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 Abstract.  Mathematical models that couple human behavior  to environmental processes can offer valuable insights 

 into how human behavior affects various types of ecological, climate  ,  and epidemiological systems.  In many 

 coupled human-environmental systems with tipping points, gradual  This review focuses on human drivers of tipping 

 events in coupled human-environment systems where  changes to the human system can lead abruptly to desirable or 

 undesirable new human-  environmental  environment  states. We use snowball sampling  from relevant search terms  to 

 review the  modelling  modeling  of social processes–such as social norms and rates of social change–that are shown to 

 drive tipping  points  events  , finding that many affect the coupled system depending on the system type and initial 

 conditions. For example, tipping points can manifest very differently in  input- versus 

 output-limited  human-extraction versus human-emission  systems. Some potential interventions, such as reducing 

 costs associated with sustainable behavior, have intuitive results. However, their beneficial outcomes via less 

 obvious tipping  point behavior  events  are highlighted. Of the models reviewed, we found that greater structural 

 complexity can be associated with increased potential for tipping  points  events  . We review generic and 

 state-of-the-art techniques in early warning signals of tipping  points  events  and identify significant opportunities to 

 utilise  utilize  digital social data to look for such signals. We conclude with an outline of challenges and promising 

 future directions specific to furthering our understanding and informing policy that promotes sustainability within 

 coupled human-  environmental  environment  systems. 

 Non-technical summary.  Mathematical models that include  interactions between humans and the environment can 

 provide valuable information to further our understanding of tipping points. Many social processes such as social 

 norms and rates of social change can affect these tipping points in ways that are often specific to the system being 

 modelled  modeled  . Higher complexity of social structure can increase the likelihood of these transitions. We discuss 

 how data is used to predict tipping  points  events  across many  coupled  systems. 

 1 Introduction to tipping points in coupled human-  environmental  environment  systems models 
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 Humans are facing environmental catastrophes of their own making, like climate change and biodiversity declines, 

 at local and global scales  ,  and yet avoiding these catastrophes still poses complex challenges for sustainable 

 behavior and policy interventions  (Steffen et al.,  2017)  . Traditionally, mathematical models of environmental 

 systems have represented human impacts through fixed, static parameters or functions independent of the 

 environment’s current state  (Binford et al., 1987; Bosch, 1971; Chaudhuri, 1986; Getz, 1980)  , and these models can 

 be useful to inform optimal levels of sustainable extraction for short timescales. However, for longer timescales, 

 where human dynamics can evolve, it may be necessary to include human behavior endemically in the 

 modelling  modeling  framework to allow for human-  environmental  environment  feedback to occur  (Bauch et al., 

 2016; Innes et al., 2013; Lade et al., 2013; Schlüter et al., 2012)  . Coupled human-  environmental  environment  system 

 (CHES) models combine environmental (e.g., ecological, epidemiological, and climate) models with human 

 behavior and population dynamics  (Bury et al., 2019;  Carpenter et al., 2009; Farahbakhsh et al., 2022; Innes et al., 

 2013; Lade et al., 2013; Phillips et al., 2020; Sethi and Somanathan, 1996)  .  The human and environmental 

 subsystems of the coupled system have two-way (positive and/or negative) feedback, such that changes in each 

 subsystem influence one another. For example, in Innes  (2013)  , the amount of forest cover influences the proportion 

 of the population that conserves forest ecosystems  For example, in Innes  (2013)  , the amount of forest cover 

 influences the proportion of the population that conserves forest ecosystems. The influence of each subsystem on 

 one another often occurs as two-way (positive and/or negative) feedback loops. In a positive (self-reinforcing) 

 feedback loop, variable ‘A’ causes an increase in variable ‘B’ which then causes an increase in ‘A’. In a negative 

 feedback loop, ‘A’ causes an increase (respectively, decrease) in ‘B’ which causes a decrease (respectively, increase) 

 in ‘A’  . The inclusion of these feedbacks leads to increased diversity in the qualitative behavior of the system, such as 

 whether the long-term dynamics converge to a sustainable or depleted environmental state, or cycle over time. 

 Negative feedback promotes a return to equilibrium (Figure  1a  2a  ) and can increase the system's capacity to respond 

 to disturbances and adapt in ways that allow the system to maintain the function of social and ecosystem services, 

 which is sometimes referred to as “resilience”  (Folke,  2006)  . 

 Human-  environmental  environment  negative feedback loops via processes such as public concern pressuring 

 governments to introduce environmental legislation can be powerful and there are many historical examples of it 

 occurring  (Dunlap, 2014; Grier, 1982; Mather and Fairbairn,  2000; Stadelmann-Steffen et al., 2021)  . Forest cover  in 

 Switzerland doubled, following an all-time low in the first half of the 19th century  . This was  brought about by  rapid 

 population growth and early industrialisation. Wood shortages and floods led to public concern, triggering  public 

 concern responding to food shortages and floods, which triggered  local regulation, the formation of the Swiss 

 Forestry Society, and the first federal forestry law enacted in 1876  that in turn caused a recovery of forest cover 

 (Mather and Fairbairn, 2000)  . Similarly, the bald eagle population in North America recovered significantly after the 

 banning of DDT by the EPA in 1972. This was instigated by public outcry following the publication of Rachel 

 Carson’s  A Silent Spring  in 1962 which linked DDT in the environment to low reproduction of birds and their 
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 declining population  (Dunlap, 2014; Grier, 1982)  . In both cases,  the  gradual recovery of the population was not 

 brought about simply by governmental legislation. There were  also  strong movements in the public and scientific 

 spheres, directly responding to perceived environmental risk which pressured governing bodies to enact immediate 

 reform  (Dunlap, 2014; Grier, 1982; Mather and Fairbairn,  2000)  . We interpret these two examples as negative 

 feedback loops in a coupled human-  environmental  environment  system because a decline in forest/eagle abundance 

 stimulated a response by humans which led to the recovery of the environmental system (Figure  1a  2a  ). These 

 negative feedback loops are pervasive in the CHES models that we  review  examine  here. 

 In contrast to negative feedback that promotes an eventual and often gradual return to equilibrium, tipping points 

 describe a phenomenon in complex systems near an equilibrium where gradual changes in external conditions lead 

 to abrupt and lasting shifts in the system state and characteristic behavior (also referred to as a “regime”). One way 

 tipping points may occur is through nonlinear self-reinforcing mechanisms known as positive feedback loops, which 

 amplify these gradual changes, propelling the system into a new stable state in ways that are often difficult to 

 reverse. Such transitions have been extensively modelled using dynamical systems theory, where they exemplify a 

 type of  “bifurcation”  (Ashwin et al., 2012; Crawford, 1991; Dakos  The historical examples above describe negative 

 feedbacks promoting a return to a single environmentally beneficial equilibrium; however, in many cases, this does 

 not happen and the system can persist in a depleted state. For example, the desertification of regions once rich in 

 vegetation could become a positive feedback loop maintaining the new desert state  (Hopcroft and Valdes, 2021; 

 Pausata et al., 2020)  . When systems can persist in qualitatively different states (also referred to as “regimes”), we 

 say that they exhibit alternative stable states  (May, 1977; Lenton et al., 2008, Henderson et al. 2016)  . In 

 mathematical models, alternative stable states are self-reinforcing for a range of parameters, for example, low 

 harvest rates can promote a state of high biomass and high harvest rates can promote a state of low biomass in many 

 extractive CHES  (Farahbakhsh et al., 2021; Henderson et al., 2016; Richter and Dakos, 2015; Richter  et al.,  2008; 

 Lenton  2013; Schlüter  et al.,  2008)  . Additionally, many systems with tipping points exhibit alternative stable states, 

 where the system has the potential to persist over long periods of time in one of multiple states under the same 

 parameters  (May, 1977; Lenton et al., 2008, Henderson et al. 2016)  . In many cases, a return to the system's previous 

 state can be more difficult than anticipated, requiring additional effort rather than merely a return to parameters 

 before the tipping point, a phenomenon known as hysteresis, which can make mitigation and adaptation efforts 

 challenging.  ¶ 

 2016)  . Tipping points refer to critical points on this boundary between two alternative stable states. Near this 

 boundary, small perturbations can be amplified through nonlinear self-reinforcing positive feedback loops. This 

 leads to a qualitatively different system state and characteristic behavior, known as a “regime shift”, in a relatively 

 short amount of time. When the system has entered a new regime, there are often positive or negative feedback 

 loops that make it difficult to reverse this change. This self-perpetuating nature of some initial change through 

 nonlinear feedbacks leading to qualitative and often long-term system change is a universal characteristic of many 
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 commonly studied tipping points. In many cases, a return to the system's previous state can be more difficult than 

 anticipated, requiring additional effort rather than merely a return to parameters before the tipping point, a 

 phenomenon known as hysteresis, which can make mitigation and adaptation efforts challenging. Systems near a 

 tipping point can exhibit (often abrupt) regime shifts through gradual changes or noise in forcing parameters, which 

 is a main focus of much of the bifurcation theory literature (Figure 1a, Box 1.1). The scope of models presented in 

 this review will not include other types of tipping points such as those caused by a short sharp shock (s-tipping, or 

 shock-tipping, where the system does not have to exist near this point for a regime shift to occur) (Figure 1b) 

 (Boettiger and Batt, 2020; Halekotte and Feudel, 2020)  or “rate-induced tipping”, which is a distinct phenomenon 

 induced by the rate of change of parameters  (Ashwin et al., 2012)  . Tipping events describe the crossing of a tipping 

 point and can be used interchangeably with regime shifts. 

 Figure 1: Two types of tipping events; bifurcation-induced tipping (a), where the drivers are gradual changes to system 

 parameters leading to a tipping event, and shock-induced tipping (b), where a perturbation to the system causes it to 

 enter an alternative stable state through the crossing of a tipping point. Many social tipping points are caused by a 

 combination of both types of tipping events. The blue circle represents the current state of the system. 

 Bifurcation theory has been applied to study tipping points in a vast number of environmental models  (May  and 

 Oster, 1976; Brovkin et al., 1998; Ghil and Tavantzis, 1983; Wollkind et al., 1988)  ; however, more recently, 

 researchers have identified abrupt shifts in environmental systems for which bifurcation theory has yet to be 
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 explicitly applied  (Dakos et al., 2019; Lenton, 2020, 2013)  . For example, during the mid–Holocene, the Sahara was 

 much more humid than at present, showing evidence of shrub and savannah biomes as well as the expansion of 

 lakes, an alternative stable state to what we know as its current desert state. It is  hypothesised  hypothesized  that 

 around 5,000 years ago, the gradual weakening of the North African Monsoon led to an abrupt decrease in 

 vegetative cover, due to positive feedback between reduced surface albedo and precipitation, bringing the Sahara 

 into a stable desert state  (Hopcroft and Valdes, 2021;  Pausata et al., 2020)  . In more dominantly human systems, 

 many pivotal revolutions can also be framed as tipping  points  events  where gradual changes are reinforced by 

 positive feedback loops, leading to a new political or technological stable state  (Lenton et al., 2022)  . Social tipping 

 points  also  occur  occurs  in financial systems such as in the 2008 financial crisis. Here, the bankruptcy of Lehman 

 Brothers led to a rise in public panic around the stability of markets, causing banks to increase their liquidity, 

 amplifying the crisis in other economic sectors and leading to a global recession  (Van Nes et al., 2016)  .  These are 

 just two of many examples illustrating how important tipping points are as a phenomenon, in both human and 

 environmental systems, and coupling these systems using mathematical models could lead to further insights. 

 Since the beginning of the Anthropocene and with our growing awareness of human impacts on the environment, 

 tipping points are increasingly being  conceptualised  conceptualized  within the context of coupled 

 human-  environmental  environment  systems  (Bauch et al., 2016; Henderson et al., 2016; Lenton et al., 2022; 

 Milkoreit et al., 2018)  . Tipping  points  events  can lead to highly beneficial or catastrophic outcomes for humans, 

 especially when an environmental change occurs in the presence of social hysteresis. An example of detrimental 

 tipping is in the forests of Kumaun and Garhwal in Northern India, where, prior to British  colonisation  colonization  , 

 wood harvest was sustainably regulated through social norms and strict rules enforced by local village councils. 

 When the British colonial government imposed  their  its  own rules on the use of forests, these social norms broke 

 down. Eventually, protests led to British lumber restrictions being removed, but the system subsequently 

 experienced rapid deforestation rather than a return to its previous levels under local management  . Here, the social 

 system crossed a tipping point between a self-organized common property regime to one of open access devoid of 

 self-regulating sanctions  (Somanathan, 1991)  . This system has been  modelled  modeled  using a dynamical systems 

 approach that allows for a quantitative understanding of the human drivers leading to  the tipping points  these tipping 

 events  (Sethi and Somanathan, 1996)  . Contrasting this example, tipping  points  events  can also result in 

 environmental change that is beneficial to humans and the environment. The rapid response of the international 

 community to the hole in the ozone layer has been interpreted by some as an example of a  system  CHES  undergoing 

 tipping  points  events  caused by  human-environmental feedback  (Stadelmann-Steffen et al., 2021)  . First, there was a 

 shift in public opinion regarding the use of CFC products, causing a change in behavioral norms and pressure on 

 political institutions to follow suit. Then when policy was passed, industry shifted abruptly to producing CFC 

 alternatives, which led to a tipping point in CFC emissions bringing about a new  self-perpetuating change through 

 political, technological, and behavioral forces  (Stadelmann-Steffen et al., 2021)  . In the 1970s, scientists 
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 demonstrated the detrimental effects of CFCs on the ozone layer, which could be viewed as the initial driver of the 

 following socio-climate tipping events. This led to public concern, prompting several countries to ban the use of 

 CFCs in aerosols. Through the enactment of national policies, public awareness increased, leading to more public 

 pressure for national and international policy change, an example of a positive feedback loop. In parallel, these 

 national bans of CFCs, especially in the US, led to the development of CFC alternatives, which prompted industries 

 that could develop them to lobby for international policy. Increased public awareness also led to widespread shifts in 

 social norms stigmatizing and boycotting the consumption of CFCs, which further pressured industry to offer 

 alternatives, another positive feedback loop. The interaction of multiple tipping events at different scales led to the 

 crossing of a global tipping point through the international banning of CFCs, bringing an alternative  stable state of 

 relatively  very  low  CFC  emissions globally  .  (Andersen et al., 2013; Cook, 1990; Epstein et al., 2014;  Haas, 1992; 

 Stadelmann-Steffen et al., 2021)  . 

 Tipping  points  events  associated with social processes as described in the preceding paragraph can be 

 conceptualised  conceptualized  through positive feedback loops that capture a self-reinforcing process. In the case of 

 social norms, this self-reinforcing process may correspond to peer pressure or conformism that reinforces the 

 dominant opinion or belief. Depending on whether pro- or anti-mitigation opinions are currently dominant, this 

 could lead to hysteresis (Figure  1b  2b  ). The negative feedback loop that might normally regulate the CHES to exist 

 in a state of intermediate environmental health and public support for sustainability (Figure  1a  2a  ) could be 

 overpowered by the positive feedback of social norms, leading the population to a state where either sustainability 

 (or anti-sustainability) is strongly entrenched. If the conditions governing social learning or social norms move 

 beyond a tipping point, the population may flip between these two norms, or alternatively it may move into a regime 

 where social norms are instead dominated by the negative feedback loop, causing the population to exist in an 

 interior state of partial sustainability. As such, negative feedback and positive feedback may be characteristic of any 

 CHES and should be systematically studied. 

 This review aims to deepen our understanding of human drivers of tipping  points  events  in CHES models by 

 exploring three crucial topics: the feedback loops and interactions between the human and environmental systems, 

 the structural characteristics of the human system that influence tipping points, and the identification of early 

 warning signals within human systems. By “human drivers”, we refer to the  gradual  changes in social parameters 

 that elicit these non-linear tipping responses in either the environment, human system, or both. However, we also 

 discuss aspects of social structure that may be conducive to tipping points.  As most of the models reviewed are 

 informed by dynamical systems and bifurcation theory, we primarily focus on systems that exist near tipping points 

 and cross them through gradual changes in these drivers.  In the following sections we review CHES model literature 

 found using Google Scholar with the keywords: ‘human environment system’ OR ‘socio-ecological system’ OR 

 ‘social ecological system’ OR ‘human ecological system’ OR ‘human natural system’ combined with ‘tipping’ OR 
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 ‘regime shift’ OR ‘bifurcation’.  These results were filtered manually to include only dynamical models that showed 

 clear tipping behavior.  Additional literature was found through a snowball approach using references from the 

 sources found in this search as well as papers referencing these sources  (Wohlin, 2014)  . The findings in this  review 

 highlight commonalities between the CHES models surveyed; however, some trends may be a result of both the 

 dynamical models chosen and the relatively low diversity and volume of these models.  ¶ 

 2 Structures and processes  The body of this review is split into two parts; the first part synthesizes results from 

 CHES models, organized into processes and structures that drive tipping behavior, and the second part introduces 

 early warning signals describing how they can be used to predict tipping events. 

 Box 1: Highlights of key findings from the synthesis of CHES models in this review. “The straw that broke the camel's 

 back” illustrating bifurcation-induced tipping points (1a), in human-extraction systems (2b), increasing the speed of 

 social change or the coupling strength leads to negative tipping points (i.e., ecological collapse), whereas in 

 human-emission systems (2c), the effects of increasing the speed of social change or the coupling strength are model 

 specific, higher connections in a social network leading to a positive tipping event, where the graph represents the 

 proportion of mitigators in time (3d), time series data from Twitter showing an abrupt transition characteristic of a 

 tipping event at the red dotted line (4e) from  (Bollen et al., 2021)  . 

 2 Processes and structures  in human systems that cause tipping  points  events  in CHES models 
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 In this section, we look at how social processes and structures cause tipping  points  events  . In order to have a better 

 understanding of how these human drivers affect tipping, it is important to understand the basics of 

 modelling  modeling  human systems. Within CHES models, various factors, such as economic incentives, 

 environmental considerations  ,  and social pressures determine how individuals make decisions and interact with the 

 environment. In most of the current  modelling  modeling  literature, individuals can choose between two behaviors 

 (also referred to as opinions or strategies), one that is environmentally sustainable (also referred to as mitigation or 

 cooperation) and another that is detrimental to the environment (also referred to as non-mitigation or defection). The 

 perceived advantage of mitigation or non-mitigation relative to the current state of the human and environmental 

 system can be quantified through a “utility function”. Common factors in the utility function are the rate of social 

 learning, which determines the speed of human behavior change relative to environmental processes, social norms, 

 which encourage the status quo or mitigation proportional to its frequency, cost of mitigation, which measures the 

 economic cost of being a mitigator relative to a non-mitigator, and rarity-motivated valuation, which incentivizes 

 mitigation as the environment approaches collapse  (Bauch et al., 2016; Farahbakhsh et al., 2022; Tavoni et al., 

 2012)  . In most models that use social learning, individuals  sample others in the population at a fixed rate and adopt a 

 different behavior if the other behavior has a higher utility, with probability proportional to the difference in utility 

 (Hofbauer and Sigmund, 1998; Schuster and Sigmund, 1983)  . This can also be formulated in a stochastic  setting, 

 where the probability of adopting a neighbor's behavior is a function of the difference in utility between behaviors 

 (Schlag, 1998)  . Most of the models reviewed in this  paper use social learning to represent human behavioral 

 dynamics. There are also CHES models that do not include social learning such as Motesharrei  (2014)  and 

 Dockstader  (2019)  where the human population is influenced  by its current size and the state of the environment; 

 however, these are outside the scope of this paper. 

 Many human behaviors, such as resource extraction and pollution, have direct detrimental impacts on the 

 environment; however, the severity of these impacts is often hard to predict. In many CHES models, small changes 

 in parameters governing human behavior and social processes can lead to the abrupt collapse of sustainable states 

 through tipping  points  events  that can cascade between the human and environmental systems  (Bauch et al., 2016; 

 Lade et al., 2013; Richter and Dakos, 2015; Weitz et al., 2016)  . Additionally, structural elements of the human 

 system  , such as the  (i.e. an individual’s  degree of choice  and individual  , population  diversity  )  , as well as how the 

 social system is  organised  organized (i.e. through social networks)  , can affect tipping. These heterogeneous model 

 elements are often only accessible in agent-based models, where humans are represented as individual agents that 

 follow a set of rules. CHES models do not always exhibit tipping points under realistic settings for the human 

 system  (Bury et al., 2019; Menard et al., 2021)  ; however, in this review, we focus on models with tipping points  . 

 2.1 Coupling strength 
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 Coupling strength (how strongly the subsystems are coupled) can have a significant effect on the occurrence of 

 tipping points in both systems, and the nature of these transitions often depends on whether systems are 

 ‘  input-limited  human-extraction  ’ or ‘  output-limited’. In input-limited systems  human-emission’ (Box 1.2). In 

 human-extraction systems (Box 1.2b)  , humans extract from an environmental resource such as in forest and fishery 

 models. Stronger coupling in  input-limited  human-extraction  models often leads to  negative  environmental 

 collapse  outcomes  . A common social parameter representing the coupling strength in these systems is the extraction 

 effort of humans, which when increased past a critical threshold, leads to abrupt environmental collapse 

 (Farahbakhsh et al., 2021; Richter and Dakos, 2015; Richter et al., 2013; Schlüter et al., 2016)  . For  output-limited 

 systems  human-emission systems (Box 1.2c)  , where human activity increases levels of harmful outputs, such as 

 pollution and climate models, coupling strength is instead represented by pollution rates. The influence of this 

 coupling is less intuitive  than extraction effort  in human-emission systems  , for example, in lake 

 pollution  eutrophication  models as the pollution  output  of mitigators is decreased, pollution levels also decrease until 

 a threshold is reached, heralding a detrimental tipping point where mitigation collapses and pollution then reaches a 

 high level  (Iwasa et al., 2010, 2007)  . This occurs  because when the lake water is not very polluted, there is less 

 incentive to be a mitigator and high-polluting behavior becomes a new norm. It is important to note that these 

 models do not account for individuals valuing the environment in a healthy state, for example through the centering 

 of ecosystem services, and the above example may be an  artefact  artifact  of this assumption. There is a need to shift 

 both our relationship to the environment as well as the assumptions in our models so that inherent value in 

 environmental systems is central in any decision-making, even when the environment is far from collapse. This 

 fundamental valuing of the environment is present in many traditional indigenous belief systems, where 

 relationships to the local natural environment are incorporated and  prioritised  prioritized  in all aspects of life 

 (Appiah-Opoku, 2007; Bavikatte and Bennett, 2015; Beckford et al., 2010; McMillan and Prosper, 2016)  . 

 2.2 Rarity-motivated valuation 

 Rarity-motivated valuation represents the extent to which humans increase their mitigative behavior in response to 

 the environmental variable (e.g., forest cover, endangered species population size) nearing a depleted state.  Model 

 systems with rarity-motivated valuation often exhibit two tipping points at high and low levels, with a sustainable 

 regime for intermediate values. High levels of rarity-motivated valuation lead to overshoot dynamics, however, this 

 may not be true in empirical systems. In models, the  In CHES models, this  sensitivity of human response to the 

 abundance of the natural resource/population is represented by a ‘sensitivity’ parameter and there are often two 

 critical thresholds in the sensitivity parameter that lead to tipping. Increasing the sensitivity parameter beyond the 

 lower threshold induces a tipping point from a depleted to sustainable environmental equilibrium  (Ali et  al., 2015; 

 Barlow et al., 2014; Bauch et al., 2016; Drechsler and Surun, 2018; Henderson et al., 2016; Lin and Weitz, 2019; 

 Sun and Hilker, 2020; Thampi et al., 2018; Weitz et al., 2016)  . The second threshold exists at high values  of the 

 sensitivity parameter,  where  which may be counterintuitive, as one might expect high sensitivity to resource 
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 depletion to lead to more sustainable outcomes. In this case,  the sustainable equilibrium is  destabilised  destabilized 

 by overshoot dynamics or a state of chaos in both the human and environmental systems. These dynamics are caused 

 by the human system being too sensitive to changes in the environment, leading to extreme oscillations in both 

 human behavior and the environment, which increases the likelihood of collapse in mitigation and the state of the 

 environment  (Bauch et al., 2016; Henderson et al., 2016)  . 

 Rarity-motivated valuation can also be represented by a threshold in the state of the environment, below which 

 humans shift towards sustainable behavior. In a common-pool resource model, lowering this threshold led to a series 

 of tipping points that surprisingly resulted in a higher biomass equilibrium, although the trajectory to this state 

 comes close to environmental collapse. This is in contrast to a high threshold, which leads to lower final biomass; 

 however, the trajectory remains much farther from a depleted environmental state  (Mathias et al., 2020)  .  Similarly to 

 high coupling in pollution models, one should be very careful to not interpret these results as stating “too much 

 conservation is detrimental to the environment”. They rest on model assumptions of a reactionary conservation 

 paradigm, where there is less value in conserving when the environment is in a healthy state. 
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 Figure  1  2  : Negative feedback between the human and environmental subsystems,  support  supports  convergence to the 

 same equilibrium regardless of initial conditions (a). With strong majority-enforcing social norms, encouraging either 

 mitigative or harmful behavior adds a positive feedback loop which makes the coupled system highly dependent on 

 initial conditions (b). The top row shows the negative feedback loop between emissions and the proportion of 

 mitigators, where (b) also includes the positive feedback of majority-enforcing social norms. In the middle row, 

 equilibrium curves are plotted as a function of the maximum emissions of non-mitigators. Black solid lines represent 

 stable equilibria and the red dotted line represents unstable equilibria. The green and purple curves in the bottom row 

 are the trajectories for initial mitigation support and emission value given by the stars of the corresponding color in the 

 upper row. 

 2.3 Social norms 

 Introducing social norms can lead to alternative stable states and thus tipping points (Figure  1b  2b  ), although the 

 system dynamics are highly dependent on both the type of social norms and initial conditions. Social norms are 

 informal rules emerging through social interaction that promote and discourage certain behaviors, especially around 
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 how humans relate to one another and the environment  (Chung and Rimal, 2016)  . In models of small groups such as 

 a community of fishers, they are often (rightly) assumed to support mitigative behavior by punishing those who 

 violate norms by over-harvesting  (Ostrom, 2000)  . However,  at larger population scales, social norms can support 

 either pro- or anti-mitigation behavior, on account of factors such as  politicisation  the politicization  of actions 

 relating to environmental, climate, and public health crises  (Stoll-Kleemann et al., 2001; Van Boven et  al., 2018; 

 Latkin et al., 2022)  . Unlike a fisher  in a small community,  for instance, a climate denier may not acknowledge 

 themselves as a ‘defector’ who is harming a public good, but rather view the climate activist as ‘defecting’ against a 

 free society.  Thereby, social norms have the ability to encourage behavior that is harmful to both human and 

 environmental well-being, over larger spatial and temporal scales  (Bury et al., 2019; Latkin et al.,  2022; Menard et 

 al., 2021; Stoll-Kleemann et al., 2001; Van Boven et al., 2018). 

 Social norms can be represented as majority-enforcing, incentivizing the behavior of the majority, or 

 mitigation-enforcing, such as sanctions, which only incentivize mitigation, relative to the proportion of mitigators in 

 the current state of the system. In CHES models, increasing the strength of majority-enforcing norms leads to an 

 increased number of regimes as well as bistable (  more than one stable state  two stable states  ) regimes (Figure  1b  2b  ), 

 made up of a single dominant behavior, which is highly dependent on the initial proportion of behaviors in a 

 population  (Ali et al., 2015; Barlow et al., 2014;  Bauch et al., 2016; Bury et al., 2019; Phillips et al., 2020; Sigdel et 

 al., 2017; Thampi et al., 2018)  . This occurs because  these norms are indifferent to the type of behavior they enforce 

 (i.e. sustainable vs harmful actions), and they act as a double-edged sword that reinforces the status quo through a 

 positive feedback loop, where the dominant behavior becomes more prevalent (Figure  1b  2b  ). On the other hand, 

 increasing mitigation-enforcing social norms lead to a transition of the environmental system into a sustainable 

 equilibrium  (Chen and Szolnoki, 2018; Iwasa et al.,  2010; Lafuite et al., 2017; Moore et al., 2022; Schlüter et al., 

 2016; Tavoni et al., 2012)  , sometimes through an intermediate  regime of oscillatory dynamics  (Iwasa et al., 2007)  . 

 In a lake pollution model, along with decreasing the likelihood of environmental collapse, this increase in 

 mitigation-enforcing social norms also led to the appearance of alternate stable states  (Sun and Hilker, 2020)  . These 

 findings show that stronger social norms lead to a greater number of tipping points; however, the trajectories brought 

 about by these tipping points are highly dependent on the type of social norms (mitigation- or majority-enforcing) as 

 well as the current dominant social behavior. 

 2.4 Cost of mitigation 

 Reducing the cost of mitigation often leads to beneficial tipping points; however, these tipping points can depend on 

 the rate of social change as well as social norms. Although it is intuitive that reducing costs or increasing economic 

 incentives associated with mitigative action will have beneficial impacts on the environment, CHES models also 

 show that this beneficial change can occur through tipping points  (Bauch et al., 2016; Drechsler and  Surun, 2018; 

 Milne et al., 2021; Moore et al., 2022; Sigdel et al., 2017; Thampi et al., 2018)  . In coupled  social-  epidemiological 
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 models, where the environmental state is the proportion of infected individuals, mitigation cost is represented 

 through the economic cost or perceived risk of vaccination. Decreasing this cost leads to beneficial tipping points 

 from a state with low pro-vaccine opinion and vaccine coverage to high pro-vaccine opinion and vaccine coverage 

 (Phillips et al., 2020)  . Conversely, increasing this  cost leads to a state of high infection and low vaccination. This 

 detrimental tipping point occurs in the human system at lower levels of vaccination cost when majority-enforcing 

 social norms are low, leading to widespread anti-vaccine opinion before the infection becomes endemic again 

 (Phillips and Bauch, 2021)  . Decreasing profits of  individuals engaging in non-mitigative behavior can also lead to 

 an abrupt shift to a state of pure mitigators  (Shao  et al., 2019; Wiedermann et al., 2015)  ; however,  this transition can 

 be dependent on a low rate of social change  (Wiedermann  et al., 2015)  . Other models demonstrate tipping in  the 

 other direction where increasing non-mitigators' payoff brings about a regime shift to pure non-mitigation and 

 environmental collapse  (Richter et al., 2013; Tavoni  et al., 2012)  . Similarly, a common-pool resource  model that 

 uses machine learning in a continuous strategy space shows tipping to a depleted resource regime when the costs 

 associated with harvesting are too low  (Osten et al.,  2017)  . An analog to mitigation cost is taxation rates,  which 

 resource users pay towards public infrastructure mediating resource extraction. In a model where individuals can 

 choose to work outside of the system, pushing taxation rates to high or low levels tips a sustainable regime where 

 institutions are at full or partial capacity to a collapse of institutions  (Muneepeerakul and Anderies,  2020)  . In another 

 model, only individuals with high extractive effort are subject to taxation, and increasing this taxation rate brings 

 about a beneficial tipping point to a sustainable regime. However, the size of this sustainable region  in the parameter 

 space  is smaller with multiple governance nodes evolving through social learning compared to a single taxing entity 

 (Geier et al., 2019)  . However the cost of mitigation  is represented, increasing the relative economic incentive of 

 mitigation behavior has the potential to bring about beneficial tipping to a sustainable regime. 

 2.5 Rates of social change and time horizons 

 Human and environmental change often occur on different timescales and their relative rates of change play a major 

 role in the long-term dynamics of the coupled system and whether or not tipping points will occur. Increasing the 

 rate of social change (in most cases, social learning) leads to collapse in  input-limited  human-extraction  models due 

 to overshoot dynamics  . Whereas  , whereas  , in  output-limited  human-emission  models, the impacts of the rate of 

 social change are more model-specific. In both types of models, increasing the time horizon in decision-making is 

 beneficial. In CHES models, these rates of change can be controlled by the rate of social learning which determines 

 how frequently individuals interact and consequently, the pace of behavioral change within a population. Changes in 

 the speed of the human system can have very different outcomes depending on the nature of 

 human-  environmental  environment  coupling  (Box 1.2)  . In  input-limited  human-extraction  models, increasing the 

 speed of the human system relative to the environment often  destabilises  destabilizes  sustainable equilibria, leading 

 to oscillations in both systems and, in many cases, the abrupt collapse of the environmental system. These overshoot 

 dynamics occur as humans change their behavior too quickly to allow for the environment to  stabilise  stabilize  . On 
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 the other hand, decreasing the relative speed of human dynamics usually brings about beneficial tipping  points  events 

 leading to a state of high forest cover  (Figueiredo and Pereira, 2011)  , and supporting mitigators for a 

 generalised  generalized  resource  (Hauert et al., 2019; Shao et al., 2019)  . These beneficial effects have also been 

 observed in adaptive network models where individuals imitate their neighbors depending on the profitability of 

 their strategies  (Barfuss et al., 2017; Geier et al., 2019; Wiedermann et al., 2015)  . The  . In these models, the  reduced 

 speed of social change leads to beneficial outcomes as the resource is allowed more time to  stabilise  stabilize  as 

 decisions regarding extractive levels occur  (Barfuss et al., 2017; Geier et al., 2019; Wiedermann et al., 2015)  . Other 

 relative rates of change can also significantly influence the existence of a sustainable regime. For example, in an 

 agricultural land use model, increasing the speed of agricultural expansion and intensification relative to human 

 population growth leads to the collapse of both the natural land cover and human population  (Bengochea  Paz et al., 

 2022)  . 

 In  output-limited  human-emission  models, increasing the speed of social interaction is more model-specific. In some 

 cases, such as forest-pest and climate systems, increasing the speed of the human system leads to better mitigation of 

 environmental harms in the short term. However, long-term sustainability often requires additional social 

 interventions such as reducing mitigation costs and increasing levels of environmental concern  (Ali et  al., 2015; 

 Barlow et al., 2014; Bury et al., 2019)  . In lake pollution models, higher relative speeds of social dynamics can 

 destabilise  destabilize  low-pollution equilibria, leading to oscillations and eventually a polluted state with no 

 mitigation  (Iwasa et al., 2010, 2007; Sun and Hilker,  2020)  . This is a similar phenomenon to the overshoot  dynamics 

 that occur when the human system is extremely reactive to the environment discussed in the case of rarity-motivated 

 valuation; however, these outcomes are highly dependent on other social parameters. In a related model, with no 

 social hysteresis, represented by mitigation-enforcing social norms, and strong environmental hysteresis, represented 

 by a high phosphorus turnover rate, fast social dynamics could  stabilise  stabilize  oscillations, leading to a 

 low-pollution equilibrium  (Suzuki and Iwasa, 2009)  .  The emergence of oscillations under low rates of social 

 learning, which was not observed in similar models is likely due to the environmental system being in a bistable 

 state under strong hysteresis, such that even slow changes in the human system could tip the lake system  into  to  an 

 alternative stable state. 

 When looking at relative rates of change in human and environmental systems, it is clear that the pace of the human 

 system can be more readily influenced by interventions. This suggests an urgent need to further study the 

 relationship between social and ecological timescales across a wide range of coupled systems to aid in sustainable 

 policy-making decisions (Barfuss et al., 2017). Additionally in many models, the length of time horizons that 

 humans take into account when deciding how they interact with the environment has a significant beneficial effect 

 on conserving natural states and mitigating harmful action  (Barfuss et al., 2020; Bury et al., 2019;  Henderson et al., 

 2016; Lindkvist et al., 2017; Müller et al., 2021; Satake et al., 2007)  . A high degree of foresight  in decision-making 

 14 

 347 

 348 

 349 

 350 

 351 

 352 

 353 

 354 

 355 

 356 

 357 

 358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 

 367 

 368 

 369 

 370 

 371 

 372 

 373 

 374 

 375 

 376 

 377 

 378 

 379 

 380 

 381 

https://www.zotero.org/google-docs/?ooxFkz
https://www.zotero.org/google-docs/?vTKbxJ
https://www.zotero.org/google-docs/?AHOqKT
https://www.zotero.org/google-docs/?ZdRQZ0
https://www.zotero.org/google-docs/?13SYN8
https://www.zotero.org/google-docs/?13SYN8
https://www.zotero.org/google-docs/?Ao34bM
https://www.zotero.org/google-docs/?Ao34bM
https://www.zotero.org/google-docs/?Obb68r
https://www.zotero.org/google-docs/?xoWfw0
https://www.zotero.org/google-docs/?R34NLi
https://www.zotero.org/google-docs/?R34NLi


 is a fundamental basis for many indigenous belief systems across the world. One manner in which this shows up is 

 in land stewardship where care for the environment is prioritized as a means to ensure the health of many 

 generations in the future  (Appiah-Opoku, 2007; Beckford  et al., 2010; Ratima et al., 2019)  . 

 2.6 Social traits 

 The inclusion and distribution of traits within agents can play a large role in determining the occurrence and types of 

 tipping points within the coupled system, where  ncreasing the modelled  increasing the modeled  heterogeneity in 

 social traits can lead to more tipping and also promote sustainable outcomes  (Box 1.3)  . The majority of models 

 discussed in the previous section only allow humans to choose between two strategies; mitigation and 

 non-mitigation. The inclusion of additional strategies, determining how individuals interact with the environment 

 and each other, can alter the potential for tipping points. For example, a common-pool resource model included a 

 third strategy of conditional mitigation  (Richter  and Grasman, 2013)  . Under this additional strategy,  agents act as 

 mitigators until the number of non-mitigators reaches a certain threshold, where they then shift their behavior to 

 non-mitigation. The addition of this third strategy alters tipping dynamics in opposite ways, depending on the value 

 of maximum harvesting efforts. When efforts are high, the system is less prone to tipping; however, when they are 

 low, tipping points are more likely to occur. This third strategy also affects tipping points by masking internal social 

 dynamics, leading to more abrupt transitions, even when the system appears to be stable. This occurs when 

 mitigators gradually change their strategy to conditional mitigators which can go unnoticed as their interaction with 

 the environmental system does not change. However, when non-mitigation reaches high enough levels, there is a 

 cascade of conditional mitigators choosing non-mitigation, in an example of herd behavior, which puts abrupt 

 harvesting pressure on the resource. Another three-strategy model, where agents are partitioned by resource 

 extraction rates, contrasts dynamics with and without the trait of environmental concern  (Mathias et al.,  2020)  . In the 

 absence of this trait, the human system either tips to a state of high-extraction or low-extraction behavior, triggering 

 either a detrimental or beneficial environmental tipping point, respectively. Including environmental concern leads 

 to an increased number of cascading tipping points between both human and environmental systems. In a coupled 

 agricultural model, where human traits include management strategies that respond to socio-economic and climate 

 conditions, decreasing the diversity of these traits among agents in the system transitions the system from a 

 sustainable state with high food production, landscape aesthetics  ,  and habitat protection to a state with low habitat 

 protection  (Grêt-Regamey et al., 2019)  . As there are  relatively few models that explicitly compare the complexity of 

 social traits and their effect on tipping points, it is difficult to say with certainty whether higher complexity will 

 increase the likelihood of tipping points in all CHES and whether this is due to a higher dimensionality of the 

 system. However,  these  the  commonalities  between models showing the effects of social trait complexity  are worth 

 highlighting and will be put to the test with future CHES models and empirical work. 

 2.7 Social networks 
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 In many agent-based CHES models, individuals are structured on a social network, where they  usually only  interact 

 with others whom they share a link with. These models demonstrate how a higher number of connections in social 

 networks increases the potential for tipping points, often through the emergence and growth of  a  bistable 

 regime  regimes  (Holstein et al., 2021; Sugiarto et al.,  2017a, 2015  2015, 2017a)  (Box 1.3  )  . Additionally, the 

 distributions of these connections play an important role. For example  ,  in networks with the same average number of 

 connections, higher heterogeneity of connections among nodes leads to tipping points occurring earlier under certain 

 social (Ising model) dynamics  (Reisinger et al., 2022)  . The distribution of resources in 

 human-  environmental  environment  networks also affects the potential for abrupt environmental collapse. This often 

 occurs in CHES network models where both human and environmental dynamics occur on a multi-layer network  , 

 representing partitioned or private resources  . Resource heterogeneity can be controlled through the distribution of 

 carrying capacities or the amount of resource flow between nodes in the network, where higher flows lead to 

 homogeneous resource distributions. In both cases, increasing this heterogeneity can tip the system to a state of low 

 extraction and high sustainability.  Heterogeneity  In one model, heterogeneity  in carrying capacities increases the 

 likelihood of sustainable harvesters extracting from a resource with a large capacity, which they can maintain at high 

 levels  (in contrast to non-sustainable harvesters who extract at a higher rate)  , eventually convincing neighboring 

 nodes to imitate their strategy  (Barfuss et al., 2017)  .  Heterogeneity  In another model, heterogeneity  through lower 

 resource flows also leads to high-extraction nodes over-exploiting their resource and losing profits in the long run, 

 de-incentivizing neighbors to imitate their behavior. Interestingly, optimal resource flow, which  minimises  minimizes 

 the likelihood of resource collapse is found to be close to the critical threshold of resource flow, above which the 

 coupled system collapses. As optimal resource flow decreases the likelihood of collapse by supplementing resources 

 harvested at high levels, this confers an advantage to high resource extraction. Increasing past optimal levels leads to 

 similar resource levels among high and low-extraction nodes, resulting in higher profits from high-extraction nodes, 

 incentivizing the entire human system to eventually choose the high-extraction strategy  (Holstein et  al., 2021)  . 

 Heterogeneity of human interaction can be quantified through homophily, the extent to which alike individuals 

 interact. Homophily can play a large role in the occurrence and behavior of tipping points in CHES models 

 occurring on social networks, often having a detrimental effect on the environmental system. In a common-pool 

 resource model with two distinct communities, increasing segregation by lowering the probability that agents in 

 separate communities will have a link, softens the abruptness of a single detrimental tipping point compared to when 

 the communities are well-mixed. This is due to the occurrence of multiple intermediate tipping points within each 

 segregated community; however,  increased  higher  segregation adds more hysteresis to the system increasing the 

 difficulty of reversing this transition and returning to a sustainable state  (Sugiarto et al., 2017b)  . In a public goods 

 game  modelling  modeling  climate change mitigation, where humans are partitioned into rich and poor agents, a 

 transition to group achievement of mitigation goals occurs at a lower perceived risk when there is no homophily and 

 agents are influenced by others from both economic classes equally  (Vasconcelos et al., 2014)  . Another 
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 human-climate model that included wealth inequality displayed an abrupt transition to lower peak temperature 

 anomalies when homophily between economic classes approached zero  (Menard et al., 2021)  . 

 Figure  2  3  : Mean proportion of nodes that are mitigators for network model (a) and ODE model (b). 𝜙 is the rewiring 

 probability and T is the time between social interactions. 𝜙  C1  is the lower threshold and 𝜙  C2  is the upper  threshold, 

 above which a fragmentation regime occurs. From  (Wiedermann  et al., 2015) 

 Social networks are rarely static and their ability to evolve over time is represented in adaptive network models 

 where agents can break existing social links and create new ones, a process called “rewiring”. Often this rewiring is 

 homophilic, meaning that agents are more likely to create a new social connection with others who share a similar 

 behavior. Common adaptive network CHES models have nodes representing  a renewable resources stock  renewable 

 resource stocks  with an associated extraction level which can adopt a high extraction or low extraction level through 

 imitating neighbors. These models show that the level of homophilic rewiring can trigger regime shifts at both low 

 and high levels, where intermediate ranges correspond to a sustainable equilibrium. As agents can either choose to 

 rewire or imitate their neighbor, a low level of rewiring corresponds to a high speed of social interaction, which as 

 discussed in Section 2.5 can lead to detrimental tipping points. On the other hand, although high-rewiring leads to 

 slower social learning, it also brings about a fragmentation regime where social dynamics are dominated by 

 homophily and the network fragments into components based on strategy type, which makes widespread mitigation 

 infeasible  (Barfuss et al., 2017; Geier et al., 2019; Wiedermann et al., 2015)  (Figure  2  3  ). CHES models with social 

 networks are still relatively new and lack diversity in how they are formulated. For example, regarding the tipping 

 points related to rewiring social links, the lower threshold may be caused by increased social learning since in all 
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 models agents can either rewire or imitate, but not both. There is still much to learn through isolating the effect of 

 rewiring as well as exploring a wide array of different model formulations of CHES on social networks. 

 3  Identifying early warning signals  in the  of tipping events in  CHES 

 Although dynamical models can offer qualitative insight into potential trajectories of CHES resulting from specific 

 interventions, it is more difficult to use them to generate precise and reliable predictions. Given the potential for 

 severe environmental tipping points in the coming decades, it is extremely useful to be able to predict these abrupt 

 shifts without complete mechanistic knowledge of the system. The ability to predict tipping  points  events  with 

 limited data can allow policymakers to have more time preparing for future disasters, and given enough warning and 

 political will, an opportunity to avoid them or mitigate their severity. Rapidly growing research in early warning 

 signals (EWS) offers tools to monitor empirical time series data and warn of future tipping  points  events  that are 

 likely to occur  (Bury et al., 2021; Dakos et al.,  2012, 2015, 2008; Kéfi et al., 2014; Lapeyrolerie and Boettiger, 

 2021)  . Although much of the work has been conducted  on synthetic data, there are many studies that successfully 

 predict historical tipping  points  events  in both empirical human and environmental time series data such as the 1987 

 Black Monday financial crash  (Diks et al., 2019)  as  well as abrupt temperature shifts from paleoclimate datasets 

 (Dakos et al., 2008)  . 

 3.1 Recent advances for detecting early warning signals 

 Much research has been done in the past few decades to develop tools for EWS using both empirical and synthetic 

 time series data  (Bury et al., 2021; Dakos et al.,  2012, 2015, 2008; Kéfi et al., 2014; Lapeyrolerie and Boettiger, 

 2021)  . Originally motivated by critical slowing down  in bifurcation theory, where systems approaching a tipping 

 point show a slower recovery to equilibrium under perturbations, generic EWS measure trends in this “slowing 

 down”  (Scheffer et al., 2009)  . The most commonly used  methods compute the lag-1 autocorrelation and variance of 

 the residuals from detrended time series data. Other widely used methods involve metrics such as skewness, 

 measuring the asymmetry of fluctuations over time, and kurtosis, representing the likelihood of extreme values in 

 the time series data. A phenomenon known as flickering occurs when there is sufficient noise to rapidly force the 

 system between alternate stable states. In these cases, an increase in skewness and kurtosis is observed  (Dakos et al., 

 2012)  . As lag-1 autocorrelation does not account for  correlation beyond a single time step, power spectrum analysis 

 has been used to look at changes in complete spectral properties, finding higher variations at low frequencies to 

 commonly occur before a tipping point  (Dakos et al.,  2012; Scheffer et al., 2009)  . In spatial systems,  many EWS are 

 similar to those used in well-mixed systems, while also accounting for spatial variability. For example, Moran’s I is 

 a spatial analog of lag-1 autocorrelation, which measures the correlation between neighboring nodes in a network 

 (Kéfi et al., 2014)  . 
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 Figure  3  4  : Generic EWS (second and third row) as well as deep learning EWS (bottom row) for time series generated 

 by two ecological models exhibiting different types of bifurcations (top row); fold (left), Hopf (middle), and transcritical 

 (right). As well as being more reliable, deep learning EWS can also distinguish between the type of bifurcation being 

 approached. In the bottom row, the DL algorithm gives probabilities for the occurrence of fold (purple), Hopf (orange), 

 or transcritical (blue) bifurcations. Image taken from  (Bury et al., 2021)  . 

 Numerous spatial ecological systems exhibit patterns  in  of  patchiness preceding a tipping point. For example, in 

 drylands, spotted vegetation patterns are  hypothesised  hypothesized  to be an EWS for the system approaching 

 desertification  (Kéfi et al., 2014)  . Coupled human-epidemiological  models also show that spatial properties in the 

 distribution of opinions on a social network offer potential EWS for the onset of disease outbreaks. Approaching this 

 regime shift, the number of anti-vaccine clusters increases, and very close to the transition point, these communities 

 coalesce into larger groups  (Jentsch et al., 2018;  Phillips et al., 2020)  . These clusters are quantified  using a number 

 of metrics, such as an increase in modularity as well as the mean number, size, and maximum size of communities 
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 and pro-vaccine echo chambers  (Phillips and Bauch,  2021)  . This is also in agreement with previous work  done in 

 percolation theory showing that phase transitions follow a breakup of connected components on the network 

 (Newman, 2010)  . 

 One downside to the generic metrics discussed above is that they have the potential to fail in the presence of large 

 amounts of noise where transitions can occur far from their analytically derived tipping point. A technique called 

 dynamical network markers increases the dimensionality of the time series by transforming it from state variables to 

 probability distributions of the mean and variance over a given window of time. This reduces the magnitude of noise 

 in each dimension and in approaching a tipping point, one dominant group of variables will show a drastic increase 

 in variance and correlation between other variables within that group. At the same time, the correlation between one 

 variable in this dominant group and others outside the group will decrease. This technique has shown success with 

 empirical data, such as predicting critical transitions in time series data for a eutrophic lake as well as the bankruptcy 

 of Lehman Brothers  (Liu et al., 2015)  , and flu outbreaks  (Chen et al., 2019)  . Dynamical network markers have  also 

 been used on spatial systems such as those occurring on social networks through the use of hierarchical network 

 representations. Here, networks are transformed into binary trees where leaves are the nodes from the original 

 network and branches group nodes together at multiple resolutions. Through this hierarchical model, dynamical 

 network markers use these multi-scale communities as the groups of variables that are  analysed  analyzed  (Li et al., 

 2023)  . This spatial technique offers a novel method for predicting tipping  points  events  for CHES using human data 

 occurring on complex social networks. 

 A very recent addition to the EWS toolkit uses concepts from statistical physics such as average flux, entropy 

 production,  generalised  generalized  free energy, and time irreversibility to predict tipping points in a shallow lake 

 model much earlier than generic methods such as autocorrelation and variance, showing promise for use in real-time 

 monitoring  (Xu et al., 2023)  . Additionally, the field  of machine learning has motivated data-driven approaches to 

 EWS which do not explicitly make use of any statistical metrics in the time series data. Instead, deep learning 

 algorithms are trained on large synthetic datasets using models that have and have not approached tipping points. In 

 the majority of cases, these algorithms have performed significantly better at predicting tipping  points  events  than 

 generic EWS indicators when tested on empirical datasets that exhibit abrupt transitions  (Bury et al., 2021;  Deb et 

 al., 2022)  (Figure  3  4  ). Deep learning algorithms are also able to distinguish between different types of bifurcations 

 as they are being approached which can offer vital information regarding the potential for catastrophic collapse in 

 CHES. 

 3.2 Social data for early warning signals 

 In CHES models, the strength of EWS from environmental data has been shown to be muted compared to EWS 

 from environmental systems not coupled to a human system  (Bauch et al., 2016)  or the same system with  weak 
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 coupling between the human and environmental subsystems  (Richter and Dakos, 2015)  . This is likely due to the 

 effects of human behavior acting to mitigate variability in the environmental system, for example, rarity-motivated 

 valuation creates a negative feedback loop where incentives to mitigate increase as the environment becomes further 

 depleted, serving as a mechanism to avoid collapse. The muting of EWS provides a unique challenge for monitoring 

 tipping  points  events  in CHES using environmental data, especially as they occur more frequently in these coupled 

 systems as discussed in Section 2. There are a small number of studies that have directly compared the strength and 

 efficacy of EWS between various state or auxiliary variables in CHES models. In these studies, generic EWS from 

 data in the human system were shown to be the only reliable indicators of the coupled system approaching a tipping 

 point. Examples of human data used include the fraction of conservationists in a forest cover model  (Bauch  et al., 

 2016)  , average profits by resource harvesters  ,  and catch per unit effort common-pool resource models  (Lade et al., 

 2013; Richter and Dakos, 2015)  . In agreement with  generic methods, a state-of-the-art machine learning algorithm 

 for EWS showed higher success in detecting tipping  points  events  generated from a coupled epidemiological model 

 using pro-vaccine opinion in the human system compared to total infectious in the epidemiological system  (Bury et 

 al., 2021)  . It is possible that the state variable  most sensitive to the forcing parameter may exhibit the strongest 

 EWS, as seen in experimental work on tipping points in a lake food web. In this system, data from the species that 

 had a direct trophic linkage to a driver of the tipping  point  event  (predators added to the food web) exhibited EWS 

 earlier than those that were farther removed from the driver  (Carpenter et al., 2014)  . If this is the  case, human 

 drivers of tipping points would most directly affect the human system, and EWS should still be stronger using social 

 data. 

 The improved reliability of EWS from social data demonstrated through CHES models shows a significant promise 

 for monitoring resilience in CHES through the analysis of socio-economic data  (Box 1.4)  . This confers a practical 

 advantage as socio-economic data  is often more frequently collected and readily available than environmental data 

 (Hicks et al., 2016  availability is growing faster than ecological data (and perhaps even environmental data despite 

 the growth of publicly available satellite data) on account of the era of digital social data  (Ghermandi and Sinclair, 

 2019; Hicks et al., 2016; Lopez et al., 2019; Salathé et al., 2012  )  . Some examples of this are monitoring profits tied 

 to resource extraction as well as using sentiment analysis on social media data, such as the number of tweets in a 

 given area raising concern over the health of a coupled environmental system. Furthermore, citizen science not only 

 generates environmental data but also provides social metadata through the participation of users who monitor 

 specific areas. Leveraging existing platforms like CitSci.org, we can use this data to estimate trends in 

 conservationist frequency over time  (Wang et al.,  2015)  . This approach allows for the implementation  of real-time 

 monitoring of environmental systems using data that is currently being generated, reducing the need for extensive 

 knowledge or complex mechanistic models of the system. With the potential social data offers for use with EWS, it 

 is important to note that much of the traditional social data, often conducted through national or regional surveys, do 

 not provide fine-grained spatial or temporal resolution. On the other hand, novel methods that use social media data 
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 can solve the resolution issue, but may not accurately represent the population it is being used to model  (Hargittai, 

 2020)  . These challenges may be addressed through a  hybrid  compound  approach that uses hybrid time series 

 generated from multiple types and sources of social data  (Rosales Sánchez et al., 2017)  . 

 4 Conclusion and future directions 

 4.1 Summary of main points 

 ¶ 

 From a wide range of examined theoretical models, we are able to gain insight into human drivers that lead to 

 tipping  points  events  in CHES systems. Many social interventions, such as reducing mitigation costs and extractive 

 effort, or increasing the time horizon in decision-making, lead to beneficial tipping  points  events  , regardless of the 

 system  modelled  modeled  . The beneficial effect of these interventions is intuitive  ,  ;  however, non-linear responses 

 manifested as tipping  points  events  may not be as evident. Mitigation costs can be reduced through subsidies for land 

 preservation and green technology, and extraction effort through limits on land development and the expansion of 

 protected natural areas (i.e. the Haudenosaunee-led protection of the Haldimand Tract)  (Forester, 2021)  ,  and by 

 increasing time horizons through passing long-term legislation that centers the well-being of human and 

 environmental systems such as the Green New Deal  (Galvin  and Healy, 2020)  . These policy interventions become 

 more difficult to implement at large scales, and models that are tailored to global coordination problems can give us 

 insight into how institutions can work together to rapidly mitigate looming threats, such as the current climate crises 

 we are facing  (Karatayev et al., 2021)  . 

 Other human behaviors and social processes are much more nuanced and system-specific in how they affect tipping 

 points. For example, models show that rarity-motivated valuation can act to detrimentally tip the environmental 

 system into a depleted state when it crosses both  an upper  a lower  and (counterintuitively)  a lower  an upper  threshold 

 value. This was illustrated most clearly in the example of forest cover in the paper by Bauch et al.  (2016)  .  Social 

 norms, especially when majority-enforcing, increase the likelihood of tipping points through the emergence of 

 bistable regimes that are made up of both sustainable and unsustainable environmental equilibria. The extent of 

 coupling between the human and environmental system as well as the speed of social change relative to 

 environmental change can have different effects depending on whether the model is  input- or 

 output-limited  human-extraction or human-emission  . Interventions related to human valuation and social norms are 

 much more difficult to implement as they require a deeper mechanistic understanding of how to influence social 

 dynamics and may also have ethical considerations. 

 The models we reviewed also show that greater structural complexity via the number and diversity of human traits 

 as well as the number of social connections can increase the potential for tipping points and mask social dynamics 
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 making these transitions much harder to predict. The  modelling  modeling  literature has only explored a small sliver 

 of the space of possible choices regarding assumed social structure and the types of environmental models coupled 

 to them. For example, the vast majority of models only allow for a binary choice in human behavior and adaptive 

 social networks have only recently been incorporated, with limited mechanisms of re-wiring and types of coupled 

 environmental systems. Consequently, we still have much to learn on how shifting underlying social structures acts 

 as a driver of tipping  points  events  . This is especially true in  output-limited  human-emission  models which are 

 important to improving our understanding of how our social structures affect pressing global issues such as pollution 

 and climate change. Even if we include more diverse and realistic social structures and processes, CHES are 

 composed of many non-linear feedbacks and contain high levels of uncertainty, and the reality is that we may not be 

 able to have a complete mechanistic representation through models. EWS from empirical data show great potential 

 in predicting tipping  points  events  without requiring a full understanding of the system being monitored. There have 

 been many advances in using state-of-the-art machine learning algorithms to provide accurate EWS from 1-D time 

 series  (Bury et al., 2021; Deb et al., 2022)  , and  very recent work is now developing similar techniques to predict 

 tipping  points  events  from spatial data  (Dylewsky et al., 2022)  . As synthetic data from models have shown the value 

 of EWS from social data, it is likely that applying these techniques to diverse and hybrid empirical social datasets 

 can vastly improve our ability to predict tipping  points  events  caused by human drivers in the future. 

 4.2 Future work in CHES  modelling  modeling 

 There are many social phenomena that are not commonly included in CHES models, yet may be important in 

 furthering our understanding of tipping points within these systems. We know that inequality in human systems 

 plays a large role in individuals’ risk perception and ability to engage in pro-environmental behavior  (Gibson-Wood 

 and Wakefield, 2013; Pearson et al., 2017; Quimby and Angelique, 2011; Rajapaksa et al., 2018)  and have 

 mentioned two CHES models that incorporate wealth inequality in a human-climate system  (Menard et al.,  2021; 

 Vasconcelos et al., 2014)  . However, more studies explicitly  investigating the role of inequality could offer some 

 valuable insight into interventions that can be more effective in benefiting both the environment and the most 

 vulnerable in human systems. This could be complemented by  incorporating  social biases where perceptions of risk 

 are linked to an individual's socio-economic status, and detrimental environmental outcomes are experienced 

 disproportionally by vulnerable communities as is commonly observed globally  (Banzhaf et al., 2019;  Boyce, 2007)  . 

 Future models could allow for alternatives to the common  modelling  modeling  assumption where individuals act in 

 their own self-interest, for example by incorporating other-regarding preferences into utility functions so that 

 individuals value their neighbors' well-being along with their own  (Dimick et al., 2018)  . These models could also 

 look at grassroots redistribution of wealth allowing us to explore the effects of alternative social value systems on 

 the environment  (Tilman et al., 2018)  . 
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 Stochasticity (noise), especially regarding drivers of tipping points can significantly affect system dynamics 

 including when tipping points occur. Although many CHES models are deterministic, recent work has shown that 

 increasing noise can lead to earlier tipping  (Willcock  et al., 2023)  , or in other cases, increase the duration  of time the 

 environmental system can persist before becoming extinct  (Jnawali et al., 2022)  . These contradictory results  warrant 

 further work in understanding how different types of noise and their magnitude within drivers of tipping 

 points  events  affect the resilience of these systems. With stochasticity comes uncertainty, and in real-world systems, 

 it is impossible to know with precision the extent of social change required to bring about a beneficial or avoid a 

 detrimental tipping point. This uncertainty around our knowledge of system thresholds adds an additional challenge 

 in both agreeing upon and following through with policy that promotes sustainable futures while taking into account 

 potential tipping points. Experimental games have shown that high threshold uncertainty can promote the collapse of 

 a shared resource, often through an increase in free-riding behavior  (Barrett and Dannenberg, 2014, 2012)  . On  the 

 other hand, field experiments in fishing communities have shown that high uncertainty can promote cooperation and 

 sustainable resource use  (Finkbeiner et al., 2018; Rocha et al., 2020)  . Theoretical models show that increased 

 uncertainty can lead to increased mitigative behavior if the shared resource is highly valued  ,  ;  however  ,  for 

 low-valued resources, increased uncertainty can deter mitigation, putting the persistence of the shared resource at 

 risk  (Jager et al., 2000; McBride, 2006)  . Uncertainty  around thresholds is unavoidable, further motivating the need 

 to offer additional incentives for mitigative action on institutional scales, rather than solely the threat of 

 environmental collapse. In systems where uncertainty can promote mitigative action, increased communication and 

 awareness campaigns around this threshold uncertainty could be useful to incorporate into policy. 

 This review has focused primarily on the effects of single drivers  ,  ;  however  ,  research on multiple co-occurring 

 human drivers of tipping  points  events  , while more analytically challenging, could offer a holistic understanding of 

 how these drivers interact. A recent study has shown that multiple drivers can both reduce the time until tipping or 

 lead to a tipping point that would not occur with a single driver  (Willcock et al., 2023)  and there  is already a large 

 body of empirical work exploring the diversity of these drivers which can be used to inform future CHES models 

 (Jaureguiberry et al., 2022; Maciejewski et al., 2019; Millennium Ecosystem Assessment, 2005)  . Finally,  as the 

 majority of the studies in  modelling  modeling  tipping points have focused on slow gradual changes in the driver, fast 

 changes require further research as they can exhibit very different tipping behavior  (Ashwin et al., 2012)  .  CHES 

 models ubiquitously exemplify the phenomenon of tipping points, which often occur through drivers in the human 

 system. Although these models offer valuable insight in understanding key feedbacks and qualitative behavior, their 

 predictive power is limited. Additionally, as many model findings can depend on the type of system 

 modelled  modeled  as well as assumptions in the model formulation, translating this work into policy remains a 

 significant challenge. However, further work in both diversifying model systems and assumptions paired with 

 research in universal real-time indicators of EWS shows considerable promise in both improving our understanding 

 and predicting human drivers of tipping  points  events  in the environment. 
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 Appendix 

 Authors  Year  Title  System of study 

 Sethi & 
 Somanathan  1996  The evolution of social norms in common property resource use 

 Common pool 
 resource 

 Satake et al.  2007 
 Coupled ecological–social dynamics in a forested landscape: Spatial 
 interactions and information flow  Land use 

 Iwasa et al.  2007 
 Nonlinear behavior of the socio-economic dynamics for lake 
 eutrophication control  Lake eutrophication 

 Suzuki & Iwasa  2009 
 The coupled dynamics of human socio-economic choice and lake 
 water system: the interaction of two sources of nonlinearity  Lake eutrophication 

 Iwasa et al.  2010 
 Paradox of nutrient removal in coupled socioeconomic and ecological 
 dynamics for lake water pollution  Lake eutrophication 

 Figueiredo & 
 Pereira  2011  Regime shifts in a socio-ecological model of farmland abandonment  Land use 

 Tavoni et al.  2012 
 The survival of the conformist: Social pressure and renewable 
 resource management 

 Common pool 
 resource 

 Lade et al.  2013  Regime shifts in a social-ecological system 
 Common pool 
 resource 

 Iwasa & Lee  2013 
 Graduated punishment is efficient in resource management if people 
 are heterogeneous  Fishery 

 Richter et al.  2013  Contagious cooperation, temptation, and ecosystem collapse 
 Common pool 
 resource 

 Richter & 
 Grasman  2013 

 The transmission of sustainable harvesting norms when agents are 
 conditionally cooperative 

 Common pool 
 resource 

 Barlow et al.  2014 
 Modelling interactions between forest pest invasions and human 
 decisions regarding firewood transport restrictions  Pest 

 Vasconcelos et 
 al.  2014  Climate policies under wealth inequality  Climate 

 Ali et al.  2015 
 Coupled human-environment dynamics of forest pest spread and 
 control in a multipatch, stochastic setting  Pest 

 Sugiarto et al.  2015 
 Socioecological regime shifts in the setting of complex social 
 interactions 

 Common pool 
 resource 

 Wiedermann et 
 al.  2015 

 Macroscopic description of complex adaptive networks coevolving 
 with dynamic node states  Private resource 

 Richter & Dakos  2015  Profit fluctuations signal eroding resilience of natural resources 
 Common pool 
 resource 

 Schlüter et al.  2016  Robustness of norm-driven cooperation in the commons  Common pool 
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 resource 

 Weitz et al.  2016 
 An oscillating tragedy of the commons in replicator dynamics with 
 game-environment feedback 

 Common pool 
 resource 

 Bauch et al.  2016 
 Early warning signals of regime shifts in coupled 
 human–environment systems  Forest 

 Henderson et al.  2016 
 Alternative stable states and the sustainability of forests, grasslands, 
 and agriculture  Land use 

 Sugiarto et al.  2017 
 Social cooperation and disharmony in communities mediated through 
 common pool resource exploitation 

 Common pool 
 resource 

 Barfuss et al.  2017 
 Sustainable use of renewable resources in a stylized social–ecological 
 network model under heterogeneous resource distribution  Private resource 

 Lafuite et al.  2017 
 Delayed behavioral shifts undermine the sustainability of social– 
 ecological systems  Land use 

 Lindkvist et al.  2017 
 Strategies for sustainable management of renewable resources during 
 environmental change 

 Common pool 
 resource 

 Osten et al.  2017 
 Sustainability is possible despite greed - Exploring the nexus between 
 profitability and sustainability in common pool resource systems 

 Common pool 
 resource 

 Sigdel et al.  2017 

 Competition between injunctive social norms and conservation 
 priorities gives rise to complex dynamics in a model of forest growth 
 and opinion dynamics  Forest 

 Sugiarto et al.  2017 
 Emergence of cooperation in a coupled socioecological system 
 through a direct or an indirect social control mechanism 

 Common pool 
 resource 

 Thampi et al.  2018 
 Socio-ecological dynamics of Caribbean coral reef ecosystems and 
 conservation opinion propagation  Coral reef 

 Chen & Szolnoki  2018 
 Punishment and inspection for governing the commons in a 
 feedback-evolving game 

 Common pool 
 resource 

 Drechsler & 
 Surun  2018 

 Land-use and species tipping points in a coupled ecological-economic 
 model  Land use 

 Geier et al.  2019 

 The physics of governance networks: critical transitions in contagion 
 dynamics on multilayer adaptive networks with application to the 
 sustainable use of renewable resources  Private resource 

 Hauert et al.  2019  Asymmetric evolutionary games with environmental feedback 
 Common pool 
 resource 

 Lin & Weitz  2019  Spatial interactions and oscillatory tragedies of the commons 
 Common pool 
 resource 

 Sigdel et al.  2019 
 Convergence of socio-ecological dynamics in disparate ecological 
 systems under strong coupling to human social systems 

 Common pool 
 resource 
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 Bury et al.  2019 
 Charting pathways to climate change mitigation in acoupled 
 socio-climate model  Climate 

 Shao et al.  2019 
 Evolutionary dynamics of group cooperation with asymmetrical 
 environmental feedback 

 Common pool 
 resource 

 Barfuss et al.  2020 
 Caring for the future can turn tragedy into comedy for long-term 
 collective action under risk of collapse 

 Common pool 
 resource 

 Tilman et al.  2020  Evolutionary games with environmental feedbacks 
 Common pool 
 resource 

 Muneepeerakul 
 & Anderies  2020 

 The emergence and resilience of self-organized governance in 
 coupled infrastructure systems  Water use 

 Sun & Hilker  2020 
 Analyzing the mutual feedbacks between lake pollution and human 
 behavior in a mathematical social-ecological model  Lake eutrophication 

 Mathias et al.  2020  Exploring non-linear transition pathways in social-ecological systems 
 Common pool 
 resource 

 Phillips et. al  2020 
 Spatial early warning signals of social and epidemiological tipping 
 points in a coupled behavior-disease network  Epidemic 

 Menard et al.  2021 
 When conflicts get heated, so does the planet: coupled social-climate 
 dynamics under inequality  Climate 

 Phillips & Bauch  2021 
 Network structural metrics as early warning signals of widespread 
 vaccine refusal in social-epidemiological networks  Epidemic 

 Holstein et al.  2021 
 Optimization of coupling and global collapse in diffusively coupled 
 socio-ecological resource exploitation networks  Private resource 

 Farahbakhsh et 
 al.  2021 

 Best response dynamics improve sustainability and equity outcomes 
 in common-pool resources problems, compared to imitation dynamics 

 Common pool 
 resource 

 Yan et al.  2021 
 Cooperator driven oscillation in a time-delayed feedback-evolving 
 game 

 Common pool 
 resource 

 Müller et al.  2021 
 Anticipation-induced social tipping: can the environment be stabilised 
 by social dynamics?  Climate 

 Milne et al.  2021 
 Local overfishing patterns have regional effects on health of coral, 
 and economic transitions can promote its recovery  Coral reef 

 Moore et al.  2022 
 Determinants of emissions pathways in the coupled climate–social 
 system  Climate 

 Bengochea Paz 
 et al.  2022 

 Habitat percolation transition undermines sustainability in 
 socialecological agricultural systems  Land use 
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