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Abstract. From generating metrics representative of a wide region to saving costs by reducing the density of an observational

network, the reasons to split the ocean into distinct regions are many. Traditionally, this has been done somewhat arbitrarily,

using the bathymetry and potentially some artificial latitude/longitude boundaries. We use an ensemble of Gaussian Mixture

Models (GMM, unsupervised classification) to separate the complex northwestern European coastal region into classes based

on sea level variability observed by satellite altimetry. To reduce the dimensionality of the data, we perform a principal compo-5

nent analysis on 25
::
27

:
years of observations and use the spatial components as input for the GMM. The number of classes or

mixture components is determined by locating the maximum of the silhouette score and by testing several models. We use an

ensemble approach to increase the robustness of the classification and to allow the separation into more regions than a single

GMM can achieve. We also vary the number of empirical orthogonal function maps (EOFs) and show that more EOFs result in

a more detailed classification. With three EOFs, the area is classified into four distinct regions delimited mainly by bathymetry.10

Adding more EOFs results in further subdivisions that resemble oceanic fronts. To achieve a more detailed separation, we use

a model focused on smaller regions, specifically the Baltic Sea, North Sea, and the Norwegian Sea.

1 Introduction

Sea level variability in coastal regions is a critical area of research due to its implications for coastal management, climate

change assessments, and hazard mitigation (Fox-Kemper et al., 2021). Sea level also reflects ocean currents (Dangendorf et al.,15

2021), so understanding the patterns and classifying the ocean based on sea level data can provide valuable insights into the

dynamic behavior of these regions. Furthermore, while satellite-based instruments provide us with observations covering large

areas, they only exist for the last three decades at most (Ablain et al., 2015), so
:::
thus

:
in order to study interannual and decadal

processes, we have to rely on tide gauges, which are only available at specific point locations. Knowing the regions of coherent

sea level variability allows us to estimate how broad of an area our conclusions based on tide gauges can be applied to.20

The traditional ways for studying coherence in sea level is by calculating correlation, a principal component analysis (PCA)

or a combination of the two. For example, Papadopoulos and Tsimplis (2006) extracted empirical orthogonal functions (EOFs)

to create regional indices that represent sea levels in large areas of the world oceans and calculated the correlations with
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climate indices to study the teleconnection patterns. Bulczak et al. (2015) used EOFs to decompose the observed seasonal

sea level variability in the Nordic Seas and compare it with the steric and dynamic forcing. Iglesias et al. (2017) performed a25

correlation analysis between the altimetry-observed sea level anomaly in the North Atlantic and the teleconnection patterns.

As most studies do, they all separated the ocean into regions only based on geographical locations, i.e., the coastlines and

ocean basins, but did not attempt to further separate the basins based on the differences in observed sea level variability. There

have also been a few attempts to apply more complex classification or clustering methods to sea level, e.g. Scotto et al. (2010)

used agglomerative hierarchical methods to group time series in the North Atlantic Ocean based on their posterior predictive30

distributions for extreme values,
:::::::::::::::::::::::::::
Thompson and Merrifield (2014)

::::::
applied

:
it
::
to
::::

the
:::::
whole

::::::
ocean, while Barbosa et al. (2016)

used wavelet-based clustering to find regions with similar sea level records in the Baltic Sea. Self-organizing maps (SOMs;

Kohonen and Mäkisara, 1989; Kohonen, 1990) are a type of unsupervised neural network often used for clustering and pattern

analysis in atmosphere and ocean research. They have, among many other things, been successfully applied to find the patterns

of upper layer ocean circulation from altimeter observations on the West Florida Shelf (Liu and Weisberg, 2005) and in the35

South China Sea (Liu et al., 2008), as well as from radar data in the Northern
:::::::
northern

:
Adriatic (Mihanović et al., 2011).

::::::::::::::::::
Camargo et al. (2023)

::::::
applied

:::::
SOM,

:::
as

::::
well

::
as

::
a

:::::::
network

::::::::
detection

::::::::
approach

:::::::::
(δ-MAPS)

::
to

:::::::::
regionalize

:::
the

:::::::
world’s

:::
sea

:::::
level

::::::
budget.

:
However, SOMs are primarily a feature detection tool, which is also able to perform classification. Since SOMs are

based on a neural network, it is harder to interpret the results.

Therefore, in this work we use another unsupervised classification method called the Gaussian Mixture Model (GMM;40

Bilmes, 1998) to determine the regions of coherent sea level variability. This method has already been used in oceanography

to classify the ocean based on temperature and salinity profiles. Maze et al. (2017) applied it to temperature profiles in the

North Atlantic to find the regions with similar vertical thermal structure, and Jones et al. (2019) did a similar study of the

Southern Ocean. Rosso et al. (2020) focused only on a part of the Southern Ocean, the Kerguelen Sector, but included both

the temperature and the salinity observations into the model. Thomas et al. (2021) then did a similar study of the whole45

Southern Ocean. They all used PCA to reduce the number of levels in the vertical, which reduces the computational cost of the

classification. Here we apply the same method on satellite observed sea level, using PCA to reduce the amount of information

in the temporal domain. GMM provides similar output as the self-organizing map, i.e., the classification of the area and the

main pattern for each class, but since it is based on statistical distributions, it is easier to interpret the results. Because GMM

gives
::::::::
clustering

:::::::
methods

::::
such

:::
as

:::::
GMM

::::
give

:
a class for every data point, the results from it not only provide an insight into50

the patterns of sea level variability, but can also be used as a mask to isolate a region and focus on the dominant processes in

it without being affected by the noise from everything in the neighboring areas. GMM is also probabilistic, i.e., it provides the

probability distribution across all classes for each data point, which can be helpful when trying to determine the robustness of

the classification, giving it an advantage over simpler approaches, such as K-means clustering (Lloyd, 1957).

In Sect. 2, we describe the methods and data used in this paper. We start with the description of the used data set and55

applied data processing steps (Sect. 2.1), then we continue to explain how the Gaussian Mixture Model works (Sect. 2.2), and

finally detail the ensemble classification procedure (Sect. 2.3). Sect. 3 contains the results and the discussion, focusing on the

classification and its dependence on the amount of information contained in the data set (Sect. 3.1), showing the results for
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specific subregions of our area of interest (Sect. 3.2), and then illustrating how the classification works in the abstract empirical

orthogonal function domain in which it is performed (Sect. 3.3). Finally, we present our
::::
give

:
a
:::::::::

summary
::
of

:::
our

:::::
work

::::
and60

::::::
present

:::
the conclusions in Sect. 4.

2 Method

To determine the regions of coherent sea level variability we use a machine learning method called Gaussian Mixture Model

(GMM). It is an unsupervised classification (or clustering) model, i.e., a model that seeks to sort data points into classes

due to their similarity without any a priori information about the classes. We apply it to the satellite-observed sea level data65

in the Northwestern
:::::::::::
northwestern European coastal seas and part of the Atlantic Ocean. To increase the robustness of the

classification, we use an ensemble of GMMs.

2.1 Data preparation

For the sea level variability information we use gridded reprocessed global ocean sea surface height satellite observations

downloaded from Copernicus Marine Services (Pujol and Mertz, 2020). This data set uses a multi-mission mapping procedure70

based on an optimal interpolation technique derived from Le Traon and Ogor (1998), Ducet et al. (2000), and Traon et al.

(2003), which combines the data from all available satellite missions: Sentinel-3A/B, Jason-3, HY-2A, Saral[-DP]/AltiKa,

Cryosat-2, OSTM/Jason-2, Jason-1, Topex/Poseidon, Envisat, GFO, ERS-1/2 (Taburet et al., 2019). The data set has a global

coverage, with 0.25° spatial and monthly temporal resolutions. The full description of the processing of the altimetry data and

all the corrections applied to them can be found in Pujol et al. (2016) and Taburet et al. (2019).75

As an example for our method, we select the area between 10°W and 30°E, and 50°N and 75°N (Fig. 1), which covers the

coastal seas of Northwestern
::::::::::
northwestern

:
Europe and a part of the Northern

::::
North

:
Atlantic Ocean. It is an interesting and

complex region that comprises of many different ocean floor features and includes both mid-latitudes and polar region, as well

as continental shelves and deep ocean regions. It consists of the very shallow enclosed Baltic Sea, the shallow North Sea and

coastal seas between Great Britain and Ireland, the Faroe Shelf, the Norwegian continental shelf and part of the Barents Sea,80

all shallower than 1000 m. At the other extreme in depth, this region of interest also includes the Norwegian Sea, part of the

Greenland Sea, and a section of the mid-Atlantic ridge in between, all deeper than 2000
:
m.

While the data set covers a longer time span, we decided to use 25
:::
We

:::
use

::
27

:
years of data, from 1995 - 2019

:
to
:::::

2021, to

avoid the large areas with missing data in year 1994. In most
:
a
::::
few winters there are

::::
small

:
gaps in the data in the Gulf of

Bothnia and Gulf of Finland in the Baltic Sea, due to the extensive sea ice cover, which prevents sea level retrieval through85

altimetry (Pujol et al., 2016; Taburet et al., 2019). While these gaps might affect the results of the classification, we want to

keep the whole area, so we linearly interpolate in time the gaps
::
We

:::::::
linearly

:::::::::
interpolate

::::
these

::::
grid

:::::
points

::
in
::::
time

:
as the first step

of data processing,
::
in

:::::
order

::
to

:::
use

:::
the

::::::
whole

:::::::
available

::::
area. We also remove the seasonal cycle by subtracting the climatology

calculated from the 25 years of data
:::::
whole

::
27

:::::
years

::::
long

::::
time

::::::
period in order to focus on the non-seasonal variability.

:::
The

::::
data

::
set

::::
still

:::::::
contains

:::
the

:::::
trend,

:::
i.e.,

:::
the

:::
sea

:::::
level

:::
rise

:::::
signal

::::
and

::
its

::::::
spatial

:::::::
patterns.

:
90
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Figure 1. Our region of interest and its bathymetry, from the General Bathymetric Chart of the Ocean GEBCO 2022, along with place names

referred to in the manuscript. Black contours represent the 250 (thin line) and 1000 m (thick
::
line) isobaths.

While
:::::::
Although

:
it is technically possible to use the time series directly as input for the mixture model, as it is with

SOMs (Liu and Weisberg, 2005), they contain so much noise that the model is unable to converge to one best distribution

of classes. It also makes the model one order of magnitude slower, from approximately 1 to 13 seconds for a single GMM,

which makes testing large ensembles much more time consuming. Therefore, before applying the unsupervised classifica-

tion method, we perform a principal component analysis (PCA) on the altimetry data set to reduce its dimensionality.
::::
This95

:
is
::

a
:::::::
standard

:::::::::
procedure

:::::
when

::::::::
applying

::::::
GMM

::
to

:::::
other

::::
data

:::
sets

::::::::::::::::::::::::::::::::::::::
(e.g., Maze et al., 2017; Thomas et al., 2021),

:::
but

::
is
::::::

rather

:::::::::
uncommon

:::::
when

:::::
using

:::::
other

::::::::
clustering

::::::::::
techniques

::
on

:::
sea

:::::
level

::::
data,

::::::
where

::::::::
previous

::::::
studies

:::::::
typically

:::::
used

:::
the

:::::
whole

:::::
time
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:::::
series

::::::::::::::::::::::::::::::::::::::
(e.g., Liu and Weisberg, 2005; Liu et al., 2008)

:
. We obtain the empirical orthogonal function (EOF) maps, which con-

tain the spatial component of the dataset, and the accompanying principal component time series, as described in Björnsson

and Venegas (1997), and use the EOF maps as input for the machine learning classification model. In this way the input data100

is reduced from 300
:::
324 monthly grids to only 3-11

::
3-9

:
EOFs, which explain

::::::::::::
approximately 75-85% of observed variability,

and each grid point that we wish to classify is explained with 3-11
::
3-9

:
values instead of by the whole 25

::
27 years long time

series. The decision on how many EOFs are included is based on whether we are trying to achieve a simpler classification, in

which case less information is enough, or study the finer details, which requires higher degree EOFs.
::
We

:::::
train

::
all

:::
our

:::::::
models

::
on

:::
90

::
%

::::::::
randomly

:::::::
selected

::::
grid

:::::
points

::::
and

:::
use

:::
the

:::::::::
remaining

::
10

::
%

:::
as

:
a
:::
test

::::
set,

::
to

::::::
ensure

:::
that

:::
the

::::::
model

::
is

:::
not

::::
only

:::::
fitted

::
to105

::
the

:::::::
training

:::
set

:::
but

::
is

::::
able

::
to

::::::::
generalize

::
to
:::
the

::::
data

::::::
points

:::
that

::::
were

::::
not

::::
used

:::
for

:::::::
training.

2.2 Gaussian mixture model

We want to objectively identify patterns appearing in the EOF maps of the satellite-observed sea level and use them to define

regions of similar sea level variability. A powerful method for this task is the Gaussian Mixture Model, an unsupervised

machine learning classification approach that provides the probability that a location belongs to each of the classes. Since it110

is an unsupervised method, it does not need any prior information about the classes. It is based solely on sea level variability,

without any geographical information, which allows us to determine physically coherent regions even if they are not adjacent.

Finally, since this method provides the probability distribution across all of the classes, it enables us to distinguish clearly-

coherent regions from boundaries.

GMM is based on the assumption that any probability density function (PDF) can be described with a model of weighted115

sums of Gaussian PDFs, which represent the components of the mixture model. In our case, the PDF describing the sea level

EOFs can be represented with a weighted sum of Gaussian PDFs:

p(x) =

K∑
k=1

λkN (

(
x;µk,Σk

)
, (1)

with K components, where

N (

(
x;µk,)Σk

)
=

1√
(2π)D|Σk|

exp

(
−1

2
(x−µk)

⊤Σk
−1(x−µk)

)
1√

(2π)D|Σk|
exp

(
−1

2
(x−µk)

⊤Σ−1
k (x−µk)

)
:::::::::::::::::::::::::::::::::::::::::

(2)120

is the multivariate Gaussian distribution in D dimensions with mean µk :::
µk :

and covariance matrix Σk:::
Σk. The weighting

coefficients λk must satisfy 0≤ λk ≤ 1 and
∑

k λk = 1 (Bishop, 2006). The classification occurs in the abstract, D-dimensional

EOF space, where each dimension represents one of the EOFs and each data point x is a grid cell described by D EOF values.

The aim of the GMM is to fit the PDF model from Eq. (1) to the observed probability density function of the EOFs by

maximizing the likelihood of the observations using the Expectation-Maximization method (Dempster et al., 1977; Bishop,125

2006), which is referred as model training. This boils down to finding the best estimates for the parameters λk, µk, and Σk:::
µk,

:::
and

:::
Σk. After the observed PDF has been decomposed into a sum of K Gaussian mixture model densities defined by mean
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µk ::
µk:

and covariance matrix Σk with λk = p(c= k)
:::
Σk ::::

with
::::::::::::
λk = p(c= k) being the component a priori density for class

c
:
c, we then use Bayes’ theorem:

p(cc= k|x) = p(x|c= k)p(c= k)

p(x)

p(x|c= k)p(c= k)

p(x)
::::::::::::::::

, (3)130

where p(x|c= k)
:::::::::
p(x|c= k)

:
is defined by Eq. (2) and p(x) is given in Eq. (1), to obtain the a posteriori probability of a

location belonging to class c:
:
c:
:

p(cc= k|x) = λkN (x;µk,Σk)∑K
k=1λkN (x;µk,Σk)

λkN (x;µk,Σk)∑K
j=1λjN (x;µj ,Σj)

::::::::::::::::::

. (4)

Finally, the location is labeled with class k for which the posterior probability is the largest. The mean values which define

each class in our case give us information about which principal components andprocesses associated with them
:::::
EOFs

::::
and,135

:::::::::::
consequently,

::
if

:::
we

:::
are

::::
able

::
to

:::::::
identify

::::::
which

::::::::
processes

::
a

::::::::
particular

::::
EOF

::::::::::
represents,

:::::
which

::::::::
processes

:
are dominant in that

region. A detailed description of Gaussian Mixture models can be found in e.g., Bilmes (1998) or Bishop (2006), while e.g.,

Maze et al. (2017) or Thomas et al. (2021) provide similar, oceanography oriented
:
,
:
explanations. The computation was

::
is

performed using the open-source Python library Scikit-learn (Pedregosa et al., 2011).

In addition to deciding on the amount of information included in the data by selecting the number of EOFs D, the only input140

parameter to the GMM is the number of mixture components or classes, K, which needs to be specified before applying the

model. It is not an easy task to determine the appropriate K. Sometimes it is possible to select a number by relying on theory

behind the processes we are studying, e.g., when using GMM to find the fronts in the Antarctic Circumpolar Current like in

Thomas et al. (2021), the number of fronts is known, but that is not always possible. There are multiple methods to objectively

determine the optimal K, of which we used
:::
use the silhouette score

::::::::::::::::
(Rousseeuw, 1987). Silhouette score for each sample

::::
(grid145

:::::
point) is computed as:

Si =
b− a

max(a,b)

b− a

max(a,b)
::::::::

, (5)

where a is the mean intra-cluster distance
:::::::
between

:::
the

::::::
sample

:
i
:::
and

:::
all

::::
other

:::::::
samples

:::::
from

:::
the

::::
same

::::::
cluster

:
and b is the mean

nearest-cluster distance
:::::::
between

::::::
sample

:
i
:::
and

:::
all

:::::::
samples

::::
from

:::
the

::::::
nearest

::::::
cluster. To determine the best number of classes, we

use the mean S
:::::::
averaged

::::
over

::
all

:::::::
samples. S ranges between −1 and 1, where higher values correspond to better distinguished150

classes. Other studies, such as Maze et al. (2017) or Thomas et al. (2021), used the Bayesian Information Criterion (BIC)

for this purpose. In our case however, the K selected based on the BIC was
::
is usually too large (see next subsection), while

the silhouette score provided
:::::::
provides a better estimate. Note that, while

::::::::
However,

::::
since

:
the silhouette score provides a good

estimate, it is a metric that does not always work perfectly, so it is best to test the model with multiple options until we find the

optimal number of classes
::
we

::::
test

::
all

:::
the

:::::
class

:::::::
numbers

:::::::
between

::
2

:::
and

:::
11

:::
for

::::
each

::::::
number

:::
of

:::::
EOFs

:::
and

:::
our

::::
tests

:::::::
confirm

::::
that155

::
the

:::::::::
silhouette

::::
score

::
in
::::
our

::::
case

:::::
indeed

:::::::::::
recommends

:::
the

::::
best

::::::
option.

::::
The

:::::::
summary

:::
of

:::
the

::::
tests

:
is
:::::
given

::
in
:::::
Table

:::
A1.
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2.3 Ensemble classification

The initial class means in the GMM algorithm are determined by the simpler k-means clustering method, which depends

on random initialization. To test whether the model converges, we do not specify random seed, so the initial parameters are

different every time. Due to the size and complexity of the area and the sea level variability, each time the model is trained160

the results can be slightly different.
::::::
Despite

:::::::::
sometimes

:::::::
resulting

::
in

::::::::
different

::::::::::::
classifications,

:::
the

:::::::::
probability

:::::
given

::
by

:::
the

::::::
GMM

:
is
::::::

almost
:::::::

always
::::
very

:::::
close

::
to

:::
one

::::::
inside

:::
the

:::::
class

:::
and

:::::
lower

:::::
only

:::::
along

:::
the

::::
class

::::::::
borders,

::::::
making

::
it
::::
hard

:::
to

:::::
assess

::::::
which

::::::::::
classification

:::
is

:::::
better.

:
To mitigate that and increase the robustness of the results, we use an ensemble prediction. GMM

provides not only the classification, but
::::
Since

::::::
GMM

:::::::
provides the probability for a point to belong to each of the classes, so the

most fitting way to do the ensemble classification is to use soft voting
::::::::::::::
(Cao et al., 2015). With this method, the ensemble takes165

into account the probabilities from each model that a point belongs to each class, the class with the largest sum of probabilities

wins and the grid point is finally assigned to that class. We also obtain the likelihood that a grid point will belong to that class,

i.e., a combination of the number of models that sorted it into that class and the probability they provided, which tells us how

difficult it was for the model to sort that particular location.

For most unsupervised classification models, including GMM, the main problem with using an ensemble is that, since the170

classes are not known a priori, they are not numbered in any particular way, so class 1 of one ensemble member can correspond

to class 7 of another. Since
::::::::::
Considering there are some differences between model runs, it is also possible that a class appears

in some model runs but not others. To be able to compare the classes from all ensemble members, we match them based on

the correlation between the class means (a D-dimensional vector), which results in a list of classes that appeared at least once

in any of the models of the ensemble. This list of classes is substantially longer than the predetermined number of components175

K
::
K, but after voting,

:
many of the classes get voted out because they only appear in a few of the models.

:::::
Please

::::
note

::::
that

:::::::
matching

:::::::
classes

:::::
based

::
on

:::::::::
correlation

:::::::
requires

::
at
::::
least

:::::
three

::::::
points;

:::::
using

:::
the

::::::::
ensemble

::
in

:::
this

:::::::
manner

::::
does

:::
not

:::::
work

:::
for

::::
only

:::
one

::
or

::::
two

:::::
EOFs.

:

Another problem that appears when using an ensemble is that, while GMMs themselves usually do not result in very small

classes, after soft voting, some classes can lose most of their points to neighboring classes, ending up with only a few data180

points. That is avoided by setting up a minimal class size threshold, excluding those classes that have a number of points below

the threshold, and re-sorting all the grid points belonging to the excluded classes to the class with next highest vote. In such

cases, there are usually two classes with very similar probability sums, so the resulting likelihood is not considerably reduced.

Therefore, there are three parameters pertaining to the ensemble: the minimal correlation for the class means to be considered

"same", the minimal class size, and the number of ensemble members N . The other parameters that we need to set are the185

GMM’s only intrinsic parameter; the number of classes K; and the amount of information included into the model set by the

number of EOFs D. To determine which combination works best, we use three criteria: (1) the model converges, i.e., multiple

experiments with the same parameters find the same classes; (2) the ensemble keeps the same number of classes prescribed to

the individual GMM; and (3) the average likelihood inside the classes is as high as possible for the desired level of subdivision,

while still allowing low likelihoods on class borders. After testing several options, we find that the ensemble works best if we190
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use a minimal correlation for matching classes of 0.98. With smaller correlation, classes that are not similar enough could be

merged, while with larger, even a slight difference in geographical distribution of a class in different ensemble members results

in the ensemble seeing them as different classes, neither of which receives enough votes, so only the next best class wins. The

minimal class size should be chosen based on the smallest area we are trying to capture, so we select a size of 100 grid points,

which allows the model to sort the small basins such as the Gulf of Bothnia or channels such as the Kattegat into a separate195

class if necessary. We use 200 ensemble members for all our experiments. In some cases with small number of classes, we

would have achieved the same results with less, but since training a single GMM is fast, using an ensemble with 200 members

does not take too much time and it increases the robustness of the results. Using more ensemble members
::::::
usually

:
does not

improve the results
:
,
::::
with

:::
the

::::::::
exception

::
of

:::
11

:::::
EOFs

:::
and

:::
11

::::::
classes

::::::
(Table

::::
A1).

:::
The

:::::::::
randomly

:::::::
selected

::
90

::
%

:::
of

:::
the

:::
grid

::::::
points

::::
used

:::
for

::::::
training

:::
are

:::
the

:::::
same

:::
for

::::
each

::::::::
ensemble

::::::::
member,

::::::
leaving

:::
the

::::::::::
completely

::::::::::
independent

::
10

:::
%

::
of

:::
the

::::
data

:::
for

::::::
testing

::
of200

::
the

::::::::
ensemble.

In the end, we obtain an ensemble classification with a new class number KE that is usually similar to, but not necessarily

exactly the same as, the a priori class number K
::
K, along with a likelihood that a particular point belongs to the selected class.

The likelihood would correspond to 1 if all ensemble members chose that particular class with the probability of 1. Both fewer

models assigning that class and models assigning it with a lower probability, i.e., the models not being certain that the grid205

point belongs there, reduce the likelihood.
::::
This

::
is

:
a
:::
big

:::::::::
advantage

::::::::
compared

::
to

:::::
using

::::
only

::::::::
individual

:::::::
GMMs

:::::::
because

:
it
::::::
makes

:
it
:::::
easier

::
to

:::
see

::::
how

:::::
stable

:::::
each

:::::::::::
classification

::
is.

3 Results

3.1 Classification depending on the number of empirical orthogonal functions

After greatly reducing the dimensionality of the data with principal component analysis, the question arises as to how much210

data we should keep. As can be seen in Fig. 2, the optimal number of classes based on the silhouette score grows as we add

more information, i.e., more EOF maps (colors), to the mixture. We can therefore decide on both (1) the number of EOFs

and (2) the number of classes based on how many details we need to retain for our application.
::
As

:::
we

:::::::
increase

:::
the

:::::::
number

::
of

:::::::::
dimensions

:::::::
(EOFs),

:::
the

:::::::
distance

:::::::
between

::::
any

:::
two

::::::
points

:::::::
becomes

:::::
more

::::::
similar

:::
and

::::
less

::::::::::
meaningful,

:::::
which

::::
also

::::::
lowers

:::
the

::::::::
silhouette

:::::
score

:::
for

::
all

:::::
class

:::::::
numbers

:::
for

::
a

::::
given

:::::
high

::::::
number

:::
of

:::::
EOFs,

:::
so

:
it
:::::
does

:::
not

:::::
make

:::::
sense

::
to

:::::::
compare

:::
the

:::::::::
silhouette215

::::
score

:::
for

:::::::
different

:::::::
number

::
of

:::::
EOFs.

:
Note that according to the silhouette score, sometimes adding another principal component

does not increase the number of classes the model is able to support, but it could still change which classes the model decides

to include with this new
:::::
newly

:
added information.

::::::
Testing

:::
the

::::::
models

::::::::
confirms

:::
that

:::
the

:::::::
number

::
of

::::::
classes

:::::::::::
recommended

:::
by

:::
the

::::::::
silhouette

:::::
score

:
is
:::::::
correct,

::
as

::::
can

::
be

::::
seen

:::::
from

::::
Table

:::
A1

:::
in

:::
the

::::::::
appendix.

::::::::
Typically,

:::::
when

:::::
using

::::
high

:::::::
number

::
of

:::::
EOFs

::::
with

::
a

::::::
smaller

::::::
number

:::
of

::::::
classes

::
or

:::
vice

::::::
versa,

::
the

:::::::
models

:::::
either

::
do

:::
not

:::::
work

::
at

:::
all,

:::
i.e.,

:::::::::
re-running

:::
the

::::::::
ensembles

::::::
results

::
in

:
a
::::::::
different220

:::::::::::
classification,

::
or

:::::
work,

:::
but

::::
have

:::::
lower

:::::::::
likelihood

::::
than

:::
the

::::::
models

:::
we

::::::::
selected.

::
In

::::
some

:::::
cases

:::::
when

:::
the

:::::::::
difference

:::::::
between

:::
the

::::::
number

::
of

::::::
classes

::
K

::::
given

::
to

:::
the

::::::::
individual

:::::::
GMMs

:::
and

:::
the

:::::::
optimal

::::::
number

::
of

::::::
classes

::
is
::::::
small,

::
the

:::::::::
ensemble

:
is
::::
able

::
to

::::
find

:::
the

::::::
optimal

:::::::
number

::
of

::::::
classes

::
on

:::
its

::::
own.

:
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Figure 2. Silhouette Score for different numbers of classes calculated for Gaussian Mixture Models using different numbers of empirical

orthogonal functions (differently colored lines). The class for which a respective model has the highest silhouette score is marked with a

diamond. Silhouette score is computed for 100 models using the same parameters and the figure represents their average values (central

lines) and one standard deviation (shaded areas). The models are fitted to randomly selected 90% of the grid points from the region shown in

Fig. 1. Thicker lines and larger markers represent the models presented in this paper.

Fig. 3 shows the classification obtained using 3 (simplest model), 5 (intermediate), and 11
:
9 (complex) EOF maps, which

contain 75
::
76%, 80%, and 85

::
84% of the observed variability, with an ensemble of 200 GMMs. All classifications are created225

using the number of classes recommended by the silhouette score: 4, 6
:
5, and 10 respectively, which were

::
are

:
indeed the

numbers with which the model works best. Since the ensemble classification is able to modify the number of classes if the

chosen one does not work well by discarding the classes that are only rarely selected by individual models, the fact that the

ensemble maintains the selected number of classes is an additional proof that the number was good. The black dots on all

figures mark the location of grid points that were excluded from the training dataset, i.e. the grid points that were held out for230

testing.
::
is

:::::
good.

:
It can be seen that even though the model does not consider the geographical information at all, it properly

sorted almost
::::
sorts all the grid points, both from the training set and the test set, into suitable geographically connected areas.

In the simplest model based on only three EOF maps (Fig. 3a), the GMM splits the area into only four classes: Baltic Sea

(B), North Sea (N), which includes most of the transition area towards the Baltic called Skagerrak and Kattegat, the remaining

continental shelf areas, including the northernmost part of the North Sea and the shallow Barents Sea (C), and the deep open235

ocean (O). The border between the latter two classes follows almost perfectly the continental shelf border, which can be seen

from the 1 000
::::
1000 m isobath. The border between the Baltic and the North Sea classes is also related to the geographical

9



Figure 3. Classification using an ensemble of 200 Gaussian Mixture Models (left) and the respective likelihoods of the model sorting the

grid points to that particular class (right). Classification is performed using 3 (a), 5 (b), and 11
:
9
:
(c) empirical orthogonal functions and 4,

6
:
5, and 10 classes, respectively. Letters indicate the names used to refer to the regions in the core of the text. Contour lines represent the 250

and 1000 m isobaths.Black dots represent the data points used for validation.
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properties and is set at the narrowest region connecting them, the Danish Straits.
:::
Note

::::
that

::::::
despite

:::::
these

::::
class

::::::
borders

::::::::
coincide

:::::::
perfectly

::::
with

:::
the

:::::
steep

::::::
changes

:::
in

::
the

::::::
ocean

::::
depth

:::
or

::::
with

::
the

:::::::::
coastlines,

:::
the

::::::
GMMs

:::
do

:::
not

::::::::
explicitly

::::::
include

:::::
those

::::::
things;

:::
the

::::::::::
classification

::
is
:::::
based

:::::
solely

:::
on

:::
the

:::::::::
differences

::
in

:::
sea

::::
level

:::::::::
variability

:::::
caused

:::
by

:::::::
different

::::::::
dominant

::::::::
processes

:::
on

::
the

::::::::::
continental240

::::
shelf

:::
and

:::
in

::::
deep

::::::
waters,

::
as

::::
well

:::
as

::
by

:::
the

:::::::::
coastlines

:::::::
directing

::::
the

:::::::::
circulation

::
in

:::
the

:::::::
enclosed

:::::
seas.

::::
The

::::
steric

:::::::::::
contribution

::
is

:::::
known

::
to
:::
be

::::::::
prevalent

::
in

:::
the

::::
deep

::::::
ocean,

:::::
while

::
in

::::::
coastal

::::::
regions

::::::::
complex

::::::::::
bathymetry,

::::
local

::::::::::
circulation,

:::
and

::::::
forcing

:::::
from

:::
the

:::::::::
atmosphere

::::
and

:::::
rivers

:::
can

::
be

:::::
more

:::::::::
significant

:::::::::::::::::::::
(e.g., Passaro et al., 2015)

:
.

The only border that does not seem to be directly caused by bathymetry is between the majority of the North Sea (N) and

the remaining coast (C). That border is also the hardest one to classify, which can be seen from the likelihood (as low as245

0.26
:::
0.29); it is the only area where a significant number of models created

:::::
creates

:
a slightly different border between the

classes. Interestingly, the model classifies the Bothnian Bay, the northernmost part of the Baltic Sea, together with
:
It
::
is
:::::
most

:::::
likely

::::::
related

::
to

::::
some

:::
of

:::
the

:::::::::
underlying

::::::::::
mechanisms

::
in

::::
that

::::::
region,

::::
such

::
as

:::
the

::::::::
poleward

::::::::::
propagation

::
of

::::
sea

::::
level

::::::::::
fluctuations

::::
along

:::
the

:::::::
eastern

::::::::
boundary

::
of

:::
the

:::::
North

::::::::
Atlantic,

::
as

:::::
found

:::
by

::::::::::::::::
Chafik et al. (2023)

::
or

:::
the

::::::::
variations

::
in
:::

the
:::::::

Atlantic
::::::
inflow

::::
into

the North Sea . This requires further investigation of the class means of the EOFs to determine whether this has a physical250

background or is an artefact possibly related to
::::::::::::::::::::::::::
(Winther and Johannessen, 2006)

:
.
:::::
North

:::
Sea

:::
sea

::::
level

::
is
::::
also

:::::
highly

:::::::
affected

:::
by

::::
wind

:::
and

:::::::::::
atmospheric

::::::::
pressure,

:::
and

:::::
which

:::
of

::::
them

:::::::::
dominates

:::::::
depends

:::
on

:::
the

:::::::
location

:::::::::::::::::::::
(Dangendorf et al., 2014).

::::
The

::::::
border

::::::::::
corresponds

::::
well

::::
with

::
the

::::::
border

:::::
found

:::
by

::::::::::::::::::
Mangini et al. (2021)

::::::
between

:::
the

::::::::
dominant

::::::::
influence

::
of

:::::::
different

:::
jet

::::::
clusters

::::::
which

:::::::
represent

::::::::::
large-scale

::::::::::
atmospheric

::::::::::
circulation

:::::::
patterns.

:::::::
Despite

::::::
having

::::
one

::::::
border

::::::
which

::
is

::::::
harder

::
to

::::::
define

:::
for

:::::::::
individual

::::::
GMMs,

:::
the

::::::::
ensemble

::::::::::::
classification

:
is
:::::::::

extremely
::::::
robust;

:::::::::
increasing

:::
the

:::::::
number

::
of

::::::
classes

::
in
:::
the

:::::::::
individual

:::::::::
ensembles

::
to

::::
five255

::
or

::::
even

:::
six

::::::
results

::
in the interpolation of the missing values in the Bothnian Bay, which will be discussed in Sect. 3.3. There

are also a few points along the Norwegian coast that get assigned to the North Sea class, suggesting that perhaps this class

contains a particular mode of variability in the shallow coastal areas
:::::
exact

::::
same

:::::::::::
classification

:::::::
because

:::
the

::::::::
ensemble

::::::::
removes

::
the

:::::::::::
unnecessary

::::::
classes.

::::
This

::::::
shows

:::
that

:::::
based

:::
on

:::
the

:::::
largest

::::::::
processes

:::::::::
contained

::
in

:::
the

:::
first

:::::
three

:::::
EOFs,

:::::
there

:::
are

::::::
exactly

::::
four

::::::
regions

::::
with

::::::
distinct

:::
sea

:::::
level

::::::
patterns

:::
in

::
the

:::::::::::
northwestern

:::::::::
European

:::
seas.260

Adding two more EOFs that together contribute 5
:
4
:

% of variability information (intermediate model, Fig. 3b) does not

change the classification significantly. The class borders from the simplest classification remain principally the same, and the

new EOFs allow further subdivision of the coastal and open ocean classes into two classes each. The split into C1 and
::::
only

::::
allow

:::
the

:::::::::
separation

::
of

:::
the

:::::::
Barents

:::
Sea

:::::
from

::
the

:::::::::
remainder

::
of

:::
the

::::::
coastal

:::::
class.

::::
The

:::::
border

::::::::
between

:::
the

:::::
North

:::
Sea

:::
(N)

::::
and

:::
the

:::::::
adjacent

::::::
coastal

::::
class

::
(C2is based on the bathymetry difference just south of the Lofoten Archipelago in Norway, while the265

split into O1 and O2 is based on the mid-Atlantic ridge. Adding these two extra EOFs resulted in removing the Bothnian Bay

and the separate coastal areas from the North Sea class because the model now has enough information to clearly distinguish

them
:
)
:
is
::::

also
::::::
moved

:::::::
slightly

::::::::
northward.

Finally, when using 11
:
9 EOF maps (the most complex model, Fig. 3c), we end up with 10 classes in our region. The class

borders due to bathymetry
:
or

:::
the

::::::::
processes

::::::
related

::
to

::
it remain the same. There is further subdivision of both coastal and open270

ocean areas, and the border of the North Sea -itself subdivided, is shifted northward. The likelihood for the classification in the

southern part of the North Sea is also significantly reduced, suggesting that the models struggle to properly classify this region
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, possibly because this many principal components introduce a lot of noise
:::
even

:::::::
further

:::::::::
northward

:::
and

::::
now

::::::::
coincides

:::::
with

::
the

::::
250

::
m

::::::
isobath

::::::
which

::
in

::::
that

:::::
region

::::::
marks

:::
the

::::
edge

::
of

:::
the

::::::::::
Norwegian

::::::
Trench. Models maintaining the basic classification

and further subdividing some of the classes after adding new information into the model is not a characteristic of the GMM.275

The GMM could completely change some or all the classes if the number of classes is different, so the fact that this is not

happening here must be based on the characteristics of the ocean. The ocean is first coarsely divided into regions determined

by the bathymetry, and then each of those regions can be further subdivided based on other aspects of the sea level variability

such as finer resolution bathymetric features (e.g. the subdivision of class O around the mid-Atlantic ridge) or water masses

(e.g. the Barents Sea separating from class Cearly on).280

Adding even more EOFs
:::
The

::::::::
virtually

::::
same

:::::::::::
classification

::
as

::
in

::::
Fig.

::
3c

:::
can

::::::::
likewise

::
be

:::::::
obtained

::::
with

::
8,

:::
10

::
or

::
11

:::::
EOF

:::::
maps.

::::
With

::
11

::::::
EOFs

:::
and

::
a

::::::::::
significantly

:::::
larger

::::::::
ensemble

::
of
:::::

1000
::::::::
members

::
it

::
is

:::
also

:::::::
possible

:::
to

::::::
achieve

::
a

::::::::
separation

::::
into

:::
11

::::::
classes

(not shown),
::
in

::::::
which

:::
the

:::::::
Barents

:::
Sea

:::::
(class

::::
C1)

::
is

::::::
further

::::
split

::::
into

:::::::
northern

::::
and

::::::::
southern.

::::::
Beyond

:::::
that,

::::::
adding

::::
even

:::::
more

:::::
EOFs does not result in a finer subdivision; it only causes either the ensemble to reduce the number of classes to 10 or even

introduces so much noise that multiple ensembles with the same parameters produce different results. With that in mind, if we285

would like to obtain a more detailed subdivision, it is better to do the classification for a smaller region. The complexity of

sea level patterns also differs significantly from region to region, so narrowing our focus to a smaller area would allow us to

use the principal components specific to that area, increasing the amount of information in fewer EOF maps, thus reducing the

noise and allowing a better classification.

3.2 Reducing the size of the region290

Here, we apply the ensemble GMM to three subregions
::::::::::
sub-regions of our area of interest: the Baltic, the North and the coastal

part of the Norwegian Sea (Fig. 4). By using EOF maps calculated solely for these regions, the model input contains only the

data relevant for them, without the noise coming from EOFs significant only elsewhere, which allows the models to find more

region-specific patterns and increase the number of classes they are able to find. By comparing the results from the subregions

with results from Sect.3.1, as well as by comparing the classification in the overlapping areas of the three subregions, we can295

also check whether the ensemble GMM classification is robust and finds the same patters of sea level variability regardless of

the size or shape of the area of interest.
::
We

:::::
select

:::
the

::::::
models

:::::
based

:::
on

:::
the

::::::::
principles

::::::::
presented

::
in

:::::
Sect.

:::
2.3.

:::
We

:::::
again

::::::::
calculate

::
the

:::::::::
silhouette

::::
score

:::
for

:::
all

:::::::::::
combinations

::
of

:::
the

:::::::
number

::
of

:::::
EOFs

:::
and

:::::
class

:::::::
numbers

::
in

::
all

:::::
three

::::::::::
sub-regions,

:::
but

:::::
there

:::
are

:::::
better

::::
class

:::::::
numbers

:::::
than

:::::
those

::::::::::::
recommended

::
by

:::
the

:::::::::
silhouette

:::::
score

:::
(3,

::
5,

::::
and

:
7
::::::::

classes).
::
In

:::
the

::::::
Baltic

:::
and

::::
the

:::::::::
Norwegian

::::
Sea

::::::
models

:::
the

::::::::
likelihood

:::
of

:::
the

::::::
models

:::
we

::::::
present

::
is
:::::::::::
significantly

::::::
higher

::::
than

:::
the

::::::::
likelihood

:::
of

:::
the

:::::
model

::::::::::::
recommended

:::
by

:::
the300

::::::::
silhouette

:::::
score,

:::::
while

:::
for

:::
the

:::::
North

:::
Sea

::::
they

:::
are

:::::::
equally

:::::
good,

:::
but

:::
the

:::::
model

:::
we

::::::
present

:::
has

::
a
::::::
higher

::::::
number

::
of

:::::::
classes,

::::
thus

:::::::
allowing

:
a
:::::
more

:::::::
detailed

::::::::::
subdivision.

::::
This

:::::::::::
demonstrates

:::
that

:::::
while

:::
the

::::::::
silhouette

:::::
score

::
is

:
a
:::::
good

:::
tool

::
to

::::
give

:::
an

:::::::
estimate

::
of

:::
the

::::::
number

::
of

:::::::
mixture

:::::::::::
components,

:
it
:::::
does

:::
not

::::::
always

::::
give

:::
the

:::
best

::::::
result.

::::
One

::::::
should

::::::
always

:::
try

:::
the

:::::
model

::::
with

::::::
several

:::::::
options

::
to

:::
find

:::
the

::::
best

:::::::
solution

::
to

::::
their

:::::::
specific

:::::::::::
classification

:::::::
problem.

:

We can see that the EOF maps computed for the whole northwestern European coastal area (Fig. 5a) are rather smooth in the305

Baltic Sea compared to the rest of the region
:::
The

::::::
almost

:::::::::
completely

::::::::
enclosed

:::::
Baltic

:::
Sea

::
is
::
to

::
a

::::
very

::::
large

::::::
extent

::::::::
controlled

:::
by

12



Figure 4. Classification using an ensemble of 200 Gaussian Mixture Models (left) and the respective likelihoods of the model sorting the

grid points to that particular class (right) for the Baltic Sea performed using 4 EOFs
::
and

::
K

::
=

:
5 (a); North Sea using 3

:
5 EOFs

::
and

::
K

:
=
::
6 (b);

and part of the Norwegian Sea using 7
:
6 EOFs

::
and

::
K
::
=
:
6
:
(c). Numbers indicate the assigned classes. Contour lines represent the 250 and

1000 m isobaths. Black dots represent
:::
Dark

::::
gray

:::::
classes

::
in
:::
(a)

:::
and

::
(c)

::::
have

:::
not

::::
been

::::::
assigned

:
a
::::::

number
:::::::
because

:::
they

:::
are

::
not

::::
part

::
of the data

points used for validation
:::::
region

::
of

::::::
interest

:::
and

::
are

:::::::
therefore

:::
not

:::::::
discussed

::
in

:::
the

:::
text.
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::
the

:::::::::
variability

::
at

::
its

:::::::
entrance

:::
on

:
a
:::::::::
long-term

::::
scale

:::::::::::::::::::::::
(e.g., Lehmann et al., 2002), which is why

:
it
::
is

:::
also

::::::
rather

::::::
uniform

:::::::::
compared

::
to

:::
the

::::
other

:::::
areas

:::::::
included

::::
into

:::
our

:::::
whole

::::::
region

::
of

::::::
interest

::::
and

::::
why the models based on them

::
the

::::
EOF

:::::
maps

::::
from

:::
the

::::::
whole

:::
area

:
do not usually divide the Baltic Sea further than the basin-scale. This uniformity is also reflected in the EOFs calculated for

the Baltic Sea separately: the first four explain 93.7
::::
94.2% of the variability. The ensemble classification model based on them is310

able to distinguish two more classes (Fig. 4a) than in the most complex model based of EOF maps for the whole area of interest

(Fig. 3c). The Baltic (class B in Fig. 3c) is now split into three classes: the Gulf of Bothnia (class 1), the Western
:::::::
western Baltic

(class 3) and the remainder of the Baltic Sea (class 2). The Danish Straits, a series of narrow channels connecting the Baltic Sea

with Kattegat, are now sorted together with the Western
::::::
western

:
Baltic class (class 3), while Kattegat and Skagerrak form one

class connected to the North Sea (class 4). The likelihood is very close to 1 virtually everywhere except at the border between315

classes 1 and 2 and between 2 and 3
::::
some

::::
class

:::::::
borders, meaning that the majority of the ensemble members selected the same

classes. Note that this number of classes is not chosen with the silhouette score. Although using the recommended number of

classes gives reasonably good results (not shown), using this different K works better, i.e., has higher likelihood, especially

in the transition zone. This demonstrates that while the silhouette score is a good tool to give an estimate of the number of

mixture components, it does not always give the best result. One should always try the model with several options to find the320

best solution to their specific classification problem.

The North Sea has the most complex sea level variability patterns of the whole considered area. We would need more than

20 EOFs to achieve
::::::
almost

::
40

:::::
EOFs

::
to
:::::::
explain the same level of explained variance as we achieved

::
do with only four for the

Baltic. It is however enough to use only three
:::
five of them, explaining 75

::
79

:
% of the sea level variability, to split

::::::
achieve

::
a

::::
more

:::::::
detailed

::::::::::
subdividion

:::
of the North Sea into four distinct classes (Fig. 4b) , compared to only two in

:::
than

:::
we

:::
can

:::::
with325

::
the

:::::
most

:::::::
complex

::::::
model

:::::
based

::
on

:::::
EOFs

:::::
from

:::
the

:::::
whole

:::::::::::
northwestern

::::::::
European

:::::::
coastal

:::
area

::
(Fig. 3c

:
). Class N1 from Fig. 3c

is here further split into classes 2 and 3, and N2 into classes 4 and 5.
::
5,

::
of

::::::
which

:
4
::
is
:::
the

::::::::
southern

:::::
North

::::
Sea

:::
and

::
5
::::::
covers

:::::::
Kattegat

:::
and

:::::::
western

:::::
Baltic

::::
Sea. The region-specific classification model also finds class 1, which mostly corresponds to class

C22
::
C3

:
from Fig. 3c, and it combines parts of classes C21 and C23

:::
C2

:::
and

:::
C4

:
included here into class 6. The larger classes

are separated as zones in the north-south direction, as expected from other works, e.g. Dangendorf et al. (2014) or Sterlini et al.330

(2016), who found a difference in the sea level variability between the northern and the southern North Sea. Some of the class

borders (1 and 2) are also based on bathymetry, following the Norwegian Trough. Interestingly, part of the Norwegian coast

included here is sorted into the same class as the western coast of Great Britain, which suggests that the model most likely

sees some processes relevant for western coasts and the regional atmospheric pressure and wind patterns. The likelihood is

lower than in the Baltic Sea model, but nevertheless close to one across the area, with the exception of class borders, which335

the ensemble members do not agree on so well.
:::::
Some

::::
class

:::::::
borders

::::
from

::::
both

:::
the

::::::
Baltic

:::
and

:::
the

:::::
North

::::
Sea

::::::
models

::::::
match

::
to

:
a
::::
large

::::::
extent

::::
with

:::
the

::::::
classes

:::::::
obtained

::::
with

:::
the

::::::
whole

::::
area

::::::
model,

::
in

:::::::
addition

::
to

:::::
which

:::
the

:::::::::::::
region-specific

::::::
models

:::
are

::::
able

::
to

:::::
further

:::::::::
subdivide

::::
their

:::::::
regions. The classes in the area overlapping with the Baltic Sea model match, demonstrating that in both

cases the models find the same patterns of variability despite being based on different EOFs
:::::::::
overlapping

::::
area

::
of

:::
the

:::::
Baltic

::::
and

::
the

::::::
North

:::
Sea

:::::::
models,

::::::::
however,

::
do

::::
not

:::::
match,

:::::::
because

:::
the

::::::
EOFs

::::::::
computed

:::
for

:::
the

:::::::
different

:::::::
regions

::
do

::::
not

::::::
capture

:::
the

:::::
same340

::::::::
processes.

14



Finally, the classification obtained by considering 7
:
6
:
EOF maps calculated for the Norwegian coast (Fig. 4c) is quite similar

to that obtained by using the whole region
:::::::::::
unfortunately

::::::
unable

::
to

:::::::
achieve

:
a
::::::::::
significantly

:::::
more

:::::::
detailed

:::::::::::
classification

::::
than

:::
the

::::
most

:::::::
detailed

:::::
model

:::
for

:::
the

::::::
whole

::::
area (Fig. 3c). Classes 1, 2,

:::
and

:
3 , 4, and 5 from Fig. 4c generally correspond to classes

O22, O21, C22, C21, and O1
:::
O1,

::::
O2,

:::
and

:::
C2

:
from Fig. 3c, although there are some differences in class borders, particularly345

in the northern boundary of classes 3/C22 and 2/O21. Because of the shift of the northern boundary of class 3 , this is the

only class containing both deep ocean and continental shelf areas. Additionally, the
::::::
covers

::::
both

:::
the

::::
class

:::
C2

::::
and

:::
part

:::
of

:::
C3

::::::::
contained

::
in

:::
the

::::
area

::
of

:::
the

:::::::::
Norwegian

::::
Sea

::::::
model.

:::
The

:
region-specific model

:::
also splits the Barents Sea opening based on its

depth (classes 6 and 7), which the large model is not able to do
:
4
::::
and

::
5),

::::::
similar

:::
to

::
the

::::::
whole

::::
area

:::::
model

::::
with

:::
11

:::::
EOFs

:::
and

:::
11

::::::
classes,

:::::
which

:::::::
requires

::
a
:::::
much

:::::
larger

::::::::
ensemble

::::
(not

::::::
shown).350

3.3 Empirical orthogonal functions

To learn more about how the GMM determines the classes, we can take a look at the empirical orthogonal functions (EOFs)

because GMMs perform the classification based on them. We
:::::
Apart

::::
from

::::::::
assigning

:::::::
classes,

:::::
GMM

::::
also

:::::
gives

:::
the

::::
class

::::::
means

:::
and

:::::::::
covariance

:::::::
matrices

::
it

:::
fits

:::
the

:::
data

:::
to,

:::::
which

::
in

:::
our

::::
case

::
is

:
a
:::::
class

:::::
mean

::
for

::::
each

:::::
EOF

::::
used

::
to

::::
train

::
it.

:::::::::
Therefore,

::
to

:::
see

::::
how

::
the

:::::::
models

::::
from

::::
Fig.

::
3

::::::::
determine

:::
the

:::::
class

:::::::
borders,

:::
we

:::
can

:
compare the EOF maps (Fig. 5a) with the class means obtained355

by the three models for the whole area of interest
::::
maps

:::
in

:::::
which

:::
we

::::::
replace

:::
the

::::::
values

::
of

:::::
EOFs

::
at

::::
each

::::
grid

:::::
point

::::
with

:::::
mean

:::::
values

:::::
from

:::
the

::::
class

:::::::
assigned

:::
to

:::
that

:::::
point (Fig. 5b, c, and d).

:::
This

::::
can

:::::
reveal

::::
two

::::::
things:

::
1)

:
a
::::::::::
comparison

::
of

:::
the

:::::
class

:::::
mean

:::::
EOFs

::::
with

:::
the

::::::
original

::::::
EOFs

:::::::
indicates

::::
how

::::
well

:::
the

::::::
model

:::
fits

::
to

:::
the

::::
data;

::::
and

::
2)

:::
the

:::::::::
difference

::
in

::::
class

::::::
means

:::::::
between

::::
two

::::::
classes

:::
can

:::
tell

::
us

::::::
which

:::::
EOFs

:::
are

::::::::::
responsible

:::
for

:::
that

:::::
class

::::::
border.

::::
The

::::::::::::
accompanying

::::::::
principal

:::::::::
component

::::
time

:::::
series

::::
can

::
be

::::
seen

::
in

::::
Fig.

::
B1

:::
in

::
the

:::::::::
appendix.360

::
In

:::
the

:::::::
simplest

::::::
model

::::
(Fig.

:::
5d

:::
and

::::
Fig.

:::
3a)

:::
the

::::::
GMMs

:::::::
capture

::::
only

:::
the

:::::
rough

:::::::
patterns

::
of

:::
the

::::
first

:::::
three

::::
EOF

:::::
maps,

::::::
which

:::::
mostly

:::::::::
represent

:::
the

:::
sea

:::::
level

:::
rise

:::::::
(EOF1)

::::
and

:::
the

:::::
North

::::::::
Atlantic

:::::::::
Oscillation

::::::
(EOF2

::::
and

:::::::
EOF3).

:::
All

:::::
three

:::::
EOFs

:::::::
contain

::::::::
additional

::::::::
processes

:::
but

:::::
those

:::
are

:::
not

::
as

:::::
easily

::::::::::
identifiable. The border between the Baltic (class B) and the North Sea (class N)

is visible on most EOF maps (column a), except the second one,
::::::::

showing
:::
that

:::::
since

:::
the

::::::
Baltic

:
is
:::

an
::::::::
enclosed

:::
sea,

::::::
almost

:::
all

::::::::
processes

::
in

:
it
:::::
differ

::::
from

:::::
those

::
in

:::
the

::::::::::
neighboring

:::::
North

::::
Sea

::
at

::::
least

::
to

:::::
some

:::::
extent. The border based on the continental shelf365

break
:::
can

:::
also

:::
be

::::
seen

::
on

:::::
most

:::::
EOFs,

:::
but

:
is most visible in EOF 2 and 3.

::
3,

::::::::::::
demonstrating

::::
how

::::::
clearly

:::
the

::::
large

:::::::::
difference

::
in

:::::
ocean

:::::
depth

:::::
affects

:::
sea

:::::
level.

:
The only border in the simplest model (column d) that is not based on bathymetry, i.e. the border

between the North Sea and the rest of the continental shelf, just south of 60◦N, is determined by the gradient
::::
only

:::
by

:::
the

:::
not

::::
very

::::
steep

::::::::
gradients in the first EOF map

::::
three

::::
EOF

:::::
maps in that location

:
,
:::::
which

::
is

::::::::
probably

::::
why

::
the

:::::::::
individual

::::::
GMMs

:::
do

:::
not

:::::::::
completely

:::::
agree

:::::
where

::
to

:::::
place

::
it,

:::::::
resulting

:::
in

:::::
lower

::::::::
likelihood

::::::
around

:::
the

::::::
border.370

When we look at the class means from the more complex models (Fig. 5, columns b and c), they start to resemble the original

EOF maps more closely. Both the coastal area outside of the North and the Baltic Seas and the open ocean are rather uniform

in the first three EOFs, which is why the simplest model is unable to divide them further. However, adding the fourth
:::
and

::::
fifth

EOF map introduces a clear border in the continental shelf between the Barents Sea (C1) and the rest of the coastal shelf (C2),

while the fifth EOFadds the class in the northern part of the open ocean (O1). Most EOFs have a gradient in the Bothnian Bay,375
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Figure 5. Empirical orthogonal function maps of satellite-observed sea level used as input for the Gaussian Mixture Model (a) and class

means for the classification into 10 (b), 6
:
5 (c), and 4 (d) classes performed using 11

:
9, 5 and 3 empirical orthogonal functions,

:::::::::
respectively.

Column (b) contains only the first 7
:
6
:
EOFs

::
of

::
the

::
9

::::::
provided

:::
by

::
the

:::::
model, while columns (c) and (d) show the results for all EOFs used in

the classification. The
::::
Each

:::
row

::::::::
represents

:::
one

::
of

:::
the

::::
EOFs

::::
and

::
the

:
color scale is the same in

::
for each

:::
plot,

::::
both

:::
the

::::::
original

:::
and

:::
the

::::
three

::::::
models,

::
in

:::
that row.
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Figure 6. The classification analysis in the abstract EOF space for the two models that use only
:::::
model

::
for

:::
the

:::::
whole

:::
area

::::
with

:
three EOFs

and can therefore be displayed: (a) classification of the whole region of interest into 4
:::
four classes shown in Fig. 3a; and (b) classification of

the North Sea region into 6 classes shown in Fig. 4b. Each point represents a three-dimensional vector of EOFs that describe a single grid

point and the three axes are the three EOFs. Class assignments are indicated using
::

the
::::
same colors

::
as

::
in

:::
Fig.

::
3a.

which has a seasonal sea ice cover. As detailed in Taburet et al. (2019), whether to mask a pixel is decided based on sea ice

concentration. As they aim to eliminate as few pixels as possible, only high concentrations are masked (value not explicitly

provided in their paper). Therefore, interestingly, it is possible that the EOFs are indirectly detecting the sea ice concentration

variability. As this gradient results in a magnitude similar to that of the North Sea for EOF2, and EOF3 to some extent, this is

probably the reason why the simplest model sorted that area with
:
.
::::
EOF

::
4,

::::::
which

:::
has

:::
the

::::
most

:::::::::
prominent

:::::
signal

::
in
:::

the
::::::

North380

:::
Sea,

::
is
::::::::::
responsible

:::
for

:::::::
shifting

:::
the

:::::::
northern

::::::
border

::
of

:::
the

:::::
North

::::
Sea

::::
class

::::::::::
northwards

::::::::
compared

::
to
:::

the
::::::

border
::
in
:::

the
::::::::

simplest

::::::
model.

::::
We

::::
need

::
to

::::
add

::::
EOF

::
6,
::::::

which
::
is

::::::::::
responsible

:::
for

::::
only

:::
1.1

::
%

::
of
:::::::

overall
:::::::::
variability,

::
to

:::::
allow

:::
the

:::::
most

:::::::
complex

::::::
model

::
to

:::::::
separate

:::
the

:::::::
southern

::::
part

::
of

:
the North Sea. Since other EOFs do not have much similarity between the Bothnian Bay and

the
::::
This

::::
EOF

::::::
mainly

:::::::
contains

:::::::::
variability

::
at

:::::::
periods

::
of

::::::
around

:
3
::::

and
:::::
5-6.5

:::::
years,

:::
and

::::
has

:
a
::::
very

::::::
strong

:::::
signal

::
in

:::
the

::::::::
southern

North Sea, adding them results in the model correctly sorting that area into the Baltic Sea class. Additionally, the large positive385
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values along the southern Norwegian coast in the EOF 5 are most likely responsible for separating these coastal points from

the North Seaclass, where the simplest model possibly incorrectly sorted them, and including them in the C2 class.

Finally, not all EOF maps included in the most complex model are shown, but we can see that the sixth one is
:::
but

:::::
much

::::::
weaker

::
or

:::::::
negative

::::::::::
everywhere

::::
else.

::
It

:::::
might

::
in

::::
part

::::::::
represent

:::
the

:::
sea

::::
level

:::::::::
variability

::::::
related

::
to

:::
the

:::::::
northern

:::
jet

::::::
cluster

:::::
found

::
by

::::::::::::::::::
Mangini et al. (2021),

::::::
which

::::::::
dominates

:::
in

:::
the

:::::::
southern

:::::
North

::::
Sea.

::::
The

:::::
same

::::
EOF

::
is

::::
also responsible for the British-Irish390

class (C23) created in this model, while the seventh one for the creation of the southern North Sea class (N2). But we can

also
::::::::
separation

::
of

:::::
class

:::
O1

::::
from

:::
the

:::::
other

::::
deep

:::::
ocean

:::::::
classes.

:::
The

:::::::::
remaining

:::::::::
separation

::
of

::::
both

::::
deep

::::::
ocean

:::
and

::::::
coastal

:::::
areas

:
is
:::::
done

:::::
based

:::
on

::::
even

:::::
higher

:::::
level

:::::
EOFs

::::
(not

:::::::
shown).

:::::::::
Moreover,

::
we

::::
can see that for the higher order EOFs, the class means

become smoother, indicating that the model learns less and less from each new EOF added to it, until it reaches the point when

adding new EOFs introduces only noise and prevents the model from finding reasonable classes.395

To achieve useful results, we need to find a balance between interpretability and accuracy. Simpler models with fewer EOFs

tend to be easier to interpret, in that they have clearer boundaries between regions, but they fail to capture the full variability of

the data. More complex models capture more of the variability of the data, but they tend to be harder to interpret, in that they

feature more ambiguous boundaries between regions. The compromise between interpretability and accuracy is not universal

and should be tailored to the application at hand. In our case, the balance is struck when the classification is able to highlight400

novel ideas about the spatial coherence of sea level variability in our study region.
:::::
Unlike

:::
the

:::::::
simplest

:::
and

::::
even

:::
the

:::::::::::
intermediate

::::::
model,

:::
in

:::::
which

:::
the

:::::
class

::::::
borders

:::::::
mainly

:::::::
coincide

::::
with

::::::::::
bathymetry

:::
and

:::::
could

:::
be

::::::::::
determined

::::::
without

::::
any

::::::::
particular

:::::::
method

::
by

::::::::
selecting

:::::
depth

::::::
ranges

::
or,

:::
in

::::
case

::
of

:::
the

:::::
Baltic

::::
Sea,

::::::
based

::
on

:::
the

:::::::::
coastline,

:::
the

::::
most

::::::::
complex

:::::
model

::::::::
separates

:::
the

::::::
ocean

:::
into

:::::::
regions

:::
that

::::
are

:::
not

::
so

::::::::
obvious.

::::
The

::::::::
difference

::::::::
between

:::
the

::::
east,

:::::
west

:::
and

:::::
south

:::::
coast

::
in

:::
the

::::::
North

:::
Sea

::
is
::::

also
::::::

found

::
by

:::::::::::::::::::::
(Dangendorf et al., 2014)

:::
and

:::::::::::::::::::::::::::
Frederikse and Gerkema (2018)

::::
based

:::
on

:::
tide

:::::::
gauges,

:::
but

:::
our

:::::
work

:::::
shows

::::
that

::::
their

:::::::
findings405

::
for

:::
the

:::::::
British

::::
coast

::::
are

::::
most

:::::
likely

::::
also

:::::
valid

:::
for

:::::
most

::
of

:::
the

::::::
North

::::
Sea,

:::::
while

:::::
those

:::
for

:::
the

:::::::::
Norwegian

:::::
coast

:::::
apply

:::::
only

::
on

::
a

::::::
narrow

::::::
stretch

:::::
along

:::
the

:::::
coast.

:::::::::::
Furthermore,

:::::
while

::::::::
different

::::::
drivers

::
of

::::
sea

::::
level

:::::::::
variability

::
in

:::
the

:::::
North

::::
Sea

::::
have

:::::
been

::::::
already

::::::
studied

:::
by

:::::
many

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Dangendorf et al., 2014; Frederikse and Gerkema, 2018; Hermans et al., 2020)

:
,
:::
the

::::
other

:::::
shelf

::::
areas

::::
and

::::::::
especially

::
of

:::
the

:::::::::
adjoining

::::
deep

:::::
ocean

::::::
basins

:::
are

:::
less

::::
well

::::::::::
understood,

:::
so

:::
our

::::::
results

:::
can

::::
help

:::
us

::::::::
determine

::::::
which

::::::
regions

::::::
should

::
be

::::::
studied

::::::::::
separately. Ultimately, unsupervised classification methods can be useful as “hypothesis generation410

tools" (Kaiser et al., 2022).

Since this paper includes two models
::
the

::::::::
simplest

:::::
model

:::
for

:::
the

::::::
whole

::::
area

::::
(Fig.

::::
3a)

::
is based on only three EOFs, these

models
:
it
:
can be directly depicted in the abstract EOF space to see how the classes are distributed (Fig. 6). The simplest model

for the whole region (Fig. 6a and Fig. 3a)
:::
We

:::
can

:::
see

::::
that

::
in

:::
the

:::::::
abstract

:::::
space

::::
the

:::::
model

:
has a generally clear separation

between the classes and our conclusions about which EOF is responsible for which class border from the beginning of this415

subsection are confirmed. We can also see where the grid points belonging to the Bothnian Bay and the Norwegian coast are

in the abstract spaceand how they were sorted into class N instead of classes B and C, where the other, more detailed models,

sorted them into. The North Sea region (Fig. 6b and Fig. 4b) looks a lot more complex in the abstract EOF space, with less

clear boundaries between the classes. We can see that classes 2-5, i.e. , the classes inside the North Sea, are generally close to

each other
:::
The

:::::
Baltic

:::::
class

::::
(B),

:::::
being

::::
very

:::::::
uniform

::
in

:::::::
regards

::
to

:::
sea

::::
level

::::::::::
variability,

:::
has

:
a
:::::::
narrow

:::::
range

::
in

:::
the

::::
EOF

::::::
space.420
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:::::
North

:::
Sea

:::::
class

:::
(N)

::
is

::::
also

::::
quite

:::::::
uniform

:::
in

:::
the

::::::
second

:::
and

:::::
third

::::
EOF,

::::
but

:::
has

:
a
:::::
wide

:::::
range

::
in

:::
the

::::
first

:::
one

:::::::
because

:::::
there

::
is

:
a
::::
large

::::::
spatial

::::::::
gradient

::
in

:::
the

:::
sea

::::
level

:::::
trend

:::::
there.

::::
The

::::::
coastal

:::::
class

:::
(C)

::
is

:::
the

:::::
most

:::::::::
widespread

:::
of

:::::
them,

:::::::
covering

::::::::
different

:::::
levels

::
of

::::::::
variability

::
in

:::
the

::::
first

::::
three

:::::
EOFs

:::::
along

:::
the

:::::
whole

::::::::
coastline.

:::::::
Finally,

:::
the

::::
open

:::::
ocean

::::
class

::::
(O)

:::::
covers

:::
the

::::::
largest

::::
area

::
in

:::::
space,

:::
but

:::::
since

:
it
:::
has

::::
less

::::::::
variability

::::
than

:::
the

::::::
coastal

:::::
class

::
in

:::
the

:::
first

:::::
three

:::::
EOFs,

::
it

::
is

:::
less

::::::::::
widespread

::
in

:::
the

::::
EOF

:::::
space.

:::::
Even

::::::
though

:::
the

:::::
border

::::::::
between

::::::
classes

::
C

:::
and

::
O

::
is

::::
very

:::::::
compact

:
in the EOF space, while class 1, which mainly contains

:
it
::
is

::::
also425

::::::::
apparently

::::::
easily

::::
seen

::
by

:::
the

::::::
model

::::
and,

:::::
when

:::::::::
transferred

::
to

::
a

::::
map,

::::::
almost

::::::::
perfectly

::::::
follows

:
the continental shelf outside of

the North Sea, and class 6, which contains the western coasts, are both much more widespread, but also more clearly separated

from other classes
:::::
break.

::::
This

:::::
shows

:::::
that,

:::::
while

:::::
some

:::::::
changes

::
in

:::::::::
variability

:::::
might

::
be

:::::
small

::
at
:::
the

:::::
shelf

:::::
break,

:::::
they

:::
are

::::
very

:::::
clearly

:::::::
defined.

4 Summary and conclusions430

Gaussian Mixture Modeling, an unsupervised classification approach based on the assumption that all probability density

functions can be described as a weighted sum of Gaussian PDFs, can be used to find regions of coherent sea level variability

based on satellite altimetry data. Here, we focused on the northern
::::
focus

:::
on

:::
the

:::::::::::
northwestern European coastal shelf area and

a small adjacent part of the Atlantic Ocean, but the method is applicable in any region. While it is technically possible to

use the time series of the sea level data directly as input for the GMM, that approach makes the fitting extremely slow and435

introduces too much noise for the model to converge towards a single classification solution. Using the empirical orthogonal

function maps, the spatial part obtained with a principal component analysis, as input allows us to include most of the observed

variability but with greatly reduced dimensionality and noise level.

After reducing the dimensionality, the GMM is able to separate our region of interest into a relatively small number of

classes. However, if we want to use more than six mixture components
:::::::
(classes), the models start to diverge, with results440

varying slightly between individual model runs. Since the models generally find the same patterns despite some differences

between them, we show here that we can use an ensemble approach to find the most common classification by applying soft

voting, i.e., selecting the class which most models chose with a high probability. The ensemble also gives a likelihood of a

model assigning this particular class for each grid point, which tells us how robust the classification is and how difficult it was

for the models to classify each area. By comparing the class means with the EOF maps used as input for the GMM ensemble,445

we showed that we can usually see which class border is based on which EOF, making the model explainable to some extent,

and thus directly useful for scientific analysis.

The simplest classification of our entire region of interest, i.e., the classification based on only 3 EOF maps, mostly follows

the bathymetry and the coastlines. After including more EOF maps, this basic separation remains the same, but the models are

able to also find class borders that are based on ocean dynamics. The largest number of classes with which we can achieve450

robust results for our region is 10, and we need to use
:::::::
between

:
8
::::

and
:
11 EOF maps as input. This model finds two classes

along the Norwegian coast, two in the North Sea, and only one for the whole Baltic Sea. Since the complexity of these three

regions vary
::::
varies

:
significantly between them, we show that we can achieve a much more detailed classification if we focus
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on each region separately. In this way the GMM separate the Baltic into three regions, with virtually all models selecting the

same classes. Since455

:::
We

:::
find

::::
that

:::::::
western

:::::
Baltic

:::
has

:::::::::::
significantly

:::::::
different

:::::::::
variability

:::::
from

:::
the

:::
rest

:::
of

:::
the

:::::
Baltic

:::
Sea

::::
and

::::::
should

::
be

::::::::::
considered

::::::::
separately,

:::
as

::::
well

::
as

::::
how

::
to

:::::::
separate

:::
the

::::::
North

:::
Sea

::::
from

:::
the

::::
rest

::
of

:::
the

::::::::::
continental

:::::
shelf.

:::
We

:::::::
confirm

:::::::
previous

:::::::
findings

::::
that

the North Sea is very complex, it is split into four classes with high likelihood. The classes belonging to the overlapping area

from these two models match
:::
has

:::::::::
differences

:::::::
between

:::::::
eastern,

::::::::
southern,

:::
and

:::::::
western

::::
coast

:::::::
because

::
of

:::
the

::::::::
different

::::::::::
atmospheric

:::::
drivers

:::::
along

:::::
those

::::::
coasts,

:::
but

::::
also

:::::
show

:::
that

:::
the

:::
sea

:::::
level

:::::::
observed

:::
on

:::
the

::::::
British

:::::
coast

::
is

:::::::::::
representative

:::
for

:::
the

::::::
whole

:::::
North460

:::
Sea,

:::::
while

::::
that

:::::::
observed

:::
on

:::
the

::::::
eastern

::::
coast

::
is

:::::
more

::::::::
localized.

:::
We

:::
find

::::
that

:::
the

:::
sea

::::
level

::
in

:::
the

::::::
Barents

:::
Sea

:::::::::::
considerably

::::::
differs

::::
from

:::
that

:::::
along

:::
the

::::
rest

::
of

:::
the

::::::::::
continental

::::
shelf

:::::
break

:::
but

::::
only

::::
after

::::::::
including

::::::
higher

:::::
order

:::::
EOFs.

::::
We

:::
can

:::
use

:::::
these

::::::
results

::
to

:::::
further

:::::
study

:::::
these

::::::
regions

::::
and

::::::::
determine

:::::
what

:
is
:::
the

:::::
cause

::
of

::::::::
different

:::
sea

::::
level

:::::::
changes

::
in

:::::
them.

This classification method is not based on any arbitrary threshold or even on the geographical information such as longitude

and latitude, so it is applicable to other ocean regions. It could also be used for finding patterns of sea level variability on465

different temporal scales, both shorter, such as mesoscale eddies or storm surges, or longer, such as decadal changes or trends.

It is not limited to altimetry observations; it could also easily be applied to in situ observations or to model data, to study past

and future sea level variability that is changing in response to climate change. It can be used on its own, to gain more insight

into the patterns of sea level variability, or just as a step in data processing, to create a mask for separating the ocean into

regions, which can then be further examined with other methods. Finally, the method is not limited to sea level, it could be470

used for any other variable.

Code and data availability. In this work we used satellite altimetry observations from Copernicus Marine Service (https://data.marine.

copernicus.eu/product/SEALEVEL_GLO_PHY_L4_MY_008_047/description, downloaded on 2023-10-17). Bathymeric information is from

the General Bathymetric Chart of the Ocean GEBCO (https://doi.org/10.5285/e0f0bb80-ab44-2739-e053-6c86abc0289c, accesed on 2022-

11-07). Code for the ensemble classification with GMMs is available at https://zenodo.org/doi/10.5281/zenodo.10356063.475
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Appendix A

Table A1.
::::::
Average

::::::::
likelihood

:::
over

:::
the

:::::
whole

:::::
region

::::
from

::::
Fig.

:
1
:::
for

::
all

:::
the

::::::::::
combinations

::
of

:::
the

::::::
number

::
of

:::::::
empirical

::::::::
orthogonal

::::::::
functions

:::::
(EOFs)

:::
and

::::
class

:::::::
numbers

:::
that

::::::::
produced

::::
stable

::::::
results

:::
with

:::
an

:::::::
ensemble

::
of

:::
200

::::::::
Gaussian

::::::
Mixture

::::::
Models.

::
X
:::::
marks

:::
the

::::::::::
combinations

:::
for

::::
which

:::
the

:::::::
ensemble

::
is

:::::
unable

::
to

::::::
converge

::
to
:::
the

::::
same

::::::::::
classification

::::
result

::::
when

:::::
testing

::
it
::::::
multiple

:::::
times.

:::
The

::::::
number

::
of

:::::
classes

:::::::::::
recommended

::
by

::
the

::::::::
silhouette

::::
score

:::
for

:::
each

::::::
number

::
of
:::::
EOFs

::
is

::::::
indicted

::
by

::::
bold

:::::::
numbers.

:::
No.

::
of Number of classes

:::::
EOFs

:
2
: :

3
: :

4
:
5

:
6
: :

7
: :

8
: :

9
::
10

::
11

:
3

:::
0.78

: :::
0.98

: :::
0.98

:

1
: ::

X
:
X
: :

X
: :

X
: :

X
: ::

X
::
X

:
4

:::
0.44

: :::
0.98

: :::
0.98

:::
0.97

:
X
: :

X
: :

X
: :

X
: ::

X
::
X

:
5

:::
0.39

: :::
0.63

: :::
0.92

:::
0.98

:

1
: :

X
: :::

0.89
: :

X
: :

X
: ::

X
::
X

:
6

:
X
: :::

0.72
: :::

0.90
::
X

:
X
: :::

0.94
: ::::

0.89
:
X
: :::

0.89
::
X

:
7

:
X
: :::

0.63
: :::

0.68
::
X

:
X
: :

X
: :

X
: :::

0.93
::
X

::
X

:
8

:::
0.35

: :::
0.54

: :::
0.77

:::
0.84

:
X
: :

X
: :

X
: :

X
: :::

0.94
::
X

:
9

:
X
: :

X
: ::

X
:::

0.66
:
X
: :

X
: :

X
: :

X
: :::

0.95
:

1
: ::

X

:
10

: :::
0.31

: :
X
: ::

X
:::

0.70
:
X
: :

X
: :::

0.70
: :

X
: :::

0.96
::
X

:
11

: :::
0.36

: :
X
: ::

X
::
X

:
X
: :

X
: :

X
: :

X
: :::

0.94
:::
0.96

:

2
:

1 Models shown on Fig. 3 and discussed in the manuscript.
2 This ensemble required 1000 members to converge.
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Figure B1.
::
The

::::
first

::
six

:::::::
principal

:::::::::
component

::::
time

::::
series

::::
(left)

:::
and

:::
the

:::::::::::
accompanying

::::::
spectra

:::::
(right).

::::
They

:::::
match

:::
the

:::::::
empirical

:::::::::
orthogonal

::::::
function

::::
maps

:::::
shown

::
in
::::
Fig.

::
5a.
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