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Abstract. Air pollution poses the greatest environmental threat to human health, causing an 10 
estimated nine million premature deaths annually and accounting for 5% of the global GDP. This 11 
opinion paper explores how advances in aerosol science inform our understanding of the health impacts 12 
of outdoor particulate pollution. In the article, we advocate for a shift from solely considering total 13 
particulate matter (PM) mass to utilizing specific PM components as metrics for health assessments. 14 
This will allow targeted evidence-based interventions, limiting the most harmful anthropogenic 15 
emissions, while exempting uncontrollable or non-detrimental components from guidelines. Central to 16 
this shift is the availability of global long-term PM chemical composition data obtained through field 17 
observations and modelling outputs. These data will serve as the new foundation for identifying the 18 
most harmful chemical components in different regions. We discuss emerging modelling tools for 19 
personalized exposure estimation to these components, present the type of ambient observations needed 20 
for model evaluation and highlight key gaps in our fundamental understanding of emissions and their 21 
health effects. Through global PM chemical composition data, advancements in modelling tools, and 22 
collaboration between aerosol scientists and epidemiologists, we can gain a causal understanding of 23 
how different PM components influence disease development. The reevaluation of air quality guidelines 24 
with a focus on specific PM components will be essential for fostering healthier environments, 25 
preventing diseases and building resilient communities. 26 

1. Preamble 27 

1.1 A brief chronology of air pollution 28 

A tale of global air pollution has already been narrated by Fowler et al., and only a brief 29 
chronology will follow, presenting the main milestones reached by the atmospheric science community 30 
since the earliest recorded accounts of air pollution (Fowler et al., 2020). The threat of air pollution to 31 
human health has been recognized since the time of Hippocrates, about 400 before our era (Jones et al., 32 
1923). Successive written accounts of air pollution occur throughout the following two millennia until 33 
measurements from the eighteenth century onwards demonstrated the growing scale of poor air quality 34 
in urban centres. One of the most emblematic early historical documents on air pollution was published 35 
in 1661 under the title Fumifugium by Evelyn (Evelyn, 1772). Evelyn documented the air pollution in 36 
London and proposed solutions for reducing the scale of the problem by moving industries to the 37 
countryside. Graunt, a contemporary of Evelyn, observed a correlation between rates of mortality and 38 
pollution, especially in fog episodes, albeit in the absence of any chemical data or numerical values to 39 
quantify the pollutants present (Graunt, 1939). Later, in 1775, Sir Percival Pott was one of the first to 40 
document the effects of specific pollutants on health. Pott observed a high incidence of scrotal cancer 41 
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among chimneysweepers and concluded that exposure to soot was a risk factor for the cancer (Brown 42 
and Thornton, 1957). 43 

The industrial revolution accelerated the growth and geographical spread of emissions, as 44 
highly polluted cities became the defining problem that culminated with the great smog of London in 45 
1952. This pollution episode of a few days duration caused an estimated death of 10,000 persons and 46 
the injury of more than 100,000 (Stone, 2002; Bell et al., 2004). London’s smog is believed to be the 47 
worst air pollution event in the history of the United Kingdom and the most notorious for its effects on 48 
environmental research, government regulation, and public awareness of the relationship between air 49 
quality and health. It was instrumental for establishing an unambiguous link between short-term 50 
exposure to peak levels of pollution and acute health effects. It also led to the introduction of the Clean 51 
Air Act of 1956 that aimed to reduce emissions and mitigate future pollution events. Until the latter 52 
decades of the twentieth century, Europe and North America dominated global emissions and suffered 53 
the majority of adverse health and environmental effects. By that time, the transboundary issues of acid 54 
rain (Egnér and Eriksson, 1955) and ground-level ozone (Volz and Kley, 1988; Fowler et al., 2008) 55 
were the focal environmental and political air quality problems (Vasseur, 1973). As emission controls 56 
began to take effect in the West, pollution worsened in Asia due to its rapid industrialization, eventually 57 
becoming the dominant source of global emissions by the early years of the twenty-first century. 58 

Towards the end of the 20th century, the health effects of air pollution resurfaced as a top 59 
priority, as new epidemiological evidence highlighted the breadth of chronic health problems resulting 60 
from long-term exposure to relatively low levels of pollution (Dockery et al., 1993). For this, the 61 
emergence of extensive networks of surface measurements, satellite remote sensing, and numerical 62 
models was indispensable for providing global air quality data with which epidemiologists could 63 
estimate the adverse health effects of air pollution. Since then, numerous studies have documented the 64 
chronic and acute health effects of air pollution, many with a global perspective (Burnett et al., 2018; 65 
Cohen et al., 2017; Mcduffie et al., 2021; Richard T. Burnett, 2014; Lelieveld et al., 2015; Lelieveld et 66 
al., 2019; Chen et al., 2018b; Chen and Hoek, 2020; De Bont et al., 2022; Holtjer et al., 2023; Nyadanu 67 
et al., 2022). Today, air pollution remains a major public health concern, and efforts continue to reduce 68 
emissions and improve air quality. 69 

1.2 Particulate air pollution 70 

The polluted air we breathe contains high levels of particulate matter, PM, commonly termed 71 
aerosols. PM is a complex mixture of tiny solid or liquid particles suspended in the air, with a size 72 
ranging from few nanometers to few micrometers (John H. Seinfeld, 2016). These particles can be 73 
directly emitted from primary sources, e.g. desert dust or soot from combustion emissions. They can 74 
also be formed in the atmosphere by gas-to-particle conversion of secondary oxidation products, e.g. 75 
sulfate from SO2 oxidation, nitrate from NOX oxidation or secondary organic aerosol (SOA) from the 76 
oxidation of volatile organic vapours. PM sources can be either natural or human-made. Natural sources 77 
include desert dust, sea-spray, wildfires and biogenic SOA from the oxidation of plant volatiles, while 78 
anthropogenic sources include emissions from residential heating or car exhaust and their secondary 79 
oxidation products. As a result, PM has an immensely complex chemical composition with different 80 
levels of toxicity depending on the emission sources and/or formation processes (Hallquist et al., 2009; 81 
Jimenez et al., 2009). Smaller particles are more likely to enter our bloodstream and travel deep into 82 
our lungs, causing damage. Short-term exposure to peak levels of PM, akin to the great London smog 83 
of 1952, can cause acute health effects. By contrast, long-term exposure to low PM levels leads to 84 
chronic diseases, such as cardiovascular (De Bont et al., 2022), cerebrovascular and respiratory diseases 85 
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(Holtjer et al., 2023), which are responsible for most of the estimated air-pollution-related mortality 86 
(Burnett et al., 2018; Cohen et al., 2017; Chen and Hoek, 2020). Current epidemiological evidence 87 
reveals that no level of air pollution can be deemed safe and even low levels of PM may carry significant 88 
risks (Strak et al., 2021; Pinault et al., 2016; Cohen et al., 2017; Dominici et al., 2022; Brunekreef, 89 
2021; Brauer et al., 2019). Today, PM pollution is responsible for nine million deaths every year 90 
(Burnett et al., 2018). It classifies among the five leading causes of premature deaths worldwide, 91 
alongside with high blood pressure, smoking, diabetes and obesity (Cohen et al., 2017). 92 

1.3 PM mitigation: a global challenge of the 21st century 93 

Although particles are compositionally heterogeneous, showing marked temporal and spatial 94 
variations, most studies investigating their adverse health effects tend to treat them as a uniform entity, 95 
summarised by a mass concentration in the air. Consequently, particle mass concentration, primarily 96 
PM2.5 in the USA and PM10 in Europe1, was routinely measured and formed the basis of epidemiological 97 
observations connecting exposures to air pollution with health records at the population level. As a 98 
result, PM mass serves today as the primary metric for particulate pollution regulation. 99 

In response to the mounting evidence of the negative health effects of PM, the World Health 100 
Organization, WHO, has recently updated its air quality guidelines to propose a much more stringent 101 
limit value of 5 μg m-3 (Who). These new guidelines provide a basis to justify aggressive regulations of 102 
anthropogenic emissions in order to improve global air quality. Such low PM concentrations are 103 
currently only found in some remote environments, while over 95% of the world population lives in 104 
places where the new guidelines are not met. Several western countries have made significant progress 105 
over the past 20 years in order to meet the former WHO limit of 10 μg m-3 last updated in 2005 106 
(Southerland et al., 2022; Hammer et al., 2020). In contrast, PM levels exceeding 50 μg m-3 are typical 107 
in low- to middle-income countries, e.g. in Eastern-Europe, China or India, where 90% of PM-related 108 
deaths occur (Lelieveld et al., 2015). This translates to a loss of several years of life expectancy in Asia 109 
due to pollution, compared to several months in the West (Lelieveld et al., 2019). 110 

Reducing fossil fuel and residential emissions will undoubtedly significantly improve air 111 
quality, especially in polluted environments (Pai et al., 2022; Mcduffie et al., 2021). However, natural 112 
sources including desert dust, wildfires and biogenic emissions will impede many regions from 113 
complying with the new WHO guidelines. A recent landmark modelling analysis suggests that over 114 
50% of the global population will still be living in places with PM2.5 concentrations greater than 5 μg 115 
m-3, even if all anthropogenic emissions would be eliminated (Pai et al., 2022). Moreover, natural 116 
emissions are likely to increase in the near future, further complicating efforts to meet the new WHO 117 
guidelines in certain regions (Gomez et al., 2023). Meeting these guidelines will be particularly 118 
challenging for many regions worldwide, and globally applicable solutions to manage and improve air 119 
quality will become no longer evident. This entails a complete rethink of how we should be mitigating 120 
air pollution and suggests a need for a new generation of feasible air quality metrics that focus on 121 
specific anthropogenic PM components in addition to total PM mass.  122 

Another benefit in targeting particulate pollution across individual chemical components is that 123 
different components have varying toxicity. This is termed the differential toxicity of PM components 124 
(Masselot et al., 2022). Epidemiological analyses of PM health effects, which constitute the foundation 125 
for mitigation strategies, have been based on total PM mass concentrations, which are readily available 126 
globally through in-situ measurements and remote sensing. However, PM health effects are mediated 127 

                                                             
1 PM2.5 and PM10: Particulate matter with a size lower than 2.5 and 10 μm. 
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by their size, solubility and chemical composition, and hence their sources and formation processes. In 128 
our recent work, we have identified the organic and metal fractions to be of particular concern for 129 
oxidative stress (Daellenbach et al., 2020) and inflammation (Leni et al., 2020), in contrast to secondary 130 
inorganic particles that dominate PM mass. Given the role of oxidative stress as a major driver of PM 131 
health effects (Mudway et al., 2020), this necessitate a reconsideration of which sources of PM should 132 
be mitigated. It is vitally important that atmospheric scientists provide policymakers with global PM 133 
chemical composition data, which will constitute a new basis for identifying the most harmful chemical 134 
components, enabling targeted cost-effective decision-making for limiting specific health-relevant 135 
anthropogenic PM sources in different regions.  136 

1.4 Understanding the health effects of PM constituents 137 

This perspective article discusses how the broader atmospheric science community can help 138 
informing strategies aimed at reducing the sources of PM components that pose the greatest risks to 139 
human health (Figure 1). The article introduces the concept of using specific PM components as metrics 140 
for health assessments in addition to total PM mass. We will present new advances in modelling tools 141 
that enables the estimation of personalized exposures to these components. We will then discuss which 142 
ambient observations are necessary for model validations and address the gaps in our understanding of 143 
PM emissions and their health effects. Lastly, we will discuss novel epidemiological data needed to 144 
gain insights into the biological mechanisms underlying the impacts of these PM components on our 145 
health. The article holistically addresses the critical aspects of the PM pollution field, presenting key 146 
observations and developments needed, in our opinion, to shift the focus towards quantifying the health 147 
impacts of individual PM components. 148 

 149 
Figure 1: A multidisciplinary framework for the identification of the health relevant PM components. 150 

2. PM air quality data relevant for health impact assessments 151 

2.1 Targeted PM air quality metrics: more than just PM mass 152 

To quantify the health impacts of PM, we currently rely on dose-response relationships that link 153 
cause-specific mortality to the concentration of total PM mass ideally utilizing individual-level data 154 
from large cohort studies. Whilst these relationships are consistent across studies, there is significant 155 
heterogeneity in the estimated effect size among them. This variation can be partially attributed to 156 
imperfect models approximating individual exposures or random differences among study populations. 157 
Yet, perhaps the largest source of error lies in relying solely on PM mass concentration, ignoring the 158 
biological activity of different particle constituents and leaving us unaware of the causal pathways that 159 
link the complex chemistry of the air we breathe to disease development. Although some studies have 160 
attempted to examine the adverse health outcomes of PM components, particularly highlighting 161 
associations with combustion and road traffic emissions, such investigations remain relatively 162 
infrequent. 163 
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With the advent of vast amounts of atmospheric data, the time has now come to redirect our 164 
focus towards developing dose-response relationships that describe the specific health effects of 165 
individual PM constituents rather than the more general quantity of total PM mass. In practical terms, 166 
these constituents must be quantifiable, easily accessible and readily available at high resolution and 167 
large spatial scales. Our proposal includes considering the following constituents: organic aerosol, 168 
elemental carbon, sulfate, nitrate, ammonium, sea-salt, brake-wear and dust. While brake-wear and dust 169 
concentrations cannot be directly measured, they can be traced using specific markers, such as Cu for 170 
brake-wear and Al for dust. The organic fraction should be ideally subdivided into several classes, each 171 
related to a distinct source sector, including primary and secondary aerosols from car exhaust, 172 
residential burning, wildfires and biogenic emissions. While organic aerosol classes cannot be directly 173 
measured, they might be retrieved through receptor modelling based on spectrometric measurements or 174 
chemical transport modelling, as discussed below. The classification of aerosols based on their chemical 175 
composition not only elucidates the causal connections between exposures and health risks, but also 176 
establishes a direct link to aerosol sources, offering an effective strategy for mitigating the most 177 
important sources for health.  178 

Beyond PM chemical composition, other properties have been proposed to mediate different 179 
aerosol health effects, including aerosol size, number, solubility and oxidative potential. For example, 180 
toxic metals can cause oxidative damage mainly when they are in their soluble form (Fang et al., 2017; 181 
Wong et al., 2020), whereas insoluble particles, such as asbestos or elemental carbon, can bio-182 
accumulate and lead to chronic inflammation. Likewise, small particles can penetrate deep into the 183 
lungs, enter the bloodstream and cross the blood-brain barrier causing respiratory, cardiovascular and 184 
neurological diseases (Requia et al., 2017; Maher et al., 2016), while significant fraction of large 185 
particles is ingested causing an imbalance in our gut microbiome (Fouladi et al., 2020; Alderete et al., 186 
2018; Bailey et al., 2020). Parameters for emerging metrics intended to be used in future 187 
epidemiological studies should be standardized and widely available. PM chemical composition is 188 
intertwined with these alternative metrics, and therefore we argue that targeting PM based on its 189 
chemical composition is the most effective approach to address PM health impacts. 190 

2.2 Necessity of fine-resolution pollution data for exposure assessments 191 

The most polluted environments are in densely populated urban agglomerations (Mcduffie et 192 
al., 2021) and 70% of the world population is projected to live in urban areas by 2050. The composition 193 
and concentrations of PM in these areas exhibit significant spatial heterogeneity on street to citywide 194 
scales. In some cases, intra-city variability exceeds the variability between different cities (De Hoogh 195 
et al., 2016; Eeftens et al., 2016; Tsai et al., 2015; De Hoogh et al., 2013; Eeftens et al., 2012a; Zhang 196 
et al., 2015; Jedynska et al., 2015). Such spatial heterogeneity is driven by traffic patterns (Simon et al., 197 
2017; Li et al., 2016; Gu et al., 2018; Elser et al., 2018; Elser et al., 2016), restaurant emissions (Gu et 198 
al., 2018), domestic heating emissions (Elser et al., 2018; Elser et al., 2016; Jedynska et al., 2015; Mohr 199 
et al., 2011), industrial point sources (Shairsingh et al., 2018) and local geography (Mohr et al., 2011). 200 
Atmospheric aging of urban emissions and long-range transport of polluted air masses add to this 201 
complexity, affecting PM background levels, composition and health effects on regional scales. 202 

Urban microenvironments strongly affect long-term exposures to several PM components 203 
(Figure 2A). For example, there is a strong link between road proximity, exposure to ultrafine particles, 204 
and respiratory, cardiovascular and neurodegenerative diseases (Alexeeff et al., 2018; Bayer-Oglesby 205 
et al., 2006; Yuchi et al., 2020; Boogaard et al., 2022). It has also been shown that exposures to high 206 
particle concentrations around train stations during typical daily commutes of less than one hour can 207 
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contribute up to 21% of total daily PM exposure and more than 50% of daily exposure to toxic metals 208 
such as Cu (Van Ryswyk et al., 2017). Therefore, the knowledge of PM chemical composition on fine 209 
spatial scales relevant to daily human activities is imperative for assessing human exposures to specific 210 
PM components. 211 

 212 
Figure 2: A) Representation of urban PM pollution, highlighting the urban increments in PM concentrations 213 
over background levels and the presence of microenvironments. State-of-the-art measurement and modelling 214 
strategies of PM concentrations at different scales are presented and compared in B) in terms of their 215 
advantages and limitations. Three different approaches are compared including field observations, chemical 216 
transport modelling (CTM) and land-use regression models based on aerosol optical depth (AOD/LUR). The 217 
temporal coverage and spatial resolution of in-situ observations are determined by the method employed to 218 
obtain them, with white cells being assigned accordingly. Comparison of the performance of CTM vs. 219 
AOD/LUR is illustrated in A), showing the source specificity of CTM and the high resolution of the 220 
AOD/LUR. 221 

In most epidemiological analyses, human exposures are typically based on outdoor PM 222 
concentrations estimated at the residence place. However, since we spend the majority of our times 223 
indoors and new buildings are increasingly airtight for energy saving, outdoor air pollution may not 224 
accurately reflect individual exposures (Schweizer et al., 2007). While indoor air pollution, primarily 225 
from cooking (Klein et al., 2019) and smoking (Hyland et al., 2008), may pose significant concerns, it 226 
should be treated as a separate risk factor distinct from outdoor air pollution, akin to contaminated 227 
water. In the absence of indoor emissions, indoor concentrations are 30 to 70% lower than outdoors, 228 
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especially in colder countries (Chen and Zhao, 2011). This variability in infiltration rates has to be taken 229 
into account for an accurate exposure estimation. Furthermore, it is important to consider how human 230 
exposures can be influenced by outdoor pollution in other environments, such as workplaces and during 231 
commuting, where we spend almost 50% of our times. Health data from citizen cohorts often include 232 
questionnaires that offer valuable insights into the effects of mobility and workplace conditions on 233 
pollution exposure. Overall, while we consider outdoor concentrations at residence place to be a good 234 
proxy of exposure to outdoor pollution, integrating household infiltration rates and mobility data can 235 
significantly help refining exposure estimations. 236 

3. Modelling personalized exposures to single PM components 237 

3.1 Existing modelling approaches 238 

Figure 2B compares three traditional classes of approaches used for estimating exposures to 239 
PM components. We put forward eight criteria for comparing these approaches including accuracy, 240 
spatial and temporal resolution, spatial and temporal coverage, capability of hindcasting and forecasting 241 
required to estimate past and future exposures and finally, source-specificity and chemical complexity, 242 
i.e. capability to quantify specific PM components. The assessment of the acute health effects requires 243 
the time-series analysis of daily exposures, whereas the link between PM and chronic diseases is based 244 
on long-term exposures determined at high resolution. 245 

Early cohort studies used averaged (Pope Iii et al., 2002) or interpolated (Jerrett et al., 2005) 246 
PM concentrations measured at a few routine monitoring stations to characterize the exposure of  247 
individual participants in different cities. The use of top-down, receptor models based on the 248 
measurements of PM chemical composition has allowed the investigation of PM sources (Belis et al., 249 
2015; Belis et al., 2020) and their subsequent relation to specific health effects (Ostro et al., 2011). 250 
However, stationary PM measurements are spatially sparse and do not account for the heterogeneity in 251 
pollutant concentrations within cities, especially for primary combustion emissions (Eeftens et al., 252 
2012b; Elser et al., 2016; Elser et al., 2018). Therefore, several geo-statistical and process-based 253 
chemical transport models (CTMs) have been proposed to fill spatial gaps in long-term descriptions of 254 
PM concentrations. 255 

Land-use regression (LUR) models combine monitoring data with GIS based data, e.g. land 256 
use, traffic, or population density, as emission indicators to predict ground level PM concentrations on 257 
fine grids using regression techniques (Cattani et al., 2017; De Hoogh et al., 2016; De Hoogh et al., 258 
2013; Eeftens et al., 2016; Hoek et al., 2011; Kim et al., 2016; Wolf et al., 2017). These techniques are 259 
covered in a recent review by (Hoek, 2017). While these techniques are especially pertinent for 260 
modelling primary PM components, e.g. metals (Kim et al., 2016; Chen et al., 2020) or combustion 261 
products (Jedynska et al., 2014; Jedynska et al., 2015), they fail in capturing the overwhelming majority 262 
of PM mass, formed through secondary processes over extended temporal and spatial scales. Therefore, 263 
besides their limited time-resolution (Kim et al., 2016), they have low explanatory power for several 264 
PM components (De Hoogh et al., 2013).  265 

With advances in satellite remote sensing, aerosol optical depth, AOD, measurements of entire 266 
atmospheric columns have been introduced for assessing individual exposure to ground level total PM 267 
mass with much higher accuracy and relatively high time-resolution. Because AOD-PM relationships 268 
are non-linear, interactive and spatiotemporally variable, AOD measurements are typically combined 269 
with other predictors including land-use data and meteorological variables. Models using geo-statistical 270 
and machine learning techniques have been successfully applied at different scales, including city, 271 

https://doi.org/10.5194/egusphere-2023-1472
Preprint. Discussion started: 19 July 2023
c© Author(s) 2023. CC BY 4.0 License.



8 
 

regional, national and continental scales as well as in different areas around the world, including EU, 272 
US, and China (Brokamp et al., 2017; Suleiman et al., 2016; Huang et al., 2018; De Hoogh et al., 2018; 273 
Di et al., 2016; Hu et al., 2017; Paciorek et al., 2008; Strawa et al., 2013; Zhan et al., 2017; Di et al., 274 
2019; Xue et al., 2019; Chen et al., 2018b). However, because they are based on past AOD 275 
measurements, these models cannot forecast future PM concentrations, e.g. as a response to specific 276 
mitigation strategies (Figure 2B). More importantly, they are typically not capable of discriminating 277 
between specific PM components, because AOD measurements of PM columns are not yet chemically 278 
resolved, although future satellite-based sensors will partially deliver this capability (David et al., 2018).  279 

Unlike the other methods, CTMs possess the ability to generate spatial and temporal 280 
distributions of chemically resolved PM components and forecast their future evolutions over large 281 
spatial scales. CTMs are bottom-up, process-based, numerical models, which simulate PM primary 282 
emissions and secondary formation, along with their losses and atmospheric transport in large 3-D 283 
Eulerian gridded domains. Despite their spatial coverage, source-specificity and capability to leverage 284 
complex atmospheric oxidation processes, most CTMs are not sufficiently spatially resolved to be 285 
suited for human exposure assessments (Figure 2B). Due to computational constraints, highly resolved 286 
CTMs are currently limited to city scales, although the application of quantum computing in geoscience 287 
has the potential to overcome these restrictions (Sahimi and Tahmasebi, 2022). As a result, until very 288 
recently, CTM outputs have rarely been exploited for epidemiological analysis, except for optimizing 289 
the retrieval of total PM mass concentrations in AOD-based hybrid models (Di et al., 2019; Xue et al., 290 
2019) or as an input variable in LUR models (De Hoogh et al., 2016; Shen et al., 2022). 291 

The two fields of air quality modelling, specifically using CTMs and LUR, have evolved along 292 
separate trajectories over the past three decades. This separation can be attributed, in part, to the modest 293 
accuracy of CTMs thirty years ago and, in part, to the substantial contribution of local pollution, such 294 
as traffic, which LUR models were capable of effectively capturing. At that time, CTMs have primarily 295 
focused on implementing representative emission and chemical schemes, aiming to enhance their 296 
accuracy. However, with the advancement in CTMs and the increasing regional nature of PM pollution, 297 
it is now the time for these two fields to converge in order to achieve accurate estimation of exposure 298 
to various PM components at high temporal and spatial resolution and coverage, fulfilling all the criteria 299 
described in Figure 2B.  300 

3.2 Future directions in fine-resolution modelling of PM components 301 

More recent modelling developments have allowed the production of fine-resolution maps of 302 
PM chemical constituents on continental (Van Donkelaar et al., 2019; Chen et al., 2020) and global 303 
(Mcduffie et al., 2021; Weagle et al., 2018) scales, including the concentrations of secondary inorganic 304 
aerosols, black carbon, organic aerosols, and dust. These maps were created using a combination of 305 
AOD data and in-situ PM chemical composition measurements to constrain and downscale coarse CTM 306 
outputs to spatial scales commensurate with population density distributions. The resulting maps 307 
offered the possibility to assess the contributions of different anthropogenic emission sectors to regional 308 
and global mortality burden (Mcduffie et al., 2021; Chen et al., 2021b), and to identify which PM 309 
constituents are for example associated with an increased risk of dementia and Alzheimer’s disease  310 
(Shi et al., 2023). 311 

These recent developments are a fundamental first step for comprehending the health effects of 312 
individual PM components, but there are limitations to the current approach. Models are still directly 313 
reliant on AOD and in-situ measurements and as such they cannot forecast future PM concentrations 314 
and composition in response to mitigation strategies, global warming, and changes in land-use and 315 
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urban build. Additionally, they are limited in identifying the sources of the organic fraction of PM. To 316 
address limitations the atmospheric science community should develop hybrid models that instead 317 
incorporate land-use data with CTM outputs, enabling the retention of CTMs' source-specificity and 318 
forecasting capabilities, while simultaneously benefiting from the fine-resolution information provided 319 
by land-use data. In these models, AOD and in-situ measurements should be utilized for model training, 320 
rather than as model inputs. CTM-based models have the added benefit of being able to quantify the 321 
sources of different constituents, which is especially valuable for the organic fraction, where 322 
composition and health effects are heavily dependent on emission sources and formation pathways. To 323 
ensure the generation of accurate exposure maps for epidemiological inputs, it is also crucial that 324 
exposure models establish connections between air pollution maps and human activity maps and 325 
integrate information regarding household infiltration rates. Overall, the development of hybrid models 326 
that leverage the complementary strengths of CTMs and land-use information will be key in 327 
determining the adverse health effects of different PM components. 328 

4. Field observations of PM chemical composition 329 

This section focuses on the type of field observations required to quantify the spatial 330 
distributions and temporal variation of PM components and to identify their health impacts. 331 

4.1 Established monitoring networks of detailed PM chemical composition 332 

Monitoring networks play a vital role in providing essential data for understanding the spatial 333 
distribution and long-term trends of air pollution, identifying emission sources, constraining human 334 
exposure models and evaluating the effectiveness of emission reduction measures. International 335 
monitoring programs such as SPARTAN2, EMEP3, IMPROVE4, ACTRIS5 and ASCENT6 have been 336 
critical in establishing and maintaining the operation of these networks. Besides the continuous 337 
provision of detailed PM measurements for policymaking, these monitoring programs offer access to 338 
outstanding facilities and openly available databases for scientists from academia and the private sector, 339 
promoting cutting-edge science and international collaborations. 340 

Another advantage of these programs is the standardization of analytical approaches and data 341 
formats, which ensures data quality and comparability and facilitate data sharing and use. Data 342 
generated from these programs may include particle number-size distributions and the concentrations 343 
of elemental and organic carbon, major ions and metal components. Figure 3 illustrates the distribution 344 
of stations across Europe where we have gathered detailed PM chemical properties generated from 345 
different national and pan-European programs. For some PM constituents, more than 50,000 daily 346 

                                                             
2SPARTAN: Surface Particulate Matter Network (SPARTAN) provides publicly available data on PM mass, 
chemical composition, and optical characteristics for connection with satellite remote sensing and for air quality 
management.  
3EMEP: European Monitoring and Evaluation Programme aims to monitor and model the long-range transport of 
air pollutants across Europe. 
4IMPROVE: Interagency Monitoring of Protected Visual Environments is a long-term monitoring program 
designed to assess the visibility and air quality in national parks and wilderness areas in the United States. The 
primary goal of the IMPROVE network is to measure PM mass and chemical composition, at over 170 monitoring 
sites across the United States. 
5ACTRIS: Aerosol, Clouds, and Trace gases Research InfraStructure is a pan-European research infrastructure of 
several measurement stations across Europe that provides long-term observational data on aerosols, clouds, and 
trace gases.  
6ASCENT: The Atmospheric Science and Chemistry mEasurement NeTwork is a new comprehensive, high-time-
resolution, long-term measurement network in the U.S. for the characterization of aerosol chemical composition 
and physical properties. 
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concentrations at different sites are available, which is rare, if not unique. This is only possible thanks 347 
to such research infrastructures. Datasets of at least this scale are required to form a complete picture 348 
of the PM chemical and physical properties and sources, with which our atmospheric modelling 349 
community can optimize exposure maps to understand the health effects of different PM constituents 350 
on a continental level. 351 

The composition, emission sources and formation pathways of the organic fraction remain a 352 
scientific challenge. Routine measurements (e.g. of organic carbon) are not sufficiently chemically 353 
resolved for the retrieval of the contributing sources. For this, two approaches are currently exploited 354 
for long-term monitoring: the aerosol chemical speciation monitor, ACSM (Ng et al., 2011; Fröhlich et 355 
al., 2013), which measures the bulk composition of the non-refractory fraction of fine PM and infrared 356 
spectroscopy, IR (Weakley et al., 2016), which measures the functional group composition of the 357 
organic fraction. We have utilized ACSM data to determine the contribution of residential emissions, 358 
vehicular emissions and secondary processes to the organic aerosol fraction across Europe (Chen et al., 359 
2022) and to validate CTM outputs (Ciarelli et al., 2017; Jiang et al., 2019). ACSM measurements are 360 
part of ACTRIS and ASCENT, whereas the IMPROVE network has adopted IR measurements. The 361 
complex composition of the organic aerosol, especially of the oxygenated secondary fraction, means 362 
that no technique is complete. The spectra acquired with both ACSM and IR techniques retain 363 
information on the source origins and the formation pathways of the organic fraction. These two 364 
techniques are complementary and their combination, although currently only exploited in the 365 
laboratory (Yazdani et al., 2021, 2022), can be very powerful to further characterize the organic aerosol 366 
fraction in dense networks over long-terms, enabling a better understanding of the relationship between 367 
its composition and health effects. 368 

 369 
Figure 3: European map with site locations where long-term detailed chemical composition data is 370 
available. Sites are both urban and rural. Markers are colour-coded with total annual PM concentrations 371 
in 2013, to reflect differences in emissions between sites. 372 

Overall, it is essential that the scientific community continues to leverage chemically-speciated 373 
PM data from monitoring networks and generates additional datasets for validating exposure models. It 374 
is also vitally important that governments continue investing in these networks to foster innovative 375 
research in the field of air quality and health. 376 

 377 

 378 
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4.2 Why detailed atmospheric chemistry matters – a comparison of severe PM pollution 379 
in Northern China and Northern India 380 

Modest improvements in PM pollution in relatively clean regions in Western Europe and North 381 
America, where most of the current monitoring programs operate, would result in large avoided 382 
mortality, owing to the nonlinear concentration-response relationships that describe the risk of death 383 
against PM exposures (Apte et al., 2015). At these locations, air quality is very sensitive to the 384 
contribution of natural emissions, which means further air quality improvements are more subject to 385 
the whims of nature (Figure 4). For these locations, it is crucial to intensify efforts to quantify natural 386 
emissions and collaborate closely with the WHO to identify effective strategies to exempt them from 387 
guidelines. 388 

 389 
Figure 4: Dose-response relationship between PM concentrations and total attributable mortality, 390 
highlighting the sensitivity of mortality to reductions in anthropogenic emissions at low and high 391 
pollution levels and potentially to contributions from natural emissions – adapted based on  (Apte et al., 392 
2015). Vertical axes indicate per-capita mortality rates attributable to PM2.5 for a hypothetical global 393 
population uniformly exposed to a given level of PM2.5. The dose-response relationship is coloured by 394 
the contribution of natural emissions to PM mass. The horizontal bars at the top of the figure represent 395 
typical PM concentrations in Western Europe/north America (EUW/NA) and China/India, as well as 396 
natural background PM concentrations. 397 

By contrast, major improvements in air quality would be required to substantially reduce 398 
mortality in more polluted regions, such as China and India (Figure 4), although such improvements 399 
are at least possible as high concentrations result from anthropogenic activities, and are therefore more 400 
controllable. Air pollution in China and India together causes approximately 5 million deaths every year 401 
(Lelieveld et al., 2015), with approximately 20% of the total deaths attributable to PM (Figure 5A). 402 
Projected demographic shifts in these regions indicate that in order to maintain current PM-attributable 403 
mortality rates, average PM levels must decrease by approximately 30% within the next 15 years to 404 
counterbalance the rise in PM-related deaths resulting from aging populations (Apte et al., 2015). 405 
Therefore, an effective program to deliver clean air to polluted regions is urgently needed to avoid 406 
several million premature deaths every year. 407 

In response, China and India launched their country-level clean air plans in 2013 and 2019, 408 
respectively. Despite greatly improved national air quality levels compared to ten years ago (Figure 409 
5B), China is now finding further air pollution reduction challenging due to the trade-off between 410 
controlling PM and ozone pollution (Li et al., 2019). The situation in India is more alarming. The 411 
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country’s air quality continues to worsen despite the implementation of its clean air program. A growing 412 
number of cities experience severe pollution (Ghildiyal, 2022), resulting in a rise of the mortality 413 
attributable to PM pollution (Figure 5B). The mechanism of haze formation in the two regions is also 414 
very different. While pollution in China happen on regional scales, local pollution in India plays a 415 
prevailing role. The comparison between severe PM pollution in Northern China and Northern India 416 
serves as a perfect example for why a detailed understanding of the complex atmospheric chemistry 417 
involved is required to mitigate the air pollution problems and health effects in those regions. 418 

In China, secondary aerosol production was identified as the main cause behind winter haze 419 
events in a study conducted by Huang et al. (2014), which was the first of its kind to make this discovery 420 
a decade ago (Huang et al., 2014). Later studies have confirmed that in Chinese megacities, particle 421 
formation, often observed at the onset of haze, is driven by the photochemical production of secondary 422 
organic and inorganic species, which happens on a regional scale during the day (Yao et al., 2018; 423 
Kulmala et al., 2021). The high concentrations of anthropogenic sulfate and nitrate, coupled with high 424 
relative humidity, provide an additional reactive medium for heterogeneous aerosol production (Tong 425 
et al., 2021), further contributing to haze formation (Le et al., 2020). Because of the nonlinear chemistry 426 
of ozone production and titration in winter, the recent reductions in nitrogen oxides result in ozone 427 
enhancement in urban areas (Li et al., 2019), further increasing the atmospheric oxidation capacity and 428 
facilitating secondary aerosol formation (Le et al., 2020). Substantial oxidation in China’s atmosphere 429 
is at play even during the night. New findings reveal that between 2014 and 2019, the decrease in 430 
pollution has led to an increase in the production rates of nitrate radicals across China, suggesting the 431 
growing role of nighttime chemistry to China’s air pollution (Wang et al., 2023a). Further mitigating 432 
air pollution and its health effects in China will require a detailed understanding of the complex 433 
atmospheric chemistry behind oxidant production, as well as the identification of the major sources of 434 
secondary aerosol precursors.  435 

In Delhi-India, however, the rapid growth of particles into sizes relevant for haze formation 436 
occurs during nights without any photochemistry. We have recently shown that the growth of sub-100 437 
nm particles is predominantly driven by primary supersaturated organic vapors from local biomass 438 
combustion emissions, whose condensation is promoted by the rapid decrease in air temperature and 439 
the increase in emissions during nighttime (Mishra et al., 2023). The formation of ammonium chloride 440 
enhances aerosol water uptake through co-condensation at high nighttime relative humidity, which 441 
sustains particle growth at higher sizes (Mishra et al., 2023) and leads to fog formation and a 50% 442 
reduction in visibility (Gunthe et al., 2021). This process, apparently unique to India's capital, does not 443 
involve photochemistry but is instead driven by high emissions of hydrochloric acid, possibly from 444 
local industries (Rai et al., 2020). During daylight hours, with the dispersion of NOX emissions and the 445 
increase in the atmospheric oxidation capacity, local combustion of fossil fuels and biomass become an 446 
important source for SOA production (Kumar et al., 2022). Toxic heavy metal pollution levels in Delhi 447 
are another cause for alarm, with concentrations several hundred times higher than those found in 448 
Europe, also due to local industries (Rai et al., 2021). Solving air pollution in India will require 449 
international collaboration with local researchers to better understand the local sources of different 450 
pollutants, e.g. through mobile measurements (Section 4.3), as well as the effects of local 451 
meteorological conditions on air quality. Given the significance of local pollution sources, it will also 452 
necessitate the involvement of social scientists and local communities to introduce social changes and 453 
raise public awareness.  454 
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 455 

Figure 5: percentage of mortality attributed to particulate pollution. Data are from the Global Burden of 456 
Disease Study 2019 Results (Seattle, United States: Institute for Health Metrics and Evaluation, 2020 - available 457 
from https://vizhub.healthdata.org/gbd-results/). A) Percentage of PM-related mortality for every country. B) 458 
Evolution of the percentage of PM-related mortality from 1990 to 2019 for locations discussed in the text, 459 
including China, India, Western Europe (EUW), US, South and Central America, low SDI (Socio-demographic 460 
Index) and high SDI. C) Percentage of PM-related mortality globally as a function of age. D) Percentage of deaths 461 
attributable to PM pollution related to non-communicable diseases, communicable & maternal diseases and 462 
injuries. The main causes of death to which PM exposure contribute include ischemic heart diseases (IHD), stroke, 463 
diabetes, chronic obstructive pulmonary diseases (COPD), neonatal infections, and lower respiratory infections 464 
(LRI).  465 

The atmospheric science community has already made significant strides in understanding the 466 
sources of air pollution in China and India, but knowledge gaps still exist. It is imperative to further 467 
understand the non-linear effects of emissions on the atmospheric oxidation capacity, particularly in 468 
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light of India's potential to face the same problems as China in the near future when primary pollution 469 
reduction will lead to an increase in the photochemical production of ozone and secondary aerosols. It 470 
is also crucial to identify on a molecular level the specific ingredients contributing to aerosol formation 471 
and growth and relate these ingredients to the emission sources of their precursors. We also need to gain 472 
a mechanistic understanding of the interplay between the soluble inorganic fraction and water and their 473 
effects on the enhanced partitioning and heterogeneous chemistry of organic and inorganic vapors (e.g. 474 
N2O5, HCl, HNO3, and oxidized organics). Without this knowledge, we cannot accurately predict the 475 
fate of these vapors with future reductions in the anthropogenic emissions of inorganic precursors, such 476 
as SO2 and NOX. 477 

Finally, it is essential to establish national monitoring networks in both countries that probe the 478 
spatial distribution and long-term trends of air pollution, and allow us to evaluate the effectiveness of 479 
emission reduction measures. The data resulting from these monitoring programs serve as a cornerstone 480 
for understanding the health effects of the PM components specific to China and India, enabling us to 481 
devise regionally-specific solutions aimed at effectively limiting air pollution in these regions. More 482 
generally, the inequity of air pollution is flagrant, with locations having low socio demographic index 483 
(SDI) suffering three times the burden of PM-related mortality compared to locations with high SDI 484 
(Figure 5B). This disparity underscores the urgent need for comprehensive monitoring networks in low 485 
SDI countries, enabling proactive measures to mitigate the health impacts of PM pollution. 486 

4.3 Fine-resolution measurements of urban pollution 487 

Monitoring networks have limited spatial coverage, which can make it difficult to capture 488 
localized pollution hotspots, especially from primary combustion emissions (Eeftens et al., 2012b; Elser 489 
et al., 2016; Elser et al., 2018; Jedynska et al., 2015; Jedynska et al., 2014). Therefore, several 490 
approaches have been proposed for the spatial measurements of urban pollution (Figure 2). Both 491 
ground-based sensor networks, e.g. for CO2, black carbon, NO2, or total PM (Popoola et al., 2018; 492 
Caubel et al., 2019; Oney et al., 2015), and satellite retrievals (Di et al., 2016; Griffin et al., 2019) can 493 
map the concentrations of individual pollutants at sub-km-scale resolutions, however, these approaches 494 
lack the chemical resolution needed for the measurements of PM components. Aircraft measurements 495 
are suited for studying pollution plumes at regional scales (Fry et al., 2018; Decker et al., 2019), but 496 
cannot access fine scale variations at the ground level. Ground-based mobile laboratories can house 497 
online instrumentations that provide high chemical resolution, while operating with sufficiently high 498 
time resolution (i.e. few minutes) for measurements at street levels (Shairsingh et al., 2018; Gu et al., 499 
2018). This makes them ideally suited for spatial mapping of specific atmospheric pollutants in urban 500 
environments and for model verifications (Hankey and Marshall, 2015; Alexeeff et al., 2018; Apte et 501 
al., 2017; Gu et al., 2018).  502 

A large number of studies have measured black carbon, NO2, total PM mass and number 503 
concentrations aboard of mobile platforms (Alexeeff et al., 2018; Apte et al., 2017; Hankey and 504 
Marshall, 2015; Shairsingh et al., 2018; Simon et al., 2017; Miller et al., 2020). The Aerodyne aerosol 505 
mass spectrometer (AMS) has also been used with a great effect for the mobile measurements of non-506 
refractory PM components, including secondary inorganic species and organic aerosol (Elser et al., 507 
2016; Elser et al., 2018; Gu et al., 2018; Mohr et al., 2011; Shah et al., 2018). The application of 508 
factorization techniques to the measured organic mass spectra has even enabled its apportionment to 509 
primary traffic, cooking and biomass burning emissions as well as the quantification of a total secondary 510 
fraction (Gu et al., 2018; Elser et al., 2016; Elser et al., 2018). From measurements in the EU and the 511 
US, it was found that the secondary organic and inorganic fractions are homogeneously distributed 512 
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across cities, while primary emissions are enhanced by several μg m-3 compared to background levels 513 
(Elser et al., 2016; Elser et al., 2018) in correlation with land-use variables (Gu et al., 2018). 514 

Until recently, there has been no robust technology for highly time resolved measurements of 515 
airborne particulate metals. Therefore, studies had previously relied on integrated offline samples 516 
collected over days-to-weeks at only a few sampling stations in order to assess the spatial distribution 517 
of particulate metals across cities (Li et al., 2016; Van Ryswyk et al., 2017; Zhang et al., 2015). With 518 
such measurements, intra-urban variability in metal concentrations can still be discerned. However, due 519 
to the limited sample sizes (less than five samples per site and 200 samples in total) and the low time 520 
resolution of sampling, robust land-use regression models of daily exposures to toxic metal particles 521 
cannot be achieved. Recently, the Xact 625 ambient metals monitor, an online XRF spectrometer, has 522 
been developed and successfully deployed in the field for the real time measurements of particulate 523 
elements (~25)  with time resolutions down to 30 minutes (Furger et al., 2017). Due to its high time 524 
resolution, sensitivity and robustness in the field, the Xact is capable of delivering several month long 525 
datasets of 1000s of data points – 10-100 times more than offline techniques (Manousakas et al., 2022), 526 
which allow the retrieval of daily exposure patterns. However, further developments are needed to 527 
achieve particulate elemental analysis on time-scales of minutes suitable for mobile measurements. The 528 
availability of such measurements will enable access to the aerosol's elemental composition at a fine 529 
resolution, which is necessary for validating exposure models for metal components. 530 

Street-level air quality data can enhance, challenge, or confirm various air quality datasets, such 531 
as regulatory data, CTM outputs, land-use regression predictions, and remotely sensed observations. 532 
This refinement can aid addressing exposure misclassifications in epidemiological studies (Zeger et al., 533 
2000). 534 

5. Gaps in understanding emissions and their health impacts 535 

Human activities have significantly altered the earth’s environment, leading to profound 536 
changes in the atmospheric composition, global temperatures and land cover. In Figure 6, we categorize 537 
the complex anthropogenic effects on PM concentrations and composition into four broad classes: 538 

(1) Direct emissions: This class includes anthropogenic pollutants that are released directly into the 539 
atmosphere.  540 

(2) Land-use changes: Alterations in land use have a direct impact on PM levels and composition. 541 
These changes encompass modifications in build environments, urban greening initiatives, 542 
deforestation/forest management, and agricultural practices. These changes affect emissions, pollutant 543 
accumulation, and exposure patterns, such as the "street canyon effect”. Understanding these influences 544 
is crucial for an accurate quantification of personalized exposure to PM components. 545 

(3) Direct effects of anthropogenic emissions on the chemistry of natural PM. 546 

(4) Indirect perturbation of natural PM: anthropogenic emissions can indirectly influence natural 547 
PM through their impacts on natural ecosystems, e.g. through global warming, increased CO2 548 
concentrations, shifts in vegetation patterns, or desertification. 549 

With this section, we address existing gaps in our understanding of anthropogenic emissions, 550 
their atmospheric transformation processes, and their direct and indirect influence on natural PM. It is 551 
important that the atmospheric science community approach these gaps from a mechanistic standpoint 552 
and incorporate them into models to accurately quantify the anthropogenic impacts on PM components 553 
and their associated health effects. This distinction between controllable and uncontrollable emission 554 
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sources, as well as detrimental and non-detrimental ones, serves as a key first step in developing targeted 555 
mitigation strategies. In section 5.1, we delve into anthropogenic PM emissions that hold particular 556 
relevance for public health, while in section 5.2, we focus on the direct and indirect effects of 557 
anthropogenic emissions on natural PM. 558 

 559 

Figure 6: anthropogenic effects on PM through (1) direct emissions, (2) land-use changes, (3) direct and (4) 560 
indirect perturbation of natural PM. (3) comprises the direct effects of anthropogenic emissions on the 561 
chemistry of natural aerosols, while (4) describes the influence of anthropogenic emissions on natural ecosystems, 562 
e.g. through global warming, or increase in CO2 concentrations. Natural emissions from terrestrial systems include 563 
biogenic volatile organic compounds (BVOCs), wildfire emissions and dust. Anthropogenic emissions include 564 
NOX and SO2 from fossil fuel combustion, non-exhaust emissions, solid fuel combustion for domestic heating, 565 
and volatile chemical products (VCPs). 566 

5.1 Health effects of anthropogenic PM emissions 567 

Anthropogenic emissions remain a predominant source of primary and secondary aerosols. Our 568 
review reveals mixed results regarding the differential health effects associated with different 569 
anthropogenic PM components (Chen et al., 2018a; Yang et al., 2019; Masselot et al., 2022; Wang et 570 
al., 2022), but with elemental carbon, organic aerosols and sulfate consistently associated with 571 
increasing risks of mortality and hospitalization. We believe that one crucial factor contributing to the 572 
inconsistencies in these findings is the strong correlation between various PM components. For 573 
example, while sulfate itself may not be toxic, it often exhibits a strong correlation with SOA, provides 574 
a medium for organic reactions, and influences the bioavailability of dust elements. Therefore, a holistic 575 
consideration of the correlations among PM components is essential when analysing their differential 576 
toxicities. There is a pressing need for extended datasets that provide high spatial and temporal coverage 577 
and resolution, allowing overcoming limitations related to the covariance between PM components. 578 
Additionally, it is crucial to achieve a detailed separation and characterization of PM components, with 579 
a special focus on the OA. In this section, we will focus on emissions that will become increasingly 580 
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important for public health in the future, including non-exhaust on-road emissions, volatile chemical 581 
products (VCPs), and residential biomass burning. 582 

As traffic exhaust emissions of NOX, PM and hydrocarbon vapours are increasingly regulated, 583 
car engines have undergone a technological revolution, improving combustion efficiency and after-584 
treatment technologies. In contrast, non-exhaust emissions, such as brake and tire wear, have increased 585 
with the growing number of vehicles and currently exceed exhaust emissions (Timmers and Achten, 586 
2016). These emissions control toxic metals such as copper, which enhance the oxidative potential of 587 
PM (Daellenbach et al., 2020). Even with the electrification of the fleet, non-exhaust emissions will 588 
remain an issue, potentially worsened by the heavier weight of electric cars (Timmers and Achten, 589 
2016). While public transportations, including trams and trains, may also be an important source of 590 
metal particles, their contribution are not yet well quantified. Atmospheric scientists must comprehend 591 
the distribution of on-road non-exhaust emissions to quantify their health impacts. 592 

With the drastic reduction of on-road transportation emissions, VCPs have emerged as the 593 
largest source of urban organic emissions in US and European cities, modulating urban chemistry 594 
(Coggon et al., 2021; Gkatzelis et al., 2021; Mcdonald et al., 2018). These ubiquitous emissions 595 
encompass pesticides, coatings, printing inks, adhesives, cleaning agents, and personal care products. 596 
Human exposure to fossil carbonaceous aerosols and to ozone is transitioning from transportation-597 
related sources to VCPs. These emissions have comparable, if not greater, SOA potentials compared to 598 
vehicular emissions, which may influence human health. Variations in SOA potentials and chemistry 599 
among VCPs, as revealed by laboratory experiments, highlight the need for further characterization of 600 
these unconventional emissions (Shah et al., 2020). Furthermore, it is now possible to include these 601 
emissions into models (Pennington et al., 2021), which will enable future assessments of their health 602 
impacts. Existing regulations on VCPs emphasize reducing ozone and air toxics, but currently exempt 603 
numerous chemicals that contribute to SOA formation. Efforts to refocus mitigation strategies for ozone 604 
formation and toxic chemical burdens require atmospheric scientists to provide data quantifying the 605 
contribution of these emissions to the global burden of disease. 606 

Achieving net-zero emissions for climate goals does not necessarily guarantee clean emissions 607 
for air quality. Biomass combustion, adopted as a carbon neutral energy source for residential heating, 608 
is a potent anthropogenic source of pollution during winter. It dominates the emissions of toxic organic 609 
species such as polycyclic organic compounds. The emitted organic vapours rapidly react in the 610 
atmosphere with OH and NO3 radicals, resulting in substantial SOA production (Kodros et al., 2020; 611 
Stefenelli et al., 2019). The SOA formed contains high levels of oxygenated and nitro-aromatic 612 
compounds, which likely cause the high oxidative potential of this fraction (Daellenbach et al., 2020). 613 
Recent laboratory investigations (Liu-Kang et al., 2022; Wang et al., 2023b) and airborne field 614 
measurements (Morgan et al., 2020; Zhou et al., 2017) suggest that primary biomass emissions, which 615 
absorb near UV light, can undergo photoreactions in the particle phase, resulting in a doubling of the 616 
emissions oxidation state in few hours. The dominant transformation processes of biomass burning 617 
emissions and their impact on aerosol toxicity remain unclear. Overall, biomass smoke has not shown 618 
a reduction trend in many regions worldwide, underscoring the importance of comprehending the fate 619 
of these emissions in the atmosphere and their implications for human health. 620 

5.2 Anthropogenic effects on natural PM and implications for health outcomes 621 

With the increasing regulations on anthropogenic emissions, the contribution of natural 622 
emissions, including biogenic volatile organic compounds (BVOCs), wildfires and desert dust, will gain 623 
prominence (Figure 4). While these emissions stem from natural ecosystems (Figure 6), they are also 624 
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significantly perturbed by anthropogenic emissions. The traditional picture that distinguishes biogenic 625 
and anthropogenic emissions obscures human impacts on ostensibly natural systems. Anthropogenic 626 
effects on natural PM can be either direct, through the alteration of atmospheric reactivity, or indirect, 627 
through feedback mechanisms triggered by changes to the biosphere. In this section, we discuss changes 628 
in natural PM emissions that are important to consider when determining their impacts on human health 629 
(Table 1). 630 

Biogenic SOA (BSOA) is the most important source of OA in the atmosphere (Jiang et al., 631 
2019), with mobile sources of NOX playing a vital role in moderating its formation, composition and 632 
potentially health effects. NOX effects on BSOA are multifaceted and involves (1) altering the fate of 633 
biogenic RO2 radicals, (2) increasing the atmospheric oxidant concentrations and (3) providing an 634 
aqueous medium for additional reactions (Xu et al., 2015; Pye et al., 2019; Carlton et al., 2018). As 635 
NOx emissions decrease, RO2 autoxidation becomes increasingly important, potentially enhancing 636 
BSOA formation, while oxidant availability driving RO2 formation rates simultaneously declines, 637 
possibly slowing regional BSOA formation. Recent modelling analyses (Carlton et al., 2018), along 638 
with in-situ (Xu et al., 2015) and airborne measurements (Pye et al., 2019; Shrivastava et al., 2019) 639 
consistently suggest that anthropogenic NOX leads to a net enhancement in BSOA concentrations by 640 
20-50% depending on the location and season. Similar to NOX, SO2 emissions from electricity 641 
generation, the main source of particulate sulfate, modulates the aqueous formation of isoprene SOA. 642 
Models (Carlton et al., 2018) and measurements (Xu et al., 2015) over the US demonstrate that between 643 
40–70% of the BSOA can be controllable by reducing anthropogenic NOX and SO2. Similar analysis is 644 
still lacking at other locations worldwide.  645 

BSOA concentration exhibits a strong temperature dependence, driven by the exponential 646 
increase in BVOC emissions and their oxidation rates. Our analysis of multi-field observational datasets 647 
from European and North American locations reveals that BSOA contributes [0.9–2.5] μg m-3 at 15°C, 648 
compared to [2.1–6.3] μg m-3 at 25°C (Xu et al., 2015; Daellenbach et al., 2017). Climate models project 649 
a global increase in BSOA mass by approximately 30–150% with a temperature rise of 2°C and a few 650 
hundred ppb increase in atmospheric CO2 concentrations (Carslaw et al., 2010). When changes in 651 
vegetation are accounted for, predictions of BVOC emissions become extremely uncertain, with 652 
projected increases ranging from 10s to 100s of percent. These uncertainties arise from the 653 
unpredictable response of vegetation to future climates, including longer growing seasons, increased 654 
leaf area index with the fertilization effect of CO2, changes in water stress and expansion of the boreal 655 
and temperate forests. With the rise in BVOC emissions and the denitrification of the atmosphere, it is 656 
expected that the oxidation capacity of the atmosphere may decrease leading to slower production of 657 
BSOA and a complete change in its composition. Understanding the non-linear interactions among 658 
anthropogenic emissions of oxidant precursors, greenhouse gases, atmospheric oxidation conditions, 659 
and the biosphere is crucial for understanding BSOA concentration and chemical composition.  660 

While reducing NOX and SO2 can control a significant portion of BSOA, the rise in BVOC 661 
emissions with climate change, albeit highly uncertain, may offset this reduction. Currently, there is 662 
very limited understanding of the impact of BSOA on human health, with only one study suggesting a 663 
3.5 times higher cardiorespiratory mortality associated with anthropogenically-influenced BSOA 664 
compared to total PM (Pye et al., 2021). This complex interplay between anthropogenic emissions, 665 
BSOA production, chemical composition, and their impact on human health remains highly uncertain.  666 
Atmospheric scientists should capitalize on emerging multi-year, multi-location observations of 667 
detailed PM chemistry to enhance model predictions of BSOA chemical composition, burden and 668 
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response to global changes and estimate the effect of this fraction on different health outcomes for 669 
different regions worldwide (Table 1). 670 

Table 1: Future changes in natural emissions, key observations needed for coupling with health data, high 
priority model developments for understanding the health effects of emissions and their future evolution, and 
level of scientific understanding (LOSU) of natural PM health effects  
Source Future changes Key observations  Model developments LOSU 

BSOA Increase in global BSOA 
burden by 30-150%. 

Long-term, multi-site 
measurements of BSOA 
precursors, oxidant 
precursors, chemistry and 
burden. 

Global analysis of 
response of BSOA 
chemistry and burden to 
anthropogenic emissions 
and climate change. 

Fundamental studies of 
anthropogenic-biogenic 
interactions and their 
effects on BSOA 
chemistry and burden   

Improving the 
understanding of the 
response of BVOC 
emitting species to climate 
change (temperatures, soil 
nutriments, CO2, nitrogen 
deposition, droughts, 
vegetation shifts).   

Implementing the effects 
of anthropogenic-
biogenic interactions on 
BSOA chemistry and 
burden   

Very poor understanding 
of the effects of BSOA on 
chronic and acute health 
outcomes. 

Very poor understanding 
of the impact of 
anthropogenic emissions 
on BSOA health effects.   

Wildfires Increase in wildfires 
frequency by ~100% and 
emission burden by 
~30%. 

Long-term global records 
of fire occurrence and 
associated PM emissions.  

Global analysis of 
response of wildfire 
emission occurrence and 
budget as function of 
climate change, and fire 
drivers (temperature, 
droughts, lightning). 

Determination of wildfire 
emission rates for 
different ecosystems.  

Fundamental studies of 
wildfire emission and 
their atmospheric 
transformation processes.  

Coupling fire and 
vegetation models. 

Improving the 
understanding of the 
impact of land and fire 
management on fire 
emissions.   

Medium understanding of 
the effects of wildfire 
emissions on acute health 
outcomes, mainly related 
to respiratory 
complications. 

Poor understanding of the 
effects of wildfire 
emissions on chronic 
health outcomes, mainly 
related to different cancer 
sites. 

 

Dust Uncertain Long-term global records 
of dust emission burden, 
size and chemical 
composition. 

Quantification of the 
contribution of soil vs. 
urban dust in major cities.  

Field and laboratory 
observations of dust aging 
and its impact on the 
bioavailability of key 
elements.  

Improving dust emission 
schemes.  

Implementation of dust 
updated aging schemes.  

Medium understanding of 
the effects of dust 
emissions on acute health 
outcomes. 

Poor understanding of the 
effect of dust origin and 
aging on its health effects.  

Wildfires have become increasingly frequent in many regions worldwide, making them the 671 
second largest contributor to atmospheric organic carbon on a global scale. This source can be directly 672 
affected by anthropogenic activities, through deforestation, forest management and fire suppression or 673 
indirectly by climate change. Climate models predict that global warming will amplify wildfire 674 
emissions by ~30%, owing to longer fire seasons, higher temperatures, increased droughts, and 675 
increased convection-induced lightning as an ignition source (Carslaw et al., 2010). The short-term 676 
health effects of wildfire emissions, including pulmonary complications (Stawovy and Balakrishnan, 677 
2022), respiratory mortality and cardiovascular mortality (Chen et al., 2021a), have been firmly 678 
established. Conversely, understanding the long-term health effects of these emissions is an ongoing 679 
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area of research (Grant and Runkle, 2022; Gao et al., 2023). Recent studies investigating Amazonian 680 
(Yu et al., 2022) and Canadian Boreal (Korsiak et al., 2022) wildfire emissions have highlighted an 681 
elevated risk of various cancers, surpassing the effects of non-wildfire PM emissions for equivalent 682 
exposure doses. With the projected increase in wildfires, it is imperative for atmospheric scientists to 683 
comprehensively comprehend wildfire emissions, assess their health impacts and predict their future 684 
evolution. A crucial first step in this direction is the analysis of global fire occurrence records and 685 
associated PM emissions. Such analysis will establish robust relationships between emissions, 686 
ecosystems, climate change, fire management and fire drivers. These records will also form the 687 
foundation for improving our understanding of short and long-term health effects of wildfires (Table 688 
1). 689 

Dust is the most important source of elements in the atmosphere, affecting public health and 690 
through deposition modulating nutriment availability, the carbon cycle and biogeochemistry in oceanic 691 
and forest ecosystems. Wind speed, soil moisture and vegetation cover are the main drivers of dust 692 
emission fluxes, size distribution and mineralogical composition (Carslaw et al., 2010). During 693 
transport, dust particles react with acids, reducing their lifetime against wet deposition and increasing 694 
the bioavailability of key elements, including Iron. It has been shown that anthropogenic sulfate from 695 
fossil fuel combustion modulates soil dust iron solubility and toxicity (Wong et al., 2020). In addition 696 
to sulfuric acid, nitric acid may be associated with dust particles to a notable extent. The reactive uptake 697 
of gases with dust particles heavily depends on dust mineralogical composition, with particles rich in 698 
carbonates exhibiting strong atmospheric reactivity. Similar to wildfire emissions, both direct human 699 
activities and climate change can influence dust emissions, making future predictions uncertain 700 
(Carslaw et al., 2010). Dust outbreaks have frequently been associated with mortality and hospital 701 
admissions (Stafoggia et al., 2016; Crooks et al., 2016), albeit with moderate effects and associated high 702 
uncertainties in risk rate estimates (Zhang et al., 2016). This uncertainty may result from the variability 703 
in dust particles morphology, size, solubility and chemical composition, depending on their origin and 704 
transport time in the atmosphere. Additional observational data on dust phenomenology is required for 705 
model evaluation. A particular challenge is the provision of long-term, large scale datasets, which is 706 
crucial because of the strong spatial and temporal variability of dust concentration, size and chemistry 707 
in the atmosphere. Finally, fundamental research on dust transformation processes and their impact on 708 
health effects is warranted (Table 1). 709 

In this section, we have discussed the key observations and modelling developments that are in 710 
our opinion needed to represent different anthropogenic and natural emissions and comprehend their 711 
health effects. While anthropogenic emissions are destined to decrease, natural emissions will most 712 
likely increase. Part of this increase can be controllable through reducing anthropogenic emissions and 713 
managing land-use. The atmospheric science community is now ready to provide the field 714 
measurements, laboratory observations and model outputs needed to quantify the contribution of 715 
anthropogenic, controllable and uncontrollable natural emissions globally and predict their evolution 716 
with global changes. Such data will constitute the foundation for a constructive dialogue with 717 
stakeholders and policy makers for finding the best ways for exempting uncontrollable natural 718 
emissions from guidelines. 719 

6. Collaboration between atmospheric scientists and epidemiologists 720 

This section highlights the critical role of the collaboration between epidemiologists and 721 
atmospheric scientists in identifying the specific PM components responsible for various diseases and 722 
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elucidating the underlying biological pathways through which these components can trigger disease 723 
progression. 724 

6.1 A step towards causality with population-based epidemiology 725 

 Recently, eight hallmarks of environmental insults have been proposed (Peters et al., 2021). 726 
They encompass oxidative stress and inflammation, genomic mutations, epigenetic alterations, 727 
mitochondrial dysfunction, endocrine disruption, altered intercellular communication, changes in 728 
microbiome communities, and impaired nervous system function. These hallmarks jointly underpin the 729 
severe health effects resulting from lifelong environmental exposures, even to relatively modest 730 
concentrations of contaminants.  731 

Barrier organs, such as the lung or the gut, are directly impacted by environmental exposures 732 
and have evolved to cope with insults. The immune function within these organs serves as the first line 733 
of defense, while our sensory system may elicit neurological responses to adapt to changing 734 
environmental conditions. However, environmental impacts extend beyond immediate and local 735 
responses caused by acute exposures. Recurring local reactions from chronic exposures can trigger 736 
systemic responses beyond the initial site of the insults, activating the immune system, triggering 737 
metabolic functions, altering organ-to-organ signaling, disrupting autonomic nervous system control, 738 
and affecting the genetic expression. These responses are geared at maintaining the homeostasis of 739 
organ functions and, most importantly, determine wellbeing and disease development. 740 

PM, as one of the most important environmental insults, can enter our body through various 741 
barriers, e.g. our lungs or digestive system, affecting individuals through the complex web of biological 742 
pathways mentioned above. Figure 5C displays the contribution of PM pollution to total mortality at 743 
various ages, illustrating the staggering effects of PM for infants and elderly individuals. Short-term 744 
exposure to PM pollution has been linked to sudden infant death and higher mortality and morbidity 745 
rates, caused by cardiorespiratory issues, renal complications, and mental disorders. These effects are 746 
particularly pronounced in children and individuals with chronic conditions (Heft-Neal et al., 2018) 747 
(Zhang et al., 2023; Liu et al., 2023; Guo et al., 2023). According to a recent multi-location assessment, 748 
every 10 µg m-3 increase in daily PM levels increases the mortality risk by 0.7% (Liu et al., 2019). 749 
Conversely, long-term PM exposure has been linked to numerous non-communicable diseases that 750 
manifest at a later stage of life (Figure 5C), including cardiovascular diseases (Requia et al., 2017; 751 
Lelieveld et al., 2019), respiratory symptoms (Nhung et al., 2017; Zheng et al., 2015) , different types 752 
of cancers (Turner et al., 2020), diabetes (Yang et al., 2018), and neurodegenerative diseases (Maher et 753 
al., 2016; Shi et al., 2020).  754 

Unlike infectious diseases, non-communicable diseases have multiple causes and involve 755 
various factors, which individually are neither necessary nor sufficient to cause the disease. Early-life 756 
exposures may leave enduring marks in the body, leading to manifestations that can arise many decades 757 
later. Given the multifactorial nature of the problem, epidemiology is irreplaceable when it comes to 758 
investigating non-communicable diseases and working with citizen cohorts is essential to circumvent 759 
the challenges of randomization taking into consideration cofounding effects. Citizen involvement is 760 
simply inevitable in comprehending their own health.  761 

Epidemiologists rely on patterns to infer potential cause and effect relationships, before fully 762 
understanding the underlying biological pathways. The epidemiological associations between PM 763 
exposure and diseases are consistently and unequivocally established. To bolster the causal 764 
interpretation of these associations, it is crucial to identify the intermediate steps that connect exposure 765 
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and disease. Therefore, we must focus on developing tools to investigate which of the eight hallmarks 766 
are involved in disease development and detect early changes at low PM doses. In this regards, 767 
epidemiology may greatly benefit from advancements in environmental characterization, molecular 768 
phenotyping, multiomics, epigenetics, imaging, as well as the implementation of personalized and 769 
digital medicine (Probst-Hensch et al., 2022). The integration of these tools have the potential to 770 
transform modern population-based environmental epidemiology, advancing our understanding of 771 
disease etiology and enabling the connection of exposure to the development of specific disease 772 
hallmarks. At the same time, the expertise of atmospheric scientists in comprehending the chemical 773 
properties of various PM components plays a crucial role in elucidating the link between these 774 
components and the development of diseases, thereby aiding epidemiologists in causal investigations. 775 

6.2 Working with citizen cohorts to establish causal links 776 

The establishment of national biobanks and citizen cohorts is key for investigating the causal 777 
links between exposure to PM components and diseases. These cohorts are the gold standard for 778 
understanding long-term health effects of environmental factors (Probst-Hensch et al., 2022). They 779 
provide evidence where randomized trials are unethical or unfeasible (Peters et al., 2022). Cohorts are 780 
critical for approaching a causal understanding of how social, environmental, behavioral, and economic 781 
factors promote or hinder health, while also enabling the evaluation of the long-term impacts of public 782 
health interventions. They allow studying health trajectories across different ages, providing a life 783 
course perspective. As such, they serve as a fundamental pillar for addressing the health effects of PM 784 
in the context of other major public health challenges of the 21st century, including population growth, 785 
aging societies, urbanization, global warming, digital transformation and increasing social inequalities.  786 

Europe has a longstanding tradition of implementing and maintaining large-scale (>100k 787 
participants) and long-term (>20 years) cohorts, including the UK Biobank (Sudlow et al., 2015), 788 
Lifelines (Stolk et al., 2008), Constances (Zins et al., 2010), and the German National Cohort (Peters et 789 
al., 2022). Innovations in these cohorts include recruitment from birth to old age, implementation of 790 
novel eHealth tools, involvements of psychologists and social scientists, and citizen participation during 791 
planning and execution to address response rate challenges. Biomaterial collection within these cohorts 792 
enables sequencing and in-depth molecular characterization, differentiating between genetic and 793 
environmental factors. 794 

A noteworthy addition to national cohorts is the global mortality dataset, maintained by the 795 
Global Burden of Disease Collaborative Network, within the Institute for Health Metrics and Evaluation 796 
(see Figure 5). Although the dataset is limited to cause-specific mortality, this network has shaped 797 
modern epidemiology and allowed the quantification of the global burden to PM mortality (Burnett et 798 
al., 2018). Another important dataset is from the multi-country, multi-city network, which provides 799 
daily mortality for several locations around the world, ideal the assessment of the short-term PM 800 
exposures (Masselot et al., 2022; Liu et al., 2019). Such datasets synergistically complement the causal 801 
investigations into PM health effects based on cohort data, providing a global perspective.   802 

Our vision is to integrate detailed knowledge of PM composition with longitudinal personalized 803 
medical data of citizen cohorts, to uncover the involvement of specific PM components in disease 804 
development and detect early changes resulting from exposure. By working closely with citizen cohorts, 805 
epidemiologists and atmospheric scientists will generate compelling evidence for science-to-citizen-to-806 
policy partnership, essential for effecting changes towards a healthier environment. As establishing 807 
large-scale cohorts is an immense, multidisciplinary endeavor, it becomes imperative to secure long-808 
term, sustainable funding for study centers, biobanks, and central digital infrastructures dedicated to 809 
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data storage and access. Funding should encompass both environmental and health data, recognizing 810 
the integral role of both aspects. 811 

6.3 Preventing disease and promoting wellbeing through the mitigation of detrimental 812 
PM components 813 

While major attention has been devoted to studying the mortality caused by PM exposure, it is 814 
equally important to consider the impact of PM on morbidity and overall wellbeing. We firmly believe 815 
it is vital to prioritize quality of life and healthy aging over simply extending life expectancy, especially 816 
in high SDI regions. This necessitates a fundamental shift towards primary prevention and the 817 
implementation of drastic changes in health promotion starting at childhood and early adulthood, well 818 
before the onset of diseases. In the case of PM, it is essential to identify and mitigate the specific 819 
components responsible for different diseases, in order to alleviate their impacts on our wellbeing. A 820 
reduction in detrimental PM components will also result in an extension of life expectancy, especially 821 
in low SDI locations. 822 

Dementia serves as a perfect illustration of the major challenges facing our aging society. 823 
Dementia is a severe decline in cognitive function, which considerably affects the wellbeing of older 824 
adults and their families, while imposing substantial costs on public programs. In 2010, approximately 825 
135 million adults were living with dementia worldwide (Prince et al., 2013), resulting in estimated 826 
economic impacts of $600 billion (Wimo et al., 2013). Given the sharp rise in dementia incidence 827 
beyond the age of 75 and our increasingly ageing society, global dementia cases are forecasted to triple 828 
by the year 2050. Recent studies have shown that every 5 μg m-3 increase in annual PM concentrations 829 
results in a 13% increased risk of first-time hospital admissions for dementia (Shi et al., 2020), with 830 
elemental carbon and sulfate particles having the strongest effects (Shi et al., 2023). While more 831 
research is necessary to confirm this connection and understand the underlying biological pathways 832 
involved, these studies constitute a first step towards the development of interventions to slow the 833 
trajectory of cognitive decline and ensure the wellbeing of our aging society. 834 

The chemical composition of PM play a key role in mediating its health effects. This inherently 835 
implies that different PM components could potentially be associated to different diseases, possibly 836 
operating through distinct biological pathways in disease development. Building upon the example of 837 
dementia and leveraging established cohorts and biobanks, close collaboration between epidemiologists 838 
and atmospheric scientists becomes evident in identifying the specific PM components responsible for 839 
various diseases and inferring the underlying biological pathways. This collaborative effort is crucial 840 
for mitigating PM impacts on the wellbeing of our society; it combines the expertise of epidemiologists 841 
in understanding disease patterns with the experience of atmospheric scientists in measuring and 842 
modelling air pollution components. 843 

7. Conclusions 844 

In the 21st century, we have witnessed a remarkable rise in life expectancy and significant shifts 845 
in global disease patterns, largely attributable to a combination of public health interventions and 846 
advancements in healthcare and healthcare accessibility. Our understanding of risk factors associated 847 
with the early onset and progression of non-communicable diseases has undergone substantial 848 
improvements. Population-based research has played a pivotal role in establishing the influence of 849 
lifestyle determinants on disease outcomes, as well as the intricate role of genetics in disease 850 
progression. Our understanding of long-term environmental exposures to different pollutants and their 851 
contribution to the global burden of disease has significantly improved. It is through this understanding 852 
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that we now realize that preventable deaths due to environmental exposures alone range between 9 and 853 
13 million every year (Neira and Prüss-Ustün, 2016; Landrigan et al., 2018), with atmospheric PM 854 
making the largest contribution. 855 

As we continue to deepen our understanding of the impact of environmental factors on public 856 
health, it becomes increasingly evident that solely relying on medical advances will not suffice. We 857 
find ourselves in an era where the returns on investments in high-tech medicine may be diminishing, 858 
jeopardizing the stability of the healthcare system and further exacerbating social inequalities. 859 
Therefore, we strongly advocate for a profound shift in focus towards enhancing quality of life and 860 
healthy aging rather than indiscriminately pursuing life extension at any cost. Central to this paradigm 861 
shift is the need to prioritize early prevention and health promotion strategies, with a particular emphasis 862 
on creating healthy environments. Realizing these strategies will require a combination of large-scale 863 
population health surveillance with precise air quality measurements and modelling, allowing the 864 
determination and mitigation of the main PM components that affect our health. This is only possible 865 
through a close collaboration between atmospheric scientists and epidemiologists, working together to 866 
integrate air pollution exposures with personalized medical data obtained from citizen cohorts.  867 

As an aggressive attempt to promote healthy environments, WHO has set new guidelines to 868 
limit PM concentrations to below 5 μg m-3. Achieving these limits may be challenging for many regions 869 
due to the contribution of natural emissions from wildfires, biogenic species, and desert dust. There is 870 
a need to reconsider how we should be mitigating PM pollution and develop new generation of more 871 
feasible and regionally-specific air quality metrics that focus on detrimental PM components and 872 
exempt non-detrimental or uncontrollable components from guidelines.  873 

Now, we face a pivotal moment where advances in atmospheric science can offer detailed 874 
global air quality maps necessary for establishing epidemiological connections between individual PM 875 
components and health outcomes, thereby, pinpointing the main culprits behind PM health impacts. Our 876 
proposal includes considering elemental carbon, organic aerosols from different sources, ammonium 877 
sulfate, ammonium nitrate, vehicular wear and dust as these key components. Focusing on the 878 
differential toxicity of PM components offers two key advantages. First, it allows for targeted measures 879 
aimed to limit specific health-relevant PM sources. Second, PM chemical composition is intertwined 880 
with other properties that drive PM’s health effects, such as solubility, number size distribution and 881 
oxidative potential. Therefore, targeting specific PM components is the most effective approach to 882 
address PM health impacts, enabling targeted measures towards health-relevant PM sources and 883 
considering the properties that drive PM's adverse effects. With the widespread availability of 884 
monitoring data, improved understanding of emissions and their atmospheric aging, and machine 885 
learning integration in atmospheric modelling, the atmospheric science community is now able to 886 
determine the distribution of these components with unprecedented spatial and temporal resolution and 887 
coverage, distinguishing between anthropogenic, controllable and uncontrollable natural emissions. 888 
The use of these distributions in epidemiological analysis will lay the foundation for evidence-based, 889 
targeted interventions that strike the right balance between feasibility and protecting human health. 890 

Routine, widespread availability of high-resolution air quality data in urban centers could have 891 
transformative implications for air quality research, epidemiology, and environmental management. 892 
This valuable data can reveal localized pollution hotspots, offering new opportunities for implementing 893 
targeted pollution control measures. When combined with personal GPS data, it enables comprehensive 894 
personalized exposure analytics, potentially influencing individual behavior. This parallels the way 895 
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real-time traffic data currently shape driving patterns at an individual level or how health applications 896 
motivate individuals to engage in active exercise. 897 

By providing open access to global high-resolution pollution maps, atmospheric scientists can 898 
assume a broader societal role in raising public awareness of air pollution and consequently, mitigating 899 
its impacts on public health and environmental equity. These pollution maps empower citizens, local 900 
communities and policy makers with the necessary tools to optimize emission reduction strategies and 901 
sustainable urban planning. This can include the application of targeted measures for limiting the most 902 
important PM sources for health, rather than total PM mass, or shifts in urban land-use design for better 903 
air quality. This wealth of data can be utilized to train models that predict the future evolution of air 904 
pollution sources and its health impacts with climate change, land use change, urban planning, 905 
mitigation strategies and energy policies. Long-term global air quality data are a key cornerstone for 906 
establishing targeted strategies to improve public health and anticipate its future trajectory. 907 

In the process of reevaluating and implementing air quality guidelines, a multidisciplinary 908 
collaborative approach involving atmospheric scientists, climate scientists, epidemiologists, public 909 
health experts, social scientists, policy-makers, and the public is crucial. Therefore, governments must 910 
ensure sustainable funding to foster these collaborations, the returns in terms of lives and costs saved 911 
being increasingly evident. By alleviating the burden of air pollution-related diseases, we will prioritize 912 
the health and wellbeing of individuals and create sustainable and resilient communities. 913 
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