015; Vrac and Friederichs, 2015; Maraun, 2016; Switanek et al., 2017; Lange, 2019,
and more). While this paper focuses primarily on methods that are applied at each grid cell individually, the use of multivariate

methods is further discussed in section 3.

Despite widespread use

adjustmentand-show-thatthe-approach-ean-both within the scientific community (see, for example, IPCC, 2021, 2022), as well

as by climate service providers and practitioners (see, for example, climate scenarios used by central banks across the world, NGFS, 2021
bias adjustment is known to suffer from fundamental issues. These issues have been highlighted, among others, by Maraun et al. (2017)

who show that bias adjustment not only has limited potential to correct misrepresented physical processes in the climate model

but can also introduce new artefacts and destroy the spatiotemporal and inter-variable consistency of the climate modeland-is
prone-te-misuse. To avoid misuse, Maraun et al. (2017) recommend the evaluation of non-calibrated aspects, the development
of process-informed bias adjustment methods based on an understanding of climate model errors, and the selection of climate
models that represent the large-scale patterns and feedback relevant to the impact sufficiently well.

We argue that the remedies mentioned above are not common practice due to practical issues with statistical bias adjustment.
As Ehret et al. (2012); Maraun (2016); Casanueva et al. (2020) highlight, different bias adjustment approaches are appropriate
for different use cases. However, methods that exist in the academic literature are published either only as papers, bias adjusted
datasets (Dumitrescu et al., 2020; Mishra et al., 2020; Navarro-Racines et al., 2020; Xu et al., 2021, and more) or as stand-alone
packages across multiple programming languages (Iturbide et al., 2019; Lange, 2021b; Michelangeli, 2021; Cannon, 2023, and
more), often without accompanying evaluation or evaluation frameworks. This gives users who are not necessarily experts in
these methods limited options to choose the bias adjustment method most appropriate for their use case and evaluate the results
sufficiently to detect issues.

In this paper, we introduce ibicus, an open-source Python package for the implementation, comparison and evaluation of bias
adjustment for climate model outputs. The contribution of ibicus is two-fold: -prevides-For one, it introduces a unique unified
interface to apply eight different peer-reviewed and widely used bias adjustment methodologiesineclading-Sealed Distribution
Matehing-. The implemented methods include Scaled Distribution Mapping (Switanek et al., 2017), CDFt (Michelangeli et al.,
2009), Quantile Delta Mapping (Cannon et al., 2015) and ISIMIP3BASD (Lange, 2019). Further, it develops an evaluation

framework for assessing distributional properties and user-defined climate indices (covering but not limited to the ETCCDI
indices — Zhang et al., 2011) not only along marginal but also temporal, spatial and multivariate dimensions. Applying ibicus
in a case study over the Mediterranean region, we find that the most appropriate method indeed depends on the variable and

impact studied and that the evaluation of spatiotemporal metrics can identify issues with bias adjustment that would not be
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found when only marginal, i.e. calibrated aspects are evaluated. Further, we find that even methods that aim to preserve the
trend of the climate model can modify it, and that bias adjustment modifies the overall climate model ensemble spread.

The remainder of this paper is structured as follows. Section 2 gives an introduction to statistical bias correction methodolo-
gies and section 3 presents ibicus, covering both the details of different bias adjustment methodologies and evaluation metrics
implemented, as well as the software design of the package. In section 4, we present the results of the case study before drawing

conclusions in section 5.

2 Background
2.1 Statistical bias adjustment of climate models

Climate model biases can be defined as “systematic difference between a simulated climate statistic and the corresponding
real-world climate statistic”” (Maraun, 2016). These biases mostly stem from the imperfect representation of physical processes
such as orographic drag, convection, or land-atmosphere interactions. This leads to the incorrect representation of features such
as the mean and variance of observed temperature or the spatial properties of extreme rainfall over a certain area.

Bias adjustment methods for climate models have their origin in methods developed for the post-processing of Numerical
Weather Prediction (NWP) models. The rationale is to calibrate an empirical-statistical transfer function between model simu-
lations and observations over the historical period, that is then applied to the model simulation for the period of interest, often
in the future. However, in contrast to NWP models, there is no direct correspondence between the time series of observations
and the climate model in historical simulations. This means that typical regression-based approaches used for NWP are not
applicable. Rather, properties of the statistical distribution of the two variables, such as the mean or quantiles, are mapped to
each other when bias adjusting climate models. Furthermore, the magnitude of biases in climate models can be much larger,
whereas NWP forecasts are tightly constrained by recent observations.

The most common approaches to the bias adjustment of climate models include a simple adjustment of the mean (Linear
ScalingerDelta-Change), a mapping of the two entire cumulative distribution functions (Quantile Mapping), or more advanced
methods that also aim to preserve the trend projected in the climate model (such as CDFt or ISIMIP3BASD). Fhe-Most of

these methods, however, should rather be seen as method families that have some core characteristics - quantile mapping, for
example, always implements a correction in all quantiles - as well as some interchangeable components, such as their handling.
of dry days, that they might share with other methods. The distinction between core characteristics and interchangeable
components varies from method to method, as will be discussed in more detail in the description of the software package.
An alternative approach, often termed Delta Change method, adjusts the historical observations to incorporate the climate

model trend (see, for example, Olsson et al., 2009; Willems and Vrac, 2011; Maraun, 2016). The practice of using bias adjust-
ment methods to also downscale the climate model has been eritieizedcriticised in various publications (von Storch, 1999;

Maraun, 2013; Switanek et al., 2022), therefore this paper focuses on bias adjustment of climate models purely for the purpose

of reducing biases at constant resolution.
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The use of bias adjustment methods has become standard practice in academic climate impact studies, and increasingly
outside of academia in national assessment reports or other climate services. For example, the ISIMIP3BASD methodology
(Lange, 2019) is implemented as the only bias adjustment method as a standard pre-processing step in the Inter-Sectoral Impact
Model Intercomparison Project (ISIMIP) impact modelling framework that is used in the climate risk scenarios published by
central banks (NGFS, 2021). However, applying statistical bias adjustment to climate models raises a number of important

considerations and issues which we categorize into fundamental and practical issues for the purpose of this paper.
2.2 Fundamental issues with statistical bias adjustment and evaluation

Climate model biases in statistics at the grid-cell level can stem from larger-scale biases of the model such as biases in larger
drivers such as El Nifio, the lack of local feedback to these drivers or the misplacement of storm tracks in a region. However,
univariate statistical bias adjustment methods are only as capable as their assumptions and input data and therefore correct only
the impact these larger-scale biases have on the distribution of the variables at grid cell level (Maraun et al., 2017).

Univariate bias adjustment might also deteriorate the spatial, temporal or multivariate structure of the climate model. This is
particularly problematic for compound events which have been argued to be of particularly high societal relevance due to their
elevated impacts and neglect in standard extreme event evaluation approaches (Zscheischler et al., 2018, 2020). As this issue
will not be detected in location-wise cross-validation approaches, it is necessary to evaluate bias adjusted data with a particular
focus on spatial, temporal and multi-variable components (Maraun et al., 2017; Maraun and Widmann, 2018a).

Furthermore, bias adjustment can modify the climate change trend simulated by the model, in particular, that of threshold-
sensitive climate indices such as dry days (Dosio, 2016; Casanueva et al., 2020). This holds everall-in general for non-trend-

hodsif-undertvi .

preserving methods, as-wel-as—for-but can also be the case for any trend-preserving

Reasons for the modification of the trend by ‘trend-preserving” methods can be traced to the underlying statistical method
and assumptions, such as the specific treatment of values between a variable bound and another threshold, or parametric and
non-parametric distribution fits used in different stages of the bias adjustment.

To justify any kind of trend modification by the bias adjustment method, it is necessary to make an assumption about how
resent-da
climate model biases are stationary in time (Gobiet et al., 2015): for example. based on this assumption, Ivanov etal. (2018)

developed a theoretical model to justify future trend modifications by the bias adjustment method based on present-da
biases. However, Chen et al. (2015); Hui et al. (2019), show that while temperature biases can be approximated as stationar

bias relates to biases in the future period (Christensen et al., 2008). This can be based on the assumption that

recipitation biases cannot. Similarly, Van de Velde et al. (2022) show a clear impact of non-stationarity on bias adjustment

in particular for precipitation. Trend-preserving bias adjustment methods on the other hand assume, at least to some degree,
that the raw climate model trend constitutes our best available knowledge for subsequent impact studies. In line with this,
Maraun et al. (2017) argue that the modification of the trend of a climate model based purely on statistical reasoning is not
defendable, and should, rather be based on physical process understanding and reasoning about the large-scale drivers involved.
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There are some options available to cope with these fundamental issues in impact studies: the first is to discard climate
models that misrepresent large-scale circulation relevant to the problem at hand. The second is to conduct a careful evaluation
of multivariate aspects of the bias adjusted climate model to identify potential artefacts and discard methods that introduce
these before proceeding with the impact study. The third is to develop process-informed multivariate bias adjustment methods
that for example include large-scale covariates such as weather patterns (Maraun et al., 2017; Verfaillie et al., 2017; Manzanas

and Gutiérrez, 2019). These more elaborate methods require an even more careful case-by-case model selection and evaluation.
2.3 Practical issues with bias adjustment and the availability of open-source software

Addressing these fundamental issues and improving the application of bias adjustment is impeded by a number of practical
issues.

The first practical issue is that the comparison of different bias adjustment methods and their adaptation to a specific applica-
tion is not easily possible for a user. This is because the code to implement different methodologies is published, if at all, across
different software packages and languages, impeding interoperability. Users also have the option of downloading already bias
adjusted datasets which improves ease of access but does not allow for any custom adjustments (Dobor et al., 2015; Famien
et al., 2018; Dumitrescu et al., 2020; Xu et al., 2021). The second practical issue is that available software packages are not
accompanied by evaluation methods beyond marginal aspects. As the evaluation of bias adjustment is not straightforward, this
makes it difficult for a user to detect artefacts or identify improper results by assessing multivariate properties of the climate
model, rendering bias adjustment prone to misuse (Maraun et al., 2017).

These practical issues jeopardize the current implementation of statistical bias adjustment. Addressing these issues does not
solve the more fundamental issues but can improve common practice and enhance transparency.

An example of good practice is the MiDAS-MIJAS package which introduces a new bias adjustment method that is compared
to other methods in Berg et al. (2022). However, even though the package is in principle extendable, other methods are not

implemented in practice, nor is an adjustable evaluation framework developed.

3 ibicus - an open-source software package for bias adjustment

To address the practical issues outlined in the previous section we introduce ibicus, an open-source Python package for the bias

adjustment of climate models and evaluation thereof. ibicus implements-introduces a unified, modular, software architecture

within which eight state-of-the-art --peer-reviewed and widely used bias adjustment methodologies in-are implemented. This

enables researchers to apply different methods through a common interface

individual-methodology-to-suit-their target-variable;, and modify components of the methods, such as the treatment of dry.
days, based on region and impact of interest. The code implementation of each methodology is based on the cited academic
publication, as well as available accompanying code that was re-written and modularised to fit the developed interface.

Consistency with the original implementation was ensured through rigorous testing and correspondence with the authors of the
different methodologies. The package provides an extensive evaluation framework covering spatial, temporal and multivariate
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aspects. As part of this, we develop a generalized threshold metric class that allows the user to evaluate both frequently used
climate metrics such as frost days or dry days, as well as define their own threshold metrics targeted to the specific impact
study. The spatiotemporal evaluation of threshold metrics enables the user to detect artefacts and evaluate compound events
before and after bias adjustment. ibicus is designed to be flexible and easy to use, facilitating both the “off the shelf” use
of methods as well as their customization and allowing use in notebook environments all the way up to the integration with
high-performance computing (HPC) packages such as dask (Rocklin, 2015). This ehapter-section provides an overview of the

key features of ibicus. A more complete user guide and tutorials can be found on the documentation page of the package.
3.1 Data input

Bias adjustment requires observational data and climate model simulations during the same historical period and climate
model simulation for the (future) period of interest. ibicus operates on a numerical level, taking three-dimensional (time,
latitude, longitude) numpy arrays as input and returning arrays of the same shape and type. This choice was made to ensure
interoperability with different geoscientific computing packages such as xarray (Hoyer and Hamman, 2017) or iris (Met Office,

2010), as well as operation in different computing environments and integration with dask (Rocklin, 2015).
3.2 Bias adjustment

ibicus represents each bias adjustment methodology as a class which inherits generic functionalities from a base ‘debiaser’
class, such as the common initialization interface and a function applying the ‘debiaser® in parallel over a grid of locations. The
base ‘debiaser‘ class makes the package easily extendable, as a new bias adjustment methodology can inherit these generic
functionalities and requires only the specification of a function which applies the methodology for a given location (‘ap-
ply_location®).

Each “debiaser—"debiaser’ object is initialized separately for each variable and requires several class parameters. These are
specific to the bias adjustment methodology and include parameters such as the distribution used for a parametric fit or the type
of trend preservation applied. For a number of methodology-variable combinations, default settings exist that are described in
the documentation. Default settings are tabeHed-labeled ‘experimental’ if they have not been published in the peer-reviewed
literature but are proposed by the package authors after extensive evaluation. It is possible and encouraged to modify the
parameters even when default settings exist to adapt the method to a given use case. For example, if precipitation extremes
are of special interest, the user could choose to modify the parametric fit for this variable as the gamma distribution — an
often used default — might underestimate precipitation extremes (Katz et al., 2002). After initialization, each debiaser object
has an “apply—‘apply’ method to apply bias adjustment to climate model data. This takes a 3-dimensional numpy array of
observations, as well as historical and future climate model simulations as input, together with optional date information for
running windows. The apply function can be run in parallel to speed up execution and integrates with dask for deployment in
HPC environments.

Table Atin-the-appendix-Al provides an overview of the methodologies currently implemented in ibieis—The-methods-were

ibicus, chosen to cover some of the most widely used bias adjustment methods in current practice. These methods are based
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on different assumptions, making them suitable for different applications. For example, ISIMIP3BASD is a parametric trend
preserving quantile mapping which might be appropriate if the variable approximately follows a known parametric structure
and the climate change trend in all quantiles is judged to be realistic. If these assumptions are not valid, a non-parametric
method such as CDFt or a non-trend preserving method such as Quantile Mapping might be more appropriate. Alternatively,

if changes in extremes are of special interest, a parametric method based on extreme value theory might be adequate. fntable

+we-highlightthe key-As noted in the background section, different methods should rather be viewed as method families that
have core characteristics and interchangeable components in their ibicus implementation. An example of this is the treatment

of dry days in different methods: While the treatment of dry days is entangled in the method design for SDM, CDFt and
ISIMIP and cannot be changed by the user, QM methods allow for different treatment of dry days depending on the use-case.

Table 1 highlights further methodological considerations differentiating these-metheds—different method families. A detailed

description of each individual component of each method is beyond the scope of this paper but can be found in the detailed
ibicus software documentation provided online.

3.3 Evaluation

Physical consistency in space, time or between variables is not ensured when using univariate bias adjustment methods. Fur-
thermore, the trend of the climate model might be modified, and the bias of some statistics or impact metrics might be increased
through some bias adjustment methods — even if it is removed in certain quantiles. The ibicus evaluation framework offers a

collection of tools to identify these issues and compare the performance of different bias adjustment methods for variables of

interest, building on previous efforts such as the VALUE evaluation framework for statistical downscaling (Maraun et al., 2019

3.3.1 Metrics and design

The evaluation framework consists of two components: 1) the evaluation of bias adjustment on a validation/testing period
that enables comparison of the bias adjusted model with observations, and 2) the analysis of trend preservation between the
validation and future, or any two future periods. The latter component is necessary as bias adjustment methods can modify the
climate change trend, even with methods that are designed to preserve it, as demonstrated by the case study in section 4. In
the absence of evidence to the contrary, trend-preserving methods should be preferred as statistical bias adjustment methods
usually do not have an underlying physical reasoning for modifying a particular trend.

In both components of the evaluation framework, there are two kinds of metrics that can be evaluated using ibicus, termed
statistical properties and threshold metrics. Statistical properties allow the user to compare properties of the observational
distribution and the climate model distribution - such as the mean or different quantiles - before and after bias adjustment.
Threshold-based climate indicators are often of special interest for climate impact studies — for example, frost days, by time
of year, could be of interest for agricultural or biodiversity impacts — and where the success of bias adjustment methods
is particularly desirable (Dosio et al., 2012; Dosio, 2016). A number of threshold metrics are implemented by default in

the package. A new threshold metric can be specified by the user along the dimensions in table 2. Accumulations such as
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Table 1. Distinctions between different bias adjustment methods and important considerations motivating the choice.

Statistic /

quantiles

Methods for bias adjustment range from simple adjustments to the mean (Linear Scaling — LS) or mean and variance

(LS) to adjustments to all quantiles of the distribution.

Parametric or

Non-parametric methods are restricted to the range of observed/modelled data in their “historical period” and might not

non- handle extremes well, while parametric methods introduce additional assumptions. ibicus allows users to implement all
parametric methods non-parametrically by modifying method attributes. Based on the default arguments, QM, QDM, ECDFM and
Method SDM are parametric methods while CDFt is non-parametric and ISIMIP3BASD is semi-parametric. For each method
using a parametric distribution, it is possible to exchange it with a different one.
Time- Some methods include a running window to calculate different transfer functions depending on seasonality (QDM,
window ISIMIP3BASD, CDFt is applied by month) whilst others do not account for seasonality explicitly.
Trend- Methods such as quantile mapping can modify the trend in the climate model. This might be sensible if the trends
preservation | are taken to be unrealistic or-due-to-state-dependentbiaseswhich-need-eorrection-and related to present-day biases, as
and discussed in the background section (Boberg and Christensen, 2012; Gobiet et al., 2015; Doblas-Reyes et al., 2021).
stationarity However, in other cases, the trend might be considered credible and should be preserved. Methods can be designed
assumption to preserve trends in the mean (DC, LS, dQM), mean and variance (dQM) or all quantiles (CDFt, ECDFM, QDM,

ISIMIP3BASD, SDM) - although even then they are not guaranteed to do so. Often trends are distinguished between
additive trends (as for temperature) and multiplicative trends (as for precipitation where trends in intensity occur),
however not all methods share this distinction. The question of trend preservation is related to the assumption made
that the bias is “stationary”’stationary’, as mentioned in the background section. The assumption is explicitly made
by Quantile Mapping. SDM explicitly relaxes the assumption, CDFt and QDM account for it by including a running

window over the future period in addition to one over the year.

Treatment of

dry days and

extremes

modified by the user for example should a mapping based on extreme value theory be required. For dry days the ISIMIP,
SDM and CDFt methods provide an explicit handling that might be appropriate in some situations but not in others.
DM treats the ma

whilst for methods like QM and ECDFM the user has the choice of different treatment methods.

ing of dry days as a censoring problem and adjusts them together with the body of the distribution

monthly total precipitation can also be estimated. Using these definitions, the evaluation module covers but is not limited to the

indices developed by the Expert Team on Climate Change Detection and Indices (ETCCDI - Zhang et al., 2011) used in many

application studies.

Since location-wise evaluation is not sufficient to decide whether a bias adjustment method is fit for the use-case, the module

offers the functionality to evaluate location-wise, as well as spatiotemporal and multivariate metrics both in terms of threshold

metrics and statistical properties. The table 3 gives an overview of the implemented methods.
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Table 2. Attributes of the threshold metrics class.

Threshold Attribute | Description
Name Name of the threshold
Value(s) Values defining the threshold (to compare climate model or observations against).
Description Brief description of the threshold.
Type Whether values shall fall above, below, outside or between threshold(s).
Scope Whether the threshold(s) is defined daily, monthly, seasonally, or overall (different for each time category, or not).
Locality Whether the threshold is defined location-wise or globally (different at each location or not).

Finally, different bias adjustment methods rely on different assumptions such as certain parametric distributions providing
suitable fits. The evaluation framework includes functions to assess the fit of parametric distributions and the seasonality of the

variable to help the user make decisions on how to customize the bias adjustment method to their application.

4 Implementation of ibicus in the Mediterranean region

We demonstrate the comparison and evaluation of different bias adjustment methods by applying ibicus over the Mediterranean.
Rather than conducting a comprehensive evaluation for a single use case, our aim is to highlight the use-case dependency of the
method choice more broadly and hence the necessity of targeted evaluation beyond marginal aspects. We, therefore, choose to
limit this case study to the bias adjustment of global climate models, even though specific impact studies often but not always

(IPCC, 2021) use higher-resolution models over the target region.
4.1 Data and Methods

We consider the Mediterranean region, between 35-45°N latitude and 18°W to 45°E longitude and apply bias adjustment to
seven Coupled Model Intercomparison Project Phase 6 (CMIP6) models, selected based on the use in previous studies in the
Mediterranean region (Zappa and Shepherd, 2017; Babaousmail et al., 2022). The chosen models include ACCESS-CM2,
CMCC-ESM2, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-LR, MRI-ESM2-0 and NORESM2-MM. Table B1 in the appendix
provides more details on these models. We used the historical runs as well as the SSP5-8.5 experiments. We compare four
widely used bias adjustment methods that are implemented in ibicus: ISIMIP3BASD (Lange, 2019), applied amongst others by
Jdagermeyr et al. (2021); Pokhrel et al. (2021) as well as impact models run under the ISIMIP framework), Scaled Distribution
Mapping (Switanek et al. (2017), applied amongst others as pre-processing step to assess changes in high impact weather
events over the UK in Hanlon et al. (2021)), as well as Quantile Mapping (applied in impact studies such as Babaousmail
et al., 2022) and Linear Scaling as reference methods. These four methods are applied to daily total precipitation (pr) and
daily minimum near-surface air temperature (tasmin), chosen to cover two different types of variables (bounded vs unbounded,

different distributions etc) that are both highly relevant for many impact studies. The bias adjustment methods are used with
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Table 3. Overview of evaluation categories implemented in ibicus.

Statistical Properties Threshold Metrics
Location- Calculation: location-wise bias (absolute and percentage) | Calculation: location-wise bias (absolute in days/year and
wise in different distributional properties (quantile, mean) of | percentage) in the frequency of singular threshold ex-
climate model before and after applying different bias ad- | ceedance events in climate model before and after bias ad-
justment methods. justment methods.
Visualization: boxplot across locations and spatial plot. | Visualization: boxplot across locations and spatial plot.
Plotting functions for visual inspection of observed and
climate model distribution (histogram and CDF).
Temporal - Calculation: distribution of spell lengths of threshold ex-
ceedances (for example dry spell length).
Visualization: plot of empirical CDF.
Spatial RMSE of between spatial correlation matrices at each lo- | Calculation: distribution of spatial cluster size of thresh-
cation. old exceedances (for example spatial size of heatwaves).
Visualization: plot of empirical CDF.
Spatio- - Calculation: distribution of spatiotemporal cluster size of
temporal threshold exceedances (for example spatiotemporal extent
of heatwaves).
Visualization: plot of empirical CDF.
Multivariate | Calculation: correlations between chosen pair of vari- | Calculation: conditional probability of threshold co-
ables at each location. occurrence (such as dry and hot days) in observations and
Visualization: spatial plot. climate model before and after bias adjustment.
Visualization: boxplot.
Trend Calculation: location-wise bias in the multiplicative or additive trend of a threshold metric or distributional property
(mean, quantiles) — percentage change between climate model before and after bias adjustment.
Visualization: boxplot across locations and spatial plot.

their ibicus default settings for both variables (for more details see table Al and the software documentation). This means

that the ISIMIP and SDM methods provide an explicit adjustment of dry day frequencies, whilst for

M they are treated as

censored and the method based on Cannon et al. (2015) is applied and LS provides no explicit adjustment, scaling all values.

We use ERAS reanalysis data (Hersbach et al., 2020) as an observational reference, conservatively regridded to match the

resolution of the selected climate models. The historical data ranges from January 1st, 1959 to December 31st, 2005, with the

inttial 30-yearperiod-(1959-1989)-data from January Ist 1959 to December 31st 1989 serving as the historical/reference period
and used as a training dataset and the subsequent +5-yearperiodi1990-2005)period: January Ist 1990 to December 31st 2005

10
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used for validation purposes. Bias adjustment is applied to the validation period as well as the future period: January 1st 2080
to December 315t 2100,

We demonstrate four bespoke impact metrics related to daily minimum temperature and daily total precipitation, defined

using the ibicus threshold metrics class.

— tasmin < 10°C (283.15K) which was chosen based on Droulia and Charalampopoulos (2022) who estimate climate

impacts to viniculture noting that above >10°C grapevines are in their optimal photosynthesis zone.

— tasmin greater than the seasonal 95th percentile of the daily minimum temperature in each grid cell during the historical
period (1959-19891959- 1989). This can be an indicator of the impacts of heatwaves (Raei et al., 2018).

— Dry days (daily precipitation <lmm) and very wet days (daily precipitation >10mm) as two ETCCDI indices.
4.2 Results
4.2.1 Evaluation of the location-wise bias on the validation period

Figures 1-3 show the marginal bias of the climate model with respect to observations over the validation period before and
after bias adjustment across locations in the study area.

We find that most methods reduce but do not eliminate the marginal bias in the mean, shown for the ACCESS-CM2 model
and minimum daily temperature in figure 1, while the range of reduction is varied: ISIMIP and Linear Scaling achieve more
significant reductions in the bias than Quantile Mapping or Scaled Distribution Mapping. a-This result also holds for extremal
quantiles and threshold metricshowevereertain-methods-can-also-inflate-the-bias-, and we even observe a slight inflation of the
raw climate model evenif-the-bias-in-the-mean-isreduced,as-wesee-most-prominently-for quantie-mappinginfigures

2bias observed in certain instances for both Quantile Mapping and Scaled Distribution Mapping.

Furthermore, in figure 2 we see that that the success of a bias adjustment method depends on the use case, meaning the

variable, metric and climate model studied. While Scaled Distribution Mapping somewhat reduces the median bias in dry
days for two of the climate models, it inflates the bias in dry days for the third. On the other hand, the method reduces
bias in the minimum temperature threshold metric for the IPSL-CM6A-LR model but inflates the bias in this metric for the
MIROC6 model. ISIMIP3BASD on the other hand reduces the bias in dry days for the MPI-ESM 1-2-LR model but increases
it for the MIROC6 model. Quantile Mapping performs reasonably well for the wet-day metric but quite badly for the dry-
day and minimum temperature metrics. These differences in the performance of bias adjustment methods can be due to their
assumptions (a parametric distribution fit might not replicate the correct tail behaviour), and method (whether they are tailored
to a specific variable or whether event frequency adjustment is implemented), as well as the physical source of the bias in the
climate model.

When investigating the spatial distribution of the bias (figure 3), we find that certain methods can assimilate-homogenize the
spatial pattern of the bias across climate models. For example, linear scaling (LS) shifts climate models to an overestimation

of very wet days in similar regions, even models like NORESM2-MM which previously underestimated these days. In other
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Figure 1. Distribution across locations of marginal minimum daily temperature bias of the ACCESS-CM2 climate model before bias adjust-
ment (raw) and after applying the ISIMIP3BASD bias adjustment method (ISIMIP), Quantile Mapping (QM), Scaled Distribution Mapping
(SDM) and Linear Scaling (LS). The left panel displays the distribution of the absolute bias (in Kelvin) in the mean and 0.05 and 0.95
quantiles. The right panel displays the distribution of the absolute bias in the threshold metrics: minimum daily temperature below 10°C and
minimum daily temperature above the 95th seasonal percentile defined for this grid cell, both in units of days per year. Bias (location-wise)
is defined as the difference between the metric for the (bias adjustment) climate model in the validation period and the metric for the obser-
vational data in the validation period (in each grid cell, metrics calculated in the temporal dimension). This figure shows the standard ibicus
output distribution of location-wise bias for a set of specified statistics and threshold metrics. The boxplot shows the median, the first and

third quartiles as a box, the outer range (defined as Q1 - 1.5 x IQR and Q3 + 1.5 x IQR) as whiskers, and any points beyond this as diamonds.

cases, methods can perform well in certain regions, but not in others. Quantile mapping (QM) seems to perform reasonably
well over the Iberian peninsula, but has difficulties over Italy, especially for MPI-ESM1-2-LR where a strong underestimation
is shifted into a strong overestimation. This highlights the importance of investigating the spatial distribution of the marginal

bias as this varies across the different regions in the Mediterranean.
4.2.2 Evaluation of the bias in spatiotemporal characteristics on the validation period

Moving on to the investigation of spatiotemporal characteristics, figures 4 and 5 show the cumulative distribution of spell
length and spatial extent for the dry-day and minimum temperature heatwave days metric, respectively. The plots depict the

standard visualization output that the ibicus software package produces for this type of evaluation.
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Figure 2. Distribution of marginal bias across locations before bias adjustment (raw) and after applying the ISIMIP3BASD bias adjustment
method (ISIMIP), Quantile Mapping (QM), Scaled Distribution Mapping (SDM) and Linear Scaling (LS). Three climate models (MPI-
ESM1-2-LR, MIROC6 and IPSL-CM6A-LR) and three threshold metrics (minimum daily temperature below 10°C, dry days defined as total
precipitation below 1mm and very wet days defined as total precipitation above 10mm) are evaluated. The bias in minimum temperature
<10°C of the climate models after applying quantile mapping is particularly large, exceeding 300%. For improved readability of the plot, we

have omitted this bias adjustment - metric combination here but show the full plot in the appendix.

The spatiotemporal characteristics investigated exhibit biases between the reanalysis data and raw climate model output. For
example, it is ~1.6 times more likely for a dry spell to exceed 20 days in the raw climate model IPSL-CM6A-LR compared to
the reanalysis data.

We find that the bias in these spatiotemporal metrics can be reduced with some bias adjustment methods: for example,
ISIMIP3BASD reduces the spell length bias for dry days, and Scaled Distribution Mapping reduces the bias in both spell
length and spatial extent for minimum temperature heatwave days. However, this result is again inconsistent across methods
and variables, and different bias adjustment methods frequently appear to increase the spatiotemporal bias: Scaled Distribution
Mapping increases the bias in spell length and spatial extent of dry days, as do Quantile Mapping and ISIMIP3BASD when
investigating the spatial extent.

These results are to some extent expected, as the selected methods are univariate methods, meaning they are calibrated
location-wise and do not incorporate spatiotemporal information. However, the results highlight the need to evaluate how bias

adjustment changes spatiotemporal characteristics, as these are often implicitly used in impact downstream impact studies.
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Figure 3. Spatial plot of marginal absolute bias in very wet days defined as total precipitation above 10mm given in [days / year]. Results
are shown for seven climate models (ACCESS-CM2, CMCC-ESM2, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-LR, MRI-ESM2-0 and
NORESM2-MM) before bias adjustment (raw) and after applying the ISIMIP3BASD bias adjustment method (ISIMIP), Quantile Mapping
(QM), Scaled Distribution Mapping (SDM) and Linear Scaling (LS).

4.2.3 Evaluation of the climate change trend before and after bias adjustment

As mentioned in the background section, the modification of the climate change signal through bias adjustment has been
reported and discussed in various publications and stimulated the development of methods that aim to preserve the climate
signal.

In the analysis of the dry day trend, shown in figure 6, we find that a non-trend-preserving method such as quantile mapping
significantly alters the climate change trend. The axes in figure 6 were limited to +-100 for the sake of readability, however,
a limited number of data points show even larger biases after applying quantile mapping. The unrestricted version of this plot
can be found in the appendix.

We also find that methods that aim to preserve the trend such as ISIMIP3BASD or Scaled Distribution Mapping modify
it up to 56100% at some locations. For the ISIMIP method, this is presumably due to the fact that the ‘future observations’
through which the trend preservation is implemented are mapped using empirical CDFs, whereas the bias adjustment itself is
parametric. It has been argued that the normal distribution for temperature or the gamma distribution for precipitation might
not adequately capture the tail behaviour of these variables (Katz et al., 2002; Nogaj et al., 2006; Sippel et al., 2015; Naveau

et al., 2016). This is particularly relevant when investigating the trend of high or low quantiles, as well as threshold metrics that
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Figure 4. Cumulative distribution functions of spell length (left panel) and spatial extent of dry days (right panel). The spell length is defined
as the length of a temporal sequence longer than three days during which a single grid cell exceeds the specified threshold. The spatial
extent is defined as the fraction of cells exceeding the specified threshold, given that a single cell exceeds the threshold. This plot shows the
cumulative distribution function of individual spell lengths and spatial extents at single points in time across the entire Mediterranean region
in the observational data (ERAS), in the climate model IPSL-CM6A-LR before bias adjustment (raw) and after applying the ISIMIP3BASD
bias adjustment method (ISIMIP), Quantile Mapping (QM), Scaled Distribution Mapping (SDM) and Linear Scaling (LS).

do not sit at the centre of the distribution. Additionally, for bounded variables such as precipitation, the frequency beyond two
outer thresholds is adjusted separately in the ISIMIP3BASD methodology which could lead to the change in the dry day trend
shown in figure 6.

We find a much smaller change in the trend of the mean minimum daily temperature across methods, shown in figure 7. In
fact, linear scaling barely modifies the trend at all, which is to be expected since the method only subtracts the mean bias from
the future and the validation period, based on the strong assumption that the bias affects the mean only and is stationary over

time.
4.2.4 Evaluation of the uneertainty-variation in the climate model ensemble before and after bias adjustment

Figure 8 shows that the climate model ensemble spread of the trend in-of mean seasonal precipitation is modified when

in different ways by different bias adjustment methods
which is in line with previous findings in the literature (Maraun and Widmann, 2018b; Lafferty and Sriver, 2023). Interesting]

the variation (often interpreted as the uncertainty range) is not necessarily narrowed as has been postulated by some authors

15



335

340

345

ACCESS-CM2 ; Spatiotemporal bias in heatwave days (tasmin>seasonal 95th percentile)

Spell length Spatial extent
1.0 P 9 1.0 P
0.8
c 061 c
Kl k]
= b=
o o
Qo [eX
o e
o i o
04 Correction Method
—— ERA5
— raw
0.2 4 — ISIMIP
— QM
—— SDM
— LS
0.0 T T T T T T T 0.0 T T T T T
0 5 10 15 20 25 30 35 40 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Spell length (days) Spatial extent (% of area)

Figure 5. As Figure 4, but investigating the threshold of minimum daily temperature exceeding its 95th seasonal percentile defined per grid

cell for the climate model ACCESS-CM2.

(Ehret et al., 2012), but even extended and shifted in some cases. From this finding, it follows that the range of uncertainty
and possible worst-case scenarios analysed in impact-studies-subsequent impact studies might depend on the bias adjustment
method used to pre-process the climate model. As-shown-in-the-previous-sections;the—"best—

The interpretation of this shift in uncertainty is related to the previously discussed questions on trend preservation, namely
whether the change in the climate model trend through a statistical bias adjustment method is justified or not. This issue was
mentioned by Maraun and Widmann (2018), who discuss that a minimum requirement to justify a change in the uncertainty
spread through bias adjustment should be a critical evaluation of the validity of the results and the assumptions of the underlying
statistical model, Given the finding in the previous section, namely that the best bias adjustment method for-a-given-use-ease
depends on the variable, region and impact variable studied-Theresultshewninfigure-8-demonstrates-that bias-adjustmentean

some-eases, it follows that indiscriminately applying a bias adjustment method across regions and variables without evaluation
can shift the spread of the results of subsequent impact studies in a non-justified manner.
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Figure 6. Distribution of location-wise biases-change in the additive climate ehange-trend in dry days introduced through the bias adjustment
method, computed by computing the additive trend between the validation period and the future period in both the raw and the bias adjusted
model and taking the percentage difference between the two trends. The magnitude of the raw projected change in dry days depends on the

5 Conclusions

Statistical bias adjustment is a useful method when working with climate models to understand future climate impacts. How-
ever, there are fundamental as well as practical issues in how bias adjustment is currently used both in academic research and by
practitioners in the private and government sector. One practical issue impeding good practice is the availability of open-source
software to compare different bias adjustment methods and evaluate non-calibrated aspects.

This paper demonstrates that the success of a bias adjustment method depends on the variable and impact studied, and bias
adjustment should therefore be evaluated and adapted targeted to the region and use-case at hand. Depending on the climate
model and variable of interest different methods can reduce or also increase biases by a large range, can impair or leave
spatiotemporal coherence relatively unaffected. This is non-systematic across bias adjustment methods, climate models and
variables/metrics of interest. Furthermore, we find that even trend-preserving methods can modify the trend in statistical prop-
erties and climate indices, and each bias adjustment method changes the climate model ensemble spread slightly differently.

With the Python package ibicus, we aim to provide a resource to address some of these practical issuesand-for-better-and

e-targeted-use-of-bias-adjustment-—Byfacilitating-the-easy-comparison-and-extensive-evaluation-of-. For one, the evaluation
framework allows users to evaluate non-calibrated aspects and identify potential issues in bias adjusted data. Second, the
common interface developed for different bias adjustment methods allows for a relatively easy comparison between different
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Figure 7. As Figure 6 but for the trend in mean minimum daily temperature. The magnitude of the raw projected change in mean minimum
daily temperature again depends on the climate model and, across different locations, lies between 2-5K.

methods, and the selection of the method most appropriate for the use-case. Finally, the ibicus software implementation

such as the treatment of dry days. This allows the user to
examine the impact of detailed methodological choices for their application and select the most appropriate option, which has
so far not been possible due to the dispersed implementations of different methodologies.

So far, the package implements univariate bias adjustment methods, meaning that the bias adjustment is calibrated and
applied on each grid point separately. Multivariate bias adjustment methods that correct spatial, temporal, or inter-variable

structures next to marginal aspects have been published, amongst others by Piani and Haerter (2012); Vrac and Friederichs

(2015); Sippel et al. (2016); Cannon (2016, 2018); Vrac (2018); Frangois et al. (2020). As-bias-adjustment-can-alse-impair-the

far chosen to focus on univariate methods as the need for careful model selection and evaluation becomes even more pertinent

when using multivariate methods (Maraun et al., 2017; Francois et al., 2020; Van de Velde et al., 2022). Our aim was therefore

to first establish a robust workflow and evaluation for st 5 < sed-

issues-in-the-application-of bias-adjustment—Hewever,the-widely used univariate methods, thereby addressing one of the ke
ractical issues impeding more rigorous evaluation.
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Figure 8. Ensemble spread of seven selected climate models (ACCESS-CM2, CMCC-ESM2, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-LR,
MRI-ESM2-0 and NORESM2-MM), showing the trend in average seasonal precipitation between the validation and future period, without
applying bias adjustment (raw) and after applying ISIMIP3BASD, Quantile Mapping and Scaled Distribution Mapping.

The package remains under active development and maintenance and we would like to invite collaboration from the commu-

380 nity to extend and further develop its functionalities. Itis-available-via-standard-channelslike-Py Pl with-extenstve documentation
Both-the Aside from adding further methods, the modularity of the different methods can be further improved, enabling an

even more flexible use of different methods by the user. In addition, a systematic review of different available software tools

and methods for bias adjustment could be of use to the community. Furthermore, the implications of bias adjustment on the

385  outcomes of impact modelling studies could be examined based on the evaluation and comparison of different methods within
the ibicus package. The ibicus evaluation can also be used as a starting point to further examine physical sources of climate
model biases which can inform improvements in the representation of physical processes within the climate model itself. Also,

both the choice of validation period as well as the choice of observational dataset and uncertainty therein have been shown to
affect the results of bias adjustment (Casanueva et al., 2020). This-While this is not explicitly explored in this publication or
390 package, however;-the evaluation tools available through ibieus ibicus enable the investigation of these issues. Furthermere;-the
Finally, the results presented in this paper raise a number of important broader questions regarding the use and future
development of bias adjustment methods. The finding that different bias adjustment methods lead to very different results raises

the question of whether bias adjustment should be seen as an additional source of uncertainty, as suggested by Lafferty and Sriver (2023)
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- However, the paper also shows that different methods perform better or worse depending on the region and variable studied,
which constitutes a clear reason to _evaluate and select the bias adjustment targeted to the use case rather than viewing
different methods as another source of uncertainty. This then raises questions about whether choosing a ‘standard’ bias
adjustment method to render results comparable is valid and useful in many applications. These questions can serve as
a starting point to_re-consider both the application of bias adjustment, as well as initiate future development on methods

suitable to address the different fundamental issues facing bias adjustment. Existing research avenues include approaches

rocess the entire climate model ensemble (Chandler, 2013; Rougier et al., 2013; Sansom et al., 2021) or conditionin

Maraun et al., 2017; Verfaillie et al., 2017; Manzanas and Gutiérrez, 2019).

Code and data availability. The current version of ibicus is available from PyPI (https://pypi.org/project/ibicus/) under the Apache Li-
cense Version 2.0, and described in detail under https://ibicus.readthedocs.io/en/latest/. The source code is available via GitHub (https:
//github.com/ecmwf-projects/ibicus). The exact version of ibicus used to produce the results used in this paper is archived on Zenodo
(doi:10.5281/zenodo.8101898, Spuler and Wessel, 2023), as are input data and scripts to run ibicus and produce the plots for all the simula-
tions presented in this paper (doi:10.5281/zenodo.8101842, Wessel and Spuler, 2023). The ERAS and CMIP6 data used were accessed via
the Copernicus Climate Data Store under the Copernicus licence: https://doi.org/10.24381/cds.143582cf and https://doi.org/10.24381/cds.
c866074c respectively.
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Table A1l. Bias adjustment methods currently implemented in ibicus with variables covered and details on their functioning. Here « refers to
observations s Or climate model values during the historical / reference Tcm, hisc Or future period Tem, e and F' to a Cumulative Distribution
Function (CDF) fitted either parametrically or non-parametrically. Covered variables indicate variables for which the bias adjustment method
currently has default settings and climatic variables with a * are variables with experimental default settings. Those are settings that were

not published in the peer-reviewed literature but were found to give good performance. The references given are the references used for the
implementation of the method in the ibicus package.

Name

References

Details

ISIMIP3BASD

Hempel et al.
(2013); Lange
(2019, 2021a)

Method: semi-parametric quantile mapping-based method that aims to be trend-preserving in
all quantiles. Generates “pseudo future observations” by applying the models’ climate change
trend to observations either additively, multiplicatively or in an alternative way. Applies quantile-
mapping between the modelled future values and the pseudo future observations, either non-
parametrically or parametrically, depending on the variable, optionally with an event likelihood
adjustment as in Switanek et al. (2017). The core method is applied in a running window to
account for seasonality, and trends in both observations and model are removed prior to applying
the method.

Covered variables: hurs, pr, prsnratio, psl, rlds, rsds, sfcWind, tas, tasrange, taskew.

CDFt

Michelangeli
et al. (2009);
Vrac et al.
(2012, 2016);
Famien et al.

(2018)

Method: non-parametric quantile mapping that aims to be trend-preserving in all quantiles. CDFt
constructs a CDF of future observations and then applies a quantile mapping between the CDF

of the future climate model values and the CDF of the future observations:

Tem, fut — angl fm(FCm, ful(xcm, ful)) = E;:n}fu[(ch, hist(F;);: hist(chs ful(xcm, fut))))~

Because non-parametric CDFs will not be able to map values outside the range of the data an
additive or multiplicative shift can be applied to the future and historical climate model data prior
to fitting CDFs: the additive or multiplicative bias in the mean can be subtracted / divided out
first. CDFt can be run separately for each month of the year to account for seasonality as well as
in a running window over the future period, to smooth discontinuities and relax the stationarity
assumption. To correct precipitation occurrences in addition to amounts Stochastic Singularity
Removal (Vrac et al., 2016) ean-be-is applied.

Covered variables: hurs*, pr, psl*, rlds*, rsds*, sfcwind*, tas, tasmin, tasmax, tasrange*,

taskew™.

Scaled
Distribution
Matching
(SDM)

Switanek et al.

(2017)

Method: parametric quantile mapping that aims to be trend-preserving in all quantiles. Con-
ceptually similar to Quantile Delta Mapping and ECDFM. Scales CDFs by projected absolute
(temperature) or relative (precipitation) changes, whilst at the same time also adjusting the like-
lihood of individual events, by adjusting return intervals, prior to mapping.

Covered variables: pr, tas, tasmin*, tasmax*.
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Table A2. Table A1l cont.

Name References Details
(Detrended) Cannon et al. Method: quantile by quantiles mapping of observational and climate model distribution. Forms
Quantile (2015); Maraun | the basis of most other methods listed. Trends in the mean can be adjusted for using detrended
Mapping (dQM) (2016) quantile mapping, removing trends before quantile mapping and reapplying them afterwards,
either additively or multiplicatively.
Zem, fut — ansl (Fem, hist (Tem, fut))-
Covered variables: hurs*, pr, psl*, rlds*, sfcWind*, tas, tasmin*, tasmax*.

Quantile Delta Method: parametric quantile mapping methods that aim to be trend preserving in all quantiles,
Mapping E%%%%%pﬂé}é_i%ﬁs on high quantiles. Quantile Delta Mapping applies the following transforma-
(QDM) / Li et al. (2010); Wang an SR A aEIR Sh L) «m, fut if relative changes are to be preserved (eg. for

Equidistant precipitation):

CDF Matching e, fut be () = Tem.fuc () - Fogst(ﬁcﬁiitt)(xcm, fue(t))) 7

(ECDFM) Fon st (F e, fuc (Tem. fur))

and the following for absolute changes (eg. for temperature):
b (8) = Zem, rue(8) + Fope (F19, (1)) = Fomlisd (19, ;
Lem, fut, bC( ) Lem, fUl( ) + Fops ( cm, tul(xcmv tut( ))) cm, hlst( cm, tm(xcm, tut))-

Quantile Delta Mapping for absolute changes is equivalent to the ECDFM method by Li et al.
(2010), however the parameters chosen, especially the distributions used for the CDF fits are
different. In Quantile Delta Mapping the CDF for future climate model values is fitted in a
running window going over the future period to account for long term changes in the trend. Also
a running window over the year is included to account for seasonality. This is not the case for
ECDFM.

Covered variables: hurs*, pr, psl*, rlds*, sfcwind*, tas, tasmin*, tasmax*.

Linear Scaling Maraun (2016) | Method: simple correction method adjusting biases in the mean (additive case):
(LS)
Lem, fut — Lem, fut — (i'cm, hist — jobs),
or mean and variance (multiplicative case):
T
Tem, fut — Lem, fut * — obs .
Lem, hist
Covered variables: hurs*, pr, psl*, rlds*, rsds*, sfcWind*, tas, tasmin, tasmax.
Delta Change Maraun (2016) | Method: technically not a bias adjustment method. Adds a climate model trend to observations
DO) either additively or multiplicatively. Similar to Linear Scaling, however it adjusts the observa-

tions and not the climate model.

Covered variables: hurs*, pr, psl*, rlds*, rsds*, sfcWind*, tas, tasmin, tasmax.

23




Table A3. Treatment of precipitation (pr) dry days of bias adjustment methods currently implemented in ibicus.

Method Treatment of dry days
ISIMIP3BASD Explicit adjustment of future dry day frequencies as outlined in Lange (2019) and Lange (2021a).
CDFt_ Either mapping using the Stochastic Singularity Removal technique (Vrac et al., 2016, default) or using the

empirical CDFs.

Scaled Distribution_

Matching (SDM

Adjustment as in Switanek et al. (2017): Set all values below a certain threshold to zero and explicitly calculate

the amount of bias corrected future rainy days. Note: the current method does not support correcting the number
of precipitation days upwards, so to transform dry days into wet days.

R — Mapping using a precipitation hurdle model.
Mapping (QDM)_ | parametric CDFs assuming values below the fixed threshold are censored, 3) Apply the QDM method using the

CDFs and set values under the threshold to zero again.

Equidistant CDF
Matching (ECDFM

— Mapping using a censored CDF as in the QDM method.

— Mapping using a precipitation hurdle model.
— Adjustment of intensities only.

Linear Scaling (LS)

Currently no explicit adjustment of dry days.

Delta Change (DC)

Currently no explicit adjustment of dry days. The number of dry days stays the same as in the observations.
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Table B1. Overview of CMIP6 models and their model developers used in the case study in ehapter-section 4.

Model Name Institution
ACCESS-CM2 Commonwealth Scientific and Industrial Research Organisation / Australia
CMCC-ESM2 Euro-Mediterranean Centre on Climate Change / Italy
IPSL-CM6A-LR Institut Pierre-Simon Laplace / France
MIROC6 Japan Agency for Marine-Earth Science, University of Tokyo, National Institute for Environmental and RIKEN

MPI-ESM1-2-LR
MRI-ESM2-0
NORESM2-MM

Centre for Computational Science / Japan
Max Planck Institute for Meteorology / Germany
Meteorological Research Institute / Japan

Norwegian Climate Centre / Norway
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