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7 Abstract. Mathematical models that couple human behavior to environmental processes can offer valuable insights
8 into how human behavior affects various types of ecological, climate, and epidemiological systems. fn=many=
9 eeupled-human=envirenmental-systems-with-tipping-pemtssgraduwal This review focuses on human drivers of tipping
10 events in coupled human-environment systems where changes to the human system can lead abruptly to desirable or
11 undesirable new human-envirenmentatcnvironment states. We use snowball sampling from relevant search terms to
12 review the medetmrgmodeling of social processes—such as social norms and rates of social change—that are shown to
13 drive tipping pemtsevents, finding that many affect the coupled system depending on the system type and initial
14 conditions. For example, tipping points can manifest very differently in mput==versus=
15 eutput=hmitedhuman-extraction versus human-emission systems. Some potential interventions, such as reducing
16 costs associated with sustainable behavior, have intuitive results. However, their beneficial outcomes via less
17 obvious tipping pemt-behaviercvents are highlighted. Of the models reviewed, we found that greater structural
18 complexity can be associated with increased potential for tipping pemtsevents. We review generic and
19 state-of-the-art techniques in early warning signals of tipping peintsevents and identify significant opportunities to
20 wutihiseutilize digital social data to look for such signals. We conclude with an outline of challenges and promising
21 future directions specific to furthering our understanding and informing policy that promotes sustainability within
22 coupled human-emvirenmentalenvironment systems.
23
24 Non-technical summary. Mathematical models that include interactions between humans and the environment can
25 provide valuable information to further our understanding of tipping points. Many social processes such as social
26 norms and rates of social change can affect these tipping points in ways that are often specific to the system being
27 medeledmodeled. Higher complexity of social structure can increase the likelihood of these transitions. We discuss

28 how data is used to predict tipping pemtsevents across many coupled systems.

29 1 Introduction to tipping points in coupled human-envirenmentalenvironment systems models



30 Humans are facing environmental catastrophes of their own making, like climate change and biodiversity declines,
31 at local and global scales, and yet avoiding these catastrophes still poses complex challenges for sustainable

32 behavior and policy interventions (Steffen et al., 2017). Traditionally, mathematical models of environmental

33 systems have represented human impacts through fixed, static parameters or functions independent of the

34 environment’s current state (Binford et al., 1987; Bosch, 1971; Chaudhuri, 1986; Getz, 1980), and these models can
35 be useful to inform optimal levels of sustainable extraction for short timescales. However, for longer timescales,

36 where human dynamics can evolve, it may be necessary to include human behavior endemically in the

37 medetimegmodeling framework to allow for human-envirenmentalenvironment feedback to occur (Bauch et al.,

38 2016; Innes et al., 2013; Lade et al., 2013; Schliiter et al., 2012). Coupled human-envirenmentatenvironment system
39 (CHES) models combine environmental (e.g., ecological, epidemiological, and climate) models with human

40 behavior and population dynamics (Bury et al., 2019; Carpenter et al., 2009; Farahbakhsh et al., 2022; Innes et al.,
41 2013; Lade et al., 2013; Phillips et al., 2020; Sethi and Somanathan, 1996). Fhe-human-and-envirenmental

42 subsystems o e-CoOuPrea-Syste ave O=wWa 90S e-anaro cgarrve eeaoacis=sue at-e1na <

44 ef-the-pepulation-that-eonserves-forest-ecosystemsFor example, in Innes (2013), the amount of forest cover

45 influences the proportion of the population that conserves forest ecosystems. The influence of each subsystem on

46 one another often occurs as two-way (positive and/or negative) feedback loops. In a positive (self-reinforcing)

47 feedback loop, variable ‘A’ causes an increase in variable ‘B’ which then causes an increase in ‘A’. In a negative

48 feedback loop, ‘A’ causes an increase (respectively, decrease) in ‘B’ which causes a decrease (respectively, increase)
49 in ‘A’. The inclusion of these feedbacks leads to increased diversity in the qualitative behavior of the system, such as
50 whether the long-term dynamics converge to a sustainable or depleted environmental state, or cycle over time.

51 Negative feedback promotes a return to equilibrium (Figure #a2a) and can increase the system's capacity to respond

52 to disturbances and adapt in ways that allow the system to maintain the function of social and ecosystem services,

53 which is sometimes referred to as “resilience” (Folke, 2006).

54

55 Human-envirenmentatenvironment negative feedback loops via processes such as public concern pressuring

56 governments to introduce environmental legislation can be powerful and there are many historical examples of it

57 occurring (Dunlap, 2014; Grier, 1982; Mather and Fairbairn, 2000; Stadelmann-Steffen et al., 2021). Forest cover in

58 Switzerland doubled, following an all-time low in the first half of the 19th century. This was brought about by rapid=
59 population growth and early industrialisation. Wood shortages and floods led to public ¢co =triggeringpublic

60 concern responding to food shortages and floods, which triggered local regulation, the formation of the Swiss

61 Forestry Society, and the first federal forestry law enacted in 1876 thatin-turn-eaused-a-recovery-of-forest-eover:

62 (Mather and Fairbairn, 2000). Similarly, the bald eagle population in North America recovered significantly after the
63 banning of DDT by the EPA in 1972. This was instigated by public outcry following the publication of Rachel

64 Carson’s A Silent Spring in 1962 which linked DDT in the environment to low reproduction of birds and their
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65 declining population (Dunlap, 2014; Grier, 1982). In both cases, the gradual recovery of the population was not

66 brought about simply by governmental legislation. There were alse=strong movements in the public and scientific
67 spheres, directly responding to perceived environmental risk which pressured governing bodies to enact immediate
68 reform (Dunlap, 2014; Grier, 1982; Mather and Fairbairn, 2000). We interpret these two examples as negative

69 feedback loops in a coupled human-envirenmentatenvironment system because a decline in forest/eagle abundance
70 stimulated a response by humans which led to the recovery of the environmental system (Figure #a2a). These

71 negative feedback loops are pervasive in the CHES models that we revtewexamine here.

72

79 type-of=Sbifureation’=(Ashwin-et-al20+2=Crawford=+994=PalesThe historical examples above describe negative

80 feedbacks promoting a return to a single environmentally beneficial equilibrium; however, in many cases, this does

81 not happen and the system can persist in a depleted state. For example, the desertification of regions once rich in

82 vegetation could become a positive feedback loop maintaining the new desert state (Hopcroft and Valdes, 2021;

83 Pausata et al., 2020). When systems can persist in qualitatively different states (also referred to as “regimes’), we
84 say that they exhibit alternative stable states (May, 1977; Lenton et al., 2008, Henderson et al. 2016). In

85 mathematical models, alternative stable states are self-reinforcing for a range of parameters, for example, low

86 harvest rates can promote a state of high biomass and high harvest rates can promote a state of low biomass in many
87 extractive CHES (Farahbakhsh et al., 2021; Henderson et al., 2016; Richter and Dakos, 2015; Richter et al., 2008=
88 Fenten2013; Schliiter et al., 20083 =rArddittonatly=—many-sys s with tipping points exhibit a ative-stab

89 w
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92

93
94 2016). Tipping points refer to critical points on this boundary between two alternative stable states. Near this

95 boundary, small perturbations can be amplified through nonlinear self-reinforcing positive feedback loops. This
96 leads to a qualitatively different system state and characteristic behavior, known as a “regime shift”, in a relatively
97 short amount of time. When the system has entered a new regime, there are often positive or negative feedback

98 loops that make it difficult to reverse this change. This self-perpetuating nature of some initial change through

99 nonlinear feedbacks leading to qualitative and often long-term system change is a universal characteristic of many
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100 commonly studied tipping points. In many cases, a return to the system's previous state can be more difficult than
101 anticipated, requiring additional effort rather than merely a return to parameters before the tipping point, a

102 phenomenon known as hysteresis, which can make mitigation and adaptation efforts challenging. Systems near a
103 tipping point can exhibit (often abrupt) regime shifts through gradual changes or noise in forcing parameters, which
104 is a main focus of much of the bifurcation theory literature (Figure 1a, Box 1.1). The scope of models presented in
105 this review will not include other types of tipping points such as those caused by a short sharp shock (s-tipping, or
106 shock-tipping, where the system does not have to exist near this point for a regime shift to occur) (Figure 1b)

107 (Boettiger and Batt, 2020; Halekotte and Feudel, 2020) or “rate-induced tipping”, which is a distinct phenomenon
108 induced by the rate of change of parameters (Ashwin et al., 2012). Tipping events describe the crossing of a tipping

109 point and can be used interchangeably with regime shifts.

/

(a) bifurcation-induced (b) shock-induced

Figure 1: Two types of tipping events; bifurcation-induced tipping (a), where the drivers are gradual changes to system
parameters leading to a tipping event, and shock-induced tipping (b), where a perturbation to the system causes it to
enter an alternative stable state through the crossing of a tipping point. Many social tipping points are caused by a

combination of both types of tipping events. The blue circle represents the current state of the system.

110
111 Bifurcation theory has been applied to study tipping points in a vast number of environmental models (May and
112 Oster, 1976; Brovkin et al., 1998; Ghil and Tavantzis, 1983; Wollkind et al., 1988); however, more recently,

113 researchers have identified abrupt shifts in environmental systems for which bifurcation theory has yet to be
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114 explicitly applied (Dakos et al., 2019; Lenton, 2020, 2013). For example, during the mid—Holocene, the Sahara was
115 much more humid than at present, showing evidence of shrub and savannah biomes as well as the expansion of
116 lakes, an alternative stable state to what we know as its current desert state. It is hypethestsedhypothesized that

117 around 5,000 years ago, the gradual weakening of the North African Monsoon led to an abrupt decrease in

118 vegetative cover, due to positive feedback between reduced surface albedo and precipitation, bringing the Sahara
119 into a stable desert state (Hopcroft and Valdes, 2021; Pausata et al., 2020). In more dominantly human systems,
120 many pivotal revolutions can also be framed as tipping petmtscvents where gradual changes are reinforced by

121 positive feedback loops, leading to a new political or technological stable state (Lenton et al., 2022). Social tipping
122 peints-also eeenroccurs in financial systems such as in the 2008 financial crisis. Here, the bankruptcy of Lehman
123 Brothers led to a rise in public panic around the stability of markets, causing banks to increase their liquidity,

124 amplifying the crisis in other economic sectors and leading to a global recession (Van Nes et al., 2016). These are
125 just two of many examples illustrating how important tipping points are as a phenomenon, in both human and

126 environmental systems, and coupling these systems using mathematical models could lead to further insights.

127

128 Since the beginning of the Anthropocene and with our growing awareness of human impacts on the environment,
129 tipping points are increasingly being eeneeptuatisedconceptualized within the context of coupled

130 human-envirenmentalenvironment systems (Bauch et al., 2016; Henderson et al., 2016; Lenton et al., 2022;

131 Milkoreit et al., 2018). Tipping peintsevents can lead to highly beneficial or catastrophic outcomes for humans,

132 especially when an environmental change occurs in the presence of social hysteresis. An example of detrimental
133 tipping is in the forests of Kumaun and Garhwal in Northern India, where, prior to British eetentsattencolonization,
134 wood harvest was sustainably regulated through social norms and strict rules enforced by local village councils.
135 When the British colonial government imposed thetrits own rules on the use of forests, these social norms broke
136 down. Eventually, protests led to British lumber restrictions being removed, but the system subsequently

137 experienced rapid deforestation rather than a return to its previous levels under local management. Here, the social
138 system crossed a tipping point between a self-organized common property regime to one of open access devoid of
139 self-regulating sanctions (Somanathan, 1991). This system has been medeltedmodeled using a dynamical systems
140 approach that allows for a quantitative understanding of the human drivers leading to the-tipping-peintsthese tipping
141 events (Sethi and Somanathan, 1996). Contrasting this example, tipping peintscvents can also result in

142 environmental change that is beneficial to humans and the environment. The rapid response of the international

143 community to the hole in the ozone layer has been interpreted by some as an example of a systemCHES undergoing
144 tipping pointscvents caused by human-environmental feedback (Stadelmann-Steffen et al., 2021). First, there was a-

145 public opinion regard use o products, causing a cha behavioral norms and pressure o

147 a

148 political, technological, and behavioral forces (Stadelmann-Steffen et al., 2021). In the 1970s, scientists
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149 demonstrated the detrimental effects of CFCs on the ozone layer, which could be viewed as the initial driver of the
150 following socio-climate tipping events. This led to public concern, prompting several countries to ban the use of
151 CFCs in aerosols. Through the enactment of national policies, public awareness increased, leading to more public
152 pressure for national and international policy change, an example of a positive feedback loop. In parallel, these

153 national bans of CFCs, especially in the US, led to the development of CFC alternatives, which prompted industries
154 that could develop them to lobby for international policy. Increased public awareness also led to widespread shifts in
155 social norms stigmatizing and boycotting the consumption of CFCs, which further pressured industry to offer

156 alternatives, another positive feedback loop. The interaction of multiple tipping events at different scales led to the
157 crossing of a global tipping point through the international banning of CFCs, bringing an alternative stable state of
158 retativelyvery low CFC emissions globally. (Andersen et al., 2013; Cook, 1990; Epstein et al., 2014; Haas, 1992;
159 Stadelmann-Steffen et al., 2021).

160

161 Tipping peintscvents associated with social processes as described in the preceding paragraph can be

162 eeneeptuatisedconceptualized through positive feedback loops that capture a self-reinforcing process. In the case of
163 social norms, this self-reinforcing process may correspond to peer pressure or conformism that reinforces the

164 dominant opinion or belief. Depending on whether pro- or anti-mitigation opinions are currently dominant, this

165 could lead to hysteresis (Figure #b2b). The negative feedback loop that might normally regulate the CHES to exist
166 in a state of intermediate environmental health and public support for sustainability (Figure #a2a) could be

167 overpowered by the positive feedback of social norms, leading the population to a state where either sustainability
168 (or anti-sustainability) is strongly entrenched. If the conditions governing social learning or social norms move

169 beyond a tipping point, the population may flip between these two norms, or alternatively it may move into a regime
170 where social norms are instead dominated by the negative feedback loop, causing the population to exist in an

171 interior state of partial sustainability. As such, negative feedback and positive feedback may be characteristic of any
172 CHES and should be systematically studied.

173

174 This review aims to deepen our understanding of human drivers of tipping peintsevents in CHES models by

175 exploring three crucial topics: the feedback loops and interactions between the human and environmental systems,
176 the structural characteristics of the human system that influence tipping points, and the identification of early

177 warning signals within human systems. By “human drivers”, we refer to the gradual-changes in social parameters
178 that elicit these non-linear tipping responses in either the environment, human system, or both. However, we also
179 discuss aspects of social structure that may be conducive to tipping points. As most of the models reviewed are

180 informed by dynamical systems and bifurcation theory, we primarily focus on systems that exist near tipping points
181 and cross them through gradual changes in these drivers. In the following sections we review CHES model literature
182 found using Google Scholar with the keywords: ‘human environment system’ OR ‘socio-ecological system’ OR

183 ‘social ecological system’ OR ‘human ecological system’ OR ‘human natural system’ combined with ‘tipping” OR
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184 ‘regime shift’ OR ‘bifurcation’. These results were filtered manually to include only dynamical models that showed
185 clear tipping behavior. Additional literature was found through a snowball approach using references from the

186 sources found in this search as well as papers referencing these sources (Wohlin, 2014). The findings in this review
187 highlight commonalities between the CHES models surveyed; however, some trends may be a result of both the
188 dynamical models chosen and the relatively low diversity and volume of these models.§f

189 The body of this review is split into two parts; the first part synthesizes results from

190 CHES models, organized into processes and structures that drive tipping behavior, and the second part introduces

191 early warning signals describing how they can be used to predict tipping events.
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Box 1: Highlights of key findings from the synthesis of CHES models in this review. “The straw that broke the camel's
back” illustrating bifurcation-induced tipping points (1a), in human-extraction systems (2b), increasing the speed of
social change or the coupling strength leads to negative tipping points (i.e., ecological collapse), whereas in
human-emission systems (2¢), the effects of increasing the speed of social change or the coupling strength are model
specific, higher connections in a social network leading to a positive tipping event, where the graph represents the
proportion of mitigators in time (3d), time series data from Twitter showing an abrupt transition characteristic of a

tipping event at the red dotted line (4e) from (Bollen et al., 2021).

192 2 Processes and structures in human systems that cause tipping peintsevents in CHES models


https://www.zotero.org/google-docs/?TUZ679
https://www.zotero.org/google-docs/?dZNJ3h

193 In this section, we look at how social processes and structures cause tipping peintsevents. In order to have a better
194 understanding of how these human drivers affect tipping, it is important to understand the basics of

195 medeHingmodeling human systems. Within CHES models, various factors, such as economic incentives,

196 environmental considerations, and social pressures determine how individuals make decisions and interact with the
197 environment. In most of the current medeHingmodeling literature, individuals can choose between two behaviors
198 (also referred to as opinions or strategies), one that is environmentally sustainable (also referred to as mitigation or
199 cooperation) and another that is detrimental to the environment (also referred to as non-mitigation or defection). The
200 perceived advantage of mitigation or non-mitigation relative to the current state of the human and environmental
201 system can be quantified through a “utility function”. Common factors in the utility function are the rate of social
202 learning, which determines the speed of human behavior change relative to environmental processes, social norms,
203 which encourage the status quo or mitigation proportional to its frequency, cost of mitigation, which measures the
204 economic cost of being a mitigator relative to a non-mitigator, and rarity-motivated valuation, which incentivizes
205 mitigation as the environment approaches collapse (Bauch et al., 2016; Farahbakhsh et al., 2022; Tavoni et al.,

206 2012). In most models that use social learning, individuals sample others in the population at a fixed rate and adopt a
207 different behavior if the other behavior has a higher utility, with probability proportional to the difference in utility
208 (Hofbauer and Sigmund, 1998; Schuster and Sigmund, 1983). This can also be formulated in a stochastic setting,
209 where the probability of adopting a neighbor's behavior is a function of the difference in utility between behaviors
210 (Schlag, 1998). Most of the models reviewed in this paper use social learning to represent human behavioral

211 dynamics. There are also CHES models that do not include social learning such as Motesharrei (2014) and

212 Dockstader (2019) where the human population is influenced by its current size and the state of the environment;
213 however, these are outside the scope of this paper.

214

215 Many human behaviors, such as resource extraction and pollution, have direct detrimental impacts on the

216 environment; however, the severity of these impacts is often hard to predict. In many CHES models, small changes
217 in parameters governing human behavior and social processes can lead to the abrupt collapse of sustainable states
218 through tipping peintsevents that can cascade between the human and environmental systems (Bauch et al., 2016;
219 Lade et al., 2013; Richter and Dakos, 2015; Weitz et al., 2016). Additionally, structural elements of the human

220 systems-suehas-the (i.c. an individual’s degree of choice-and=individual, population diversity), as well as how the
221 social system is ergantsedorganized (i.e. through social networks), can affect tipping. These heterogeneous model
222 elements are often only accessible in agent-based models, where humans are represented as individual agents that
223 follow a set of rules. CHES models do not always exhibit tipping points under realistic settings for the human

224 system (Bury et al., 2019; Menard et al., 2021); however, in this review, we focus on models with tipping points.

225 2.1 Coupling strength
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226 Coupling strength (how strongly the subsystems are coupled) can have a significant effect on the occurrence of

227 tipping points in both systems, and the nature of these transitions often depends on whether systems are

228 ‘nput=limitedhuman-extraction’ or ‘eutput=hmited==tn-mput=timited-systemshuman-emission’ (Box 1.2). In

229 human-extraction systems (Box 1.2b), humans extract from an environmental resource such as in forest and fishery
230 models. Stronger coupling in input=hmitedhuman-extraction models often leads to negative environmental

231 eellapseoutcomes. A common social parameter representing the coupling strength in these systems is the extraction
232 effort of humans, which when increased past a critical threshold, leads to abrupt environmental collapse

233 (Farahbakhsh et al., 2021; Richter and Dakos, 2015; Richter et al., 2013; Schliiter et al., 2016). For eutput=limited=
234 systemshuman-emission systems (Box 1.2¢), where human activity increases levels of harmful outputs, such as

235 pollution and climate models, coupling strength is instead represented by pollution rates. The influence of this

236 coupling is less intuitive than-extraetien-effertin human-emission systems, for example, in lake

237 peHutiencutrophication models as the pollution ewtput-of mitigators is decreased, pollution levels also decrease until
238 a threshold is reached, heralding a detrimental tipping point where mitigation collapses and pollution then reaches a
239 high level (Iwasa et al., 2010, 2007). This occurs because when the lake water is not very polluted, there is less

240 incentive to be a mitigator and high-polluting behavior becomes a new norm. It is important to note that these

241 models do not account for individuals valuing the environment in a healthy state, for example through the centering
242 of ecosystem services, and the above example may be an artefaetartifact of this assumption. There is a need to shift
243 both our relationship to the environment as well as the assumptions in our models so that inherent value in

244 environmental systems is central in any decision-making, even when the environment is far from collapse. This
245 fundamental valuing of the environment is present in many traditional indigenous belief systems, where

246 relationships to the local natural environment are incorporated and prieritisedprioritized in all aspects of life

247 (Appiah-Opoku, 2007; Bavikatte and Bennett, 2015; Beckford et al., 2010; McMillan and Prosper, 2016).

248 2.2 Rarity-motivated valuation

249 Rarity-motivated valuation represents the extent to which humans increase their mitigative behavior in response to
250 the environmental variable (e.g., forest cover, endangered species population size) nearing a depleted state. Medel=

251

259 restmefor- ’ rres—Hiehevels-ofrar . ivatuation-end l ] s i
253 may-net-be-true-im-empirical-systems=lr-medelsytheln CHES models, this sensitivity of human response to the

254 abundance of the natural resource/population is represented by a ‘sensitivity’ parameter and there are often two

255 critical thresholds in the sensitivity parameter that lead to tipping. Increasing the sensitivity parameter beyond the
256 lower threshold induces a tipping point from a depleted to sustainable environmental equilibrium (Ali et al., 2015;
257 Barlow et al., 2014; Bauch et al., 2016; Drechsler and Surun, 2018; Henderson et al., 2016; Lin and Weitz, 2019;
258 Sun and Hilker, 2020; Thampi et al., 2018; Weitz et al., 2016). The second threshold exists at high values of the

259 sensitivity parameter, wherewhich may be counterintuitive, as one might expect high sensitivity to resource
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260 depletion to lead to more sustainable outcomes. In this case, the sustainable equilibrium is destabiliseddestabilized
261 by overshoot dynamics or a state of chaos in both the human and environmental systems. These dynamics are caused
262 by the human system being too sensitive to changes in the environment, leading to extreme oscillations in both

263 human behavior and the environment, which increases the likelihood of collapse in mitigation and the state of the
264 environment (Bauch et al., 2016; Henderson et al., 2016).

265

266 Rarity-motivated valuation can also be represented by a threshold in the state of the environment, below which

267 humans shift towards sustainable behavior. In a common-pool resource model, lowering this threshold led to a series
268 of tipping points that surprisingly resulted in a higher biomass equilibrium, although the trajectory to this state

269 comes close to environmental collapse. This is in contrast to a high threshold, which leads to lower final biomass;
270 however, the trajectory remains much farther from a depleted environmental state (Mathias et al., 2020). Similarly to
271 high coupling in pollution models, one should be very careful to not interpret these results as stating “too much

272 conservation is detrimental to the environment”. They rest on model assumptions of a reactionary conservation

273 paradigm, where there is less value in conserving when the environment is in a healthy state.

274

10
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Figure #2: Negative feedback between the human and environmental subsystems, suppertsupports convergence to the
same equilibrium regardless of initial conditions (a). With strong majority-enforcing social norms, encouraging either
mitigative or harmful behavior adds a positive feedback loop which makes the coupled system highly dependent on
initial conditions (b). The top row shows the negative feedback loop between emissions and the proportion of
mitigators, where (b) also includes the positive feedback of majority-enforcing social norms. In the middle row,
equilibrium curves are plotted as a function of the maximum emissions of non-mitigators. Black solid lines represent
stable equilibria and the red dotted line represents unstable equilibria. The green and purple curves in the bottom row
are the trajectories for initial mitigation support and emission value given by the stars of the corresponding color in the

upper row.

275 2.3 Social norms

276 Introducing social norms can lead to alternative stable states and thus tipping points (Figure #b2b), although the
277 system dynamics are highly dependent on both the type of social norms and initial conditions. Social norms are

278 informal rules emerging through social interaction that promote and discourage certain behaviors, especially around
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279 how humans relate to one another and the environment (Chung and Rimal, 2016). In models of small groups such as
280 a community of fishers, they are often (rightly) assumed to support mitigative behavior by punishing those who

281 violate norms by over-harvesting (Ostrom, 2000). However, at larger population scales, social norms can support
282 either pro- or anti-mitigation behavior, on account of factors such as pelitietsattenthe politicization of actions

283 relating to environmental, climate, and public health crises (Stoll-Kleemann et al., 2001; Van Boven et al., 2018;
284 Latkin et al., 2022). Unlike a fisher in a small community, for instance, a climate denier may not acknowledge

285 themselves as a ‘defector’ who is harming a public good, but rather view the climate activist as ‘defecting’ against a
286 free society. Thereby, social norms have the ability to encourage behavior that is harmful to both human and

287 environmental well-being, over larger spatial and temporal scales (Bury et al., 2019; Latkin et al., 2022; Menard et
288 al., 2021; Stoll-Kleemann et al., 2001; Van Boven et al., 2018).

289

290 Social norms can be represented as majority-enforcing, incentivizing the behavior of the majority, or

291 mitigation-enforcing, such as sanctions, which only incentivize mitigation, relative to the proportion of mitigators in
292 the current state of the system. In CHES models, increasing the strength of majority-enforcing norms leads to an
293 increased number of regimes as well as bistable (mere-than-ene-stable-statetwo stable states) regimes (Figure +b2b),
294 made up of a single dominant behavior, which is highly dependent on the initial proportion of behaviors in a

295 population (Ali et al., 2015; Barlow et al., 2014; Bauch et al., 2016; Bury et al., 2019; Phillips et al., 2020; Sigdel et
296 al., 2017; Thampi et al., 2018). This occurs because these norms are indifferent to the type of behavior they enforce
297 (i.e. sustainable vs harmful actions), and they act as a double-edged sword that reinforces the status quo through a
298 positive feedback loop, where the dominant behavior becomes more prevalent (Figure #2b). On the other hand,
299 increasing mitigation-enforcing social norms lead to a transition of the environmental system into a sustainable

300 equilibrium (Chen and Szolnoki, 2018; Iwasa et al., 2010; Lafuite et al., 2017; Moore et al., 2022; Schliiter et al.,
301 2016; Tavoni et al., 2012), sometimes through an intermediate regime of oscillatory dynamics (Iwasa et al., 2007).
302 In a lake pollution model, along with decreasing the likelihood of environmental collapse, this increase in

303 mitigation-enforcing social norms also led to the appearance of alternate stable states (Sun and Hilker, 2020). These
304 findings show that stronger social norms lead to a greater number of tipping points; however, the trajectories brought
305 about by these tipping points are highly dependent on the type of social norms (mitigation- or majority-enforcing) as

306 well as the current dominant social behavior.

307 2.4 Cost of mitigation

308 Reducing the cost of mitigation often leads to beneficial tipping points; however, these tipping points can depend on
309 the rate of social change as well as social norms. Although it is intuitive that reducing costs or increasing economic
310 incentives associated with mitigative action will have beneficial impacts on the environment, CHES models also
311 show that this beneficial change can occur through tipping points (Bauch et al., 2016; Drechsler and Surun, 2018;
312 Milne et al., 2021; Moore et al., 2022; Sigdel et al., 2017; Thampi et al., 2018). In coupled social-epidemiological
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models, where the environmental state is the proportion of infected individuals, mitigation cost is represented
through the economic cost or perceived risk of vaccination. Decreasing this cost leads to beneficial tipping points
from a state with low pro-vaccine opinion and vaccine coverage to high pro-vaccine opinion and vaccine coverage
(Phillips et al., 2020). Conversely, increasing this cost leads to a state of high infection and low vaccination. This
detrimental tipping point occurs in the human system at lower levels of vaccination cost when majority-enforcing
social norms are low, leading to widespread anti-vaccine opinion before the infection becomes endemic again
(Phillips and Bauch, 2021). Decreasing profits of individuals engaging in non-mitigative behavior can also lead to
an abrupt shift to a state of pure mitigators (Shao et al., 2019; Wiedermann et al., 2015); however, this transition can
be dependent on a low rate of social change (Wiedermann et al., 2015). Other models demonstrate tipping in the
other direction where increasing non-mitigators' payoff brings about a regime shift to pure non-mitigation and
environmental collapse (Richter et al., 2013; Tavoni et al., 2012). Similarly, a common-pool resource model that
uses machine learning in a continuous strategy space shows tipping to a depleted resource regime when the costs
associated with harvesting are too low (Osten et al., 2017). An analog to mitigation cost is taxation rates, which
resource users pay towards public infrastructure mediating resource extraction. In a model where individuals can
choose to work outside of the system, pushing taxation rates to high or low levels tips a sustainable regime where
institutions are at full or partial capacity to a collapse of institutions (Muneepeerakul and Anderies, 2020). In another
model, only individuals with high extractive effort are subject to taxation, and increasing this taxation rate brings
about a beneficial tipping point to a sustainable regime. However, the size of this sustainable region in the parameter
space is smaller with multiple governance nodes evolving through social learning compared to a single taxing entity
(Geier et al., 2019). However the cost of mitigation is represented, increasing the relative economic incentive of

mitigation behavior has the potential to bring about beneficial tipping to a sustainable regime.

2.5 Rates of social change and time horizons

Human and environmental change often occur on different timescales and their relative rates of change play a major
role in the long-term dynamics of the coupled system and whether or not tipping points will occur. Increasing the
rate of social change (in most cases, social learning) leads to collapse in mput=hmitedhuman-extraction models due
to overshoot dynamics=Wshereas, whereas, in eutput=hmitedhuman-emission models, the impacts of the rate of
social change are more model-specific. In both types of models, increasing the time horizon in decision-making is
beneficial. In CHES models, these rates of change can be controlled by the rate of social learning which determines
how frequently individuals interact and consequently, the pace of behavioral change within a population. Changes in
the speed of the human system can have very different outcomes depending on the nature of
human-envirenmentatenvironment coupling (Box 1.2). In mput=lmitedhuman-extraction models, increasing the
speed of the human system relative to the environment often destabiltsesdestabilizes sustainable equilibria, leading
to oscillations in both systems and, in many cases, the abrupt collapse of the environmental system. These overshoot

dynamics occur as humans change their behavior too quickly to allow for the environment to stabihsestabilize. On
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347 the other hand, decreasing the relative speed of human dynamics usually brings about beneficial tipping peintsevents
348 leading to a state of high forest cover (Figueiredo and Pereira, 2011), and supporting mitigators for a

349 generalisedgeneralized resource (Hauert et al., 2019; Shao et al., 2019). These beneficial effects have also been

350 observed in adaptive network models where individuals imitate their neighbors depending on the profitability of

351 their strategics<Barfuss-et-al-20+F-Geter-et-als20+9=Wiedermann-et-al20+5y=Fhe. In these models, the reduced
352 speed of social change leads to beneficial outcomes as the resource is allowed more time to stab#hsestabilize as

353 decisions regarding extractive levels occur (Barfuss et al., 2017; Geier et al., 2019; Wiedermann et al., 2015). Other
354 relative rates of change can also significantly influence the existence of a sustainable regime. For example, in an

355 agricultural land use model, increasing the speed of agricultural expansion and intensification relative to human

356 population growth leads to the collapse of both the natural land cover and human population (Bengochea Paz et al.,
357 2022).

358

359 In eutput=himitedhuman-emission models, increasing the speed of social interaction is more model-specific. In some
360 cases, such as forest-pest and climate systems, increasing the speed of the human system leads to better mitigation of
361 environmental harms in the short term. However, long-term sustainability often requires additional social

362 interventions such as reducing mitigation costs and increasing levels of environmental concern (Ali et al., 2015;

363 Barlow et al., 2014; Bury et al., 2019). In lake pollution models, higher relative speeds of social dynamics can

364 destabilisedestabilize low-pollution equilibria, leading to oscillations and eventually a polluted state with no

365 mitigation (Iwasa et al., 2010, 2007; Sun and Hilker, 2020). This is a similar phenomenon to the overshoot dynamics
366 that occur when the human system is extremely reactive to the environment discussed in the case of rarity-motivated
367 valuation; however, these outcomes are highly dependent on other social parameters. In a related model, with no

368 social hysteresis, represented by mitigation-enforcing social norms, and strong environmental hysteresis, represented
369 by a high phosphorus turnover rate, fast social dynamics could stabtlisestabilize oscillations, leading to a

370 low-pollution equilibrium (Suzuki and Iwasa, 2009). The emergence of oscillations under low rates of social

371 learning, which was not observed in similar models is likely due to the environmental system being in a bistable

372 state under strong hysteresis, such that even slow changes in the human system could tip the lake system inteto an
373 alternative stable state.

374

375 When looking at relative rates of change in human and environmental systems, it is clear that the pace of the human
376 system can be more readily influenced by interventions. This suggests an urgent need to further study the

377 relationship between social and ecological timescales across a wide range of coupled systems to aid in sustainable
378 policy-making decisions (Barfuss et al., 2017). Additionally in many models, the length of time horizons that

379 humans take into account when deciding how they interact with the environment has a significant beneficial effect
380 on conserving natural states and mitigating harmful action (Barfuss et al., 2020; Bury et al., 2019; Henderson et al.,

381 2016; Lindkvist et al., 2017; Miiller et al., 2021; Satake et al., 2007). A high degree of foresight in decision-making
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is a fundamental basis for many indigenous belief systems across the world. One manner in which this shows up is
in land stewardship where care for the environment is prioritized as a means to ensure the health of many

generations in the future (Appiah-Opoku, 2007; Beckford et al., 2010; Ratima et al., 2019).

2.6 Social traits

The inclusion and distribution of traits within agents can play a large role in determining the occurrence and types of
tipping points within the coupled system, where nereasing=the-modetedincreasing the modeled heterogeneity in
social traits can lead to more tipping and also promote sustainable outcomes (Box 1.3). The majority of models
discussed in the previous section only allow humans to choose between two strategies; mitigation and
non-mitigation. The inclusion of additional strategies, determining how individuals interact with the environment
and each other, can alter the potential for tipping points. For example, a common-pool resource model included a
third strategy of conditional mitigation (Richter and Grasman, 2013). Under this additional strategy, agents act as
mitigators until the number of non-mitigators reaches a certain threshold, where they then shift their behavior to
non-mitigation. The addition of this third strategy alters tipping dynamics in opposite ways, depending on the value
of maximum harvesting efforts. When efforts are high, the system is less prone to tipping; however, when they are
low, tipping points are more likely to occur. This third strategy also affects tipping points by masking internal social
dynamics, leading to more abrupt transitions, even when the system appears to be stable. This occurs when
mitigators gradually change their strategy to conditional mitigators which can go unnoticed as their interaction with
the environmental system does not change. However, when non-mitigation reaches high enough levels, there is a
cascade of conditional mitigators choosing non-mitigation, in an example of herd behavior, which puts abrupt
harvesting pressure on the resource. Another three-strategy model, where agents are partitioned by resource
extraction rates, contrasts dynamics with and without the trait of environmental concern (Mathias et al., 2020). In the
absence of this trait, the human system either tips to a state of high-extraction or low-extraction behavior, triggering
either a detrimental or beneficial environmental tipping point, respectively. Including environmental concern leads
to an increased number of cascading tipping points between both human and environmental systems. In a coupled
agricultural model, where human traits include management strategies that respond to socio-economic and climate
conditions, decreasing the diversity of these traits among agents in the system transitions the system from a
sustainable state with high food production, landscape aesthetics, and habitat protection to a state with low habitat
protection (Grét-Regamey et al., 2019). As there are relatively few models that explicitly compare the complexity of
social traits and their effect on tipping points, it is difficult to say with certainty whether higher complexity will
increase the likelihood of tipping points in all CHES and whether this is due to a higher dimensionality of the
system. However, thesethe commonalities between models showing the effects of social trait complexity are worth

highlighting and will be put to the test with future CHES models and empirical work.

2.7 Social networks
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415 In many agent-based CHES models, individuals are structured on a social network, where they wswaly-enty=interact
416 with others whom they share a link with. These models demonstrate how a higher number of connections in social
417 networks increases the potential for tipping points, often through the emergence and growth of a=bistable

418 regimercgimes (Holstein et al., 2021; Sugiarto et al., 204Fas20452015, 2017a) (Box 1.3). Additionally, the

419 distributions of these connections play an important role. For example, in networks with the same average number of
420 connections, higher heterogeneity of connections among nodes leads to tipping points occurring earlier under certain
421 social (Ising model) dynamics (Reisinger et al., 2022). The distribution of resources in

422 human-emvirenmentalenvironment networks also affects the potential for abrupt environmental collapse. This often
423 occurs in CHES network models where both human and environmental dynamics occur on a multi-layer network,
424 representing partitioned or private resources. Resource heterogeneity can be controlled through the distribution of
425 carrying capacities or the amount of resource flow between nodes in the network, where higher flows lead to

426 homogeneous resource distributions. In both cases, increasing this heterogeneity can tip the system to a state of low
427 extraction and high sustainability. Heteregeneityln one model, heterogeneity in carrying capacities increases the

428 likelihood of sustainable harvesters extracting from a resource with a large capacity, which they can maintain at high
429 levels (in contrast to non-sustainable harvesters who extract at a higher rate), eventually convincing neighboring

430 nodes to imitate their strategy (Barfuss et al., 2017). Heteregenettyln another model, heterogeneity through lower
431 resource flows also leads to high-extraction nodes over-exploiting their resource and losing profits in the long run,
432 de-incentivizing neighbors to imitate their behavior. Interestingly, optimal resource flow, which minimtsesminimizes
433 the likelihood of resource collapse is found to be close to the critical threshold of resource flow, above which the
434 coupled system collapses. As optimal resource flow decreases the likelihood of collapse by supplementing resources
435 harvested at high levels, this confers an advantage to high resource extraction. Increasing past optimal levels leads to
436 similar resource levels among high and low-extraction nodes, resulting in higher profits from high-extraction nodes,
437 incentivizing the entire human system to eventually choose the high-extraction strategy (Holstein et al., 2021).

438

439 Heterogeneity of human interaction can be quantified through homophily, the extent to which alike individuals

440 interact. Homophily can play a large role in the occurrence and behavior of tipping points in CHES models

441 occurring on social networks, often having a detrimental effect on the environmental system. In a common-pool

442 resource model with two distinct communities, increasing segregation by lowering the probability that agents in

443 separate communities will have a link, softens the abruptness of a single detrimental tipping point compared to when
444 the communities are well-mixed. This is due to the occurrence of multiple intermediate tipping points within each
445 segregated community; however, mereasedhigher segregation adds more hysteresis to the system increasing the

446 difficulty of reversing this transition and returning to a sustainable state (Sugiarto et al., 2017b). In a public goods
447 game medelingmodeling climate change mitigation, where humans are partitioned into rich and poor agents, a

448 transition to group achievement of mitigation goals occurs at a lower perceived risk when there is no homophily and

449 agents are influenced by others from both economic classes equally (Vasconcelos et al., 2014). Another
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450 human-climate model that included wealth inequality displayed an abrupt transition to lower peak temperature

451 anomalies when homophily between economic classes approached zero (Menard et al., 2021).
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Figure 23: Mean proportion of nodes that are mitigators for network model (a) and ODE model (b). ¢ is the rewiring
probability and T is the time between social interactions. ¢, is the lower threshold and ¢, is the upper threshold,

above which a fragmentation regime occurs. From (Wiedermann et al., 2015)

452

453 Social networks are rarely static and their ability to evolve over time is represented in adaptive network models

454 where agents can break existing social links and create new ones, a process called “rewiring”. Often this rewiring is
455 homophilic, meaning that agents are more likely to create a new social connection with others who share a similar
456 behavior. Common adaptive network CHES models have nodes representing e-renewable-reseurees-stoekrencwable
457 resource stocks with an associated extraction level which can adopt a high extraction or low extraction level through
458 imitating neighbors. These models show that the level of homophilic rewiring can trigger regime shifts at both low
459 and high levels, where intermediate ranges correspond to a sustainable equilibrium. As agents can either choose to
460 rewire or imitate their neighbor, a low level of rewiring corresponds to a high speed of social interaction, which as
461 discussed in Section 2.5 can lead to detrimental tipping points. On the other hand, although high-rewiring leads to
462 slower social learning, it also brings about a fragmentation regime where social dynamics are dominated by

463 homophily and the network fragments into components based on strategy type, which makes widespread mitigation
464 infeasible (Barfuss et al., 2017; Geier et al., 2019; Wiedermann et al., 2015) (Figure 23). CHES models with social
465 networks are still relatively new and lack diversity in how they are formulated. For example, regarding the tipping

466 points related to rewiring social links, the lower threshold may be caused by increased social learning since in all
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467 models agents can either rewire or imitate, but not both. There is still much to learn through isolating the effect of

468 rewiring as well as exploring a wide array of different model formulations of CHES on social networks.

469 3 Identifying early warning signals in-theof tipping events in CHES

470 Although dynamical models can offer qualitative insight into potential trajectories of CHES resulting from specific
471 interventions, it is more difficult to use them to generate precise and reliable predictions. Given the potential for
472 severe environmental tipping points in the coming decades, it is extremely useful to be able to predict these abrupt
473 shifts without complete mechanistic knowledge of the system. The ability to predict tipping pemntsevents with

474 limited data can allow policymakers to have more time preparing for future disasters, and given enough warning and
475 political will, an opportunity to avoid them or mitigate their severity. Rapidly growing research in early warning
476 signals (EWS) offers tools to monitor empirical time series data and warn of future tipping peintsevents that are
477 likely to occur (Bury et al., 2021; Dakos et al., 2012, 2015, 2008; Kéfi et al., 2014; Lapeyrolerie and Boettiger,

478 2021). Although much of the work has been conducted on synthetic data, there are many studies that successfully
479 predict historical tipping pemtsevents in both empirical human and environmental time series data such as the 1987
480 Black Monday financial crash (Diks et al., 2019) as well as abrupt temperature shifts from paleoclimate datasets

481 (Dakos et al., 2008).

482 3.1 Recent advances for detecting early warning signals

483 Much research has been done in the past few decades to develop tools for EWS using both empirical and synthetic
484 time series data (Bury et al., 2021; Dakos et al., 2012, 2015, 2008; Kéfi et al., 2014; Lapeyrolerie and Boettiger,

485 2021). Originally motivated by critical slowing down in bifurcation theory, where systems approaching a tipping
486 point show a slower recovery to equilibrium under perturbations, generic EWS measure trends in this “slowing

487 down” (Scheffer et al., 2009). The most commonly used methods compute the lag-1 autocorrelation and variance of
488 the residuals from detrended time series data. Other widely used methods involve metrics such as skewness,

489 measuring the asymmetry of fluctuations over time, and kurtosis, representing the likelihood of extreme values in
490 the time series data. A phenomenon known as flickering occurs when there is sufficient noise to rapidly force the
491 system between alternate stable states. In these cases, an increase in skewness and kurtosis is observed (Dakos et al.,
492 2012). As lag-1 autocorrelation does not account for correlation beyond a single time step, power spectrum analysis
493 has been used to look at changes in complete spectral properties, finding higher variations at low frequencies to

494 commonly occur before a tipping point (Dakos et al., 2012; Scheffer et al., 2009). In spatial systems, many EWS are
495 similar to those used in well-mixed systems, while also accounting for spatial variability. For example, Moran’s I is
496 a spatial analog of lag-1 autocorrelation, which measures the correlation between neighboring nodes in a network

497 (Kéfi et al., 2014).
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Figure 34: Generic EWS (second and third row) as well as deep learning EWS (bottom row) for time series generated
by two ecological models exhibiting different types of bifurcations (top row); fold (left), Hopf (middle), and transcritical
(right). As well as being more reliable, deep learning EWS can also distinguish between the type of bifurcation being
approached. In the bottom row, the DL algorithm gives probabilities for the occurrence of fold (purple), Hopf (orange),

or transcritical (blue) bifurcations. Image taken from (Bury et al., 2021).

498 Numerous spatial ecological systems exhibit patterns mof patchiness preceding a tipping point. For example, in

499 drylands, spotted vegetation patterns are hypethesisedhypothesized to be an EWS for the system approaching

500 desertification (Kéfi et al., 2014). Coupled human-epidemiological models also show that spatial properties in the
501 distribution of opinions on a social network offer potential EWS for the onset of disease outbreaks. Approaching this
502 regime shift, the number of anti-vaccine clusters increases, and very close to the transition point, these communities
503 coalesce into larger groups (Jentsch et al., 2018; Phillips et al., 2020). These clusters are quantified using a number

504 of metrics, such as an increase in modularity as well as the mean number, size, and maximum size of communities
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505 and pro-vaccine echo chambers (Phillips and Bauch, 2021). This is also in agreement with previous work done in
506 percolation theory showing that phase transitions follow a breakup of connected components on the network

507 (Newman, 2010).

508

509 One downside to the generic metrics discussed above is that they have the potential to fail in the presence of large
510 amounts of noise where transitions can occur far from their analytically derived tipping point. A technique called
511 dynamical network markers increases the dimensionality of the time series by transforming it from state variables to
512 probability distributions of the mean and variance over a given window of time. This reduces the magnitude of noise
513 in each dimension and in approaching a tipping point, one dominant group of variables will show a drastic increase
514 in variance and correlation between other variables within that group. At the same time, the correlation between one
515 variable in this dominant group and others outside the group will decrease. This technique has shown success with
516 empirical data, such as predicting critical transitions in time series data for a eutrophic lake as well as the bankruptcy
517 of Lehman Brothers (Liu et al., 2015), and flu outbreaks (Chen et al., 2019). Dynamical network markers have also
518 been used on spatial systems such as those occurring on social networks through the use of hierarchical network

519 representations. Here, networks are transformed into binary trees where leaves are the nodes from the original

520 network and branches group nodes together at multiple resolutions. Through this hierarchical model, dynamical

521 network markers use these multi-scale communities as the groups of variables that are analysedanalyzed (Li et al.,
522 2023). This spatial technique offers a novel method for predicting tipping peintsevents for CHES using human data
523 occurring on complex social networks.

524

525 A very recent addition to the EWS toolkit uses concepts from statistical physics such as average flux, entropy

526 production, generalisedgencralized free energy, and time irreversibility to predict tipping points in a shallow lake
527 model much earlier than generic methods such as autocorrelation and variance, showing promise for use in real-time
528 monitoring (Xu et al., 2023). Additionally, the field of machine learning has motivated data-driven approaches to
529 EWS which do not explicitly make use of any statistical metrics in the time series data. Instead, deep learning

530 algorithms are trained on large synthetic datasets using models that have and have not approached tipping points. In
531 the majority of cases, these algorithms have performed significantly better at predicting tipping peintsevents than
532 generic EWS indicators when tested on empirical datasets that exhibit abrupt transitions (Bury et al., 2021; Deb et
533 al., 2022) (Figure 34). Deep learning algorithms are also able to distinguish between different types of bifurcations
534 as they are being approached which can offer vital information regarding the potential for catastrophic collapse in

535 CHES.

536 3.2 Social data for early warning signals

537 In CHES models, the strength of EWS from environmental data has been shown to be muted compared to EWS

538 from environmental systems not coupled to a human system (Bauch et al., 2016) or the same system with weak
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539 coupling between the human and environmental subsystems (Richter and Dakos, 2015). This is likely due to the

540 effects of human behavior acting to mitigate variability in the environmental system, for example, rarity-motivated
541 valuation creates a negative feedback loop where incentives to mitigate increase as the environment becomes further
542 depleted, serving as a mechanism to avoid collapse. The muting of EWS provides a unique challenge for monitoring
543 tipping peitscvents in CHES using environmental data, especially as they occur more frequently in these coupled
544 systems as discussed in Section 2. There are a small number of studies that have directly compared the strength and
545 efficacy of EWS between various state or auxiliary variables in CHES models. In these studies, generic EWS from
546 data in the human system were shown to be the only reliable indicators of the coupled system approaching a tipping
547 point. Examples of human data used include the fraction of conservationists in a forest cover model (Bauch et al.,
548 2016), average profits by resource harvesters, and catch per unit effort common-pool resource models (Lade et al.,
549 2013; Richter and Dakos, 2015). In agreement with generic methods, a state-of-the-art machine learning algorithm
550 for EWS showed higher success in detecting tipping peintsevents generated from a coupled epidemiological model
551 using pro-vaccine opinion in the human system compared to total infectious in the epidemiological system (Bury et
552 al., 2021). It is possible that the state variable most sensitive to the forcing parameter may exhibit the strongest

553 EWS, as seen in experimental work on tipping points in a lake food web. In this system, data from the species that
554 had a direct trophic linkage to a driver of the tipping peintevent (predators added to the food web) exhibited EWS
555 earlier than those that were farther removed from the driver (Carpenter et al., 2014). If this is the case, human

556 drivers of tipping points would most directly affect the human system, and EWS should still be stronger using social
557 data.

558

559 The improved reliability of EWS from social data demonstrated through CHES models shows a significant promise
560 for monitoring resilience in CHES through the analysis of socio-economic data (Box 1.4). This confers a practical
561 advantage as socio-economic data is-eften-mere-frequentiy-collected-and-readily-available-than-environmental-data-
562 (Haieles-et-als20+6availability is growing faster than ecological data (and perhaps even environmental data despite
563 the growth of publicly available satellite data) on account of the era of digital social data (Ghermandi and Sinclair,
564 2019; Hicks et al., 2016; Lopez et al., 2019; Salath¢ et al., 2012). Some examples of this are monitoring profits tied
565 to resource extraction as well as using sentiment analysis on social media data, such as the number of tweets in a
566 given area raising concern over the health of a coupled environmental system. Furthermore, citizen science not only
567 generates environmental data but also provides social metadata through the participation of users who monitor

568 specific areas. Leveraging existing platforms like CitSci.org, we can use this data to estimate trends in

569 conservationist frequency over time (Wang et al., 2015). This approach allows for the implementation of real-time
570 monitoring of environmental systems using data that is currently being generated, reducing the need for extensive
571 knowledge or complex mechanistic models of the system. With the potential social data offers for use with EWS, it
572 is important to note that much of the traditional social data, often conducted through national or regional surveys, do

573 not provide fine-grained spatial or temporal resolution. On the other hand, novel methods that use social media data
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574 can solve the resolution issue, but may not accurately represent the population it is being used to model (Hargittai,
575 2020). These challenges may be addressed through a kybrtdcompound approach that uses hybrid time series

576 generated from multiple types and sources of social data (Rosales Sanchez et al., 2017).

577 4 Conclusion and future directions
578 4.1 Summary of main points

579 §

580 From a wide range of examined theoretical models, we are able to gain insight into human drivers that lead to

581 tipping peintsevents in CHES systems. Many social interventions, such as reducing mitigation costs and extractive
582 effort, or increasing the time horizon in decision-making, lead to beneficial tipping peintsevents, regardless of the
583 system medeHedmodeled. The beneficial effect of these interventions is intuitives; however, non-linear responses
584 manifested as tipping peintsevents may not be as evident. Mitigation costs can be reduced through subsidies for land
585 preservation and green technology, and extraction effort through limits on land development and the expansion of
586 protected natural areas (i.e. the Haudenosaunee-led protection of the Haldimand Tract) (Forester, 2021), and by

587 increasing time horizons through passing long-term legislation that centers the well-being of human and

588 environmental systems such as the Green New Deal (Galvin and Healy, 2020). These policy interventions become
589 more difficult to implement at large scales, and models that are tailored to global coordination problems can give us
590 insight into how institutions can work together to rapidly mitigate looming threats, such as the current climate crises
591 we are facing (Karatayev et al., 2021).

592

593 Other human behaviors and social processes are much more nuanced and system-specific in how they affect tipping
594 points. For example, models show that rarity-motivated valuation can act to detrimentally tip the environmental

595 system into a depleted state when it crosses both an=appera lower and (counterintuitively) a=feweran upper threshold
596 value. This was illustrated most clearly in the example of forest cover in the paper by Bauch et al. (2016). Social
597 norms, especially when majority-enforcing, increase the likelihood of tipping points through the emergence of

598 bistable regimes that are made up of both sustainable and unsustainable environmental equilibria. The extent of

599 coupling between the human and environmental system as well as the speed of social change relative to

600 environmental change can have different effects depending on whether the model is input=er

601 ewtput=lmitedhuman-extraction or human-emission. Interventions related to human valuation and social norms are
602 much more difficult to implement as they require a deeper mechanistic understanding of how to influence social
603 dynamics and may also have ethical considerations.

604

605 The models we reviewed also show that greater structural complexity via the number and diversity of human traits

606 as well as the number of social connections can increase the potential for tipping points and mask social dynamics
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607 making these transitions much harder to predict. The medetingmodeling literature has only explored a small sliver
608 of the space of possible choices regarding assumed social structure and the types of environmental models coupled
609 to them. For example, the vast majority of models only allow for a binary choice in human behavior and adaptive
610 social networks have only recently been incorporated, with limited mechanisms of re-wiring and types of coupled
611 environmental systems. Consequently, we still have much to learn on how shifting underlying social structures acts
612 as a driver of tipping petntscvents. This is especially true in eutput=himitedhuman-emission models which are

613 important to improving our understanding of how our social structures affect pressing global issues such as pollution
614 and climate change. Even if we include more diverse and realistic social structures and processes, CHES are

615 composed of many non-linear feedbacks and contain high levels of uncertainty, and the reality is that we may not be
616 able to have a complete mechanistic representation through models. EWS from empirical data show great potential
617 in predicting tipping peintsevents without requiring a full understanding of the system being monitored. There have
618 been many advances in using state-of-the-art machine learning algorithms to provide accurate EWS from 1-D time
619 series (Bury et al., 2021; Deb et al., 2022), and very recent work is now developing similar techniques to predict
620 tipping peintsevents from spatial data (Dylewsky et al., 2022). As synthetic data from models have shown the value
621 of EWS from social data, it is likely that applying these techniques to diverse and hybrid empirical social datasets

622 can vastly improve our ability to predict tipping peintsevents caused by human drivers in the future.

623 4.2 Future work in CHES medeHlingmodeling

624 There are many social phenomena that are not commonly included in CHES models, yet may be important in

625 furthering our understanding of tipping points within these systems. We know that inequality in human systems

626 plays a large role in individuals’ risk perception and ability to engage in pro-environmental behavior (Gibson-Wood
627 and Wakefield, 2013; Pearson et al., 2017; Quimby and Angelique, 2011; Rajapaksa et al., 2018) and have

628 mentioned two CHES models that incorporate wealth inequality in a human-climate system (Menard et al., 2021;
629 Vasconcelos et al., 2014). However, more studies explicitly investigating the role of inequality could offer some
630 valuable insight into interventions that can be more effective in benefiting both the environment and the most

631 vulnerable in human systems. This could be complemented by incorporating social biases where perceptions of risk
632 are linked to an individual's socio-economic status, and detrimental environmental outcomes are experienced

633 disproportionally by vulnerable communities as is commonly observed globally (Banzhaf et al., 2019; Boyce, 2007).
634 Future models could allow for alternatives to the common medelingmodeling assumption where individuals act in
635 their own self-interest, for example by incorporating other-regarding preferences into utility functions so that

636 individuals value their neighbors' well-being along with their own (Dimick et al., 2018). These models could also
637 look at grassroots redistribution of wealth allowing us to explore the effects of alternative social value systems on
638 the environment (Tilman et al., 2018).

639
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Stochasticity (noise), especially regarding drivers of tipping points can significantly affect system dynamics
including when tipping points occur. Although many CHES models are deterministic, recent work has shown that
increasing noise can lead to earlier tipping (Willcock et al., 2023), or in other cases, increase the duration of time the
environmental system can persist before becoming extinct (Jnawali et al., 2022). These contradictory results warrant
further work in understanding how different types of noise and their magnitude within drivers of tipping
pemtscvents affect the resilience of these systems. With stochasticity comes uncertainty, and in real-world systems,
it is impossible to know with precision the extent of social change required to bring about a beneficial or avoid a
detrimental tipping point. This uncertainty around our knowledge of system thresholds adds an additional challenge
in both agreeing upon and following through with policy that promotes sustainable futures while taking into account
potential tipping points. Experimental games have shown that high threshold uncertainty can promote the collapse of
a shared resource, often through an increase in free-riding behavior (Barrett and Dannenberg, 2014, 2012). On the
other hand, field experiments in fishing communities have shown that high uncertainty can promote cooperation and
sustainable resource use (Finkbeiner et al., 2018; Rocha et al., 2020). Theoretical models show that increased
uncertainty can lead to increased mitigative behavior if the shared resource is highly valueds; however, for
low-valued resources, increased uncertainty can deter mitigation, putting the persistence of the shared resource at
risk (Jager et al., 2000; McBride, 2006). Uncertainty around thresholds is unavoidable, further motivating the need
to offer additional incentives for mitigative action on institutional scales, rather than solely the threat of
environmental collapse. In systems where uncertainty can promote mitigative action, increased communication and

awareness campaigns around this threshold uncertainty could be useful to incorporate into policy.

This review has focused primarily on the effects of single driverss; however, research on multiple co-occurring
human drivers of tipping peintsevents, while more analytically challenging, could offer a holistic understanding of
how these drivers interact. A recent study has shown that multiple drivers can both reduce the time until tipping or
lead to a tipping point that would not occur with a single driver (Willcock et al., 2023) and there is already a large
body of empirical work exploring the diversity of these drivers which can be used to inform future CHES models
(Jaureguiberry et al., 2022; Maciejewski et al., 2019; Millennium Ecosystem Assessment, 2005). Finally, as the
majority of the studies in medeHingmodeling tipping points have focused on slow gradual changes in the driver, fast
changes require further research as they can exhibit very different tipping behavior (Ashwin et al., 2012). CHES
models ubiquitously exemplify the phenomenon of tipping points, which often occur through drivers in the human
system. Although these models offer valuable insight in understanding key feedbacks and qualitative behavior, their
predictive power is limited. Additionally, as many model findings can depend on the type of system
medeHedmodeled as well as assumptions in the model formulation, translating this work into policy remains a
significant challenge. However, further work in both diversifying model systems and assumptions paired with
research in universal real-time indicators of EWS shows considerable promise in both improving our understanding

and predicting human drivers of tipping peintsevents in the environment.
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