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Abstract. Forecast error growth as a function of lead time
of atmospheric phenomena is caused by initial and model
errors. When studying the initial error growth, it may turn
out that small-scale phenomena, which contribute little to
the forecast product, significantly affect the ability to pre-5

dict this product. The question under investigation is whether
omitting these atmospheric phenomena will improve the pre-
dictability of the resulting value. The topic is studied in
the extended Lorenz (2005) system. This system shows that
omitting small spatiotemporal scales that significantly affect10

prediction ability will reduce predictability more than mod-
eling it. In other words, a system with model error (omitting
phenomena) will not improve predictability. A hypothesis ex-
plaining and describing this behavior is developed, with the
difference between systems (model error) produced at each15

time step seen as the error of the initial conditions. The result-
ing model error is then defined as the sum of the increments
of the time evolution of the initial conditions so defined. The
hypothesis is compared to the fit parameters that define the
model error in certain approximations of the average forecast20

error growth. Parameters are interpreted in this context, and
the approximations are used to estimate the errors described
in the hypothesis. A method is proposed to distinguish incre-
ments of prediction error growth from small-spatiotemporal-
scale phenomena and model errors. Results are presented for25

the error growth of the ECMWF system, where a 40 % re-
duction in model error between 1987 and 2011 is calculated
based on the developed hypothesis, while over the same pe-
riod the instability (error growth rate) of the system with re-
spect to initial condition errors has grown.30

1 Introduction

Forecast errors in numerical weather prediction systems
grow over time due to the inaccuracy of the initial state (ini-
tial error), which is amplified by the chaotic nature of the
system itself and model imperfections (model error). In the 35

setting of classical low-dimensional chaos, one would ob-
serve an exponential error growth of any tiny initial error
whose exponent is given by the largest Lyapunov exponent
of the system, with some saturation when the error reaches
the magnitude of the standard deviation of the quantity to be 40

predicted. In contrast to this, several authors have observed in
the past (Toth and Kalnay, 1993; Lorenz, 1969; Aurell et al.,
1996, 1997; Boffetta et al., 1998) that the proper Lyapunov
exponent of a dynamical system might not be a relevant de-
scription of the initial error growth. Brisch and Kantz (2019) 45

and Zhang et al. (2019) associated initial error growth with
scale-dependent error growth, where tiny errors grow much
faster than larger ones. Lorenz (1996) gave a sketch of such
error growth: a typical quantity to be predicted is a superpo-
sition of the dynamics on different scales. After fast growth 50

of small-scale errors with saturation at these very same small
scales, the large-scale errors continue to grow at a slower rate
until even these saturate. Therefore, Lyapunov exponents of
structures of various spatiotemporal scales are taken as the
previously mentioned scale-dependent quantity, and they de- 55

termine the error growth on their respective scales. It is also
evident that in practice initial errors are not infinitesimal in
the mathematical sense, and therefore the exponential growth
of infinitesimal errors might be irrelevant for the growth of
forecast errors in operational weather forecasts. 60
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2 H. Bednář and H. Kantz: Analysis of model error in forecast errors

In numerical weather predictions, the average forecast er-
ror as function of lead time is influenced by many deviations
from a simple exponential growth: there is the saturation ef-
fect of larger errors, the potential scale dependence of the
instability, and also the fact that real initial errors are not in-5

finitesimal and might not point into the locally most unstable
direction. Moreover, if the model error is due to neglecting
small-scale and fast phenomena, it is highly fluctuating along
the model trajectory. In order to describe such effects, the lit-
erature contains different phenomenological approximations10

for the time derivative of the average error magnitude (error
growth rate or tendency) as a function of the error magni-
tude in numerical weather predictions. We will briefly recall
these here since we will use suitable fits to the observed error
growth as function of error magnitude for our atmospheric15

model simulations later. We will show that initial errors of
magnitudes that are comparable to real weather forecasts do
not play a dominant role in our studied model systems, while
model errors do play such a role. Moreover, we will present
an explanation of the observed error growth in terms of an20

averaged model error called the “drift”.
In low-dimensional-bounded chaotic systems with at least

one positive Lyapunov exponent, the growth of infinitesimal
errors is exponential for a finite time interval, given by a lin-
ear time derivative:25

dEexp = λexpEdt, Eexp(t)= E0e
λexpt , (1)

where E(t) is the error magnitude, t is time, and λ is the
largest Lyapunov exponent of the system. Since Eexp(t) in
Eq. (1) grows unboundedly, this can be true only as long as
E(t) is small since every error has to saturate at the latest30

when it has grown to the order of magnitude of the diameter
of the attractor (the invariant set). This saturation effect was
considered by Lorenz (1982), who introduced the “quadratic
hypothesis” Equ(t):TS1

dEqu = λquE ·

(
1−

E

Elim

)
dt,

Equ(t)=
E0Elim

E0+ (Elim−E0)e
−λqut

,

(2)35

where Elim is the limit (saturation) value of the error mag-
nitude. As a function of time, the error Equ(t) shows a sig-
moidal shape; see Fig. 5b.

For a scale-dependent error growth in the spirit of Lorenz
(1969), Brisch and Kantz (2019) proposed using a power law40

divergence of the effective, scale-dependent Lyapunov expo-
nent λ(E)∝ E−b, which gives the following time evolution:

dEp = aE
1−bdt, Ep(t)=

(
Eb0 + abt

)1/b
, (3)

where the exponent b connects Lyapunov exponents and
limit errors of the different scales (Brisch and Kantz, 2019),45

while the coefficient a determines the degree of the scales’
coupling (Bednář and Kantz, 2022). The forecast error then

grows as a power law in time, Ep(t), with a very fast growth
rate when it is still small and a slow growth rate when it
is large. Since Ep(t) (see Eq. 3) again grows unboundedly, 50

Bednář and Kantz (2022) introduced the extended power law
Eep(t) that allows saturation using the same trick as Lorenz
(1982):

dEep = aE
1−b

(
1−

E

Elim

)
dt . (4)

Zhang et al. (2019) described scale-dependent error growth 55

differently. They took a two-parametric hypothesis:

dEr = (λrE+βr)dt ,

Er(t)= E0e
λrt +

βr

λr
(eλrt − 1) ,

(5)

where λr is a synoptic-scale error growth rate and βr is an up-
scale error growth rate from small-scale processes. If βr/λr
is large, this leads to a super-exponential growth of small er- 60

rors and to the classical exponential error growth when Er(t)

is large. We can and should again include saturation of the
error by the factor (1−E/Elim):

dEq = (λqE+βq) ·

(
1−

E

Elim

)
dt . (6)

The two-parametric model dEr Eq. (5) was originally de- 65

signed to describe initial and model error growth (Leith,
1978). In this interpretation, λr is the largest Lyapunov ex-
ponent of the system (similar to λexp in Eq. 1), while βr is
the model error source term due to the imperfect represen-
tation of the atmosphere. In addition, dEq, Eq. (6) is called 70

the quadratic hypothesis with model error for the same rea-
son as for dEr (Savijarvi, 1995; Dalcher and Kalnay, 1987),
although in contrast to Eq. (2) it includes a constant term and
therefore allows for some skewness in dE/dt as a function
of E. 75

When we present the results of our error growth numeri-
cal analysis, we particularly present the error growth rate as
a function of error magnitude. This allows us to better dis-
tinguish between these different error growth models than
studying the error magnitude as a function of time, even 80

though error magnitude as function of time is relevant in pre-
dictions.

While the above-listed error growth approximations are
supposed to approximate the effectively observed average er-
ror growth in operational forecasts, let us now focus on the 85

model error. The model is given as a set of the first order in
time differential equations of the form dX

dt =G(X(t)), where
X is a (high-dimensional) phase space vector that describes
the current state of the atmosphere and G(X) is a vector-
valued function that defines the rate of change of this vector 90

at every possible state. In operational weather forecasts, the
core of such a system in given by wind speed, pressure, den-
sity, and temperature, and the minimal setting for G is then
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called the “primitive equations” (Phillips, 1973). Following
(part of) the meteorological literature, we will call the right-
hand side G(X) the “model tendency”, while in the context
of dynamical systems it is called the “vector field”.

Following, e.g., Orrell et al. (2001), the model error Ge at5

a model space point X̃(t) is described as the difference be-
tween the model vector field (tendency) dX

dt =G(X(t)) and

the observed time derivative (tendency) dX̃
dt of the projection

X̃(t) := P ( “X(t)) of the “reality” “X(t) into the model space:

Ge(X̃(t))=G(X̃(t))−
dX̃(t)

dt
. (7)10

Let us stress that in operational forecasts, since we do not
know the perfect model, the true time derivative dX̃

dt is only
known by observation, while in our later model studies, we
have a mathematical expression for the vector field of reality
as well. In a very strong simplification, one could assume15

that the absolute value of Ge is, on average, the constant β
in Eq. (5), which irrespective of initial condition errors will
lead to a deviation of the model solution from reality. While
it is evident how to define the model error in a single time
step, we will later discuss how model errors propagate in time20

and how model errors at different positions along a trajectory
accumulate, and we will also introduce the notion of drift for
that purpose.

The main issue about forecasts is how far into the future
they might be useful. The “prediction horizon” quantifies this25

as the time when the forecast error has grown to a certain
percentage of the climatological uncertainty of the forecast
target, where the latter is approximated by Elim in the above
error growth assumptions.

For exponential growth Eexp(t)= E0e
λexpt and for an ini-30

tial error E0 going to zero, the time tlim at which the error
reaches a limiting value Elim goes to infinity:

tlim =
lnElim− lnE0

λexp
→∞ for E0→ 0 . (8)

However, a strict predictability limit tlim exists for scale-
dependent error growth even when the initial error E0 van-35

ishes (Palmer et al., 2014; Brisch and Kantz, 2019). For a
description by a power law dEp (see Eq. 3) the predictability
limit tlim is as follows:

t =
(
Eb(t)−Eb0

)
/(a · b) →

tlim = E
b
lim/(a · b) <∞ for E0→ 0 .

(9)

For an exponential growth with a non-zero βr parameter dEr40

(see Eq. 5), the prediction horizon tlim is as follows:

t (E)=
1
λ

(
ln
(
E+

β

λ

)
− ln

(
E0+

β

λ

))
→

tlim =
1
λ

ln
(
λ

β
Elim+ 1

)
<∞ for E0→ 0 .

(10)

Scale-dependent error growth implies that both model as-
sumptions Ep and Er grow faster than exponentially when
errors are small, thereby limiting the prediction horizon be- 45

cause further and further improvements of the precision of
the initial condition are compensated by a faster initial er-
ror growth. In the context of weather prediction, this means
that the influence of small-scale atmospheric phenomena,
which contribute little to the final value, significantly affect 50

the ability to predict this value. Figures 1–3 show such be-
havior simulated in the extended Lorenz (2005) system with
one (L05-1), two (L05-2), and three (L05-3) spatiotemporal
scales (see Appendix A for more information on these sys-
tems). Figure 1a shows the values of the L05-1 system vari- 55

ables at a given time. Because this is a single spatiotemporal
scaled system, the average growth of the initially small er-
ror is exponential. The two initially nearby trajectories be-
gin to diverge significantly in this setting after about 30 d
(Fig. 1b). Adding a considerably smaller scale (L05-2 sys- 60

tem) that does not significantly affect the overall value in sum
(Fig. 2a) reduces the closeness of the two initially nearby tra-
jectories of an overall variable by 10 d (Fig. 2b). By adding a
third medium scale (Fig. 3a, L05-3 system), the two initially
nearby trajectories of an overall variable start to diverge sig- 65

nificantly after about 10 d (Fig. 3b), which is about 3 times
earlier than for the L05-1 system. This is a consequence of
the much faster growth of the small-scale errors.

Including small spatiotemporal scales, i.e., improving the
model’s spatial and temporal resolution, therefore enhances 70

the instability (error growth rate) with respect to initial con-
dition errors. The question under investigation in this pa-
per is whether omitting small-scale atmospheric phenomena,
which contribute little to the final value, will improve the pre-
dictability of the resulting value. In other words, how does 75

the average forecast error growth change in a model where
small-scale phenomena are omitted but where model errors
are therefore introduced, compared to a model where all phe-
nomena are present but the average forecast error growth is
scale-dependent. 80

Buizza (2010), Magnusson and Kallen (2013), or Jacobson
(2001) show that improving the model’s spatial and tempo-
ral resolution will improve the prediction ability, especially
for short forecast ranges (Buizza, 2010). However, the cited
studies work with models that do not model small spatiotem- 85

poral phenomena (they are parameterized) and whose ini-
tial condition error magnitude is larger than the magnitude
of these phenomena. We have verified the fact that the high-
resolution model (that models small scales) is less stable than
the low-resolution model (that does not model small scales) 90

against initial condition errors (Bednář and Kantz, 2022; Bu-
danur and Kantz, 2022) and that therefore the issue of omit-
ting small scales has another facet. Our new approach mod-
els and omits small spatiotemporal scales using the one- and
two-scale Lorenz (2005) system (L05-1 and L05-2) and its 95

three-scale extension (L05-3) introduced before in Bednář
and Kantz (2022). The omitted scale is the small scale for
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Figure 1. (a) Values ofXn, n= 1, . . .,360 variables (red curve) of the L05-1 system at a given time (see Appendix A for more information on
the system and its settings). (b) The time evolution t of the variable X1(t) (red curve) and the time evolution of the initially nearby trajectory
(X1(0)+ e0)(t) (blue curve) of the system L05-1, where e0 = 0.01.

Figure 2. (a) Values of X1,n (large scale, red curve), X2,n (small scale, blue curve), and Xtot,n (overall curve, black curve) n= 1, . . .,360
variables of the L05-2 system at a given time (see Appendix A for more information on the system and its settings). (b) The time evolution
t of the variable Xtot,1(t) (red curve) and the time evolution of the initially nearby trajectory (Xtot,1(0)+ e0)(t) (blue curve) of the system
L05-2, where e0 = 0.01.

the L05-2 system, and the small and medium scale are for
the L05-3 system. L05 system definition and further details
can be found in Appendix A.

The protocol for how to measure the initial error growth
for the L05 systems is defined in Sect. 2.1, and the results are5

presented and compared in Sect. 3.1. The model error sce-
nario, where the L05-1 system is the model and the L05-2
and L05-3 systems are reality, is defined in Sect. 2.2, and the
results are presented and compared in Sect. 3.2. The variant
with initial and model error is defined in Sect. 2.3, and the re-10

sults are presented and compared in Sect. 3.3. The results of
different error growth scenarios are compared and discussed
in Sect. 3.4. Section 4.1 includes the calculation of the model
error (drift) defined in Sect. 2.4 and a hypothesis linking the
error so defined with the growth of the average model error15

determined by the difference between model and reality. The
meaning of the model error source β in dEr of Eq. (5) and
dEq Eq. (6) and how to link the value of β with the value of
the model error (drift) is discussed and explained in Sect. 4.2.
Section 5 presents a similar analysis for the ECMWF forecast 20

system data. Conclusions and discussions are then presented
in the final section.

2 Error growth in the L05 systems – types and
methods of calculation

The average error magnitude for L05 systems is calculated 25

numerically using the method introduced by Lorenz (1996,
2005). Generally, we define an “error” as the distance be-
tween two trajectories where one, the reference trajectory, is
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Figure 3. (a) Values of X1,n (large scale, red curve), X2,n (medium scale, yellow curve), X3,n (small scale, blue curve), and Xtot,n (overall
curve, black curve) n= 1, . . .,360 variables of the L05-3 system at a given time (see Appendix A for more information on the system
and its settings). (b) The time evolution t of the variable Xtot,1(t) (red curve) and the time evolution of the initially nearby trajectory
(Xtot,1(0)+ e0)(t) (blue curve) of the system L05-2, where e0 = 0.01.

supposed to be the “truth”, while a second trajectory is gener-
ated under perturbation of the initial condition, under pertur-
bation of the dynamical equations, or both. We measure the
error magnitude e(t) after fixed time intervals. We then cal-
culate the mean error magnitude E(t) after fixed times, cal-5

culate the average growth tendency dE
dt during the last time

interval, and report the mean error magnitudes vs. time and
the mean growth tendencies (rates) vs. mean error magni-
tudes.

An alternative method for calculating scale-dependent er-10

ror growth is called the “finite-size Lyapunov exponent”
(Aurell et al., 1996, 1997; Boffetta et al., 1998; Cencini
and Vulpiani, 2013). In brief, a finite-size Lyapunov expo-
nent λ= (1/E)(dE/dt) or finite-size error growth tendency
dE/dt can be defined as the ergodic average over phase space15

of the growth rate of perturbations of a given magnitude E,
where the growth rate is defined as the inverse of the time tf
needed for the error magnitude to increase by a pre-defined
factor f , hence λ(E)= (1/tf ) lnf . We choose the former
method because it is closer to the process of calculating the20

average forecast error magnitude of numerical weather pre-
diction systems (Lorenz, 1982; Savijarvi, 1995; Froude et al.,
2013; Zhang et al., 2019) and because it is more consistent
with the performance of forecasts.

For numerical weather prediction systems, errors in ini-25

tial conditions and model errors (inaccurate representation
of atmospheric processes by the model) are sources of pre-
diction inaccuracy. For the L05 systems, we simulate the ini-
tial error growth (perfect model assumption), the model error
growth (perfect initial conditions assumption), a combination30

of both (initial and model error assumption), and the model
error growth as defined by Orrell et al. (2001) (drift assump-
tion). To calculate the average error magnitude, a reference
trajectory (considered the truth or verification) and a trajec-

tory that is the numerical solution of the systems with a given 35

error are repeatedly generated. For this scheme to be mean-
ingful, we have to ensure that the reference trajectory is on
the system’s attractor and that the repetition of this scheme
samples the whole attractor with correct weights (the invari-
ant measure). We solve this issue in the following way: we 40

first integrate the system over 10 years (175 200 steps), start-
ing from arbitrary initial conditions, and assume that after
discarding this transient that the trajectory is on the attractor.
We continue to integrate this single trajectory and consider
segments of it as reference trajectories for error growth, i.e., 45

the many reference trajectories are simply segments of one
very long trajectory, which ensures not only that all these
segments are located on the attractor but also that they sam-
ple the attractor according to the invariant measure.

2.1 Initial error growth 50

When we use the term “initial error growth”, we denote the
growth of errors in the initial conditions, which limit pre-
dictability if a system is chaotic. In order to numerically de-
termine the largest Lyapunov exponent, we have to ensure
that initial perturbations already point into the locally most 55

unstable direction since otherwise errors might even shrink
over short time periods (this is also a relevant issue in en-
semble forecasts, and there its solution is found using bred
vectors; see Toth and Kalnay, 1997). We solve these issues
in the following way: we start with a random perturbation of 60

the reference trajectory of very small amplitude and let this
trajectory evolve over time before determining its distance
toward the reference trajectory. In other words, we discard
some initial time interval of error growth since this is affected
by some transient behavior before it starts to grow with the 65

maximum Lyapunov exponent.
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We calculate the initial error growth in systems with one
(L05-1), two (L05-2), and three (L05-3) scales to illustrate
the behavior in systems with a different number of spatiotem-
poral scales. The three spatial scales X1, X2, and X3 for
the L05-3 system and two spatial scales X1 and X2 for the5

L05-2 system cannot be separated in terms of a coordinate
transform but are intrinsically coupled and superimposed in
the variables Xtot of the system. The initial conditions of
the reality for L05-3 and L05-2 systems are called Xtot,0,n,
from which one finds X1,0,n, X2,0,n, and X3,0,n through10

Eqs. (A10), (A11), and (A12), respectively, for the L05-3
system and X1,0,n and X2,0,n through Eqs. (A4) and (A5),
respectively, for the L05-2 system. The initial conditions of
the reality for the L05-1 system are called X0,n. The ini-
tial values of the “prediction” are then for the L05-1 system15

X′0,n =X0,n+ en(0), where en(0) are the initial errors ran-
domly selected from the normal distribution ND (µ= 0;σ =
0.01). Since the system’s state Xtot is the sum over all spa-
tiotemporal components, for L05-3 and L05-2 systems any
arbitrary but small error with spatially uncorrelated compo-20

nents affects only the smallest-scale component. Only a spa-
tially correlated initial error would appear in another com-
ponent. However, since this error would immediately prop-
agate into the small-scale variables and then grow fastest in
these, a perturbation with initial errors in the smallest-scale25

component is the only practical choice. The initial values
of the prediction for the L05-3 system are then X′tot,0,n =

X1,0,n+X2,0,n+X3,0,n+e3,n =Xtot,0,n+e3,n, where e3,n(0)
is the initial error randomly selected from the normal dis-
tribution ND (µ= 0;σ = 0.001). The initial error e2,n(0) of30

the L05-2 system is also randomly selected from the same
normal distribution, where the initial value of the prediction
is X′tot,0,n =X1,0,n+X2,0,n+ e2,n =Xtot,0,n+ e2,n.

From the initial values of reality and prediction, we in-
tegrate the L05 system equations (Eqs. A1, A8, and A9) for35

41.7 d (K = 2000 steps). In each time step, k of the numerical
integrationXτ,k,n andX′τ,k,n are obtained. The size of the er-
ror at a given time k1t is eτ,n(k·1t)=X′τ,k,n−Xτ,k,n, where
k = 1, . . .,K , n= 1, . . .,N (N = 360 variables for all used
systems). τ defines a scale or sum of scales (τ = tot,1,2,340

(L05-3 system), τ = tot,1,2 (L05-2 system)) and is therefore
omitted for the L05-1 system. We perform M = 400 runs to
calculate the average error growth. In each new run, the ini-
tial values Xτ,0,n are the last values Xτ,K,n of the previous
run. The average initial error growth E(t) is calculated as45

the geometric mean of the runs of the Euclidean distances
between reality and prediction:

Etot(k ·1t)=
2M

√√√√ M∏
m=1

(
1
N

N∑
n=1

e2
τ,n,m(k ·1t)

)
. (11)

The geometric mean is chosen because of its suitability for
comparison with growth governed by the largest Lyapunov50

exponent. For further information, see Bednář et al. (2014)
or Ding and Li (2011). As a result, we have numerical av-

erages for the error growth as a function of time steps after
perturbing the reference trajectories in the full phase space
and for each scale. We can convert these results into the error 55

growth tendency (rate) as a function of the error magnitude.

2.2 Model error growth

By “model error growth”, we denote the growth of er-
rors caused by the inaccurate description of reality by the
“model”. This inaccuracy involves small-scale atmospheric 60

processes unresolved by the model, which for numerical
weather prediction systems are approximated to the resolved
scale by a procedure called parameterization. It also denotes
model biases that are either unknown or have not yet been
addressed (Allen et al., 2006). It is a common expectation 65

that model errors in numerical weather forecasts can be re-
duced by improving the spatial and temporal resolution of
the forecast system.

To simulate this in the L05 systems environment (Ap-
pendix A), we use the L05-2 and L05-3 systems as the reality 70

and the L05-1 system as the model. Thus, the unresolved or
unknown scale is the small scale for the L05-2 system and the
small and medium scale for the L05-3 system. This approach
is justified by the fact that the L05-2 and L05-3 systems can
be viewed as a variant of the L05-1 system: 75

dXtot,n/dt = [X1,X1]L,n−X1,n+ F̃n(t) , (12)

where F̃n(t)= b
2
[X2,X2]1,n+ c[X2,X1]1,n− bX2,n+F

for the L05-2 system and F̃n(t)= b
2
1[X2,X2]1,n+

b2
2[X3,X3]1,n+ c1[X2,X1]1,n+ c2[X3,X2]1,n− b1X2,n−

b2X3,n+F for the L05-3 system are treated as a forcing, 80

which varies in a complicated manner with time. We pa-
rameterize these small-scale phenomena contained in F̃n(t)
by the average value of these phenomena, which is close to
zero, and therefore we can write:〈
F̃n(t)

〉
≈ F = 15 , (13) 85

where 〈. . .〉 represents the mean calculated over a long orbit
on the L05-2 and L05-3 system attractors.

To calculate the average model error growth, we first de-
fine initial conditions that are the same for model and real-
ity (perfect initial conditions assumption) and are determined 90

from the values Xtot,0,n of reality (L05-2 or L05-3 systems)
at the end of the initial transient. Let us stress that we can use
Xtot,0,n of our high-resolution L05-3 or L05-2 system with-
out any projection as the initial state of the L05-1 system and
that the lack of smaller scales is only expressed by the lack of 95

feedback from the smaller scales in the equation of motion.
From these initial values, we integrate the L05-2 or L05-

3 system equations (reality) and the L05-1 system equations
(model) forward for 41.7 d (K = 2000 steps). In each time
step k of the numerical integration,Xtot,k,n (reality) andXk,n 100

(model) are obtained. The size of the error at a given time
k1t is eM,n(k ·1t)=Xtot,k,n−Xk,n, where k = 1, . . .,K ,
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n= 1, . . .,N (N = 360 variables for all used systems). We
perform L= 400 runs to calculate the average error growth.
In each new run, the initial values Xtot,0,n are the last values
Xtot,K,n of the previous run. The average model error growth
EM(t) is calculated as the geometric mean of the runs of the5

Euclidean distances between reality and model:

EM(k ·1t)=
2L

√√√√ L∏
l=1

(
1
N

N∑
n=1

e2
M,n,l(k ·1t)

)
. (14)

As a result, we have numerical averages for the model er-
ror growth as a function of time steps. Note that in this
framework, only Xtot,k,n (L05-2 and L05-3 systems) values10

compared to Xk,n (the L05-1 system) and not the individ-
ual scales. We can convert these results into the error growth
tendency (rate) as a function of the error magnitude.

2.3 Initial and model error growth

By “initial and model error growth”, we denote the combi-15

nation of the initial error growth defined in Sect. 2.1 and the
model error growth defined in Sect. 2.2. We describe the L05-
2 and L05-3 systems as reality and the L05-1 system with
perturbations in the initial conditions of reality as “model
prediction”.20

In this setting, we do not discard the initial time interval
of initial error growth because this transition period is neg-
ligible compared to the model error growth. The initial con-
ditions of the reality for L05-3 and L05-2 systems are called
Xtot,0,n and determined in the same way described above.25

The initial values of the model prediction for the L05-1 sys-
tem are then X′0,n =Xtot,0,n+ en(0), where en(0) values are
the initial errors randomly selected from the normal distribu-
tions ND(µ= 0;σ = 0.01) and ND(µ= 0;σ = 0.2). From
initial values, we integrate the L05-2 or L05-3 system equa-30

tions (reality) and the L05-1 system equations (model pre-
diction) forward for 41.7 d (K = 2000 steps). In each time
step k of the numerical integration,Xtot,k,n (reality) andX′k,n
(model prediction) are obtained. The size of the error at a
given time k1t is eM+ie,n(k ·1t)=Xtot,k,n−X

′

k,n, where35

k = 1, . . .,K , n= 1, . . .,N (N = 360 variables for all used
systems). We perform L= 400 runs to calculate the average
error growth. In each new run, the initial values Xtot,0,n are
the last values Xtot,K,n of the previous run. The average ini-
tial and model error growth EM+ie(t) is calculated as the ge-40

ometric mean of the runs of the Euclidean distances between
reality and model prediction:

EM+ie(k ·1t)=
2L

√√√√ L∏
l=1

(
1
N

N∑
n=1

e2
M+ie,n,l(k ·1t)

)
. (15)

As a result, we have numerical averages for the initial and
model error growth as a function of time steps. Note that45

in this framework only Xtot,k,n (L05-2 and L05-3 systems)

values are compared to Xk,n (the L05-1 system) and not the
individual scales. We can convert these results into the error
growth tendency (rate) as a function of the error magnitude.

2.4 Drift 50

Section 2.2 describes how we can numerically measure the
effects of the model error on forecast accuracy. However, if
we want to understand how the model error drives the model
trajectory away from reality, we need an additional concept.
The reason is that model errors at different positions along 55

the trajectory are only weakly correlated. This is a conse-
quence of the fact that the lack of small scales and fast de-
grees of freedom in the model equations dominates model
errors. However, if model errors at different positions along
a trajectory are uncorrelated, then they can partially compen- 60

sate each other, and their effect is not the same as if we as-
sume that model errors along a trajectory are about the same
everywhere. Therefore, We will recall the concept of drift as
discussed by Orrell et al. (2001). For these purposes, let us
first generally define the model (L05-1 system in our case) as 65

dX(t)/dt =G(X(t)), where X ∈ Rn is the model state space
vector (n= 360 in our case) and the reality state space vector
is X̃(t) ∈ Rñ. In general, ñ 6= n, and it is necessary to project
X̃ from the state space of reality to the state space of model
(Data Assimilation for Numerical Prediction Models). In our 70

case, ñ= n= 360, X̃ =Xtot, and we use either the L05-2
system dXtot(t)/dt = G̃(X1(t),X2(t)) or the L05-3 system
dXtot(t)/dt = G̃(X1(t),X2(t),X3(t)) as reality. The model
error Ge at the point Xtot(t) is then the difference between
the model vector field (tendency) and the tendency of the 75

projection of reality into the model space. In our case, we
can write the following equation:

Ge(Xtot(t))=G(Xtot(t))−
dXtot(t)

dt
. (16)

The drift vector d(τ ) was introduced by Orrell et al. (2001)
as 80

d(τ )=

∫ τ

0
Ge(Xtot(t))dt

=

∫ τ

0
G(Xtot(t))dt −Xtot(τ )+Xtot(0) .

(17)

This is an accumulation of model errors along a piece of the
model trajectory. As we will see in numerical simulations
(Fig. 11), the absolute value of drift |d(τ )| will not grow ap-
proximately linearly in time, i.e., it is not the same as accu- 85

mulating the absolute value of the model error |Ge| along the
same piece of the trajectory.

This is a consequence of the here-considered case of ne-
glected small-scale motion: since the ignored scales fluctuate
quickly, the model errors at successive positions on the tra- 90

jectory lose their correlations. We checked this for our L05
models explicitly by calculating the auto-correlation function
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Figure 4. Schematic description of drift d calculation. The solid
curve shows the time evolution of the reality projected into the
model space X̃(tj ) at the time tj = j ·1t for j = 1, . . .,5. The
dashed curves show the short (1t) time evolutions of the model
Xj (t) for t ≥ tj initiated at the points X̃(tj ). Drift d(t) is then the
sum of the difference d(tj+1)=Xj (tj+1)− X̃(tj+1) at each time
step.

of the drift vectors as a function of their time lag and found a
very fast decay within a few time steps. Therefore, different
from model errors in low-dimensional systems, which can be
assumed to be spatially highly correlated, one here accumu-
lates random vectors, and the drift therefore follows a path5

that resembles a Brownian path, as already suggested in Orrel
et al. (2001). There and in Orrell (2002) it is also shown how
to approximate the integral by summing a series of short-time
model errors over finite time steps 1t . The absolute value of
drift |d(τ )| as a function of τ grows sublinearly, as will be10

demonstrated later, which gives a more realistic estimate of
the role of model errors. What, however, is ignored here is
that a model error in the first time step creates a kind of ini-
tial condition error for the second time step, which would
then grow as an initial condition error. We will discuss this15

later.
To calculate the average drift D comparable to previous

cases, we first calculate the time evolution of reality Xtot,k,n
(L05-2 or L05-3 systems), calculated from the initial con-
ditions after the transient period. From each time step k of20

the time evolution of Xtot,k,n reality (up to K = 2000 steps),
we calculate the one-step 1t time evolution of the model.
Xtot,k,n =Xk,n values are therefore viewed as initial condi-
tions for the one-step 1t time evolution of the model. The
size of the drift at a given time k1t is the sum of all previ-25

ous and current error vectors: dn(k ·1t)=
∑k−1
j=0(Xj,n((j +

1)·1t)−Xtot,j+1,n), where k = 1, . . .,K , n= 1, . . .,N (N =
360 variables for all used systems). Notice that it is not the
absolute values of the 1t errors that are accumulated but the
vectors (see Fig. 4), meaning that in the summation there can30

be cancellation effects and hence a slower-than-linear growth
of the drift with time.

We perform L= 400 runs in order to calculate the aver-
age error growth. In each new run, the initial values Xtot,0,n
are the last values Xtot,K,n of the previous run. The average 35

driftD(t) is defined as the geometric mean of the runs of the
Euclidean distances between reality and model:

D(k ·1t)=
2L

√√√√ L∏
l=1

(
1
N

N∑
n=1

d2
n,l(k ·1t)

)
. (18)

As a result, we have numerical averages for the drift as a
function of time step. We can convert these results into the 40

drift growth tendency as a function of the drift magnitude.

3 Error growth in the L05 systems – results and
comparisons

Based on the described methods, we calculate the average
prediction error growth for L05 systems. We approximate the 45

numerical error growth curves using the hypotheses Eqs. (1)–
(6) and try to identify the most appropriate description. We
use these results to determine how the average forecast error
growth changes in a model where small-scale phenomena are
omitted, but the model error is therefore created (perfect ini- 50

tial conditions assumption or initial and model error assump-
tion) compared to a model where all phenomena are present,
whereas the average forecast error growth is scale-dependent
(perfect model assumption). The resulting behavior will be
explained using the drift. 55

3.1 Initial error growth

Figure 5a shows the initial error growth rate (tendency)
dE/dt as a function of the error magnitude E for the L05-1
system, while Fig. 5b shows the error magnitude as a func-
tion of time. We also show the best-fit results of the error 60

growth models represented by Eqs. (1)–(6). It turns out that
the initial part of the growth rate is linear without any signif-
icant offset, i.e., we see a linear increase with a beginning at
(E = 0,dE/dt = 0). Therefore, constants in the error growth
models that were included to represent the model error are 65

consequently close to zero. In addition, the power law fit
yields a power close to 1. Because of the saturation of the
error after some time, the error growth rate decays to zero
when the error is large, which can be represented well by the
factor (1−E/Elim) in the error growth models. Hence, all 70

models with this saturation term allow good fits to the error
growth rate and the error magnitude as a function of time in
the whole range and confirm that the L05-1 system is a clas-
sical chaotic system with the largest Lyapunov exponent of
about λ≈ 0.33 d−1. 75

The behavior is obviously different for the L05-2 system,
which contains additional small-scale degrees of freedom, as
shown in Fig. 6. The initial part of the error growth rate (for
smallE) is already curved, and hence the exponential growth
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Figure 5. (a) Initial error growth tendency (rate) dE/dt as a function of the error magnitude E (dEtot, black). Approximation of the early
part of the growth by exponential growth rate dEex (Eq. 1, dashed green); exponential growth rate with model error dEr (Eq. 5, dashed
blue) and power law dEp (Eq. 3, dashed red). Approximation of the full curve by growth rate of quadratic hypothesis dEqu (Eq. 2, green);
growth rate of quadratic hypothesis with model error dEq (Eq. 6, blue); and extended power law dEep (Eq. 4, red) for the L05-1 system.
(b) Initial error growth E as a function of time t (Etot, Eq. 11, black). Approximation of the early part of the growth by integration of dEex
(Eex, dashed green) with λex = 0.33 d−1; integration of dEr (Er, dashed blue) with λr = 0.32 d−1 and βr = 0.00006 unitd−1; integrations
of dEp (Ep, dashed red) with a = 0.34 unit0.02 d−1 and b = 0.02. Approximation of the full curve by integration of dEqv (Eqv, green)
with λqv = 0.32 d−1 and Elim = 8.1 unit; integration of dEq (Eq, blue) with λq = 0.32 d−1, βq = 0.003 unitd−1 and Elim = 8.1 unit; and
integration of dEep (Eep, red) with a = 0.33 unit0.03 d−1, b = 0.03, and Elim = 8.1 unit for the L05-1 system. The inset shows transient
behavior before the error magnitude grows (for more details, see Sect. 2.1).

model does not provide a good fit anymore. Introducing a
non-vanishing error growth rate right from the beginning,
i.e., starting from (E = 0,dE/dt = βr), which is the descrip-
tion by dEr, the approximation moves closer to the data, but
this is in clear contradiction to the initial error growth idea.5

Due to the lack of model errors, the growth rate starts from
0. In addition, the quadratic hypothesis is unable to repro-
duce this curvature well enough. Therefore, the data are best
approximated by the power law in the initial part and by the
extended power law with saturation on the whole range.10

What we found for the initial error growth of the L05-2
system is even more pronounced in the L05-3 system with
three spatiotemporal scales. The superiority of approxima-
tions dEp and dEep over the other approximations is en-
hanced by the even faster growth of Etot(t) compared to the15

exponential growth and Etot(t) for the L05-2 system (Fig. 7).
The reason for this behavior is described in Brisch and Kantz
(2019) or in Bednář and Kantz (2022). Lorenz’s (1969) state-
ment can summarize it: a typical quantity to be predicted
is a superposition of the dynamics on different scales. Af-20

ter a fast growth of the small-scale errors with saturation at
these very same small scales, the large-scale errors continue
to grow at a slower rate until even these saturate. This is the
phenomenon of scale-dependent error growth. We also see
that if we interpret the three systems L05-1 to L05-3 as low-25

and high-resolution models, the high-resolution model has
larger instability and hence a shorter time until an ensemble
of initial conditions has spread out on the attractor. If this

were of relevance for the prediction horizon, then the high-
resolution model would be less useful for forecasting than 30

the low-resolution model.

3.2 Model error growth

We use the L05-2 system as reality and make forecasts using
the L05-1 system. Their suitably averaged differences give
rise to the model error as a function of lead time. Figure 8a 35

(solid black curve) shows the model error growth rate dE/dt
as a function of the error magnitude E, while Fig. 8b shows
the time evolution of this error. We see an initially very fast
error growth caused by the differences in the equations of
motion of reality and the model. After a short transient, we 40

see in both panels of Fig. 8a behavior compatible with our er-
ror growth models. Those models with a constant term (i.e.,
the quadratic hypothesis with model error and the exponen-
tial growth with model error) provide the best fits, where to
be good in the whole range the factor (1−E/Elim) of the 45

quadratic hypothesis with model error is needed. In view of
what will follow, we stress that based on the data both Er and
Eq provide good fits up to error magnitudes of about three
units, with different values λq ≈ 0.27 d−1 and λr ≈ 0.17 d−1

of the largest Lyapunov exponent. 50

When we use L05-3 as reality and L05-1 as the model,
the same conclusions are valid for the model error growth
rate dE/dt as a function of the error magnitude E (Fig. 9a)
and EM(t) (Fig. 9b). Note, however, that the rates dE/dt (E)
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Figure 6. (a) Initial error growth tendency (rate) dE/dt as a function of the error magnitude E (dEtot, black). Approximation of the early
part of the growth by exponential growth rate dEex (Eq. 1, dashed green); exponential growth rate with model error dEr (Eq. 5, dashed blue);
and power law dEp (Eq. 3, dashed red). Approximation of the full curve by growth rate of quadratic hypothesis dEqu (Eq. 2, green); and
growth rate of hypothesis with model error dEq (Eq. 6, blue) and extended power law dEep (Eq. 4, red) for the L05-2 system. (b) Initial error
growth E as a function of time t (Etot, Eq. 11, black). Approximation of the early part of the growth by integration of dEex (Eex, dashed
green) with λex = 0.29 d−1; integration of dEr (Er, dashed blue) with λr = 0.26 d−1 and βr = 0.02 unitd−1; integrations of dEp (Ep, dashed
red) with a = 0.25 unit0.32 d−1 and b = 0.32. Approximation of the full curve by integration of dEqv (Eqv, green) with λqv = 0.2 d−1 and
Elim = 6.8 unit; integration of dEq (Eq, blue) with λq = 0.18 d−1, βq = 0.05 unitd−1, andElim = 6.8 unit and integration of dEep (Eep, red)
with a = 0.28 unit0.34 d−1, b = 0.34 and Elim = 7 unit for the L05-2 system. The inset shows transient behavior before the error magnitude
grows (for more details, see Sect. 2.1).

Figure 7. (a) Initial error growth tendency (rate) dE/dt as a function of the error magnitudeE (dEtot, black). Approximation of the early part
of the growth by exponential growth rate dEex (Eq. 1, dashed green); exponential growth rate with model error dEr (Eq. 5, dashed blue); and
power law dEp (Eq. 3, dashed red). Approximation of the full curve by growth rate of quadratic hypothesis dEqu (Eq. 2, green); and growth
rate of quadratic hypothesis with model error dEq (Eq. 6, blue) and extended power law dEep (Eq. 4, red) for the L05-3 system. (b) Initial
error growthE as a function of time t (Etot, Eq. 11, black). Approximation of the early part of the growth by integration of dEex (Eex, dashed
green) with λex = 0.46 d−1; integration of dEr (Er, dashed blue) with λr = 0.35 d−1 and βr = 0.07 unitd−1; integrations of dEp (Ep, dashed
red) with a = 0.37 unit0.63 d−1 and b = 0.63. Approximation of the full curve by integration of dEqv (Eqv, green) with λqv = 0.2 d−1 and
Elim = 6.9 unit; integration of dEq (Eq, blue) with λq = 0.14 d−1, βq = 0.17 unitd−1, and Elim = 6.9 unit; and integration of dEep (Eep,
red) with a = 0.38 unit0.59 d−1, b = 0.59, and Elim = 7.1 unit for the L05-3 system. The inset shows transient behavior before the error
magnitude grows (for more details, see Sect. 2.1).
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Figure 8. (a) Model error growth tendency (rate) dE/dt as a function of the error magnitude E (dEM , black); initial and model error
growth tendency dE/dt as a function of the error magnitude E (dEM+ie(0.01) (dashed black) for E(0)= 0.01 and dEM+ie(0.2) (dashed–
dotted black) for E(0)= 0.2). Approximation of the early part of the model growth by exponential growth rate dEex (Eq. 1, dashed green);
exponential growth rate with model error dEr (Eq. 5, dashed blue) and power law dEp (Eq. 3, dashed red). Approximation of the full curve
by growth rate of quadratic hypothesis dEqu (Eq. 2, green), growth rate of quadratic hypothesis with model error dEq (Eq. 6, blue), and
extended power law dEep (Eq. 4, red) for the L05-2 system as the reality and the L05-1 system as the model. The inset shows the early
phase. (b) Model error growth E as a function of time t (EM , Eq. 14, black); initial and model error growth E as a function of time t
(EM+ie(0.01) (Eq. 15, dashed black), for E(0)= 0.01 and EM+ie(0.2) (Eq. 15, dashed–dotted black) for E(0)= 0.2). Approximation of
the early part of the growth by integration of dEex (Eex, dashed green) with λex = 0.39 d−1; integration of dEr (Er, dashed blue) with
λr = 0.17 d−1 and βr = 0.33 unitd−1; integrations of dEp (Ep, dashed red) with a = 0.52 unit0.64 d−1 and b = 0.64. Approximation of the
full curve by integration of dEqv (Eqv, green) with λqv = 0.38 d−1 and Elim = 7.5 unit, integration of dEq (Eq, blue) with λq = 0.27 d−1,
βq = 0.34 unitd−1 and Elim = 7.6 unit, and integration of dEep (Eep, red) with a = 0.61 unit0.39 d−1, b = 0.39, and Elim = 7.6 unit for the
L05-2 system as the reality and the L05-1 system as the model. The inset shows the early phase of the time evolution.

have much larger maximal values and that EM(t) grows
faster than when taking L05-2 as reality. However, if we ig-
nore the very initial part of the error growth rate for small
values E, which the error growth models cannot reproduce,
we see that Er and Eq provide the best fits.5

3.3 Initial and model error growth

In both settings, we also show the results when we include
a small initial condition error in addition to the model er-
ror. This initial condition error implies that the forecast error
as a function of time starts with a non-zero value and cor-10

respondingly with a much lower growth rate than the model
error alone, but apart from that there are no strong effects.
Figures 8 and 9 show that it is not the net sum of the ini-
tial error growth Etot(t) and the model error growth EM(t).
EM+ie(t) goes from the initial value EM+ie(0) through some15

transition period to the model error growth curve EM(t).
EM(t) is therefore the limiting value to which EM+ie(t) is
attracted. Indeed, solid and dashed black curves in the in-
sets of Figs. 8b and 9b show that already after time t = 0.2
the model error alone has grown so much that there is no20

effect of even of the larger initial condition error of magni-
tude E(0)= 0.2 anymore. The larger the initial error and the
smaller the model error, the longer the transition period, but
it is still short for realistic values of the initial condition error.

For these reasons, it can be seen that the appropriate approxi- 25

mation for describing the variant with initial and model error
remains the same as for describing the variant with model er-
ror only, which is the exponential growth with model error,
dEr Eq. (5), for the early growth phase and the quadratic hy-
pothesis with model error dEq, Eq. (6), for the entire length 30

of the evolution (Figs. 8 and 9).

3.4 Comparison of initial and model error growth

We want to use the approximation formulae to construct
the error curves for Etot(0)= 0, = 0.1, and = 0.2. The ini-
tial error magnitudes of 0.1 and 0.2 correspond to the rela- 35

tive values of the initial errors of current numerical weather
prediction models for the L05 models. For the initial er-
ror growth Etot(t) (for simplicity, let us redefine Etot(t) to
Eie(t)), we use the extended power law solution and find the
parameter values dEep = 0.28 ·E0.66(1−E/7) for the L05- 40

2 system and dEep = 0.38 ·E0.41(1−E/7.1) for the L05-3
system, with initial values Eie(0)(0)→ 0 (Fig. 10, solid red
curve), Eie(0.1)(0)= 0.1 (Fig. 10a, dashed red curve), and
Eie(0.2)(0)= 0.2 (Fig. 10b, dashed red curve).

For the model error growth EM(t), we use the quadratic 45

hypothesis with model error with the following best-fit
parameters: dEq(t)/dt = (0.27 ·E+ 0.34)(1−E/7.6) and
EM(0)≈ 0.1 for the L05-2 system and dEq(t)/dt = (0.38 ·
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Figure 9. (a) Model error growth tendency (rate) dE/dt as a function of the error magnitude E (dEM , black); initial and model error
growth tendency dE/dt as a function of the error magnitude E (dEM+ie(0.01) (dashed black) for E(0)= 0.01 and dEM+ie(0.2) (dashed–
dotted black) for E(0)= 0.2). Approximation of the early part of the model growth by exponential growth rate dEex (Eq. 1, dashed green);
exponential growth rate with model error dEr (Eq. 5, dashed blue), power law dEp (Eq. 3, dashed red). Approximation of the full curve
by growth rate of quadratic hypothesis dEqu (Eq. 2, green); and growth rate of quadratic hypothesis with model error dEq (Eq. 6, blue)
and extended power law dEep (Eq. 4, red) for the L05-3 system as the reality and the L05-1 system as the model. The inset shows the
early phase. (b) Model error growth E as a function of time t (EM , Eq. 14, black); initial and model error growth E as a function of time
t (EM+ie(0.01) (Eq. 15, dashed black) for E(0)= 0.01 and EM+ie(0.2) (Eq. 15, dashed–dotted black) for E(0)= 0.2). Approximation of
the early part of the growth by integration of dEex (Eex, dashed green) with λex = 0.83 d−1, integration of dEr (Er, dashed blue) with
λr = 0.25 d−1 and βr = 1.15 unitd−1, integrations of dEp (Ep, dashed red) with a = 1.35 unit0.72 d−1 and b = 0.72. Approximation of the
full curve by integration of dEqv (Eqv, green) with λqv = 0.77 d−1 and Elim = 7.8 unit, integration of dEq (Eq, blue) with λq = 0.38 d−1,
βq = 1.47 unitd−1, and Elim = 7.8 unit, and integration of dEep (Eep, red) with a = 1.64 unit0.55 d−1, b = 0.55, and Elim = 7.8 unit for the
L05-3 system as the reality and the L05-1 system as the model. The inset shows the early phase of the time evolution.

Figure 10. Error growth E as a function of time t . The solid black curve shows model error growth EM (Eq. 14), the dashed black curve
shows initial and model error growth EM+ie (Eq. 15), the solid red curve displays initial error growth Eie for E(0)→ 0 (Eq. 11), and the
dashed red curve displays initial error growth Eie for (a) E(0)≈ 0.1 and (b) E(0)≈ 0.2 (Eq. 11). Shown are calculations of the best-fit
approximations for given types of error growth (see Sect. 3 for more details). The initial error growth Eie is calculated for (a) the L05-2
system and (b) the L05-3 system. The model error growth EM and initial plus the model error growth EM+ie is calculated as the difference
(a) between the L05-1 system and the L05-2 system and (b) between the L05-1 system and the L05-3 system.
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E+ 1.47)(1−E/7.8) with EM(0)≈ 0.1 for the L05-3 sys-
tem.

The reason why E0 is non-zero when using the ap-
proximation can be found in Sect. 4.2. We can use
the same approximations for the initial and model error5

growth EM+ie(t) as for the model error growth alone,
EM(t) with EM+ie(0.1)(0)= 0.1 for the L05-2 system, and
EM+ie(0.2)(0)= 0.2 for the L05-3 system. The justification
can be found in Sect. 4.3.

In addition to the graphical representation (Fig. 10), we10

compare the variants by expressing the times t95 %, t71 %,
t50 %, and t25 % when the error magnitude E reaches 95 %,
71 %, 50 %, and 25 %, respectively, of its limiting (saturated)
value Elim. In the literature, t95 % is understood as a practi-
cal predictability limit, while t71 % corresponds to climatic15

variability, according to Savijarvi (1995). For Fig. 10, let us
first comment on the difference between the limiting (satu-
ration) values Elim of the initial error curves Eie(t) and the
model error curves EM(t) or EM+ie(t). The pure initial error
curves are produced in the perfect model scenario, meaning20

that forecast and reality are obtained with the same system.
When model error is present, the variability of forecast and
reality is different, and hence the limiting error is larger, in
agreement with Simmons et al. (1995) or Li et al. (2018).

Figure 10 also provides insight into our question of25

whether high-resolution or low-resolution models will pro-
duce better forecasts. We recall that high-resolution models
suffer from much faster initial condition error growth due to
the stronger instability of small-scale motion. However, the
small scales usually do not contribute to the forecast target.30

Figure 10 shows that predictability is significantly worsened
by the model error rather than by the initial error growth. This
means that the average forecast error in a model where small-
scale phenomena are omitted but the model error is therefore
present (black curves EM(t) and EM+ie(t)) grows signifi-35

cantly faster compared to a model where all scales are re-
solved (no model error) but the average forecast error growth
is scale-dependent (red curves Eie(t)). However, this phe-
nomenon depends on the relative magnitudes of the model
error term β, the (effective) Lyapunov exponent λ, and the40

initial condition error. If the growth rate λwere larger and the
model error smaller, then the exponential error growth would
overwhelm the contribution of model error in every time step.
In our numerical experiments using the L05 models, the mag-
nitude of the initial condition error is tuned to values corre-45

sponding to initial condition errors in real weather forecasts,
so we are tempted to believe that in weather forecasts high-
resolution models should also be superior.

Specifically, for the L05-2 system (Fig. 10a), the fore-
cast with model error (i.e., using L05-1 for the forecast),50

the time t25 is more than 3 times shorter than the limit
without model and initial condition error (Eie(0)(0)→ 0),
being t25 %,M = 4 d and t25 %,ie(0) = 13 d, respectively. With
increasing error magnitude, the ratio of forecast times de-
creases (t50 %,M = 6 d vs. t50 %,ie(0) = 19 d and t71 %,M = 9 d55

vs. t71 %,ie(0) = 24 d) until t95 %,M = 16 d, which is approx-
imately half as large as t95 %,ie(0) = 37 d. Adding the er-
ror of the initial condition does not significantly change
the error growth for the model error variant (EM(t)≈
EM+ie(0.1)(t); see Sect. 4.3 for details). The error growth 60

naturally increases for the variant with the initial error, and
the ratio is reduced to twice the growth rate over the en-
tire growth period (t25 %,M+ie(0.1) = 4 d vs. t25 %,ie(0.1) = 9 d,
t50 %,M+ie(0.1) = 6 d vs. t50 %,ie(0.1) = 14 d, t71 %,M+ie(0.1) =

9 d vs. t71 %,ie(0.1) = 19 d, and t95 %,M+ie(0.1) = 16 d vs. 65

t95 %,ie(0.1) = 32 d).
For the L05-3 system (Fig. 10b) taken as truth, the ef-

fect is even more dramatic. Without initial error (respectively
for Eie(0)(0)→ 0), t25 %,M = 1 d is 7 times smaller than
t25 %,ie(0) = 7 d. Gradually, the ratio decreases (t50 %,M = 2 d 70

vs. t50 %,ie(0) = 12 d and t71 %,M = 4 d vs. t71 %,ie(0) = 18 d)
until t95 %,M = 8 d, which is approximately 4 times smaller
than t95 %,ie(0) = 34 d. Adding the error of the initial condi-
tion does not significantly change the error growth for the
model error variant (EM(t)≈ EM+ie(0.2)(t); see Sect. 4.3 for 75

details). The growth changes for the variant with the initial
error, and the ratio is reduced to 5 times the growth rate in the
first half of growth (t25 %,M+ie(0.2) = 1 d vs. t25 %,ie(0.2) = 5 d,
t50 %,M+ie(0.2) = 2 d vs. t50 %,ie(0.2) = 10 d, t71 %,M+ie(0.2) =

4 d vs. t71 %,ie(0.2) = 16 d, and t95 %,M+ie(0.2) = 8 d vs. 80

t95 %,ie(0.2) = 34 d).
In the numerical error growth study described so far, we

used L05-1 as a model and compared its performance to two
types of reality with different spatiotemporal resolutions. We
complemented this study using as a single reality the L05- 85

3 system and comparing the performance of the L05-1 and
L05-2 models when using them for forecasts as two forecasts
with different spatiotemporal resolutions. These findings (not
shown) confirm the dominance of the model error over the
initial condition error growth, i.e., the model with the higher 90

resolution again provides better forecasts even for larger er-
rors and therefore has a better prediction horizon. However,
the effect in this setting is not as dramatic as in the results
presented above .

4 Error growth in the L05 systems – discussion and 95

explanation of results

In this section, we present considerations that explain the
dominance of the model error in our forecast studies, where
the notion of the drift (Sect. 2.4) plays a relevant role. We will
consider the feedback of the drift as an initial error, which 100

modifies the interpretation of the parameters in the exponen-
tial growth with model error dEr (Eq. 5) and the quadratic
hypothesis with model error dEq (Eq. 6) and its relationship
with the drift.
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4.1 Drift and its role in explaining the model error
growth

Figure 11 compares the model error growth EM(t) (Eq. 14),
the drift D(t) (Eq. 18), and the exponential growth approxi-
mation with model error Er(t) (Eq. 5). The curves are deter-5

mined from the difference between the L05-2 and the L05-
1 systems (Fig. 11a) and between the L05-3 and the L05-1
systems (Fig. 11b) for error magnitudes where the saturation
effect is not yet present (up to 2 and 3 d). We intend to under-
stand the behavior of the model error since this is the issue in10

real forecasts. The drift D(t) (Fig. 11, blue curve) describes
the early part of the model error evolution EM(t) (Fig. 11,
black curve) very well, while at longer lead times it is the
exponential growth with model error contribution (Fig. 11,
dashed black line) which can be fitted well to the model er-15

ror curve. Notice, however, that the drift is calculated numer-
ically from the simulation data, like the model error curve,
and hence does not contain any free parameters, while the ex-
ponential growth with model error has two free parameters,
which allow us to optimally achieve the agreement between20

the solid and dashed black curves.
In particular, in the L05-3 model, for the times where the

model error growth EM(t) can be fitted by Er(t), the drift
D(t) first overestimates the model error growth EM . Follow-
ing this, a significantly slower growth of the drift D relative25

to the model error growthEM is observed, corresponding to a
decrease in the growth rate (tendency) of the drift dD/dt (D)
compared to the increase in the model error growth rate (ten-
dency) (insets in Fig. 11).

As already mentioned in Sect. 2.4, the drift can be viewed30

as the sum of the displacements from reality, created at each
time step of the model, similar to how an error in the ini-
tial conditions will create an initial displacement at the ini-
tial time. If we interpret the drift increment D(tk)−D(tk−1)

at each time step 1t = tk − tk−1, k = 1, . . .,K as a new ini-35

tial error at time tk , then (similar to Orrell et al., 2001) we
can model the model error growth EM by applying the same
time evolution assumption to D(tk)−D(tk−1) as the initial
error growth, i.e., the exponential growth eλD t driven by the
largest Lyapunov exponent λD of the model (L05-1 system).40

However, this growth should set in only at some time in the
future since D(tk)−D(tk−1) does not point into the locally
most unstable direction (see Sects. 2.1 and 3.1 for a descrip-
tion of the initial error growth for the L05-1 system). We
approximate this behavior in two different ways and will ex-45

plore which one gives better results. (Fig. 12). In the first,
D(tk)−D(tk−1) evolves with time ti in a constant approxi-
mation as follows:

Fcon(tk; ti)=

{
1 tk ≤ ti ≤ tM+k

eλD(ti−tk) tM+k+1 ≤ ti ≤ tK
, (19)

while in a linearly decaying approximation it evolves as fol- 50

lows:

Flin(tk; ti)=


1− σ(ti − tk) tk ≤ ti ≤ tM+k

(1− σ(tM+k − tk))eλD(ti−tk)

tM+k+1 ≤ ti ≤ tK

. (20)

M and σ are parameters that we fix empirically. We pro-
pose the hypothesisED(t) as a description of the model error
growth EM(t) based on the sum of the individual increments 55

of the drift:

EM(ti)≈ ED,ap(ti)

=

∑i

k=1
(D(tk)−D(tk−1)) ·Fap(tk; ti) ,

(21)

where ap is the symbol for the constant (con) or linear (lin)
approximation.

In comparison to the exponential error growth with model 60

error (with or without saturation), this is a modification in
two relevant details. First, the model error is not the same at
all time steps into the future like the constant βr or βq, but
it is the time-into-the-future-dependent increment of the drift
D(t). Second, the new contribution in a given time step is 65

not amplified exponentially in the next step, but because it
does not point into the locally most unstable direction we let
it either remain constant or even decay for a few time steps.

Figure 13 demonstrates how well the model error growth
can be approximated by ED(t), particularly by the approxi- 70

mation with an initial linear decay ED,lin(t). As the numer-
ical value of the Lyapunov exponent λD in the hypothesis
ED(t) we use the one determined as λq in the quadratic hy-
pothesis with model error dEq (Eq. 6), which is λq,L05-2 =

0.27 d−1 from the difference between the L05-1 and L05-2 75

systems (Fig. 8) and λq,L05-3 = 0.38 d−1 from the difference
between the L05-1 and L05-3 systems (Fig. 9). The justifica-
tion for using the parameter λq as λD can be found in Bednář
et al. (2021). In short, we argue that λq is a better estimate
of the Lyapunov exponent of the model system than, e.g., λr. 80

The parameters M and σ of the hypotheses ED(t) are deter-
mined empirically. It is, however, a bit puzzling that when
using the value λq in ED,lin(t), we can approximate that part
of the model error growth curve EM(t), which can also be
well approximated by the exponential growth with model er- 85

ror dEr (Fig. 13), leads to a value of the exponent that is
different from λq. Therefore, in the next section, we discuss
the relationship between the drift D and parameters λ and β
in dEq (Eq. 6) and dEr (Eq. 5).

4.2 Understanding the drift through parameters of the 90

quadratic hypothesis and exponential growth both
with model error

We saw two meaningful approximations to the model error
growth curve over lead time: the quadratic hypothesis with
model error and the exponential growth with model error. 95



H. Bednář and H. Kantz: Analysis of model error in forecast errors 15

Figure 11. Time evolution of driftD (blue), model error EM (black), and approximation by exponential growth with model error Er (dashed
black). The inset shows the tendency (rate) of drift dD/dt (blue), model error dEr/dt (black), and dEr (dashed black) as a function of D(t),
EM (t), and Er(t). The difference (a) between the L05-1 system and the L05-2 system and (b) between the L05-1 system and the L05-3
system.

Figure 12. Hypothesis ED(t) explaining the model error growth EM (t) (black curve). The drift increment D(tk)−D(tk−1) at each time
step1t = tk− tk−1, k = 1, . . .,K is taken as the error of the initial conditions with an exponential growth eλt driven by the largest Lyapunov
exponent λ of the model (L05-1 system). Since d(t) does not point into the locally most unstable direction, time evolution ofD(tk)−D(tk−1)
decreases in early time (black curve in the inset). A constant (red curve in the inset) or linear decrease (green curve in the inset) approximates
this initial decrease. D(tk)−D(tk−1) evolves with time ti (dashed curves) in the constant approximation as Fcon(tk; ti)= 1 for tk ≤ ti ≤
tM+k and Flin(tk; ti)= e

λ(ti−tk) for tM+k+1 ≤ ti ≤ tK , and in the linear approximation as Flin(tk; ti)= 1− σ(ti − tk) for tk ≤ ti ≤ tM+k
and Flin(tk; ti)= (1− σ(tM+k − tk))eλ(ti−tk) for tM+k+1 ≤ ti ≤ tK . M and σ are found experimentally. The resulting hypothesis ED(t)
describing the model error growth EM (t) (black curve) is the sum of the individual increments: EM (ti)≈ ED,ap(ti)=

∑i
k=1(D(tk)−

D(tk−1)) ·Fap(tk; ti), where ap is the symbol for the constant (con) or linear (lin) approximation.

The best-fit parameter values of these two approximations
are listed in Table 1. This table shows that dD/dt ≈ βq, but
the most evident is the difference of the exponential growth
exponent λ, where for both realities L05-2 and L05-3 the ex-

ponent λq of the quadratic hypothesis is larger than λr of the 5

best-fit exponential error growth.
To understand the meaning of the parameters of the expo-

nential growth with model error dEr (Figs. 8 and 9), let us
first define the model error growth ED,0(t) based on the drift
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Figure 13. Approximation of model error growth EM (t) (black curve) by exponential growth with model error Er (dashed black curve) and
by hypotheses ED,con (Eqs. 19 and 21, red curve) and ED,lin (Eqs. 20 and 21, green curve) based on drift D (blue curve). (a) Calculation
of model error EM and drift D from the difference between the L05-1 and L05-2 systems. The approximation ED,con is with M = 28 and
λ= 0.27 d−1, and approximation ED,lin is withM = 24, σ = 0.001, and λ= 0.27 d−1. (b) Calculation of model error EM and driftD from
the difference between the L05-1 and L05-3 systems. The approximation ED,con is with M = 43 and λ= 0.38 d−1, and the approximation
ED,lin is with M = 27, σ = 0.005, and λ= 0.38 d−1. The insets show the time differences (rates) of the quantities as a function of the
quantities presented in the main figures.

Table 1. Table of fitted constants of the different error growth ap-
proximations for the L05-2 model and the L05-3 model. All values
except Elim are given as unitsd−1 or d−1.

L05-2 L05-3

λr 0.17 0.25
βr 0.33 1.15
λq 0.27 0.38
βq 0.34 1.47
Elim 7.6 7.8
dD/dt 0.33 1.6

D, ignoring the initial decrease caused by D(t) not pointing
into the locally most unstable direction:

ED,0(ti)=
∑i

k=1
(D(tk)−D(tk−1)) · e

λD(ti−tk)

tk ≤ ti ≤ tK ,
(22)

where λD is the largest Lyapunov exponent of the model
(L05-1 system). The time derivative (calculated from the dif-5

ference at successive time steps) of ED,0(t) is

dED,0
dt

(ED,0)= λD ·ED,0+
dD
dt
(ED,0) , (23)

where dD/dt (ED,0(tk))= dD/dt (tk), meaning that due to
the monotonicity of ED,0(t) in time, we can exchange the
dependence on t by the dependence on ED,0(t) (see Fig. 14).10

Equation (23) now claims that the dashed red curve, which is
λDE, plus the values of the blue curve taken at corresponding
times tk , sum up to yield the red curve ED(E(t)), where we

approximate the slope of the linear increase of the red curve
by the slope of the black curve, which describes the observed 15

total error.
We focus now on those parts of the three curves E >

0.3 for L02-5 or for E > 0.5 for L05-3. As has been said
above, we observe that in this range of E, dED,0/dt (ED,0)
(Fig. 14, red curve) has the same growth rate (tendency) 20

as dEM/dt (EM) (Fig. 14, black curve), which is expressed
by λr, fitting the Er(t) behavior of Eq. (5) to the data
(Fig. 14, dashed black curve, λr,L05-2 = 0.17 d−1, λr,L05-3 =

0.25 d−1) If we compare these parameter values to the fit us-
ing the quadratic hypothesis with model error, we see that 25

λr is smaller than λq of dEq (λq,L05-2 = 0.27 d−1, λq,L05-3 =

0.38 d−1). In our interpretation of the model errors involv-
ing the drift, this is due to the decrease in the drift growth
rate dD/dt (D(tk)) over time (Fig. 14, blue curve). Hence,
βr of the dEr approximation of dED,0/dt (ED,0) is then an 30

extrapolation of the linear decline of dD/dt (ED,0(tk)) to
ED,0(t0)= 0. Therefore, if we solve Eq. (23) for dD/dt
and define dD/dt (ED,0(tk))≈ βD−αDED,0, then βr = βD .
Equation (23) can be used to determine the drift decrease rate
αD: λrED,0+βr = λqED,0−αDED,0+βD→ αD = (λq− 35

λr). However, βr = βD is not the same as βr in dEM/dt
(Fig. 14, black curve) because it is reduced by the transi-
tion term expressed by Eqs. (20) and (21) and αD is valid
for dD/dt (ED,0) and not for dD/dt (D). In general, because
dD/dt (ED,0(tk))≈ βD−αDED,0 tends to decrease, λq > λr. 40

Since dEM/dt (EM) is almost identical to dEM+ie/dt (EM)
and differs only in the early stage of development, the ap-
proximations of dEq and dEr are only marginally affected
(Figs. 8a and 9a). Therefore, information about the drift D
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Figure 14. The validity of Eq. (23) (dD/dt (D(tk))= dD/dt (ED,0(tk))=
dED,0

dt (ED,0(tk))−λ ·ED,0(tk)) is shown by vertical lines, where
the length of the blue lines is the same as the length of the dotted red dDteor lines at times t1 = 1, t2 = 1.75, and t3 = 2.5 d (from left to
right) for (a) the difference between the L05-1 and L05-2 systems and at times t1 = 0.3, t2 = 0.6, and t3 = 0.9 d (from left to right) for (b)
difference between L05-1 and L05-3 systems, where dD = dD/dt (D) (Eq. 18, blue curve) is time difference of drift, dEM = dEM/dt (EM )
(Eq. 14, black curve) is model error growth, dED,0 = dED,0/dt (ED,0) is a hypothesis Eq. (23) (red curve), dEr (Eq. 5, dashed black
curve) is exponential growth with model error (dEr,L05-2 = 0.17 ·E+ 0.33, dEr,L05-3 = 0.25 ·E+ 1.15), and dEex (Eq. 1, dashed red line)
is exponential growth with the value of λ determined from the quadratic hypothesis with model error dEq (Eq. 6) (λL05-2→ dEq = (0.27 ·
E+ 0.34)(1−E/7.6) and λL05-3→ dEq = (0.38 ·E+ 1.47)(1−E/7.8)).

can be derived from these hypotheses also for the variant with
initial and model error.

For the sole initial condition error, we found that λq ≤ λr,
but this describes a setting very different from model error.
In the initial condition error, we compare the forecast and5

reality of a given high-resolution model, which indeed has
much larger error growth exponents for short times and small
errors due to small-scale degrees of freedom. As soon as we
talk about model errors (with or without initial error), we use
the low-resolution L05-1 model for forecasts, and hence its10

parameters are relevant for the propagation of errors.
In summary, we propose a new interpretation of the growth

of forecast errors due to model errors: model errors in suc-
cessive time steps of the forecasts are only weakly correlated.
Therefore, modeling them by a constant term in the error15

growth dE is inappropriate. The observed model forecast er-
ror growth can be modeled much more accurately if we use
the accumulated model errors called drift, interpret the drift
increments as additional initial condition errors, and propa-
gate these forward in time. The decrease of the drift growth20

rate over forecast time can then explain the growth rate of
the model errors. Depending on what data are observed, one
can either use the drift to predict the forecast errors or use the
forecast errors to infer the drift due to model error.

5 Error growth in the ECMWF systems25

For the ECMWF forecasting system, we cannot perform er-
ror growth experiments, but we can check average forecast
errors as a function of lead time. We therefore apply the new

way of assessing the model error to the error growth EEFS(t)

of the 500 hPa geopotential height values (Bednář, 2023) cal- 30

culated (Magnusson and Kallen, 2013) as 25 annual averages
over the Northern Hemisphere (20–90°) obtained daily from
1 January 1987 to 31 December 2011. Over this period, we
determine the decline in the average initial displacements of
the model from reality per unit of time using the parame- 35

ter βq of the quadratic hypothesis with model error. Since
the parameter β is also used to describe an upscale error
growth rate from small-scale processes (Zhang et al., 2019),
we check whether λq > λr, as defined in Sect. 5.2, for βq de-
termined by model error and λq ≤ λr for βq determined from 40

small-scale processes (see Sect. 4).

5.1 Methods of calculation

To eliminate the effects of model errors, the initial error
growth curve EEFS,ie(t) is calculated as the differences be-
tween two operational forecasts issued with 1 d lag for the 45

same day. Specifically, we evaluate these for 27 different lead
times and used the following pairs of lead times in hours: 0–
24, 6–30, ..., 96–120, with 6 h shift, and from 108–132, 120–
144, ..., 216–240 with 12 h shift. Detailed information about
calculating the error growth of the ECMWF forecasting sys- 50

tem can be found in Lorenz (1982). The error growth rate
(tendency) is dEEFS,ie/dt ≈ (EEFS,ie(t+1t)−EEFS,ie(t))/1t

with1t = 6 h for the first 17 time steps and1t = 12 h for the
rest. It is evident that this data analysis solely used data pro-
duced by the very same model. One can understand this 1 d 55

offset between two forecasts in the following way. At day 0,
we use some initial condition and propagate it forward in
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time. At day 1, when a new forecast starts with new initial
conditions, these can be interpreted as perturbations to the
day 1 forecast started at day 0. Therefore, comparing these
two forecasts for the very same day as a function of lead time
gives us the initial condition error growth. The only disad-5

vantage of this procedure is that we cannot control the mag-
nitude of the perturbation. What we interpret as perturbation
is the deviation of the true forecast at day 1 from the new
analysis, which is used to initialize the new forecast.

The initial and model error growth curve EEFS,M+ie(t) is10

calculated as differences between operational forecasts and
analyses from ERA-Interim for a given day. Forecasts range
from 0.5 d ago relative to the given day to 10 d ago, with time
step 1t = 12 h. The difference between operational analy-
sis and analysis from ERA-Interim is taken as the initial15

error. The error growth rate (tendency) is dEEFS,M+ie/dt ≈
(EEFS,M+ie(t +1t)−EEFS,M+ie(t))/1t with 1t = 12 h.

5.2 Results and comparisons

From the data, we calculate 25 annual averages of the initial
error growth curve EEFS,ie(t) and 25 annual averages of the20

initial and model error growth curve EEFS,M+ie(t) and their
growth rates (tendencies) dEEFS,ie/dt and dEEFS,M+ie/dt .
We approximate the growth rates by the exponential growth
with model error dEr and by the quadratic hypothesis with
model error dEq. Because the data are only up to 10 d and25

therefore do not cover the entire growth curve and because
dEq is a three-parameter approximation, we first discuss the
error in parameter estimation. Magnusson and Kallen (2013)
showed that the error saturation parameter Elim estimated
from the dEq hypothesis underestimates the true limiting30

value. Bednář et al. (2021) showed that the deviations of the
values of λq and βq of dEq from the true values are anti-
correlated, meaning that when one is overestimated, the other
is underestimated. The average value of λq over 25 annual
averages ofEEFS,ie(t) andEEFS,M+ie(t) has been determined35

by Bednář et al. (2021) to be λq = 0.35 d−1, and to approxi-
mate the data, we fix λq to this value. Therefore, we decrease
the oscillation of βq and bring Elim of dEq closer to the val-
ues determined by Magnusson and Kallen (2013). The fact
that Elim is closer to the theoretical limit values estimated by40

Magnusson and Kallen (2013) justifies this approach.
The resulting values are shown in Fig. 15. We find that

λr,ie ≥ λq,ie and λr,M+ie < λq,M+ie, which satisfies the hy-
pothesis presented in Sect. 4.2. Here, λr,M+ie (Fig. 15a,
solid red curve) has an approximately constant value, show-45

ing approximately the same decrease in αD = the drift rate
dD/dt (D) over the years because it is shown in Sect. 4.2 that
αD = (λq,M+ie− λr,M+ie).

For λr,ie (Fig. 15a, solid blue curve), an increase over time
is observed, indicating an increase in the resolution of the50

ECMWF system with smaller spatiotemporal-scale phenom-
ena with a larger error growth rate. The parameter βq,M+ie
(Fig. 15b, solid blue curve) of the quadratic hypothesis with

model error (Eq. 6) shows an approximately linear decrease
over the years. These values indicate that the average dis- 55

placement value per unit of time β ≈ dD/dt decreased by
40 % from 1987 to 2011, from 5.6 to 3.4 md−1. The pa-
rameter βq,ie (Fig. 15b, solid red curve) for the variant with
an initial error shows an approximately constant value. To-
gether with a constant value of λq,ie (Fig. 15a, black curve), 60

this means that the shape of the error growth rate (ten-
dency) dEie/dt (Eie) changes over the years only by adding
a part for smaller Eie as the model better describes smaller
spatiotemporal-scale phenomena, but this does not change
the overall approximation of dEq, as can be seen in Fig. 16. 65

These figures also show the similarity to the error growth
rates dE/dt of the L05-2 and L05-3 systems (Figs. 6–9) and
the relevance of fixing λq to approximate the data using dEq.

6 Conclusion and discussion

Based on the fact that scale-dependent error growth implies 70

an intrinsic predictability limit, we examined whether omit-
ting atmospheric phenomena, which contribute little to the
final value, will improve the predictability of the resulting
value. In other words, how does the average forecast error
growth change in a model where small-scale phenomena are 75

omitted, but the model error is therefore larger compared to
a model where all phenomena are present and the average
forecast error growth is scale-dependent. For this, we used
the L05 systems defined by Lorenz (2005) and Bednář and
Kantz (2022) and the ECMWF systems with data from Mag- 80

nusson and Kallen (2013) stored in Bednář (2023).
We confirmed that for the multi-scale systems L05-2 and

L05-3, the initial error growth Eie(t) can be described well
by the power law dEp Eq. (3) or the extended power law
dEw Eq. (4), respectively, while a simple exponential growth 85

with model error dEr (Eq. 5) or the quadratic hypothesis with
model error dEq (Eq. 6) are less appropriate. However, the
non-zero parameter β in dEr and dEq describing the model
error also generally relates the multi-scale nature of the sys-
tem. We showed that in the L05 and ECMWF data (in con- 90

trast to the model error scenario) λq ≤ λr, meaning that the
approximation of dEie/dt (Eie) in the early stage grows faster
than the approximation of the whole curve due to the pres-
ence of only smaller spatiotemporal scales in this part.

For the scenarios of model error growth EM(t) and both 95

initial and model error growth EM+ie(t), we showed the ap-
propriateness of the description using exponential growth
with model error dEr and a quadratic hypothesis with model
error dEq (Figs. 8 and 5). For dEM/dt (EM), we explained
the initial decline and subsequent growth described by dEr 100

using the drift D (Fig. 11) defined by Orrell et al. (2001),
which we extended using a hypothesis that views the drift D
as a succession of initial errors followed by an exponential
time evolution driven by the largest Lyapunov exponent λ
of the model after a transition period (Fig. 12). We identified 105
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Figure 15. Values of parameters λ (a) and β (b) of exponential growth with model error dEr and quadratic hypothesis with model error dEq
approximated from annual averages (1987–2011) of the error growth tendencies (rates) dEEFS,ie/dt and dEEFS,M+ie/dt of the ECMWF
forecasting system’s 500 hPa geopotential height values over the Northern Hemisphere (for more details, see Sect. 5.1). (a) The black curve is
λq = 0.35 d−1 determined as the average of the approximated λq of dEq hypothesis over 25 annual averages ofEEFS,ie(t) andEEFS,M+ie(t).
The solid red curve shows the values λr of the dEr approximation of the 25 annual averages of dEEFS,M+ie/dt . The dashed red curve shows
that the best approximation of λr,M+ie is a constant function with λr,M+ie = 0.25 d−1. The solid blue curve shows the values λr of the dEr
approximation of the 25 annual averages of dEEFS/dt . The dashed blue curve shows that the best-fitting approximation of λr is a linear
function λr,ie that increases with time. (b) Values of βq of dEq hypothesis approximating 25 annual averages of dEEFS,ie/dt (solid red
curve) and dEEFS,M+ie/dt (solid blue curve). The dashed red curve shows that the best approximation of βq,ie is a constant function with
βq,ie = 2.8 md−1. The dashed blue curve shows that the best-fitting approximation of βq,M+ie is a linear function βr,ie decreasing with time.

Figure 16. Annual average from 2005 data of the error growth tendencies (rates) dEEFS,M+ie/dt (a) and dEEFS,ie/dt (b) of the ECMWF
forecasting system’s 500 hPa geopotential height values over the Northern Hemisphere (solid curves), approximation by the quadratic hy-
pothesis with model error dEq (Eq. 6) with a constant value of the parameter λq = 0.35 d−1 (dashed–dotted curves), and approximation by
the exponential growth with model error dEr (Eq. 5, dashed curves). We compare the data from the year 1990 (red) to those of 2005 (black).

that λ≈ λq, and the validity of λq > λr based on the drift evo-
lution was verified in the L05 and ECMWF systems (Fig. 14
and Eq. 21). For the L05 systems, we have demonstrated that
βq ≈ dD/dt , i.e., that from the βq value of the quadratic hy-
pothesis with model error dEq the average displacement per5

unit time (average drift rate) can be determined.
For ECMWF systems (forecast of 500 hPa geopotential

height), this means that from 1987 to 2011 we observe a de-

crease in the model error by approximately 40 % from an av-
erage displacement value of 5.6 to 3.4 md−1. Note that while 10

in 1987 the error in initial displacement (initial error) was
approximately 16 m (Magnusson and Kallen, 2013; Bednář
et al., 2021), for the variant with initial and model error, a
displacement of 5.6 m is produced every day in addition to
this value. In 2011, the initial displacement was 6 m; for the 15

variant with initial and model error, an average displacement
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of 3.4 m is produced daily. Thus, we observe a significant
contribution of the model error to the error growth. This is
also why the findings from the model error growth scenario
can be applied to the initial and model error growth scenario,
where the initial and model error growth goes asymptotically5

to the model error growth.
It is also why omitting atmospheric phenomena, which

contribute little to the final value, will not improve the pre-
dictability of the resulting value. The average prediction er-
ror grows faster in a model where small-scale phenomena are10

omitted, but the model error is therefore created, compared
to a model where all phenomena are present, but the average
forecast error growth is scale-dependent (Fig. 10).

We now discuss the possibility that the growth of the dis-
placement produced by the model error may also be scale-15

dependent. In our case, the model was an L05-1 system, i.e.,
a system with one scale and exponential error growth (ED(t)
hypothesis). A variant where the L05-2 system was used as
the model and the L05-3 system as the reality was also tested.
The resulting model error growth is approximately identical20

to the previous variant (L05-1 system as the model and L05-3
system as the reality), i.e., adding a small scale did not affect
the exponential growth of the drift D increment. However,
it should be noted that the magnitude of the average drift
per unit of time βq ≈ dD/dt is much greater than the limit25

(saturation) value of small-scale error magnitude E2,lim, and
thus we are already in the region of exponential error growth
of large-scale variables. For the ECMWF system, it can be
seen (Fig. 15) that over the years that the values of a pa-
rameter βq of the dEq approximation of average initial error30

growth Eie(t) and initial and model error growth Eie+M(t)

converge, and the growth curves of the two variants are sim-
ilar for the later analyzed years, as also confirmed by Froude
et al. (2013). This means that, in contrast to the presented re-
sults of the L05 system, the drift rate of these years is low,35

and the issue of scale-dependent growth of the drift D incre-
ment is relevant and should be further investigated.

Another topic for further research is extending the ED(t)
hypothesis (Eq. 21) to describe the model error growth
EM(t) over the entire range up to saturation rather than just40

the early part where exponential growth is valid. For the part
of the time evolution of the model error where the growth
slows down and reaches saturation, it can be seen that the
drift must reach its limiting value and then no longer con-
tributes to the model error growth and that the exponential45

growth of the drift increment must slow down and reach its
limiting value. However, the specific form needs to be inves-
tigated.

Appendix A: Lorenz’s L05 systems

The L05-1 system was introduced by Lorenz (2005) as a spa-50

tial continuity modification of the Lorenz (1996) system with

N variables connected by governing equations:

dXn
dt
= [X,X]L,n−Xn+F , (A1)

where

[X,X]L,n = 55

J∑
j=−J

′

J∑
i=−J

′(−Xn−2L−iXn−L−j +Xn−L+j−iXn+L+j )/L
2 ,

n= 1, . . .,N . Xn are unspecified (i.e., unrelated to actual
physical variables) scalar meteorological quantities (units),
F is a constant representing external forcing, and t is time.
The index is cyclic so that Xn−N =Xn+N =Xn and vari- 60

ables can be viewed as existing around a latitude circle. If L
is even,

∑
′ denotes a modified summation in which the first

and last terms are to be divided by 2. If L is odd,
∑
′ de-

notes an ordinary summation. Generally, L is much smaller
than N and J = L/2 if L is even and J = (L− 1)/2 if L is 65

odd. To a certain extent, the model quantitatively describes
weather systems, but unlike the well-known Lorenz model
of atmospheric convection (Lorenz, 1963), it cannot be de-
rived from any atmospheric dynamic equations. The motiva-
tion was to formulate the simplest possible set of dissipative 70

chaotically behaving differential equations that share some
properties with the “real” atmosphere. Although mechanisms
such as potential vorticity generation are lacking in the equa-
tions, the model generates five to seven main highs and lows
corresponding to planetary waves (Rossby waves). To keep 75

five to seven main highs and lows, Lorenz (2005) suggested
a ratio N/L= 30 and F = 15. The choice of parameters F
and the setting of time unit= 5 d is also made to obtain a
similar value of the largest Lyapunov exponent to that of the
ECMWF forecasting system (Lorenz, 2005). 80

The L05-2 system (extension to two spatiotemporal
scales) was also introduced by Lorenz (2005) as a modifi-
cation of the two-scale Lorenz (1996) system, where scales
were coupled by linear terms that together do not alter the
large-scale plus small-scale energy and where small-scale 85

variables were driven entirely by the coupling. Rewriting the
equations of the L05-1 system, we would get

dX1,n/dt = [X1,X1]L,n−X1,n− cX2,n+F , (A2)

dX2,n/dt = b2
[X2,X2]1,n− bX2,n+ cX1,n , (A3)

where c sets the rapidness of small scale compared to large 90

scale and b sets the small-scale amplitude size compared
to large scale. Equations (A2) and (A3) have an unrealis-
tic property compared to the numerical weather prediction
systems. The large-scale and small-scale features are repre-
sented by separate sets of variables X1 and X2 instead of ap- 95

pearing as superimposed features of a single set Xtot. Lorenz
(2005) wanted to keep the system as simple as possible, so
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instead of, for example, Fourier analysis, a procedure for ex-
pressing variables Xtot,n as sums of X1,n and X2,n was intro-
duced:

X1,n =

I∑
i=−I

′(α−ω|i|)Xtot,n+i , (A4)

X2,n =Xtot,n−X1,n . (A5)5

Parameters α, ω, and I are chosen so that X1 is a low-pass-
filtered version of Xtot, and X2 represents the difference be-
tween the full signal Xtot and the filtered signal. By this
procedure, X2 has a much smaller amplitude than X1, and
also its time evolution should be faster since the temporal10

derivative is related to the spatial derivative via the difference
(X1,n+1−X1,n−2), which for the low-pass-filtered signal X1
is typically smaller than for the signal X2.

More precisely, Lorenz’s (2005) idea is that the param-
eters α and ω are chosen so that X1 equals Xtot whenever15

Xtot changes quadratically over the longitudes (variables)
n− I through n+ I . It is when

∑I
i=−I

′(α−ω|i|)= 1 and∑I
i=−I

′i2(α−β|i|)= 0. By solving these equations, we get

α = (3I 2
+ 3)/(2I 3

+ 4I ) , (A6)

ω = (2I 2
+ 1)/(I 4

+ 2I 2) . (A7)20

The procedures (Eqs. A4 and A5) are functions of the interval
length [−I,I ].

When creating a system dXtot/dt as the sum of dX1/dt
and dX2/dt (sum of Eqs. A2 and A3), the coupling term
cX1,n in Eq. (A3), which enables short waves to develop,25

is combined with the dissipation term −X1,n in Eq. (A2).
Therefore, the coupling term can be canceled entirely, or it
can appear in X1 rather than X2 when Xtot is analyzed, and
there might be nothing to enable the short waves in X2 to
grow. Lorenz (2005) reformulated the coupling process by30

adding a small fraction of X1 to X2 so small waves in X2
can amplify. It is done by replacing b2

[X2,X2]1,n+cX1,n by
[X2,X2+ c

′X1]1,n in Eq. (A3), and the L05-2 system would
be

dXtot,n/dt =[X1,X1]L,n+ b
2
[X2,X2]1,n

+ c[X2,X1]1,n−X1,n− bX2,n+F ,
(A8)35

where c = c′ · b2.
Based on the L05-2 system (Eqs. A4–A8), Bednář and

Kantz (2022) designed a three-level (scales) system (L05-3):

dXtot,n/dt =[X1,X1]L,n+ b
2
1[X2,X2]1,n

+ b2
2[X3,X3]1,n+ c1[X2,X1]1,n

+ c2[X3,X2]1,n−X1,n− b1X2,n

− b2X3,n+F ,

(A9)

where c1, c2, b1, and b2 are parameters, and the procedures 40

for expressing the variables are

X1,n =
∑I1

i=−I1

′
(((

3I 2
1 + 3

)/(
2I 3

1 + 4I1
))

−
((

2I 2
1 + 1

)/(
I 4

1 + 2I 2
1
))
|i|
)
Xtot,n+i ,

(A10)

X2,n =
∑I2

j=−I2

′
(((

3I 2
2 + 3

)/(
2I 3

2 + 4I2
))

−
((

2I 2
2 + 1

)/(
I 4

2 + 2I 2
2
))
|j |
)

× (Xtot,n+j −X1,n+j ) ,

(A11)

X3,n =Xtot,n−X2,n−X1,n , (A12)

where I1 and I2 set the length of the intervals [−I,I ]. 45

The parameters of L05 systems (L05-1, L05-2, L05-3)
should be set so that all scales behave chaotically (the largest
Lyapunov exponent of each scale is positive) and that all
scales have a significant difference in amplitudes and fluc-
tuation rates. For the L05-1 system (Eq. A1), the chaotic be- 50

havior is determined by the value of F and the number of
variables N . For Eqs. (A2) and (A3), where the forcing F
acts only on a large scale, the chaotic behavior of the small
scale is created by coupling. The coupling size is cascaded
from a large scale to a small one. Because the values of large- 55

scale variables are determined by the forcing F , the F value
indirectly affects the small-scale chaotic behavior and must
be chosen large enough to ensure chaotic behavior through
coupling for all scales (levels). This fact must also apply to
L05-2 and L05-3 systems, but procedures (A4) and (A5) for 60

the L05-2 system and (A10)–(A12) for the L05-3 system also
affect the scales’ chaotic behavior, amplitude, and fluctuation
rate through the choice of I (Lorenz, 2005).

To maintain the required properties F = 15,N = 360,L=
12, and J = 6 is chosen for the L05-1 system (Fig. 1a). To 65

have the small scale 100 times smaller than the large scale,
F = 15, N = 360, L= 12, J = 6, b = 10, c = 1, and I = 10
are selected for the L05-2 system (Fig. 2a). For the L05-3
system, with requirements for the medium-scale amplitude to
be about 10 times smaller than the large-scale amplitude, the 70

small-scale amplitude to be about 10 times smaller than the
medium-scale amplitude, and for the scales to have different
oscillation rates (Fig. 3a), F = 15, N = 360, L= 12, J = 6,
b1 = 1, b2 = 10, c1 = 1, c2 = 1, I1 = 20, and I2 = 10. The
calculation is done using a fourth-order Runge–Kutta method 75

with a time step 1t = 1/240 or 0.5 h.

Code and data availability. The ECMWF forecasting system
dataset was obtained from the personal repository of Linus Mag-
nusson (Bednář, 2023). The L05-3 system dataset and products
from the ECMWF forecasting system dataset, codes, and figures 80

were conducted in Wolfram Mathematica, and they are permanently
stored at https://doi.org/10.17605/OSF.IO/2EWXB (Bednář, 2023).

https://doi.org/10.17605/OSF.IO/2EWXB
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Remarks from the typesetter

TS1 Please check if rather than changing everything to “qu” in the captions (and therefore also in the figures), would it
be better to change “qu” to “qv” in Eq. (2)? If so, this also has to be approved by the editor first. Please provide an
explanation as to why this has to be changed. Thank you.
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