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Abstract. From generating metrics representative of a wide region to saving costs by reducing the density of an observational

network, the reasons to split the ocean into distinct regions are many. Traditionally, this has been done somewhat arbitrarily,

using the bathymetry and potentially some artificial latitude/longitude boundaries. We use an ensemble of Gaussian Mixture

Models (GMM, unsupervised classification) to separate the complex northwestern European coastal region into classes based

on sea level variability observed by satellite altimetry. To reduce the dimensionality of the data, we perform a principal com-5

ponent analysis on 25 years of observations and use the spatial components as input for the GMM. The number of classes or

mixture components is determined by locating the maximum of the silhouette score and by testing several models. We use an

ensemble approach to increase the robustness of the classification and to allow the separation into more regions than a single

GMM can achieve. We also vary the number of empirical orthogonal function maps (EOFs) and show that more EOFs result in

a more detailed classification. With three EOFs, the area is classified into four distinct regions delimited mainly by bathymetry.10

Adding more EOFs results in further subdivisions that resemble oceanic fronts. To achieve a more detailed separation, we use

a model focused on smaller regions, specifically the Baltic Sea, North Sea, and the Norwegian Sea.

1 Introduction

Sea level variability in coastal regions is a critical area of research due to its implications for coastal management, climate

change assessments, and hazard mitigation (Fox-Kemper et al., 2021). Sea level also reflects ocean currents (Dangendorf et al.,15

2021), so understanding the patterns and classifying the ocean based on sea level data can provide valuable insights into the

dynamic behavior of these regions. Furthermore, while satellite-based instruments provide us with observations covering large

areas, they only exist for the last three decades at most (Ablain et al., 2015), so in order to study interannual and decadal

processes, we have to rely on tide gauges, which are only available at specific point locations. Knowing the regions of coherent

sea level variability allows us to estimate how broad of an area our conclusions based on tide gauges can be applied to.20

The traditional ways for studying coherence in sea level is by calculating correlation, a principal component analysis (PCA)

or a combination of the two. For example, Papadopoulos and Tsimplis (2006) extracted empirical orthogonal functions (EOFs)

to create regional indices that represent sea levels in large areas of the world oceans and calculated the correlations with

climate indices to study the teleconnection patterns. Bulczak et al. (2015) used EOFs to decompose the observed seasonal
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sea level variability in the Nordic Seas and compare it with the steric and dynamic forcing. Iglesias et al. (2017) performed a25

correlation analysis between the altimetry-observed sea level anomaly in the North Atlantic and the teleconnection patterns.

As most studies do, they all separated the ocean into regions only based on geographical locations, i.e., the coastlines and

ocean basins, but did not attempt to further separate the basins based on the differences in observed sea level variability.

There have also been a few attempts to apply more complex classification or clustering methods to sea level, e.g. Scotto et al.

(2010) used agglomerative hierarchical methods to group time series in the North Atlantic Ocean based on their posterior30

predictive distributions for extreme values, while Barbosa et al. (2016) used wavelet-based clustering to find regions with

similar sea level records in the Baltic Sea. Self-organizing maps (SOMs; Kohonen and Mäkisara, 1989; Kohonen, 1990) are

a type of unsupervised neural network often used for clustering and pattern analysis in atmosphere and ocean research. They

have, among many other things, been successfully applied to find the patterns of upper layer ocean circulation from altimeter

observations on the West Florida Shelf (Liu and Weisberg, 2005) and in the South China Sea (Liu et al., 2008), as well as from35

radar data in the Northern Adriatic (Mihanović et al., 2011). However, SOMs are primarily a feature detection tool, which is

also able to perform classification. Since SOMs are based on a neural network, it is harder to interpret the results.

Therefore, in this work we use another unsupervised classification method called the Gaussian Mixture Model (GMM;

Bilmes, 1998) to determine the regions of coherent sea level variability. This method has already been used in oceanography

to classify the ocean based on temperature and salinity profiles. Maze et al. (2017) applied it to temperature profiles in the40

North Atlantic to find the regions with similar vertical thermal structure, and Jones et al. (2019) did a similar study of the

Southern Ocean. Rosso et al. (2020) focused only on a part of the Southern Ocean, the Kerguelen Sector, but included both

the temperature and the salinity observations into the model. Thomas et al. (2021) then did a similar study of the whole

Southern Ocean. They all used PCA to reduce the number of levels in the vertical, which reduces the computational cost of the

classification. Here we apply the same method on satellite observed sea level, using PCA to reduce the amount of information45

in the temporal domain. GMM provides similar output as the self-organizing map, i.e., the classification of the area and the

main pattern for each class, but since it is based on statistical distributions, it is easier to interpret the results. Because GMM

gives a class for every data point, the results from it not only provide an insight into the patterns of sea level variability, but can

also be used as a mask to isolate a region and focus on the dominant processes in it without being affected by the noise from

everything in the neighboring areas. GMM is also probabilistic, i.e., it provides the probability distribution across all classes50

for each data point, which can be helpful when trying to determine the robustness of the classification, giving it an advantage

over simpler approaches, such as K-means clustering (Lloyd, 1957).

In Sect. 2, we describe the methods and data used in this paper. We start with the description of the used data set and

applied data processing steps (Sect. 2.1), then we continue to explain how the Gaussian Mixture Model works (Sect. 2.2), and

finally detail the ensemble classification procedure (Sect. 2.3). Sect. 3 contains the results and the discussion, focusing on the55

classification and its dependence on the amount of information contained in the data set (Sect. 3.1), showing the results for

specific subregions of our area of interest (Sect. 3.2), and then illustrating how the classification works in the abstract empirical

orthogonal function domain in which it is performed (Sect. 3.3). Finally, we present our conclusions in Sect. 4.
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2 Method

To determine the regions of coherent sea level variability we use a machine learning method called Gaussian Mixture Model60

(GMM). It is an unsupervised classification (or clustering) model, i.e., a model that seeks to sort data points into classes due

to their similarity without any a priori information about the classes. We apply it to the satellite-observed sea level data in the

Northwestern European coastal seas and part of the Atlantic Ocean. To increase the robustness of the classification, we use an

ensemble of GMMs.

2.1 Data preparation65

For the sea level variability information we use gridded reprocessed global ocean sea surface height satellite observations

downloaded from Copernicus Marine Services (Pujol and Mertz, 2020). This data set uses a multi-mission mapping procedure

based on an optimal interpolation technique derived from Le Traon and Ogor (1998), Ducet et al. (2000), and Traon et al.

(2003), which combines the data from all available satellite missions: Sentinel-3A/B, Jason-3, HY-2A, Saral[-DP]/AltiKa,

Cryosat-2, OSTM/Jason-2, Jason-1, Topex/Poseidon, Envisat, GFO, ERS-1/2 (Taburet et al., 2019). The data set has a global70

coverage, with 0.25° spatial and monthly temporal resolutions. The full description of the processing of the altimetry data and

all the corrections applied to them can be found in Pujol et al. (2016) and Taburet et al. (2019).

As an example for our method, we select the area between 10°W and 30°E, and 50°N and 75°N (Fig. 1), which covers

the coastal seas of Northwestern Europe and a part of the Northern Atlantic Ocean. It is an interesting and complex region

that comprises of many different ocean floor features and includes both mid-latitudes and polar region, as well as continental75

shelves and deep ocean regions. It consists of the very shallow enclosed Baltic Sea, the shallow North Sea and coastal seas

between Great Britain and Ireland, the Faroe Shelf, the Norwegian continental shelf and part of the Barents Sea, all shallower

than 1000 m. At the other extreme in depth, this region of interest also includes the Norwegian Sea, part of the Greenland Sea,

and a section of the mid-Atlantic ridge in between, all deeper than 2000 m.

While the data set covers a longer time span, we decided to use 25 years of data, from 1995 - 2019, to avoid the large80

areas with missing data in year 1994. In most winters there are gaps in the data in the Gulf of Bothnia and Gulf of Finland

in the Baltic Sea, due to the extensive sea ice cover, which prevents sea level retrieval through altimetry (Pujol et al., 2016;

Taburet et al., 2019). While these gaps might affect the results of the classification, we want to keep the whole area, so we

linearly interpolate in time the gaps as the first step of data processing. We also remove the seasonal cycle by subtracting the

climatology calculated from the 25 years of data in order to focus on the non-seasonal variability.85

While it is technically possible to use the time series directly as input for the mixture model, as it is with SOMs (Liu and

Weisberg, 2005), they contain so much noise that the model is unable to converge to one best distribution of classes. It also

makes the model one order of magnitude slower, from approximately 1 to 13 seconds for a single GMM, which makes testing

large ensembles much more time consuming. Therefore, before applying the unsupervised classification method, we perform a

principal component analysis (PCA) on the altimetry data set to reduce its dimensionality. We obtain the empirical orthogonal90

function (EOF) maps, which contain the spatial component of the dataset, and the accompanying principal component time
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Figure 1. Our region of interest and its bathymetry, from the General Bathymetric Chart of the Ocean GEBCO 2022, along with place names

referred to in the manuscript. Black contours represent the 250 (thin line) and 1000 m (thick) isobaths.

series, as described in Björnsson and Venegas (1997), and use the EOF maps as input for the machine learning classification

model. In this way the input data is reduced from 300 monthly grids to only 3-11 EOFs, which explain 75-85% of observed

variability, and each grid point that we wish to classify is explained with 3-11 values instead of by the whole 25 years long time

series. The decision on how many EOFs are included is based on whether we are trying to achieve a simpler classification, in95

which case less information is enough, or study the finer details, which requires higher degree EOFs.
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2.2 Gaussian mixture model

We want to objectively identify patterns appearing in the EOF maps of the satellite-observed sea level and use them to define

regions of similar sea level variability. A powerful method for this task is the Gaussian Mixture Model, an unsupervised

machine learning classification approach that provides the probability that a location belongs to each of the classes. Since it100

is an unsupervised method, it does not need any prior information about the classes. It is based solely on sea level variability,

without any geographical information, which allows us to determine physically coherent regions even if they are not adjacent.

Finally, since this method provides the probability distribution across all of the classes, it enables us to distinguish clearly-

coherent regions from boundaries.

GMM is based on the assumption that any probability density function (PDF) can be described with a model of weighted105

sums of Gaussian PDFs, which represent the components of the mixture model. In our case, the PDF describing the sea level

EOFs can be represented with a weighted sum of Gaussian PDFs:

p(x) =
K∑

k=1

λkN (x;µk,Σk), (1)

with K components, where

N (x;µk,Σk) =
1√

(2π)D|Σk|
exp

(
−1

2
(x−µk)⊤Σk

−1(x−µk)
)

(2)110

is the multivariate Gaussian distribution in D dimensions with mean µk and covariance matrix Σk. The weighting coefficients

λk must satisfy 0≤ λk ≤ 1 and
∑

k λk = 1 (Bishop, 2006). The classification occurs in the abstract, D-dimensional EOF

space, where each dimension represents one of the EOFs and each data point x is a grid cell described by D EOF values. The

aim of the GMM is to fit the PDF model from Eq. (1) to the observed probability density function of the EOFs by maximizing

the likelihood of the observations using the Expectation-Maximization method (Dempster et al., 1977; Bishop, 2006), which is115

referred as model training. This boils down to finding the best estimates for the parameters λk, µk, and Σk. After the observed

PDF has been decomposed into a sum of K Gaussian mixture model densities defined by mean µk and covariance matrix Σk

with λk = p(c = k) being the component a priori density for class c, we then use Bayes’ theorem:

p(c = k|x) =
p(x|c = k)p(c = k)

p(x)
, (3)

where p(x|c = k) is defined by Eq. (2) and p(x) is given in Eq. (1), to obtain the a posteriori probability of a location belonging120

to class c:

p(c = k|x) =
λkN (x;µk,Σk)

∑K
k=1 λkN (x;µk,Σk)

. (4)

Finally, the location is labeled with class k for which the posterior probability is the largest. The mean values which define

each class in our case give us information about which principal components and processes associated with them are dominant

in that region. A detailed description of Gaussian Mixture models can be found in e.g., Bilmes (1998) or Bishop (2006), while125
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e.g., Maze et al. (2017) or Thomas et al. (2021) provide similar, oceanography oriented explanations. The computation was

performed using the open-source Python library Scikit-learn (Pedregosa et al., 2011).

In addition to deciding on the amount of information included in the data by selecting the number of EOFs D, the only input

parameter to the GMM is the number of mixture components or classes, K, which needs to be specified before applying the

model. It is not an easy task to determine the appropriate K. Sometimes it is possible to select a number by relying on theory130

behind the processes we are studying, e.g., when using GMM to find the fronts in the Antarctic Circumpolar Current like in

Thomas et al. (2021), the number of fronts is known, but that is not always possible. There are multiple methods to objectively

determine the optimal K, of which we used the silhouette score. Silhouette score for each sample is computed as:

Si =
b− a

max(a,b)
, (5)

where a is the mean intra-cluster distance and b is the mean nearest-cluster distance. To determine the best number of classes,135

we use the mean S. S ranges between −1 and 1, where higher values correspond to better distinguished classes. Other studies,

such as Maze et al. (2017) or Thomas et al. (2021), used the Bayesian Information Criterion (BIC) for this purpose. In our case

however, the K selected based on the BIC was usually too large (see next subsection), while the silhouette score provided a

better estimate. Note that, while the silhouette score provides a good estimate, it is a metric that does not always work perfectly,

so it is best to test the model with multiple options until we find the optimal number of classes.140

2.3 Ensemble classification

The initial class means in the GMM algorithm are determined by the simpler k-means clustering method, which depends

on random initialization. To test whether the model converges, we do not specify random seed, so the initial parameters are

different every time. Due to the size and complexity of the area and the sea level variability, each time the model is trained

the results can be slightly different. To mitigate that and increase the robustness of the results, we use an ensemble prediction.145

GMM provides not only the classification, but the probability for a point to belong to each of the classes, so the most fitting

way to do the ensemble classification is to use soft voting. With this method, the ensemble takes into account the probabilities

from each model that a point belongs to each class, the class with the largest sum of probabilities wins and the grid point is

finally assigned to that class. We also obtain the likelihood that a grid point will belong to that class, i.e., a combination of

the number of models that sorted it into that class and the probability they provided, which tells us how difficult it was for the150

model to sort that particular location.

For most unsupervised classification models, including GMM, the main problem with using an ensemble is that, since the

classes are not known a priori, they are not numbered in any particular way, so class 1 of one ensemble member can correspond

to class 7 of another. Since there are some differences between model runs, it is also possible that a class appears in some model

runs but not others. To be able to compare the classes from all ensemble members, we match them based on the correlation155

between the class means (a D-dimensional vector), which results in a list of classes that appeared at least once in any of the

models of the ensemble. This list of classes is substantially longer than the predetermined number of components K, but after

voting many of the classes get voted out because they only appear in a few of the models.
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Another problem that appears when using an ensemble is that, while GMMs themselves usually do not result in very small

classes, after soft voting, some classes can lose most of their points to neighboring classes, ending up with only a few data160

points. That is avoided by setting up a minimal class size threshold, excluding those classes that have a number of points below

the threshold, and re-sorting all the grid points belonging to the excluded classes to the class with next highest vote. In such

cases, there are usually two classes with very similar probability sums, so the resulting likelihood is not considerably reduced.

Therefore, there are three parameters pertaining to the ensemble: the minimal correlation for the class means to be considered

"same", the minimal class size, and the number of ensemble members N . The other parameters that we need to set are the165

GMM’s only intrinsic parameter; the number of classes K; and the amount of information included into the model set by the

number of EOFs D. To determine which combination works best, we use three criteria: (1) the model converges, i.e., multiple

experiments with the same parameters find the same classes; (2) the ensemble keeps the same number of classes prescribed to

the individual GMM; and (3) the average likelihood inside the classes is as high as possible for the desired level of subdivision,

while still allowing low likelihoods on class borders. After testing several options, we find that the ensemble works best if we170

use a minimal correlation for matching classes of 0.98. With smaller correlation, classes that are not similar enough could be

merged, while with larger, even a slight difference in geographical distribution of a class in different ensemble members results

in the ensemble seeing them as different classes, neither of which receives enough votes, so only the next best class wins. The

minimal class size should be chosen based on the smallest area we are trying to capture, so we select a size of 100 grid points,

which allows the model to sort the small basins such as the Gulf of Bothnia or channels such as the Kattegat into a separate175

class if necessary. We use 200 ensemble members for all our experiments. In some cases with small number of classes, we

would have achieved the same results with less, but since training a single GMM is fast, using an ensemble with 200 members

does not take too much time and it increases the robustness of the results. Using more ensemble members does not improve

the results.

In the end, we obtain an ensemble classification with a new class number KE that is usually similar to, but not necessarily180

exactly the same as, the a priori class number K, along with a likelihood that a particular point belongs to the selected class.

The likelihood would correspond to 1 if all ensemble members chose that particular class with the probability of 1. Both fewer

models assigning that class and models assigning it with a lower probability, i.e., the models not being certain that the grid

point belongs there, reduce the likelihood.

3 Results185

3.1 Classification depending on the number of empirical orthogonal functions

After greatly reducing the dimensionality of the data with principal component analysis, the question arises as to how much

data we should keep. As can be seen in Fig. 2, the optimal number of classes based on the silhouette score grows as we add

more information, i.e., more EOF maps (colors), to the mixture. We can therefore decide on both (1) the number of EOFs and

(2) the number of classes based on how many details we need to retain for our application. Note that according to the silhouette190
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Figure 2. Silhouette Score for different numbers of classes calculated for Gaussian Mixture Models using different numbers of empirical

orthogonal functions (differently colored lines). The class for which a respective model has the highest silhouette score is marked with a

diamond. Silhouette score is computed for 100 models using the same parameters and the figure represents their average values (central

lines) and one standard deviation (shaded areas). The models are fitted to randomly selected 90% of the grid points from the region shown in

Fig. 1. Thicker lines and larger markers represent the models presented in this paper.

score, sometimes adding another principal component does not increase the number of classes the model is able to support, but

it could still change which classes the model decides to include with this new added information.

Fig. 3 shows the classification obtained using 3 (simplest model), 5 (intermediate), and 11 (complex) EOF maps, which

contain 75%, 80%, and 85% of the observed variability, with an ensemble of 200 GMMs. All classifications are created using

the number of classes recommended by the silhouette score: 4, 6, and 10 respectively, which were indeed the numbers with195

which the model works best. Since the ensemble classification is able to modify the number of classes if the chosen one does

not work well by discarding the classes that are only rarely selected by individual models, the fact that the ensemble maintains

the selected number of classes is an additional proof that the number was good. The black dots on all figures mark the location

of grid points that were excluded from the training dataset, i.e. the grid points that were held out for testing. It can be seen that

even though the model does not consider the geographical information at all, it properly sorted almost all the grid points, both200

from the training set and the test set, into suitable geographically connected areas.

In the simplest model based on only three EOF maps (Fig. 3a), the GMM splits the area into only four classes: Baltic Sea

(B), North Sea (N), which includes most of the transition area towards the Baltic called Skagerrak and Kattegat, the remaining

continental shelf areas, including the northernmost part of the North Sea and the shallow Barents Sea (C), and the deep open

ocean (O). The border between the latter two classes follows almost perfectly the continental shelf border, which can be seen205

from the 1 000 m isobath. The border between the Baltic and the North Sea classes is also related to the geographical properties
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Figure 3. Classification using an ensemble of 200 Gaussian Mixture Models (left) and the respective likelihoods of the model sorting the

grid points to that particular class (right). Classification is performed using 3 (a), 5 (b), and 11 (c) empirical orthogonal functions and 4, 6,

and 10 classes, respectively. Letters indicate the names used to refer to the regions in the core of the text. Contour lines represent the 250 and

1000 m isobaths. Black dots represent the data points used for validation.
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and is set at the narrowest region connecting them, the Danish Straits. The only border that does not seem to be directly caused

by bathymetry is between the majority of the North Sea (N) and the remaining coast (C). That border is also the hardest one to

classify, which can be seen from the likelihood (as low as 0.26); it is the only area where a significant number of models created

a slightly different border between the classes. Interestingly, the model classifies the Bothnian Bay, the northernmost part of the210

Baltic Sea, together with the North Sea. This requires further investigation of the class means of the EOFs to determine whether

this has a physical background or is an artefact possibly related to the interpolation of the missing values in the Bothnian Bay,

which will be discussed in Sect. 3.3. There are also a few points along the Norwegian coast that get assigned to the North Sea

class, suggesting that perhaps this class contains a particular mode of variability in the shallow coastal areas.

Adding two more EOFs that together contribute 5% of variability information (intermediate model, Fig. 3b) does not change215

the classification significantly. The class borders from the simplest classification remain principally the same, and the new

EOFs allow further subdivision of the coastal and open ocean classes into two classes each. The split into C1 and C2 is based

on the bathymetry difference just south of the Lofoten Archipelago in Norway, while the split into O1 and O2 is based on the

mid-Atlantic ridge. Adding these two extra EOFs resulted in removing the Bothnian Bay and the separate coastal areas from

the North Sea class because the model now has enough information to clearly distinguish them.220

Finally, when using 11 EOF maps (the most complex model, Fig. 3c), we end up with 10 classes in our region. The class

borders due to bathymetry remain the same. There is further subdivision of both coastal and open ocean areas, and the border

of the North Sea -itself subdivided, is shifted northward. The likelihood for the classification in the southern part of the North

Sea is also significantly reduced, suggesting that the models struggle to properly classify this region, possibly because this

many principal components introduce a lot of noise. Models maintaining the basic classification and further subdividing some225

of the classes after adding new information into the model is not a characteristic of the GMM. The GMM could completely

change some or all the classes if the number of classes is different, so the fact that this is not happening here must be based on

the characteristics of the ocean. The ocean is first coarsely divided into regions determined by the bathymetry, and then each of

those regions can be further subdivided based on other aspects of the sea level variability such as finer resolution bathymetric

features (e.g. the subdivision of class O around the mid-Atlantic ridge) or water masses (e.g. the Barents Sea separating from230

class C early on).

Adding even more EOFs (not shown) does not result in a finer subdivision; it only causes either the ensemble to reduce the

number of classes to 10 or even introduces so much noise that multiple ensembles with the same parameters produce different

results. With that in mind, if we would like to obtain a more detailed subdivision, it is better to do the classification for a smaller

region. The complexity of sea level patterns also differs significantly from region to region, so narrowing our focus to a smaller235

area would allow us to use the principal components specific to that area, increasing the amount of information in fewer EOF

maps, thus reducing the noise and allowing a better classification.

3.2 Reducing the size of the region

Here, we apply the ensemble GMM to three subregions of our area of interest: the Baltic, the North and the coastal part of

the Norwegian Sea (Fig. 4). By using EOF maps calculated solely for these regions, the model input contains only the data240
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Figure 4. Classification using an ensemble of 200 Gaussian Mixture Models (left) and the respective likelihoods of the model sorting the grid

points to that particular class (right) for the Baltic Sea performed using 4 EOFs (a); North Sea using 3 EOFs (b); and part of the Norwegian

Sea using 7 EOFs (c). Numbers indicate the assigned classes. Contour lines represent the 250 and 1000 m isobaths. Black dots represent the

data points used for validation.
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relevant for them, without the noise coming from EOFs significant only elsewhere, which allows the models to find more

region-specific patterns and increase the number of classes they are able to find. By comparing the results from the subregions

with results from Sect. 3.1, as well as by comparing the classification in the overlapping areas of the three subregions, we can

also check whether the ensemble GMM classification is robust and finds the same patters of sea level variability regardless of

the size or shape of the area of interest.245

We can see that the EOF maps computed for the whole northwestern European coastal area (Fig. 5a) are rather smooth in

the Baltic Sea compared to the rest of the region, which is why the models based on them do not usually divide the Baltic

Sea further than the basin-scale. This uniformity is also reflected in the EOFs calculated for the Baltic Sea separately: the first

four explain 93.7% of the variability. The ensemble classification model based on them is able to distinguish two more classes

(Fig. 4a) than in the most complex model based of EOF maps for the whole area of interest (Fig. 3c). The Baltic (class B in250

Fig. 3c) is now split into three classes: the Gulf of Bothnia (class 1), the Western Baltic (class 3) and the remainder of the Baltic

Sea (class 2). The Danish Straits, a series of narrow channels connecting the Baltic Sea with Kattegat, are now sorted together

with the Western Baltic class (class 3), while Kattegat and Skagerrak form one class connected to the North Sea (class 4). The

likelihood is very close to 1 virtually everywhere except at the border between classes 1 and 2 and between 2 and 3, meaning

that the majority of the ensemble members selected the same classes. Note that this number of classes is not chosen with255

the silhouette score. Although using the recommended number of classes gives reasonably good results (not shown), using

this different K works better, i.e., has higher likelihood, especially in the transition zone. This demonstrates that while the

silhouette score is a good tool to give an estimate of the number of mixture components, it does not always give the best result.

One should always try the model with several options to find the best solution to their specific classification problem.

The North Sea has the most complex sea level variability patterns of the whole considered area. We would need more than260

20 EOFs to achieve the same level of explained variance as we achieved with only four for the Baltic. It is however enough to

use only three of them, explaining 75% of the sea level variability, to split the North Sea into four distinct classes (Fig. 4b),

compared to only two in Fig. 3c. Class N1 from Fig. 3c is here further split into classes 2 and 3, and N2 into classes 4 and 5.

The region-specific classification model also finds class 1, which mostly corresponds to class C22 from Fig. 3c, and it combines

parts of classes C21 and C23 included here into class 6. The larger classes are separated as zones in the north-south direction,265

as expected from other works, e.g. Dangendorf et al. (2014) or Sterlini et al. (2016), who found a difference in the sea level

variability between the northern and the southern North Sea. Some of the class borders (1 and 2) are also based on bathymetry,

following the Norwegian Trough. Interestingly, part of the Norwegian coast included here is sorted into the same class as the

western coast of Great Britain, which suggests that the model most likely sees some processes relevant for western coasts and

the regional atmospheric pressure and wind patterns. The likelihood is lower than in the Baltic Sea model, but nevertheless270

close to one across the area, with the exception of class borders, which the ensemble members do not agree on so well. The

classes in the area overlapping with the Baltic Sea model match, demonstrating that in both cases the models find the same

patterns of variability despite being based on different EOFs.

Finally, the classification obtained by considering 7 EOF maps calculated for the Norwegian coast (Fig. 4c) is quite similar

to that obtained by using the whole region (Fig. 3c). Classes 1, 2, 3, 4, and 5 from Fig. 4c generally correspond to classes275
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O22, O21, C22, C21, and O1 from Fig. 3c, although there are some differences in class borders, particularly in the northern

boundary of classes 3/C22 and 2/O21. Because of the shift of the northern boundary of class 3, this is the only class containing

both deep ocean and continental shelf areas. Additionally, the region-specific model splits the Barents Sea opening based on

its depth (classes 6 and 7), which the large model is not able to do.

3.3 Empirical orthogonal functions280

To learn more about how the GMM determines the classes, we can take a look at the empirical orthogonal functions (EOFs)

because GMMs perform the classification based on them. We compare the EOF maps (Fig. 5a) with the class means obtained

by the three models for the whole area of interest (Fig. 5b, c, and d). The border between the Baltic (class B) and the North Sea

(class N) is visible on most EOF maps (column a), except the second one. The border based on the continental shelf break is

most visible in EOF 2 and 3. The only border in the simplest model (column d) that is not based on bathymetry, i.e. the border285

between the North Sea and the rest of the continental shelf, just south of 60◦N, is determined by the gradient in the first EOF

map in that location.

When we look at the class means from the more complex models (Fig. 5, columns b and c), they start to resemble the original

EOF maps more closely. Both the coastal area outside of the North and the Baltic Seas and the open ocean are rather uniform

in the first three EOFs, which is why the simplest model is unable to divide them further. However, adding the fourth EOF map290

introduces a clear border in the continental shelf between the Barents Sea (C1) and the rest of the coastal shelf (C2), while

the fifth EOF adds the class in the northern part of the open ocean (O1). Most EOFs have a gradient in the Bothnian Bay,

which has a seasonal sea ice cover. As detailed in Taburet et al. (2019), whether to mask a pixel is decided based on sea ice

concentration. As they aim to eliminate as few pixels as possible, only high concentrations are masked (value not explicitly

provided in their paper). Therefore, interestingly, it is possible that the EOFs are indirectly detecting the sea ice concentration295

variability. As this gradient results in a magnitude similar to that of the North Sea for EOF2, and EOF3 to some extent, this is

probably the reason why the simplest model sorted that area with the North Sea. Since other EOFs do not have much similarity

between the Bothnian Bay and the North Sea, adding them results in the model correctly sorting that area into the Baltic Sea

class. Additionally, the large positive values along the southern Norwegian coast in the EOF 5 are most likely responsible

for separating these coastal points from the North Sea class, where the simplest model possibly incorrectly sorted them, and300

including them in the C2 class.

Finally, not all EOF maps included in the most complex model are shown, but we can see that the sixth one is responsible for

the British-Irish class (C23) created in this model, while the seventh one for the creation of the southern North Sea class (N2).

But we can also see that for the higher order EOFs, the class means become smoother, indicating that the model learns less and

less from each new EOF added to it, until it reaches the point when adding new EOFs introduces only noise and prevents the305

model from finding reasonable classes.

To achieve useful results, we need to find a balance between interpretability and accuracy. Simpler models with fewer EOFs

tend to be easier to interpret, in that they have clearer boundaries between regions, but they fail to capture the full variability of

the data. More complex models capture more of the variability of the data, but they tend to be harder to interpret, in that they
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Figure 5. Empirical orthogonal function maps of satellite-observed sea level used as input for the Gaussian Mixture Model (a) and class

means for the classification into 10 (b), 6 (c), and 4 (d) classes performed using 11, 5 and 3 empirical orthogonal functions. Column (b)

contains only the first 7 EOFs, while columns (c) and (d) show the results for all EOFs used in the classification. The color scale is the same

in each row.
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Figure 6. The classification analysis in the abstract EOF space for the two models that use only three EOFs and can therefore be displayed:

(a) classification of the whole region of interest into 4 classes shown in Fig. 3a; and (b) classification of the North Sea region into 6 classes

shown in Fig. 4b. Each point represents a three-dimensional vector of EOFs that describe a single grid point and the three axes are the three

EOFs. Class assignments are indicated using colors.

feature more ambiguous boundaries between regions. The compromise between interpretability and accuracy is not universal310

and should be tailored to the application at hand. In our case, the balance is struck when the classification is able to highlight

novel ideas about the spatial coherence of sea level variability in our study region. Ultimately, unsupervised classification

methods can be useful as “hypothesis generation tools" (Kaiser et al., 2022).

Since this paper includes two models based on only three EOFs, these models can be directly depicted in the abstract EOF

space to see how the classes are distributed (Fig. 6). The simplest model for the whole region (Fig. 6a and Fig. 3a) has a315

generally clear separation between the classes and our conclusions about which EOF is responsible for which class border

from the beginning of this subsection are confirmed. We can also see where the grid points belonging to the Bothnian Bay and

the Norwegian coast are in the abstract space and how they were sorted into class N instead of classes B and C, where the other,

more detailed models, sorted them into. The North Sea region (Fig. 6b and Fig. 4b) looks a lot more complex in the abstract

EOF space, with less clear boundaries between the classes. We can see that classes 2-5, i.e., the classes inside the North Sea,320
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are generally close to each other in the EOF space, while class 1, which mainly contains the continental shelf outside of the

North Sea, and class 6, which contains the western coasts, are both much more widespread, but also more clearly separated

from other classes.

4 Conclusions

Gaussian Mixture Modeling, an unsupervised classification approach based on the assumption that all probability density325

functions can be described as a weighted sum of Gaussian PDFs, can be used to find regions of coherent sea level variability

based on satellite altimetry data. Here, we focused on the northern European coastal shelf area and a small adjacent part of the

Atlantic Ocean, but the method is applicable in any region. While it is technically possible to use the time series of the sea

level data directly as input for the GMM, that approach makes the fitting extremely slow and introduces too much noise for

the model to converge towards a single classification solution. Using the empirical orthogonal function maps, the spatial part330

obtained with a principal component analysis, as input allows us to include most of the observed variability but with greatly

reduced dimensionality and noise level.

After reducing the dimensionality, the GMM is able to separate our region of interest into a relatively small number of

classes. However, if we want to use more than six mixture components, the models start to diverge, with results varying

slightly between individual model runs. Since the models generally find the same patterns despite some differences between335

them, we show here that we can use an ensemble approach to find the most common classification by applying soft voting, i.e.,

selecting the class which most models chose with a high probability. The ensemble also gives a likelihood of a model assigning

this particular class for each grid point, which tells us how robust the classification is and how difficult it was for the models

to classify each area. By comparing the class means with the EOF maps used as input for the GMM ensemble, we showed that

we can usually see which class border is based on which EOF, making the model explainable to some extent, and thus directly340

useful for scientific analysis.

The simplest classification of our entire region of interest, i.e., the classification based on only 3 EOF maps, mostly follows

the bathymetry and the coastlines. After including more EOF maps, this basic separation remains the same, but the models are

able to also find class borders that are based on ocean dynamics. The largest number of classes with which we can achieve

robust results for our region is 10, and we need to use 11 EOF maps as input. This model finds two classes along the Norwegian345

coast, two in the North Sea, and only one for the whole Baltic Sea. Since the complexity of these three regions vary significantly

between them, we show that we can achieve a much more detailed classification if we focus on each region separately. In this

way the GMM separate the Baltic into three regions, with virtually all models selecting the same classes. Since the North Sea

is very complex, it is split into four classes with high likelihood. The classes belonging to the overlapping area from these two

models match.350

This classification method is not based on any arbitrary threshold or even on the geographical information such as longitude

and latitude, so it is applicable to other ocean regions. It could also be used for finding patterns of sea level variability on

different temporal scales, both shorter, such as mesoscale eddies or storm surges, or longer, such as decadal changes or trends.
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It is not limited to altimetry observations; it could also easily be applied to in situ observations or to model data, to study past

and future sea level variability that is changing in response to climate change. It can be used on its own, to gain more insight355

into the patterns of sea level variability, or just as a step in data processing, to create a mask for separating the ocean into

regions, which can then be further examined with other methods. Finally, the method is not limited to sea level, it could be

used for any other variable.

Code and data availability. In this work we used satellite altimetry observations from Copernicus Marine Service (https://data.marine.

copernicus.eu/product/SEALEVEL_GLO_PHY_L4_MY_008_047/description, downloaded on 2022-02-10). Bathymeric information is from360

the General Bathymetric Chart of the Ocean GEBCO (https://doi.org/10.5285/e0f0bb80-ab44-2739-e053-6c86abc0289c, accesed on 2022-

11-07). Code for the ensemble classification with GMMs is available at https://github.com/leapor/GMMensemble.git (DOI for it will be

acquired at a later date).
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