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 Abstract.  Mathematical models that couple human behavior  to environmental processes can offer valuable insights 

 into how human behavior affects various types of ecological, climate, and epidemiological systems. This review 

 focuses on human drivers of tipping events in coupled human-environment systems where changes to the human 

 system can lead abruptly to desirable or undesirable new human-environment states. We use snowball sampling 

 from relevant search terms to review the modeling of social processes–such as social norms and rates of social 

 change–that are shown to drive tipping events, finding that many affect the coupled system depending on the system 

 type and initial conditions. For example, tipping points can manifest very differently in human-extraction versus 

 human-emission systems. Some potential interventions, such as reducing costs associated with sustainable behavior, 

 have intuitive results. However, their beneficial outcomes via less obvious tipping events are highlighted. Of the 

 models reviewed, we found that greater structural complexity can be associated with increased potential for tipping 

 events. We review generic and state-of-the-art techniques in early warning signals of tipping events and identify 

 significant opportunities to utilize digital social data to look for such signals. We conclude with an outline of 

 challenges and promising future directions specific to furthering our understanding and informing policy that 

 promotes sustainability within coupled human-environment systems. 

 Non-technical summary.  Mathematical models that include interactions between humans and the environment can 

 provide valuable information to further our understanding of tipping points. Many social processes such as social 

 norms and rates of social change can affect these tipping points in ways that are often specific to the system being 

 modeled. Higher complexity of social structure can increase the likelihood of these transitions. We discuss how data 

 is used to predict tipping events across many coupled systems. 

 1 Introduction to tipping points in coupled human-environment systems models 

 Humans are facing environmental catastrophes of their own making, like climate change and biodiversity declines, 

 at local and global scales, and yet avoiding these catastrophes still poses complex challenges for sustainable 

 behavior and policy interventions  (Steffen et al.,  2017)  . Traditionally, mathematical models of environmental 
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 systems have represented human impacts through fixed, static parameters or functions independent of the 

 environment’s current state  (Binford et al., 1987;  Bosch, 1971; Chaudhuri, 1986; Getz, 1980)  , and these  models can 

 be useful to inform optimal levels of sustainable extraction for short timescales. However, for longer timescales, 

 where human dynamics can evolve, it may be necessary to include human behavior endemically in the modeling 

 framework to allow for human-environment feedback to occur  (Bauch et al., 2016; Innes et al., 2013;  Lade et al., 

 2013; Schlüter et al., 2012)  . Coupled human-environment  system (CHES) models combine environmental (e.g., 

 ecological, epidemiological, and climate) models with human behavior and population dynamics  (Bury et al.,  2019; 

 Carpenter et al., 2009; Farahbakhsh et al., 2022; Innes et al., 2013; Lade et al., 2013; Phillips et al., 2020; Sethi and 

 Somanathan, 1996)  . For example, in Innes  (2013)  , the  amount of forest cover influences the proportion of the 

 population that conserves forest ecosystems. The influence of each subsystem on one another often occurs as 

 two-way (positive and/or negative) feedback loops. In a positive (self-reinforcing) feedback loop, variable ‘A’ 

 causes an increase in variable ‘B’ which then causes an increase in ‘A’. In a negative feedback loop, ‘A’ causes an 

 increase (respectively, decrease) in ‘B’ which causes a decrease (respectively, increase) in ‘A’. The inclusion of 

 these feedbacks leads to increased diversity in the qualitative behavior of the system, such as whether the long-term 

 dynamics converge to a sustainable or depleted environmental state, or cycle over time. Negative feedback promotes 

 a return to equilibrium (Figure 2a) and can increase the system's capacity to respond to disturbances and adapt in 

 ways that allow the system to maintain the function of social and ecosystem services, which is sometimes referred to 

 as “resilience”  (Folke, 2006)  . 

 Human-environment negative feedback loops via processes such as public concern pressuring governments to 

 introduce environmental legislation can be powerful and there are many historical examples of it occurring  (Dunlap, 

 2014; Grier, 1982; Mather and Fairbairn, 2000; Stadelmann-Steffen et al., 2021)  . Forest cover in Switzerland 

 doubled, following an all-time low in the first half of the 19th century. This was brought about by public concern 

 responding to food shortages and floods, which triggered local regulation, the formation of the Swiss Forestry 

 Society, and the first federal forestry law enacted in 1876  (Mather and Fairbairn, 2000)  . Similarly,  the bald eagle 

 population in North America recovered significantly after the banning of DDT by the EPA in 1972. This was 

 instigated by public outcry following the publication of Rachel Carson’s  A Silent Spring  in 1962 which  linked DDT 

 in the environment to low reproduction of birds and their declining population  (Dunlap, 2014; Grier,  1982)  . In both 

 cases, the gradual recovery of the population was not brought about simply by governmental legislation. There were 

 strong movements in the public and scientific spheres, directly responding to perceived environmental risk which 

 pressured governing bodies to enact immediate reform  (Dunlap, 2014; Grier, 1982; Mather and Fairbairn,  2000)  . We 

 interpret these two examples as negative feedback loops in a coupled human-environment system because a decline 

 in forest/eagle abundance stimulated a response by humans which led to the recovery of the environmental system 

 (Figure 2a). These negative feedback loops are pervasive in the CHES models that we examine here. 
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 The historical examples above describe negative feedbacks promoting a return to a single environmentally beneficial 

 equilibrium; however, in many cases, this does not happen and the system can persist in a depleted state. For 

 example, the desertification of regions once rich in vegetation could become a positive feedback loop maintaining 

 the new desert state  (Hopcroft and Valdes, 2021; Pausata  et al., 2020)  . When systems can persist in qualitatively 

 different states (also referred to as “regimes”), we say that they exhibit alternative stable states  (May, 1977; Lenton 

 et al., 2008, Henderson et al. 2016)  . In mathematical models, alternative stable states are self-reinforcing for a range 

 of parameters, for example, low harvest rates can promote a state of high biomass and high harvest rates can 

 promote a state of low biomass in many extractive CHES  (Farahbakhsh et al., 2021; Henderson et al.,  2016; Richter 

 and Dakos, 2015; Richter et al., 2013; Schlüter et al., 2016)  . Tipping points refer to critical points  on this boundary 

 between two alternative stable states. Near this boundary, small perturbations can be amplified through nonlinear 

 self-reinforcing positive feedback loops. This leads to a qualitatively different system state and characteristic 

 behavior, known as a “regime shift”, in a relatively short amount of time. When the system has entered a new 

 regime, there are often positive or negative feedback loops that make it difficult to reverse this change. This 

 self-perpetuating nature of some initial change through nonlinear feedbacks leading to qualitative and often 

 long-term system change is a universal characteristic of many commonly studied tipping points. In many cases, a 

 return to the system's previous state can be more difficult than anticipated, requiring additional effort rather than 

 merely a return to parameters before the tipping point, a phenomenon known as hysteresis, which can make 

 mitigation and adaptation efforts challenging. Systems near a tipping point can exhibit (often abrupt) regime shifts 

 through gradual changes or noise in forcing parameters, which is a main focus of much of the bifurcation theory 

 literature (Figure 1a, Box 1.1). The scope of models presented in this review will not include other types of tipping 

 points such as those caused by a short sharp shock (s-tipping, or shock-tipping, where the system does not have to 

 exist near this point for a regime shift to occur) (Figure 1b)  (Boettiger and Batt, 2020; Halekotte  and Feudel, 2020) 

 or “rate-induced tipping”, which is a distinct phenomenon induced by the rate of change of parameters  (Ashwin  et 

 al., 2012)  . Tipping events describe the crossing of  a tipping point and can be used interchangeably with regime 

 shifts. 
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 Figure 1: Two types of tipping events; bifurcation-induced tipping (a), where the drivers are gradual changes to system 

 parameters leading to a tipping event, and shock-induced tipping (b), where a perturbation to the system causes it to 

 enter an alternative stable state through the crossing of a tipping point. Many social tipping points are caused by a 

 combination of both types of tipping events. The blue circle represents the current state of the system. 

 Bifurcation theory has been applied to study tipping points in a vast number of environmental models  (May  and 

 Oster, 1976; Brovkin et al., 1998; Ghil and Tavantzis, 1983; Wollkind et al., 1988)  ; however, more recently, 

 researchers have identified abrupt shifts in environmental systems for which bifurcation theory has yet to be 

 explicitly applied  (Dakos et al., 2019; Lenton, 2020,  2013)  . For example, during the mid–Holocene, the  Sahara was 

 much more humid than at present, showing evidence of shrub and savannah biomes as well as the expansion of 

 lakes, an alternative stable state to what we know as its current desert state. It is hypothesized that around 5,000 

 years ago, the gradual weakening of the North African Monsoon led to an abrupt decrease in vegetative cover, due to 

 positive feedback between reduced surface albedo and precipitation, bringing the Sahara into a stable desert state 

 (Hopcroft and Valdes, 2021; Pausata et al., 2020)  .  In more dominantly human systems, many pivotal revolutions can 

 also be framed as tipping events where gradual changes are reinforced by positive feedback loops, leading to a new 

 political or technological stable state  (Lenton et  al., 2022)  . Social tipping also occurs in financial  systems such as in 

 the 2008 financial crisis. Here, the bankruptcy of Lehman Brothers led to a rise in public panic around the stability 

 of markets, causing banks to increase their liquidity, amplifying the crisis in other economic sectors and leading to a 
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 global recession  (Van Nes et al., 2016)  . These are just two of many examples illustrating how important tipping 

 points are as a phenomenon, in both human and environmental systems, and coupling these systems using 

 mathematical models could lead to further insights. 

 Since the beginning of the Anthropocene and with our growing awareness of human impacts on the environment, 

 tipping points are increasingly being conceptualized within the context of coupled human-environment systems 

 (Bauch et al., 2016; Henderson et al., 2016; Lenton et al., 2022; Milkoreit et al., 2018)  . Tipping events  can lead to 

 highly beneficial or catastrophic outcomes for humans, especially when an environmental change occurs in the 

 presence of social hysteresis. An example of detrimental tipping is in the forests of Kumaun and Garhwal in 

 Northern India, where, prior to British colonization, wood harvest was sustainably regulated through social norms 

 and strict rules enforced by local village councils. When the British colonial government imposed its own rules on 

 the use of forests, these social norms broke down. Eventually, protests led to British lumber restrictions being 

 removed, but the system subsequently experienced rapid deforestation rather than a return to its previous levels 

 under local management. Here, the social system crossed a tipping point between a self-organized common property 

 regime to one of open access devoid of self-regulating sanctions  (Somanathan, 1991)  . This system has been  modeled 

 using a dynamical systems approach that allows for a quantitative understanding of the human drivers leading to 

 these tipping events  (Sethi and Somanathan, 1996)  .  Contrasting this example, tipping events can also result in 

 environmental change that is beneficial to humans and the environment. The rapid response of the international 

 community to the hole in the ozone layer has been interpreted by some as an example of a CHES undergoing tipping 

 events caused by self-perpetuating change through political, technological, and behavioral forces 

 (Stadelmann-Steffen et al., 2021)  . In the 1970s, scientists  demonstrated the detrimental effects of CFCs on the ozone 

 layer, which could be viewed as the initial driver of the following socio-climate tipping events. This led to public 

 concern, prompting several countries to ban the use of CFCs in aerosols. Through the enactment of national policies, 

 public awareness increased, leading to more public pressure for national and international policy change, an example 

 of a positive feedback loop. In parallel, these national bans of CFCs, especially in the US, led to the development of 

 CFC alternatives, which prompted industries that could develop them to lobby for international policy. Increased 

 public awareness also led to widespread shifts in social norms stigmatizing and boycotting the consumption of 

 CFCs, which further pressured industry to offer alternatives, another positive feedback loop. The interaction of 

 multiple tipping events at different scales led to the crossing of a global tipping point through the international 

 banning of CFCs, bringing an alternative stable state of very low CFC emissions globally.  (Andersen et  al., 2013; 

 Cook, 1990; Epstein et al., 2014; Haas, 1992; Stadelmann-Steffen et al., 2021)  . 

 Tipping events associated with social processes as described in the preceding paragraph can be conceptualized 

 through positive feedback loops that capture a self-reinforcing process. In the case of social norms, this 

 self-reinforcing process may correspond to peer pressure or conformism that reinforces the dominant opinion or 
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 belief. Depending on whether pro- or anti-mitigation opinions are currently dominant, this could lead to hysteresis 

 (Figure 2b). The negative feedback loop that might normally regulate the CHES to exist in a state of intermediate 

 environmental health and public support for sustainability (Figure 2a) could be overpowered by the positive 

 feedback of social norms, leading the population to a state where either sustainability (or anti-sustainability) is 

 strongly entrenched. If the conditions governing social learning or social norms move beyond a tipping point, the 

 population may flip between these two norms, or alternatively it may move into a regime where social norms are 

 instead dominated by the negative feedback loop, causing the population to exist in an interior state of partial 

 sustainability. As such, negative feedback and positive feedback may be characteristic of any CHES and should be 

 systematically studied. 

 This review aims to deepen our understanding of human drivers of tipping events in CHES models by exploring 

 three crucial topics: the feedback loops and interactions between the human and environmental systems, the 

 structural characteristics of the human system that influence tipping points, and the identification of early warning 

 signals within human systems. By “human drivers”, we refer to the changes in social parameters that elicit these 

 non-linear tipping responses in either the environment, human system, or both. However, we also discuss aspects of 

 social structure that may be conducive to tipping points. As most of the models reviewed are informed by dynamical 

 systems and bifurcation theory, we primarily focus on systems that exist near tipping points and cross them through 

 gradual changes in these drivers. In the following sections we review CHES model literature found using Google 

 Scholar with the keywords: ‘human environment system’ OR ‘socio-ecological system’ OR ‘social ecological 

 system’ OR ‘human ecological system’ OR ‘human natural system’ combined with ‘tipping’ OR ‘regime shift’ OR 

 ‘bifurcation’. These results were filtered manually to include only dynamical models that showed clear tipping 

 behavior. Additional literature was found through a snowball approach using references from the sources found in 

 this search as well as papers referencing these sources  (Wohlin, 2014)  . The findings in this review highlight 

 commonalities between the CHES models surveyed; however, some trends may be a result of both the dynamical 

 models chosen and the relatively low diversity and volume of these models. The body of this review is split into two 

 parts; the first part synthesizes results from CHES models, organized into processes and structures that drive tipping 

 behavior, and the second part introduces early warning signals describing how they can be used to predict tipping 

 events. 
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 Box 1: Highlights of key findings from the synthesis of CHES models in this review. “The straw that broke the camel's 

 back” illustrating bifurcation-induced tipping points (1a), in human-extraction systems (2b), increasing the speed of 

 social change or the coupling strength leads to negative tipping points (i.e., ecological collapse), whereas in 

 human-emission systems (2c), the effects of increasing the speed of social change or the coupling strength are model 

 specific, higher connections in a social network leading to a positive tipping event, where the graph represents the 

 proportion of mitigators in time (3d), time series data from Twitter showing an abrupt transition characteristic of a 

 tipping event at the red dotted line (4e) from  (Bollen  et al., 2021)  . 

 2 Processes and structures in human systems that cause tipping events in CHES models 

 In this section, we look at how social processes and structures cause tipping events. In order to have a better 

 understanding of how these human drivers affect tipping, it is important to understand the basics of modeling human 

 systems. Within CHES models, various factors, such as economic incentives, environmental considerations, and 

 social pressures determine how individuals make decisions and interact with the environment. In most of the current 

 modeling literature, individuals can choose between two behaviors (also referred to as opinions or strategies), one 

 that is environmentally sustainable (also referred to as mitigation or cooperation) and another that is detrimental to 

 the environment (also referred to as non-mitigation or defection). The perceived advantage of mitigation or 

 non-mitigation relative to the current state of the human and environmental system can be quantified through a 
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 “utility function”. Common factors in the utility function are the rate of social learning, which determines the speed 

 of human behavior change relative to environmental processes, social norms, which encourage the status quo or 

 mitigation proportional to its frequency, cost of mitigation, which measures the economic cost of being a mitigator 

 relative to a non-mitigator, and rarity-motivated valuation, which incentivizes mitigation as the environment 

 approaches collapse  (Bauch et al., 2016; Farahbakhsh  et al., 2022; Tavoni et al., 2012)  . In most models  that use 

 social learning, individuals sample others in the population at a fixed rate and adopt a different behavior if the other 

 behavior has a higher utility, with probability proportional to the difference in utility  (Hofbauer and Sigmund,  1998; 

 Schuster and Sigmund, 1983)  . This can also be formulated  in a stochastic setting, where the probability of adopting 

 a neighbor's behavior is a function of the difference in utility between behaviors  (Schlag, 1998)  . Most  of the models 

 reviewed in this paper use social learning to represent human behavioral dynamics. There are also CHES models 

 that do not include social learning such as Motesharrei  (2014)  and Dockstader  (2019)  where the human population  is 

 influenced by its current size and the state of the environment; however, these are outside the scope of this paper. 

 Many human behaviors, such as resource extraction and pollution, have direct detrimental impacts on the 

 environment; however, the severity of these impacts is often hard to predict. In many CHES models, small changes 

 in parameters governing human behavior and social processes can lead to the abrupt collapse of sustainable states 

 through tipping events that can cascade between the human and environmental systems  (Bauch et al., 2016;  Lade et 

 al., 2013; Richter and Dakos, 2015; Weitz et al., 2016)  . Additionally, structural elements of the human  system (i.e. 

 an individual’s degree of choice, population diversity), as well as how the social system is organized (i.e. through 

 social networks), can affect tipping. These heterogeneous model elements are often only accessible in agent-based 

 models, where humans are represented as individual agents that follow a set of rules. CHES models do not always 

 exhibit tipping points under realistic settings for the human system  (Bury et al., 2019; Menard et al.,  2021)  ; however, 

 in this review, we focus on models with tipping points. 

 2.1 Coupling strength 

 Coupling strength (how strongly the subsystems are coupled) can have a significant effect on the occurrence of 

 tipping points in both systems, and the nature of these transitions often depends on whether systems are 

 ‘human-extraction’ or ‘human-emission’ (Box 1.2). In human-extraction systems (Box 1.2b), humans extract from 

 an environmental resource such as in forest and fishery models. Stronger coupling in human-extraction models often 

 leads to negative environmental outcomes. A common social parameter representing the coupling strength in these 

 systems is the extraction effort of humans, which when increased past a critical threshold, leads to abrupt 

 environmental collapse  (Farahbakhsh et al., 2021;  Richter and Dakos, 2015; Richter et al., 2013; Schlüter et al., 

 2016)  . For human-emission systems (Box 1.2c), where  human activity increases levels of harmful outputs, such as 

 pollution and climate models, coupling strength is instead represented by pollution rates. The influence of this 

 coupling is less intuitive in human-emission systems, for example, in lake eutrophication models as the pollution of 
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 mitigators is decreased, pollution levels also decrease until a threshold is reached, heralding a detrimental tipping 

 point where mitigation collapses and pollution then reaches a high level  (Iwasa et al., 2010, 2007)  .  This occurs 

 because when the lake water is not very polluted, there is less incentive to be a mitigator and high-polluting behavior 

 becomes a new norm. It is important to note that these models do not account for individuals valuing the 

 environment in a healthy state, for example through the centering of ecosystem services, and the above example may 

 be an artifact of this assumption. There is a need to shift both our relationship to the environment as well as the 

 assumptions in our models so that inherent value in environmental systems is central in any decision-making, even 

 when the environment is far from collapse. This fundamental valuing of the environment is present in many 

 traditional indigenous belief systems, where relationships to the local natural environment are incorporated and 

 prioritized in all aspects of life  (Appiah-Opoku,  2007; Bavikatte and Bennett, 2015; Beckford et al., 2010; McMillan 

 and Prosper, 2016)  . 

 2.2 Rarity-motivated valuation 

 Rarity-motivated valuation represents the extent to which humans increase their mitigative behavior in response to 

 the environmental variable (e.g., forest cover, endangered species population size) nearing a depleted state. In CHES 

 models, this sensitivity of human response to the abundance of the natural resource/population is represented by a 

 ‘sensitivity’ parameter and there are often two critical thresholds in the sensitivity parameter that lead to tipping. 

 Increasing the sensitivity parameter beyond the lower threshold induces a tipping point from a depleted to 

 sustainable environmental equilibrium  (Ali et al.,  2015; Barlow et al., 2014; Bauch et al., 2016; Drechsler and 

 Surun, 2018; Henderson et al., 2016; Lin and Weitz, 2019; Sun and Hilker, 2020; Thampi et al., 2018; Weitz et al., 

 2016)  . The second threshold exists at high values  of the sensitivity parameter, which may be counterintuitive, as one 

 might expect high sensitivity to resource depletion to lead to more sustainable outcomes. In this case, the sustainable 

 equilibrium is destabilized by overshoot dynamics or a state of chaos in both the human and environmental systems. 

 These dynamics are caused by the human system being too sensitive to changes in the environment, leading to 

 extreme oscillations in both human behavior and the environment, which increases the likelihood of collapse in 

 mitigation and the state of the environment  (Bauch  et al., 2016; Henderson et al., 2016)  . 

 Rarity-motivated valuation can also be represented by a threshold in the state of the environment, below which 

 humans shift towards sustainable behavior. In a common-pool resource model, lowering this threshold led to a series 

 of tipping points that surprisingly resulted in a higher biomass equilibrium, although the trajectory to this state 

 comes close to environmental collapse. This is in contrast to a high threshold, which leads to lower final biomass; 

 however, the trajectory remains much farther from a depleted environmental state  (Mathias et al., 2020)  .  Similarly to 

 high coupling in pollution models, one should be very careful to not interpret these results as stating “too much 

 conservation is detrimental to the environment”. They rest on model assumptions of a reactionary conservation 

 paradigm, where there is less value in conserving when the environment is in a healthy state. 
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 Figure 2: Negative feedback between the human and environmental subsystems, supports convergence to the same 

 equilibrium regardless of initial conditions (a). With strong majority-enforcing social norms, encouraging either 

 mitigative or harmful behavior adds a positive feedback loop which makes the coupled system highly dependent on 

 initial conditions (b). The top row shows the negative feedback loop between emissions and the proportion of 

 mitigators, where (b) also includes the positive feedback of majority-enforcing social norms. In the middle row, 

 equilibrium curves are plotted as a function of the maximum emissions of non-mitigators. Black solid lines represent 

 stable equilibria and the red dotted line represents unstable equilibria. The green and purple curves in the bottom row 

 are the trajectories for initial mitigation support and emission value given by the stars of the corresponding color in the 

 upper row. 

 2.3 Social norms 

 Introducing social norms can lead to alternative stable states and thus tipping points (Figure 2b), although the system 

 dynamics are highly dependent on both the type of social norms and initial conditions. Social norms are informal 
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 rules emerging through social interaction that promote and discourage certain behaviors, especially around how 

 humans relate to one another and the environment  (Chung  and Rimal, 2016)  . In models of small groups such  as a 

 community of fishers, they are often (rightly) assumed to support mitigative behavior by punishing those who 

 violate norms by over-harvesting  (Ostrom, 2000)  . However, at larger population scales, social norms can support 

 either pro- or anti-mitigation behavior, on account of factors such as the politicization of actions relating to 

 environmental, climate, and public health crises  (Stoll-Kleemann  et al., 2001; Van Boven et al., 2018; Latkin et al., 

 2022)  . Unlike a fisher in a small community, for instance,  a climate denier may not acknowledge themselves as a 

 ‘defector’ who is harming a public good, but rather view the climate activist as ‘defecting’ against a free society. 

 Thereby, social norms have the ability to encourage behavior that is harmful to both human and environmental 

 well-being, over larger spatial and temporal scales  (Bury et al., 2019; Latkin et al., 2022; Menard et  al., 2021; 

 Stoll-Kleemann et al., 2001; Van Boven et al., 2018). 

 Social norms can be represented as majority-enforcing, incentivizing the behavior of the majority, or 

 mitigation-enforcing, such as sanctions, which only incentivize mitigation, relative to the proportion of mitigators in 

 the current state of the system. In CHES models, increasing the strength of majority-enforcing norms leads to an 

 increased number of regimes as well as bistable (two stable states) regimes (Figure 2b), made up of a single 

 dominant behavior, which is highly dependent on the initial proportion of behaviors in a population  (Ali  et al., 2015; 

 Barlow et al., 2014; Bauch et al., 2016; Bury et al., 2019; Phillips et al., 2020; Sigdel et al., 2017; Thampi et al., 

 2018)  . This occurs because these norms are indifferent  to the type of behavior they enforce (i.e. sustainable vs 

 harmful actions), and they act as a double-edged sword that reinforces the status quo through a positive feedback 

 loop, where the dominant behavior becomes more prevalent (Figure 2b). On the other hand, increasing 

 mitigation-enforcing social norms lead to a transition of the environmental system into a sustainable equilibrium 

 (Chen and Szolnoki, 2018; Iwasa et al., 2010; Lafuite et al., 2017; Moore et al., 2022; Schlüter et al., 2016; Tavoni et 

 al., 2012)  , sometimes through an intermediate regime  of oscillatory dynamics  (Iwasa et al., 2007)  . In  a lake pollution 

 model, along with decreasing the likelihood of environmental collapse, this increase in mitigation-enforcing social 

 norms also led to the appearance of alternate stable states  (Sun and Hilker, 2020)  . These findings show  that stronger 

 social norms lead to a greater number of tipping points; however, the trajectories brought about by these tipping 

 points are highly dependent on the type of social norms (mitigation- or majority-enforcing) as well as the current 

 dominant social behavior. 

 2.4 Cost of mitigation 

 Reducing the cost of mitigation often leads to beneficial tipping points; however, these tipping points can depend on 

 the rate of social change as well as social norms. Although it is intuitive that reducing costs or increasing economic 

 incentives associated with mitigative action will have beneficial impacts on the environment, CHES models also 

 show that this beneficial change can occur through tipping points  (Bauch et al., 2016; Drechsler and  Surun, 2018; 
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 Milne et al., 2021; Moore et al., 2022; Sigdel et al., 2017; Thampi et al., 2018)  . In coupled social-epidemiological 

 models, where the environmental state is the proportion of infected individuals, mitigation cost is represented 

 through the economic cost or perceived risk of vaccination. Decreasing this cost leads to beneficial tipping points 

 from a state with low pro-vaccine opinion and vaccine coverage to high pro-vaccine opinion and vaccine coverage 

 (Phillips et al., 2020)  . Conversely, increasing this  cost leads to a state of high infection and low vaccination. This 

 detrimental tipping point occurs in the human system at lower levels of vaccination cost when majority-enforcing 

 social norms are low, leading to widespread anti-vaccine opinion before the infection becomes endemic again 

 (Phillips and Bauch, 2021)  . Decreasing profits of  individuals engaging in non-mitigative behavior can also lead to 

 an abrupt shift to a state of pure mitigators  (Shao  et al., 2019; Wiedermann et al., 2015)  ; however,  this transition can 

 be dependent on a low rate of social change  (Wiedermann  et al., 2015)  . Other models demonstrate tipping in  the 

 other direction where increasing non-mitigators' payoff brings about a regime shift to pure non-mitigation and 

 environmental collapse  (Richter et al., 2013; Tavoni  et al., 2012)  . Similarly, a common-pool resource  model that 

 uses machine learning in a continuous strategy space shows tipping to a depleted resource regime when the costs 

 associated with harvesting are too low  (Osten et al.,  2017)  . An analog to mitigation cost is taxation rates,  which 

 resource users pay towards public infrastructure mediating resource extraction. In a model where individuals can 

 choose to work outside of the system, pushing taxation rates to high or low levels tips a sustainable regime where 

 institutions are at full or partial capacity to a collapse of institutions  (Muneepeerakul and Anderies,  2020)  . In another 

 model, only individuals with high extractive effort are subject to taxation, and increasing this taxation rate brings 

 about a beneficial tipping point to a sustainable regime. However, the size of this sustainable region in the parameter 

 space is smaller with multiple governance nodes evolving through social learning compared to a single taxing entity 

 (Geier et al., 2019)  . However the cost of mitigation  is represented, increasing the relative economic incentive of 

 mitigation behavior has the potential to bring about beneficial tipping to a sustainable regime. 

 2.5 Rates of social change and time horizons 

 Human and environmental change often occur on different timescales and their relative rates of change play a major 

 role in the long-term dynamics of the coupled system and whether or not tipping points will occur. Increasing the 

 rate of social change (in most cases, social learning) leads to collapse in human-extraction models due to overshoot 

 dynamics, whereas, in human-emission models, the impacts of the rate of social change are more model-specific. In 

 both types of models, increasing the time horizon in decision-making is beneficial. In CHES models, these rates of 

 change can be controlled by the rate of social learning which determines how frequently individuals interact and 

 consequently, the pace of behavioral change within a population. Changes in the speed of the human system can 

 have very different outcomes depending on the nature of human-environment coupling (Box 1.2). In 

 human-extraction models, increasing the speed of the human system relative to the environment often destabilizes 

 sustainable equilibria, leading to oscillations in both systems and, in many cases, the abrupt collapse of the 

 environmental system. These overshoot dynamics occur as humans change their behavior too quickly to allow for 

 12 

 348 

 349 

 350 

 351 

 352 

 353 

 354 

 355 

 356 

 357 

 358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 

 367 

 368 

 369 

 370 

 371 

 372 

 373 

 374 

 375 

 376 

 377 

 378 

 379 

 380 

 381 

https://www.zotero.org/google-docs/?OkZk1s
https://www.zotero.org/google-docs/?VQbiKb
https://www.zotero.org/google-docs/?jeXQHC
https://www.zotero.org/google-docs/?vNECh6
https://www.zotero.org/google-docs/?PKcbeX
https://www.zotero.org/google-docs/?v8sV2L
https://www.zotero.org/google-docs/?I2CrjZ
https://www.zotero.org/google-docs/?SIKLF7
https://www.zotero.org/google-docs/?q8imb8


 the environment to stabilize. On the other hand, decreasing the relative speed of human dynamics usually brings 

 about beneficial tipping events leading to a state of high forest cover  (Figueiredo and Pereira, 2011)  ,  and supporting 

 mitigators for a generalized resource  (Hauert et al.,  2019; Shao et al., 2019)  . These beneficial effects  have also been 

 observed in adaptive network models where individuals imitate their neighbors depending on the profitability of 

 their strategies. In these models, the reduced speed of social change leads to beneficial outcomes as the resource is 

 allowed more time to stabilize as decisions regarding extractive levels occur  (Barfuss et al., 2017; Geier  et al., 2019; 

 Wiedermann et al., 2015)  . Other relative rates of  change can also significantly influence the existence of a 

 sustainable regime. For example, in an agricultural land use model, increasing the speed of agricultural expansion 

 and intensification relative to human population growth leads to the collapse of both the natural land cover and 

 human population  (Bengochea Paz et al., 2022)  . 

 In human-emission models, increasing the speed of social interaction is more model-specific. In some cases, such as 

 forest-pest and climate systems, increasing the speed of the human system leads to better mitigation of 

 environmental harms in the short term. However, long-term sustainability often requires additional social 

 interventions such as reducing mitigation costs and increasing levels of environmental concern  (Ali et  al., 2015; 

 Barlow et al., 2014; Bury et al., 2019)  . In lake pollution  models, higher relative speeds of social dynamics can 

 destabilize low-pollution equilibria, leading to oscillations and eventually a polluted state with no mitigation  (Iwasa 

 et al., 2010, 2007; Sun and Hilker, 2020)  . This is  a similar phenomenon to the overshoot dynamics that occur when 

 the human system is extremely reactive to the environment discussed in the case of rarity-motivated valuation; 

 however, these outcomes are highly dependent on other social parameters. In a related model, with no social 

 hysteresis, represented by mitigation-enforcing social norms, and strong environmental hysteresis, represented by a 

 high phosphorus turnover rate, fast social dynamics could stabilize oscillations, leading to a low-pollution 

 equilibrium  (Suzuki and Iwasa, 2009)  . The emergence  of oscillations under low rates of social learning, which was 

 not observed in similar models is likely due to the environmental system being in a bistable state under strong 

 hysteresis, such that even slow changes in the human system could tip the lake system to an alternative stable state. 

 When looking at relative rates of change in human and environmental systems, it is clear that the pace of the human 

 system can be more readily influenced by interventions. This suggests an urgent need to further study the 

 relationship between social and ecological timescales across a wide range of coupled systems to aid in sustainable 

 policy-making decisions (Barfuss et al., 2017). Additionally in many models, the length of time horizons that 

 humans take into account when deciding how they interact with the environment has a significant beneficial effect 

 on conserving natural states and mitigating harmful action  (Barfuss et al., 2020; Bury et al., 2019;  Henderson et al., 

 2016; Lindkvist et al., 2017; Müller et al., 2021; Satake et al., 2007)  . A high degree of foresight  in decision-making 

 is a fundamental basis for many indigenous belief systems across the world. One manner in which this shows up is 
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 in land stewardship where care for the environment is prioritized as a means to ensure the health of many 

 generations in the future  (Appiah-Opoku, 2007; Beckford  et al., 2010; Ratima et al., 2019)  . 

 2.6 Social traits 

 The inclusion and distribution of traits within agents can play a large role in determining the occurrence and types of 

 tipping points within the coupled system, where increasing the modeled heterogeneity in social traits can lead to 

 more tipping and also promote sustainable outcomes (Box 1.3). The majority of models discussed in the previous 

 section only allow humans to choose between two strategies; mitigation and non-mitigation. The inclusion of 

 additional strategies, determining how individuals interact with the environment and each other, can alter the 

 potential for tipping points. For example, a common-pool resource model included a third strategy of conditional 

 mitigation  (Richter and Grasman, 2013)  . Under this additional strategy, agents act as mitigators until the number of 

 non-mitigators reaches a certain threshold, where they then shift their behavior to non-mitigation. The addition of 

 this third strategy alters tipping dynamics in opposite ways, depending on the value of maximum harvesting efforts. 

 When efforts are high, the system is less prone to tipping; however, when they are low, tipping points are more 

 likely to occur. This third strategy also affects tipping points by masking internal social dynamics, leading to more 

 abrupt transitions, even when the system appears to be stable. This occurs when mitigators gradually change their 

 strategy to conditional mitigators which can go unnoticed as their interaction with the environmental system does 

 not change. However, when non-mitigation reaches high enough levels, there is a cascade of conditional mitigators 

 choosing non-mitigation, in an example of herd behavior, which puts abrupt harvesting pressure on the resource. 

 Another three-strategy model, where agents are partitioned by resource extraction rates, contrasts dynamics with and 

 without the trait of environmental concern  (Mathias  et al., 2020)  . In the absence of this trait, the  human system 

 either tips to a state of high-extraction or low-extraction behavior, triggering either a detrimental or beneficial 

 environmental tipping point, respectively. Including environmental concern leads to an increased number of 

 cascading tipping points between both human and environmental systems. In a coupled agricultural model, where 

 human traits include management strategies that respond to socio-economic and climate conditions, decreasing the 

 diversity of these traits among agents in the system transitions the system from a sustainable state with high food 

 production, landscape aesthetics, and habitat protection to a state with low habitat protection  (Grêt-Regamey  et al., 

 2019)  . As there are relatively few models that explicitly  compare the complexity of social traits and their effect on 

 tipping points, it is difficult to say with certainty whether higher complexity will increase the likelihood of tipping 

 points in all CHES and whether this is due to a higher dimensionality of the system. However, the commonalities 

 between models showing the effects of social trait complexity are worth highlighting and will be put to the test with 

 future CHES models and empirical work. 

 2.7 Social networks 
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 In many agent-based CHES models, individuals are structured on a social network, where they interact with others 

 whom they share a link with. These models demonstrate how a higher number of connections in social networks 

 increases the potential for tipping points, often through the emergence and growth of bistable regimes  (Holstein et 

 al., 2021; Sugiarto et al., 2015, 2017a)  (Box 1.3).  Additionally, the distributions of these connections play an 

 important role. For example, in networks with the same average number of connections, higher heterogeneity of 

 connections among nodes leads to tipping points occurring earlier under certain social (Ising model) dynamics 

 (Reisinger et al., 2022)  . The distribution of resources  in human-environment networks also affects the potential for 

 abrupt environmental collapse. This often occurs in CHES network models where both human and environmental 

 dynamics occur on a multi-layer network, representing partitioned or private resources. Resource heterogeneity can 

 be controlled through the distribution of carrying capacities or the amount of resource flow between nodes in the 

 network, where higher flows lead to homogeneous resource distributions. In both cases, increasing this 

 heterogeneity can tip the system to a state of low extraction and high sustainability. In one model, heterogeneity in 

 carrying capacities increases the likelihood of sustainable harvesters extracting from a resource with a large capacity, 

 which they can maintain at high levels (in contrast to non-sustainable harvesters who extract at a higher rate), 

 eventually convincing neighboring nodes to imitate their strategy  (Barfuss et al., 2017)  . In another  model, 

 heterogeneity through lower resource flows also leads to high-extraction nodes over-exploiting their resource and 

 losing profits in the long run, de-incentivizing neighbors to imitate their behavior. Interestingly, optimal resource 

 flow, which minimizes the likelihood of resource collapse is found to be close to the critical threshold of resource 

 flow, above which the coupled system collapses. As optimal resource flow decreases the likelihood of collapse by 

 supplementing resources harvested at high levels, this confers an advantage to high resource extraction. Increasing 

 past optimal levels leads to similar resource levels among high and low-extraction nodes, resulting in higher profits 

 from high-extraction nodes, incentivizing the entire human system to eventually choose the high-extraction strategy 

 (Holstein et al., 2021)  . 

 Heterogeneity of human interaction can be quantified through homophily, the extent to which alike individuals 

 interact. Homophily can play a large role in the occurrence and behavior of tipping points in CHES models 

 occurring on social networks, often having a detrimental effect on the environmental system. In a common-pool 

 resource model with two distinct communities, increasing segregation by lowering the probability that agents in 

 separate communities will have a link, softens the abruptness of a single detrimental tipping point compared to when 

 the communities are well-mixed. This is due to the occurrence of multiple intermediate tipping points within each 

 segregated community; however, higher segregation adds more hysteresis to the system increasing the difficulty of 

 reversing this transition and returning to a sustainable state  (Sugiarto et al., 2017b)  . In a public goods  game 

 modeling climate change mitigation, where humans are partitioned into rich and poor agents, a transition to group 

 achievement of mitigation goals occurs at a lower perceived risk when there is no homophily and agents are 

 influenced by others from both economic classes equally  (Vasconcelos et al., 2014)  . Another human-climate  model 
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 that included wealth inequality displayed an abrupt transition to lower peak temperature anomalies when homophily 

 between economic classes approached zero  (Menard et  al., 2021)  . 

 Figure 3: Mean proportion of nodes that are mitigators for network model (a) and ODE model (b). 𝜙 is the rewiring 

 probability and T is the time between social interactions. 𝜙  C1  is the lower threshold and 𝜙  C2  is the upper  threshold, 

 above which a fragmentation regime occurs. From  (Wiedermann  et al., 2015) 

 Social networks are rarely static and their ability to evolve over time is represented in adaptive network models 

 where agents can break existing social links and create new ones, a process called “rewiring”. Often this rewiring is 

 homophilic, meaning that agents are more likely to create a new social connection with others who share a similar 

 behavior. Common adaptive network CHES models have nodes representing renewable resource stocks with an 

 associated extraction level which can adopt a high extraction or low extraction level through imitating neighbors. 

 These models show that the level of homophilic rewiring can trigger regime shifts at both low and high levels, 

 where intermediate ranges correspond to a sustainable equilibrium. As agents can either choose to rewire or imitate 

 their neighbor, a low level of rewiring corresponds to a high speed of social interaction, which as discussed in 

 Section 2.5 can lead to detrimental tipping points. On the other hand, although high-rewiring leads to slower social 

 learning, it also brings about a fragmentation regime where social dynamics are dominated by homophily and the 

 network fragments into components based on strategy type, which makes widespread mitigation infeasible  (Barfuss 

 et al., 2017; Geier et al., 2019; Wiedermann et al., 2015)  (Figure 3). CHES models with social networks  are still 

 relatively new and lack diversity in how they are formulated. For example, regarding the tipping points related to 

 rewiring social links, the lower threshold may be caused by increased social learning since in all models agents can 
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 either rewire or imitate, but not both. There is still much to learn through isolating the effect of rewiring as well as 

 exploring a wide array of different model formulations of CHES on social networks. 

 3  Identifying early warning signals of tipping events in CHES 

 Although dynamical models can offer qualitative insight into potential trajectories of CHES resulting from specific 

 interventions, it is more difficult to use them to generate precise and reliable predictions. Given the potential for 

 severe environmental tipping points in the coming decades, it is extremely useful to be able to predict these abrupt 

 shifts without complete mechanistic knowledge of the system. The ability to predict tipping events with limited data 

 can allow policymakers to have more time preparing for future disasters, and given enough warning and political 

 will, an opportunity to avoid them or mitigate their severity. Rapidly growing research in early warning signals 

 (EWS) offers tools to monitor empirical time series data and warn of future tipping events that are likely to occur 

 (Bury et al., 2021; Dakos et al., 2012, 2015, 2008; Kéfi et al., 2014; Lapeyrolerie and Boettiger, 2021)  .  Although 

 much of the work has been conducted on synthetic data, there are many studies that successfully predict historical 

 tipping events in both empirical human and environmental time series data such as the 1987 Black Monday financial 

 crash  (Diks et al., 2019)  as well as abrupt temperature  shifts from paleoclimate datasets  (Dakos et al.,  2008)  . 

 3.1 Recent advances for detecting early warning signals 

 Much research has been done in the past few decades to develop tools for EWS using both empirical and synthetic 

 time series data  (Bury et al., 2021; Dakos et al.,  2012, 2015, 2008; Kéfi et al., 2014; Lapeyrolerie and Boettiger, 

 2021)  . Originally motivated by critical slowing down  in bifurcation theory, where systems approaching a tipping 

 point show a slower recovery to equilibrium under perturbations, generic EWS measure trends in this “slowing 

 down”  (Scheffer et al., 2009)  . The most commonly used  methods compute the lag-1 autocorrelation and variance of 

 the residuals from detrended time series data. Other widely used methods involve metrics such as skewness, 

 measuring the asymmetry of fluctuations over time, and kurtosis, representing the likelihood of extreme values in 

 the time series data. A phenomenon known as flickering occurs when there is sufficient noise to rapidly force the 

 system between alternate stable states. In these cases, an increase in skewness and kurtosis is observed  (Dakos et al., 

 2012)  . As lag-1 autocorrelation does not account for  correlation beyond a single time step, power spectrum analysis 

 has been used to look at changes in complete spectral properties, finding higher variations at low frequencies to 

 commonly occur before a tipping point  (Dakos et al.,  2012; Scheffer et al., 2009)  . In spatial systems,  many EWS are 

 similar to those used in well-mixed systems, while also accounting for spatial variability. For example, Moran’s I is 

 a spatial analog of lag-1 autocorrelation, which measures the correlation between neighboring nodes in a network 

 (Kéfi et al., 2014)  . 
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 Figure 4: Generic EWS (second and third row) as well as deep learning EWS (bottom row) for time series generated by 

 two ecological models exhibiting different types of bifurcations (top row); fold (left), Hopf (middle), and transcritical 

 (right). As well as being more reliable, deep learning EWS can also distinguish between the type of bifurcation being 

 approached. In the bottom row, the DL algorithm gives probabilities for the occurrence of fold (purple), Hopf (orange), 

 or transcritical (blue) bifurcations. Image taken from  (Bury et al., 2021)  . 

 Numerous spatial ecological systems exhibit patterns of patchiness preceding a tipping point. For example, in 

 drylands, spotted vegetation patterns are hypothesized to be an EWS for the system approaching desertification 

 (Kéfi et al., 2014)  . Coupled human-epidemiological  models also show that spatial properties in the distribution of 

 opinions on a social network offer potential EWS for the onset of disease outbreaks. Approaching this regime shift, 

 the number of anti-vaccine clusters increases, and very close to the transition point, these communities coalesce into 

 larger groups  (Jentsch et al., 2018; Phillips et al.,  2020)  . These clusters are quantified using a number  of metrics, 

 such as an increase in modularity as well as the mean number, size, and maximum size of communities and 
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 pro-vaccine echo chambers  (Phillips and Bauch, 2021)  . This is also in agreement with previous work done in 

 percolation theory showing that phase transitions follow a breakup of connected components on the network 

 (Newman, 2010)  . 

 One downside to the generic metrics discussed above is that they have the potential to fail in the presence of large 

 amounts of noise where transitions can occur far from their analytically derived tipping point. A technique called 

 dynamical network markers increases the dimensionality of the time series by transforming it from state variables to 

 probability distributions of the mean and variance over a given window of time. This reduces the magnitude of noise 

 in each dimension and in approaching a tipping point, one dominant group of variables will show a drastic increase 

 in variance and correlation between other variables within that group. At the same time, the correlation between one 

 variable in this dominant group and others outside the group will decrease. This technique has shown success with 

 empirical data, such as predicting critical transitions in time series data for a eutrophic lake as well as the bankruptcy 

 of Lehman Brothers  (Liu et al., 2015)  , and flu outbreaks  (Chen et al., 2019)  . Dynamical network markers have  also 

 been used on spatial systems such as those occurring on social networks through the use of hierarchical network 

 representations. Here, networks are transformed into binary trees where leaves are the nodes from the original 

 network and branches group nodes together at multiple resolutions. Through this hierarchical model, dynamical 

 network markers use these multi-scale communities as the groups of variables that are analyzed  (Li et  al., 2023)  . 

 This spatial technique offers a novel method for predicting tipping events for CHES using human data occurring on 

 complex social networks. 

 A very recent addition to the EWS toolkit uses concepts from statistical physics such as average flux, entropy 

 production, generalized free energy, and time irreversibility to predict tipping points in a shallow lake model much 

 earlier than generic methods such as autocorrelation and variance, showing promise for use in real-time monitoring 

 (Xu et al., 2023)  . Additionally, the field of machine  learning has motivated data-driven approaches to EWS which 

 do not explicitly make use of any statistical metrics in the time series data. Instead, deep learning algorithms are 

 trained on large synthetic datasets using models that have and have not approached tipping points. In the majority of 

 cases, these algorithms have performed significantly better at predicting tipping events than generic EWS indicators 

 when tested on empirical datasets that exhibit abrupt transitions  (Bury et al., 2021; Deb et al., 2022)  (Figure 4). 

 Deep learning algorithms are also able to distinguish between different types of bifurcations as they are being 

 approached which can offer vital information regarding the potential for catastrophic collapse in CHES. 

 3.2 Social data for early warning signals 

 In CHES models, the strength of EWS from environmental data has been shown to be muted compared to EWS 

 from environmental systems not coupled to a human system  (Bauch et al., 2016)  or the same system with  weak 

 coupling between the human and environmental subsystems  (Richter and Dakos, 2015)  . This is likely due to  the 
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 effects of human behavior acting to mitigate variability in the environmental system, for example, rarity-motivated 

 valuation creates a negative feedback loop where incentives to mitigate increase as the environment becomes further 

 depleted, serving as a mechanism to avoid collapse. The muting of EWS provides a unique challenge for monitoring 

 tipping events in CHES using environmental data, especially as they occur more frequently in these coupled systems 

 as discussed in Section 2. There are a small number of studies that have directly compared the strength and efficacy 

 of EWS between various state or auxiliary variables in CHES models. In these studies, generic EWS from data in 

 the human system were shown to be the only reliable indicators of the coupled system approaching a tipping point. 

 Examples of human data used include the fraction of conservationists in a forest cover model  (Bauch et  al., 2016)  , 

 average profits by resource harvesters, and catch per unit effort common-pool resource models  (Lade  et al., 2013; 

 Richter and Dakos, 2015)  . In agreement with generic  methods, a state-of-the-art machine learning algorithm for 

 EWS showed higher success in detecting tipping events generated from a coupled epidemiological model using 

 pro-vaccine opinion in the human system compared to total infectious in the epidemiological system  (Bury  et al., 

 2021)  . It is possible that the state variable most  sensitive to the forcing parameter may exhibit the strongest EWS, as 

 seen in experimental work on tipping points in a lake food web. In this system, data from the species that had a 

 direct trophic linkage to a driver of the tipping event (predators added to the food web) exhibited EWS earlier than 

 those that were farther removed from the driver  (Carpenter  et al., 2014)  . If this is the case, human drivers  of tipping 

 points would most directly affect the human system, and EWS should still be stronger using social data. 

 The improved reliability of EWS from social data demonstrated through CHES models shows a significant promise 

 for monitoring resilience in CHES through the analysis of socio-economic data (Box 1.4). This confers a practical 

 advantage as socio-economic data availability is growing faster than ecological data (and perhaps even 

 environmental data despite the growth of publicly available satellite data) on account of the era of digital social data 

 (Ghermandi and Sinclair, 2019; Hicks et al., 2016; Lopez et al., 2019; Salathé et al., 2012)  . Some examples  of this 

 are monitoring profits tied to resource extraction as well as using sentiment analysis on social media data, such as 

 the number of tweets in a given area raising concern over the health of a coupled environmental system. 

 Furthermore, citizen science not only generates environmental data but also provides social metadata through the 

 participation of users who monitor specific areas. Leveraging existing platforms like CitSci.org, we can use this data 

 to estimate trends in conservationist frequency over time  (Wang et al., 2015)  . This approach allows for  the 

 implementation of real-time monitoring of environmental systems using data that is currently being generated, 

 reducing the need for extensive knowledge or complex mechanistic models of the system. With the potential social 

 data offers for use with EWS, it is important to note that much of the traditional social data, often conducted through 

 national or regional surveys, do not provide fine-grained spatial or temporal resolution. On the other hand, novel 

 methods that use social media data can solve the resolution issue, but may not accurately represent the population it 

 is being used to model  (Hargittai, 2020)  . These challenges  may be addressed through a compound approach that 

 uses hybrid time series generated from multiple types and sources of social data  (Rosales Sánchez et al.,  2017)  . 
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 4 Conclusion and future directions 

 4.1 Summary of main points 

 From a wide range of examined theoretical models, we are able to gain insight into human drivers that lead to 

 tipping events in CHES systems. Many social interventions, such as reducing mitigation costs and extractive effort, 

 or increasing the time horizon in decision-making, lead to beneficial tipping events, regardless of the system 

 modeled. The beneficial effect of these interventions is intuitive; however, non-linear responses manifested as 

 tipping events may not be as evident. Mitigation costs can be reduced through subsidies for land preservation and 

 green technology, and extraction effort through limits on land development and the expansion of protected natural 

 areas (i.e. the Haudenosaunee-led protection of the Haldimand Tract)  (Forester, 2021)  , and by increasing  time 

 horizons through passing long-term legislation that centers the well-being of human and environmental systems such 

 as the Green New Deal  (Galvin and Healy, 2020)  . These  policy interventions become more difficult to implement at 

 large scales, and models that are tailored to global coordination problems can give us insight into how institutions 

 can work together to rapidly mitigate looming threats, such as the current climate crises we are facing  (Karatayev et 

 al., 2021)  . 

 Other human behaviors and social processes are much more nuanced and system-specific in how they affect tipping 

 points. For example, models show that rarity-motivated valuation can act to detrimentally tip the environmental 

 system into a depleted state when it crosses both a lower and (counterintuitively) an upper threshold value. This was 

 illustrated most clearly in the example of forest cover in the paper by Bauch et al.  (2016)  . Social  norms, especially 

 when majority-enforcing, increase the likelihood of tipping points through the emergence of bistable regimes that 

 are made up of both sustainable and unsustainable environmental equilibria. The extent of coupling between the 

 human and environmental system as well as the speed of social change relative to environmental change can have 

 different effects depending on whether the model is human-extraction or human-emission. Interventions related to 

 human valuation and social norms are much more difficult to implement as they require a deeper mechanistic 

 understanding of how to influence social dynamics and may also have ethical considerations. 

 The models we reviewed also show that greater structural complexity via the number and diversity of human traits 

 as well as the number of social connections can increase the potential for tipping points and mask social dynamics 

 making these transitions much harder to predict. The modeling literature has only explored a small sliver of the 

 space of possible choices regarding assumed social structure and the types of environmental models coupled to 

 them. For example, the vast majority of models only allow for a binary choice in human behavior and adaptive 

 social networks have only recently been incorporated, with limited mechanisms of re-wiring and types of coupled 

 environmental systems. Consequently, we still have much to learn on how shifting underlying social structures acts 

 as a driver of tipping events. This is especially true in human-emission models which are important to improving our 
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 understanding of how our social structures affect pressing global issues such as pollution and climate change. Even 

 if we include more diverse and realistic social structures and processes, CHES are composed of many non-linear 

 feedbacks and contain high levels of uncertainty, and the reality is that we may not be able to have a complete 

 mechanistic representation through models. EWS from empirical data show great potential in predicting tipping 

 events without requiring a full understanding of the system being monitored. There have been many advances in 

 using state-of-the-art machine learning algorithms to provide accurate EWS from 1-D time series  (Bury  et al., 2021; 

 Deb et al., 2022)  , and very recent work is now developing  similar techniques to predict tipping events from spatial 

 data  (Dylewsky et al., 2022)  . As synthetic data from  models have shown the value of EWS from social data, it is 

 likely that applying these techniques to diverse and hybrid empirical social datasets can vastly improve our ability to 

 predict tipping events caused by human drivers in the future. 

 4.2 Future work in CHES modeling 

 There are many social phenomena that are not commonly included in CHES models, yet may be important in 

 furthering our understanding of tipping points within these systems. We know that inequality in human systems 

 plays a large role in individuals’ risk perception and ability to engage in pro-environmental behavior  (Gibson-Wood 

 and Wakefield, 2013; Pearson et al., 2017; Quimby and Angelique, 2011; Rajapaksa et al., 2018)  and have 

 mentioned two CHES models that incorporate wealth inequality in a human-climate system  (Menard et al.,  2021; 

 Vasconcelos et al., 2014)  . However, more studies explicitly  investigating the role of inequality could offer some 

 valuable insight into interventions that can be more effective in benefiting both the environment and the most 

 vulnerable in human systems. This could be complemented by incorporating social biases where perceptions of risk 

 are linked to an individual's socio-economic status, and detrimental environmental outcomes are experienced 

 disproportionally by vulnerable communities as is commonly observed globally  (Banzhaf et al., 2019;  Boyce, 2007)  . 

 Future models could allow for alternatives to the common modeling assumption where individuals act in their own 

 self-interest, for example by incorporating other-regarding preferences into utility functions so that individuals value 

 their neighbors' well-being along with their own  (Dimick  et al., 2018)  . These models could also look at grassroots 

 redistribution of wealth allowing us to explore the effects of alternative social value systems on the environment 

 (Tilman et al., 2018)  . 

 Stochasticity (noise), especially regarding drivers of tipping points can significantly affect system dynamics 

 including when tipping points occur. Although many CHES models are deterministic, recent work has shown that 

 increasing noise can lead to earlier tipping  (Willcock  et al., 2023)  , or in other cases, increase the duration  of time the 

 environmental system can persist before becoming extinct  (Jnawali et al., 2022)  . These contradictory results  warrant 

 further work in understanding how different types of noise and their magnitude within drivers of tipping events 

 affect the resilience of these systems. With stochasticity comes uncertainty, and in real-world systems, it is 

 impossible to know with precision the extent of social change required to bring about a beneficial or avoid a 
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 detrimental tipping point. This uncertainty around our knowledge of system thresholds adds an additional challenge 

 in both agreeing upon and following through with policy that promotes sustainable futures while taking into account 

 potential tipping points. Experimental games have shown that high threshold uncertainty can promote the collapse of 

 a shared resource, often through an increase in free-riding behavior  (Barrett and Dannenberg, 2014, 2012)  . On  the 

 other hand, field experiments in fishing communities have shown that high uncertainty can promote cooperation and 

 sustainable resource use  (Finkbeiner et al., 2018;  Rocha et al., 2020)  . Theoretical models show that  increased 

 uncertainty can lead to increased mitigative behavior if the shared resource is highly valued; however, for 

 low-valued resources, increased uncertainty can deter mitigation, putting the persistence of the shared resource at 

 risk  (Jager et al., 2000; McBride, 2006)  . Uncertainty  around thresholds is unavoidable, further motivating the need 

 to offer additional incentives for mitigative action on institutional scales, rather than solely the threat of 

 environmental collapse. In systems where uncertainty can promote mitigative action, increased communication and 

 awareness campaigns around this threshold uncertainty could be useful to incorporate into policy. 

 This review has focused primarily on the effects of single drivers; however, research on multiple co-occurring 

 human drivers of tipping events, while more analytically challenging, could offer a holistic understanding of how 

 these drivers interact. A recent study has shown that multiple drivers can both reduce the time until tipping or lead to 

 a tipping point that would not occur with a single driver  (Willcock et al., 2023)  and there is already  a large body of 

 empirical work exploring the diversity of these drivers which can be used to inform future CHES models 

 (Jaureguiberry et al., 2022; Maciejewski et al., 2019; Millennium Ecosystem Assessment, 2005)  . Finally,  as the 

 majority of the studies in modeling tipping points have focused on slow gradual changes in the driver, fast changes 

 require further research as they can exhibit very different tipping behavior  (Ashwin et al., 2012)  .  CHES models 

 ubiquitously exemplify the phenomenon of tipping points, which often occur through drivers in the human system. 

 Although these models offer valuable insight in understanding key feedbacks and qualitative behavior, their 

 predictive power is limited. Additionally, as many model findings can depend on the type of system modeled as well 

 as assumptions in the model formulation, translating this work into policy remains a significant challenge. However, 

 further work in both diversifying model systems and assumptions paired with research in universal real-time 

 indicators of EWS shows considerable promise in both improving our understanding and predicting human drivers 

 of tipping events in the environment. 
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 Appendix 

 Authors  Year  Title  System of study 

 Sethi & 
 Somanathan  1996  The evolution of social norms in common property resource use 

 Common pool 
 resource 

 Satake et al.  2007 
 Coupled ecological–social dynamics in a forested landscape: Spatial 
 interactions and information flow  Land use 

 Iwasa et al.  2007 
 Nonlinear behavior of the socio-economic dynamics for lake 
 eutrophication control  Lake eutrophication 

 Suzuki & Iwasa  2009 
 The coupled dynamics of human socio-economic choice and lake 
 water system: the interaction of two sources of nonlinearity  Lake eutrophication 

 Iwasa et al.  2010 
 Paradox of nutrient removal in coupled socioeconomic and ecological 
 dynamics for lake water pollution  Lake eutrophication 

 Figueiredo & 
 Pereira  2011  Regime shifts in a socio-ecological model of farmland abandonment  Land use 

 Tavoni et al.  2012 
 The survival of the conformist: Social pressure and renewable 
 resource management 

 Common pool 
 resource 

 Lade et al.  2013  Regime shifts in a social-ecological system 
 Common pool 
 resource 

 Iwasa & Lee  2013 
 Graduated punishment is efficient in resource management if people 
 are heterogeneous  Fishery 

 Richter et al.  2013  Contagious cooperation, temptation, and ecosystem collapse 
 Common pool 
 resource 

 Richter & 
 Grasman  2013 

 The transmission of sustainable harvesting norms when agents are 
 conditionally cooperative 

 Common pool 
 resource 

 Barlow et al.  2014 
 Modelling interactions between forest pest invasions and human 
 decisions regarding firewood transport restrictions  Pest 

 Vasconcelos et 
 al.  2014  Climate policies under wealth inequality  Climate 

 Ali et al.  2015 
 Coupled human-environment dynamics of forest pest spread and 
 control in a multipatch, stochastic setting  Pest 

 Sugiarto et al.  2015 
 Socioecological regime shifts in the setting of complex social 
 interactions 

 Common pool 
 resource 

 Wiedermann et 
 al.  2015 

 Macroscopic description of complex adaptive networks coevolving 
 with dynamic node states  Private resource 

 Richter & Dakos  2015  Profit fluctuations signal eroding resilience of natural resources 
 Common pool 
 resource 

 Schlüter et al.  2016  Robustness of norm-driven cooperation in the commons  Common pool 
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 resource 

 Weitz et al.  2016 
 An oscillating tragedy of the commons in replicator dynamics with 
 game-environment feedback 

 Common pool 
 resource 

 Bauch et al.  2016 
 Early warning signals of regime shifts in coupled 
 human–environment systems  Forest 

 Henderson et al.  2016 
 Alternative stable states and the sustainability of forests, grasslands, 
 and agriculture  Land use 

 Sugiarto et al.  2017 
 Social cooperation and disharmony in communities mediated through 
 common pool resource exploitation 

 Common pool 
 resource 

 Barfuss et al.  2017 
 Sustainable use of renewable resources in a stylized social–ecological 
 network model under heterogeneous resource distribution  Private resource 

 Lafuite et al.  2017 
 Delayed behavioral shifts undermine the sustainability of social– 
 ecological systems  Land use 

 Lindkvist et al.  2017 
 Strategies for sustainable management of renewable resources during 
 environmental change 

 Common pool 
 resource 

 Osten et al.  2017 
 Sustainability is possible despite greed - Exploring the nexus between 
 profitability and sustainability in common pool resource systems 

 Common pool 
 resource 

 Sigdel et al.  2017 

 Competition between injunctive social norms and conservation 
 priorities gives rise to complex dynamics in a model of forest growth 
 and opinion dynamics  Forest 

 Sugiarto et al.  2017 
 Emergence of cooperation in a coupled socioecological system 
 through a direct or an indirect social control mechanism 

 Common pool 
 resource 

 Thampi et al.  2018 
 Socio-ecological dynamics of Caribbean coral reef ecosystems and 
 conservation opinion propagation  Coral reef 

 Chen & Szolnoki  2018 
 Punishment and inspection for governing the commons in a 
 feedback-evolving game 

 Common pool 
 resource 

 Drechsler & 
 Surun  2018 

 Land-use and species tipping points in a coupled ecological-economic 
 model  Land use 

 Geier et al.  2019 

 The physics of governance networks: critical transitions in contagion 
 dynamics on multilayer adaptive networks with application to the 
 sustainable use of renewable resources  Private resource 

 Hauert et al.  2019  Asymmetric evolutionary games with environmental feedback 
 Common pool 
 resource 

 Lin & Weitz  2019  Spatial interactions and oscillatory tragedies of the commons 
 Common pool 
 resource 

 Sigdel et al.  2019 
 Convergence of socio-ecological dynamics in disparate ecological 
 systems under strong coupling to human social systems 

 Common pool 
 resource 
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 Bury et al.  2019 
 Charting pathways to climate change mitigation in acoupled 
 socio-climate model  Climate 

 Shao et al.  2019 
 Evolutionary dynamics of group cooperation with asymmetrical 
 environmental feedback 

 Common pool 
 resource 

 Barfuss et al.  2020 
 Caring for the future can turn tragedy into comedy for long-term 
 collective action under risk of collapse 

 Common pool 
 resource 

 Tilman et al.  2020  Evolutionary games with environmental feedbacks 
 Common pool 
 resource 

 Muneepeerakul 
 & Anderies  2020 

 The emergence and resilience of self-organized governance in 
 coupled infrastructure systems  Water use 

 Sun & Hilker  2020 
 Analyzing the mutual feedbacks between lake pollution and human 
 behavior in a mathematical social-ecological model  Lake eutrophication 

 Mathias et al.  2020  Exploring non-linear transition pathways in social-ecological systems 
 Common pool 
 resource 

 Phillips et. al  2020 
 Spatial early warning signals of social and epidemiological tipping 
 points in a coupled behavior-disease network  Epidemic 

 Menard et al.  2021 
 When conflicts get heated, so does the planet: coupled social-climate 
 dynamics under inequality  Climate 

 Phillips & Bauch  2021 
 Network structural metrics as early warning signals of widespread 
 vaccine refusal in social-epidemiological networks  Epidemic 

 Holstein et al.  2021 
 Optimization of coupling and global collapse in diffusively coupled 
 socio-ecological resource exploitation networks  Private resource 

 Farahbakhsh et 
 al.  2021 

 Best response dynamics improve sustainability and equity outcomes 
 in common-pool resources problems, compared to imitation dynamics 

 Common pool 
 resource 

 Yan et al.  2021 
 Cooperator driven oscillation in a time-delayed feedback-evolving 
 game 

 Common pool 
 resource 

 Müller et al.  2021 
 Anticipation-induced social tipping: can the environment be stabilised 
 by social dynamics?  Climate 

 Milne et al.  2021 
 Local overfishing patterns have regional effects on health of coral, 
 and economic transitions can promote its recovery  Coral reef 

 Moore et al.  2022 
 Determinants of emissions pathways in the coupled climate–social 
 system  Climate 

 Bengochea Paz 
 et al.  2022 

 Habitat percolation transition undermines sustainability in 
 socialecological agricultural systems  Land use 
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