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Abstract. The forecast error growth as a function of lead time of atmospheric phenomena is caused by initial and model errors. 

When studying the initial error growth, it may turn out that small scale phenomena, which contribute little to the forecast 

product, significantly affect the ability to predict this product. The question under investigation is whether omitting these 

atmospheric phenomena will improve the predictability of the resulting value. The topic is studied in the extended Lorenz 10 

(2005) system. This system shows that omitting small spatiotemporal scales that significantly affect the ability to predict will 

reduce predictability more than modeling it. In other words, a system with model error (omitting phenomena) will not improve 

predictability. A hypothesis explaining and describing this behavior is developed, with the difference between systems (model 

error) produced at each time step seen as the error of the initial conditions. The resulting model error is then defined as the 

sum of the increments of the time evolution of the initial conditions so defined. The hypothesis is compared to the fit parameters 15 

that define the model error in certain approximations of the average forecast error growth. Parameters are interpreted in this 

context, and the approximations are used to estimate the errors described in the hypothesis. It is p roposed how to distinguish 

increments to prediction error growth from small spatiotemporal-scales phenomena and model error. Results are presented for 

the error growth of the ECMWF system, where a 40% reduction in model error between 1987 and 2011 is calculated based on 

the developed hypothesis, while over the same time, the instability (error growth rate) of the system with respect to initial 20 

condition errors has grown. 

1. Introduction 

Forecast errors in numerical weather prediction systems grow in time due to the inaccuracy of the initial state (initial error), 

amplified by the chaotic nature of the system itself and the model imperfections (model error). In the setting of classical low-

dimensional chaos, one would observe an exponential error growth of any tiny initial error whose exponent is given by the 25 

largest Lyapunov exponent of the system, with some saturation when the error reaches the magnitude of the standard deviation 

of the quantity to be predicted. In contrast to this, several authors have observed in the past (Toth and Kalnay, 1993; Lorenz, 

1969; Aurell et al., 1996, 1997; Boffetta et al., 1998) that the proper Lyapunov exponent of a dynamical system might not be 

a relevant description of the initial error growth. Brisch and Kantz (2019) and Zhang et al. (2019) associated initial error growth 
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with scale-dependent error growth, where tiny errors grow much faster than larger ones. Lorenz (1996) gave a sketch of such 30 

error growth: a typical quantity to be predicted is a superposition of the dynamics on different scales. After a fast growth of 

the small-scale errors with saturation at these very same small scales, the large-scale errors continue to grow at a slower rate 

until even these saturate. Therefore, Lyapunov exponents of structures of various spatiotemporal scales are taken as the 

previously mentioned scale-dependent quantity, and they determine the error growth on their respective scales. It is also evident 

that in practice, initial errors are not infinitesimal in the mathematical sense, and therefore the exponential growth of 35 

infinitesimal errors might be irrelevant for the growth of forecast errors in operational weather forecasts. 

In numerical weather predictions, the average forecast error as function of lead time is influenced by many deviations from a 

simple exponential growth: there is the saturation effect of larger errors, the potential scale dependence of the instability, and 

also the fact that real initial errors are not infinitesimal and might not point into the locally most unstable direction. Moreover, 

if the model error is due to neglecting small scale and fast phenomena, it is highly fluctuating along the model trajectory. In 40 

order to describe such effects, the literature contains different phenomenological approximations for the time derivative of the 

average error magnitude (error growth rate or tendency) as a function of the error magnitude in numerical weather predictions. 

We will briefly recall these here since we will use suitable fits to the observed error growth as function of error magnitude for 

our atmospheric model simulations later. We will show that initial errors of magnitudes that are comparable to real weather 

forecasts do not play a dominant role in our studied model systems, while model errors do. Moreover, we will present an 45 

explanation of the observed error growth in terms of an averaged model error called the drift. 

In low-dimensional bounded chaotic systems with at least one positive Lyapunov exponent, the growth of infinitesimal errors 

is exponential for a finite time interval, given by a linear time derivative:  

 exp

e e e 0= , ( ) = ,
t

xp xp xpdE Edt E t E e


  (1) 

 where ( )E t  is the error magnitude, t  is time, and   is the largest Lyapunov exponent of the system. Since e ( )xpE t  in Eq. 50 

(1) grows unboundedly, this can be true only as long as ( )E t  is small since every error has to saturate at the latest when it has 

grown to the order of magnitude of the diameter of the attractor (the invariant set). This saturation effect was considered by 

Lorenz (1982), who introduced the quadratic hypothesis ( )quE t :  
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where limE  is the limit (saturation) value of the error magnitude. As a function of time, the error q ( )uE t  shows a sigmoidal 55 

shape, see Fig. 5b. 

For a scale-dependent error growth in the spirit of Lorenz (1969), Brisch and Kantz (2019) proposed using a power law 

divergence of the effective, scale-dependent Lyapunov exponent ( ) bE E −  which gives the time evolution:  

 ( )
1/

1

0= , ( ) = ,
b

b b

p pdE aE dt E t E abt− +  (3) 
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where the exponent b  connects Lyapunov exponents and limit errors of the different scales (Brisch and Kantz, 2019), and the 60 

coefficient a  determines the degree of the scales’ coupling (Bednar and Kantz, 2022). The forecast error then grows as a 

power law in time, ( )pE t , with a very fast growth rate when it is still small and a slow growth rate when it is large. Since 

( )pE t , Eq. (3), again grows unboundedly, Bednar and Kantz (2022) introduced the extended power law ( )epE t  that allows 

saturation using the same trick as Lorenz (1982):  

 1= 1 .b

ep

lim

E
dE aE dt

E

−  
− 

 
 (4) 65 

 

Zhang et al. (2019) described scale-dependent error growth differently. They took a two-parametric hypothesis:  

 ( ) ( )0= , ( ) = 1 ,
t trr r

r r r r

r

dE E dt E t E e e
 

 

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 where 
r  is a synoptic-scale error growth rate and 

r  is an upscale error growth rate from small-scale processes. If /r r   

is large, this leads to a super-exponential growth of small errors and to the classical exponential error growth when ( )rE t  is 70 

large. We can and should again include saturation of the error by the factor (1 / )limE E− : 

 ( )= 1 .q q q

lim

E
dE E dt

E
 
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The two-parametric model rdE  Eq. (5) was originally designed to describe initial and model error growth (Leith, 1978). In 

this interpretation, r  is the largest Lyapunov exponent of the system (similarly to exp  in Eq.(1)), and r  is the model error 

source term due to the imperfect representation of the atmosphere. Also, qdE , Eq.(6) is called the quadratic hypothesis with 75 

model error for the same reason as for rdE  (Savijarvi, 1995; Dalcher and Kalnay, 1987), although compared to Eq. (2), it 

includes a constant term and therefore allows for some skewness in /dE dt  as a function of E . 

When we will present the results of our error growth numerical analysis, we will particularly present the error growth rate as 

a function of error magnitude. This allows us to better distinguish between these different error growth models than studying 

the error magnitude as a function of time, even though error magnitude as function of time is relevant in predictions. 80 

While the above-listed error growth approximations are supposed to approximate the effectively observed average error growth 

in operational forecasts, let us now focus on the model error. The model is given as a set of the first order in time differential 

equations of the form = ( ( ))
dX

G X t
dt

 where X  is a (high dimensional) phase space vector which describes the current state 

of the atmosphere and ( )G X  is a vector-valued function which defines the rate of change of this vector at every possible state. 

In operational weather forecasts, the core of such a system in given by the six variables wind speed, pressure, density, and 85 
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temperature, and the minimal setting for G  is then called the “primitive equations” (Phillips, 1973). Following (part of) the 

meteorological literature, we will call the right-hand side ( )G X  the model tendency, while in the context of dynamical 

systems, it is called the vector field. 

Following, e.g., Orrell et al. (2001), the model error 
eG  at a model space point ( )X t  is described as the difference between 

the model vector field (tendency) = ( ( ))
dX

G X t
dt

 and the observed time derivative (tendency) 
dX

dt
 of the projection 90 

( ) := ( )X t P X t
 
 
 

 of the “reality” ( )X t  into the model space:  

 ( ) ( )
( )

( ) = ( ) .e

dX t
G X t G X t

dt
−  (7) 

Let us stress that in operational forecasts, since we do not know the perfect model, the true time derivative 
dX

dt
 is only known 

by observation, while in our later model studies, we have a mathematical expression for the vector field of “reality” as well. 

In a very strong simplification, one could assume that the absolute value of eG  is, on average, the constant   in Eq. (5) which, 95 

irrespective of initial condition errors, will lead to a deviation of the model solution from reality. While it is evident how to 

define the model error in a single time step, we will later discuss how model errors propagate in time, how model errors at 

different positions along a trajectory accumulate, and also introduce the notion of drift for that purpose. 

The main issue about forecasts is how far into the future they might be useful. The prediction horizon quantifies this as the 

time when the forecast error has grown to a certain percentage of the climatological uncertainty of the forecast target, where 100 

the latter is approximated by limE  in the above error growth assumptions. 

For exponential growth exp

e 0( ) =
t

xpE t E e


 and for an initial error 0E  going to zero, the time limt  at which the error reaches a 

limiting value limE , goes to infinity:  

 0

0

exp

ln ln
= 0.lim

lim

E E
t for E



−
→ →  (8) 

 However, a strict predictability limit limt  exists for scale-dependent error growth even when the initial error 0E  vanishes 105 

(Palmer et al., 2014; Brisch and Kantz, 2019). For a description by a power law pdE , Eq. (3), the predictability limit limt  is:  

 ( ) ( )0 0= ( ) / = / ( ) < 0.b b b

lim limt E t E a b t E a b for E−  →   →  (9) 

 For an exponential growth with a non-zero r  parameter rdE , Eq. (5), the prediction horizon limt  is:  

 0 0

1 1
( ) = ln( ) ln( ) = ln 1 < 0.lim limt E E E t E for E

  

    

  
+ − + → +  →  

   
 (10) 
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Scale-dependent error growth implies that both model assumptions pE  and 
rE  grow faster than exponentially when errors 110 

are small, thereby limiting the prediction horizon because further and further improvements of the precision of the initial 

condition are compensated by a faster initial error growth. In the context of weather prediction, this means that the influence 

of small scale atmospheric phenomena, which contribute little to the final value, significantly affect the ability to predict this 

value. Figs. 1 - 3 show such behavior simulated in the extended Lorenz (2005) system with one (L05-1), two (L05-2), and 

three (L05-3) spatiotemporal scales (see Appendix A for more information on these systems). Fig. 1a shows the values of the 115 

L05-1 system variables at a given time. Because this is a single spatiotemporal scaled system, the average growth of the initially 

small error is exponential. The two initially nearby trajectories begin to diverge significantly in this setting after about 30 days 

(Fig. 1b). Adding a considerably smaller scale (L05-2 system) that does not significantly affect the overall value in sum (Figure 

2a) reduces the closeness of the two initially nearby trajectories of an overall variable by ten days (Figure 2b). By adding a 

third medium scale (Figure 3a, L05-3 system), the two initially nearby trajectories of an overall variable start to diverge 120 

significantly in about ten days (Figure 3b), which is about three times earlier than for the L05-1 system. This is a consequence 

of the much faster growth of the small scale errors. 

Including small spatiotemporal scales, i.e., improving the model’s spatial and temporal resolution, therefore enhances the 

instability (error growth rate) with respect to initial condition errors. The question under investigation in this paper is whether 

omitting small scale atmospheric phenomena, which contribute little to the final value, will improve the predictability of the 125 

resulting value. In other words, how does the average forecast error growth change in a model where small-scale phenomena 

are omitted but where model errors are therefore introduced, compared to a model where all phenomena are present but the 

average forecast error growth is scale-dependent.  

Buizza (2010), Magnusson and Kallen (2013) or Jacobson (2001) show that improving the model’s spatial and temporal 

resolution will improve the ability to predict, especially for short forecast range (Buizza, 2010). However, the cited studies 130 

work with models that do not model small spatiotemporal phenomena (they are parameterized) and whose initial condition 

error magnitude is larger than the magnitude of these phenomena. We have verified the fact that the high resolution model 

(that models small scales) is less stable than the low resolution model (that doesn’t model small scales) against initial condition 

errors (Bednar and Kantz, 2022; Budanur and Kantz, 2022), and that therefore the issue of omitting small scales has another 

facet. Our new approach models and omits small spatiotemporal scales using the one- and two-scale Lorenz-2005 (L05-1 and 135 

L05-2) system, Lorenz (2005), and its three-scale extension L05-3 introduced before in Bednar and Kantz (2022). The omitted 

scale is the small scale for the L05-2 system and the small and medium scale for the L05-3 system. L05 system definition and 

further details can be found in Appendix A.  

The protocol how to measure the initial error growth for the L05 systems is defined in Section 2.1. and the results are presented 

and compared in Section 3.1. The model error scenario, where the L05-1 system is the model and the L05-2 and L05-3 systems 140 

are “reality,” is defined in Section 2.2, and the results are presented and compared in Section 3.2. The variant with initial and 

model error is defined in Section 2.3, and the results are presented and compared in Section 3.3. The results of different error 
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growth scenarios are compared and discussed in Section 3.4. Section 4.1 includes the calculation of the model error (drift) 

defined in Section 2.4 and a hypothesis linking the error so defined with the growth of the average model error determined by 

the difference between model and “reality.” The meaning of the model error source   in 
rdE  of Eq. (5) and qdE  Eq.(6) and 145 

how to link the value of   with the value of the model error (drift) is discussed and explained in Section 4.2. Section 5 presents 

a similar analysis for the ECMWF forecast system data. Conclusions and discussions are then presented in the final section. 

2. Error growth in the L05 systems - types and methods of calculation 

The average error magnitude for L05 systems is calculated numerically using the method introduced by Lorenz (1996; 2005). 

Generally, we define an “error” as the distance between two trajectories where one, the reference trajectory, is supposed to be 150 

the “truth,” and a second trajectory is generated either under perturbation of the initial condition or under perturbation of the 

dynamical equations, or both. We measure the error magnitude ( )e t  after fixed time intervals. We then calculate the mean 

error magnitude ( )E t  after fixed times, calculate the average growth tendency 
dE

dt
 during the last time interval, and report 

the mean error magnitudes versus time and the mean growth tendencies (rates) versus mean error magnitudes. 

An alternative method for calculating scale-dependent error growth is called the “finite size Lyapunov exponent” (Aurell et 155 

al., 1996; 1997; Boffetta et al., 1998; Cencini et al., 2013). In brief, a finite size Lyapunov exponent ( )= 1/ ( / )E dE dt  or 

finite size error growth tendency /dE dt  can be defined as the ergodic average over phase space of the growth rate of 

perturbations of a given magnitude E , where the growth rate is defined as the inverse of the time ft  needed for the error 

magnitude to increase by a pre-defined factor f , hence ( ) = (1/ ) lnfE t f . We choose the former method because it is closer 

to the process of calculating the average forecast error magnitude of numerical weather prediction systems (Lorenz, 1982; 160 

Savijarvi, 1995; Froude et al., 2013; Zhang et al., 2019) and because it is more consistent with the performance of forecasts. 

For numerical weather prediction systems, errors in initial conditions and model errors (inaccurate representation of 

atmospheric processes by the model) are sources of prediction inaccuracy. For the L05 systems, we simulate the initial error 

growth (perfect model assumption), the model error growth (perfect initial conditions assumption), a combination of both 

(initial and model error assumption), and the model error growth as defined by Orrel et al. (2001) (drift assumption). To 165 

calculate the average error magnitude, a reference trajectory (considered the “truth” or verification) and a trajectory which is 

the numerical solution of the systems with a given error, are repeatedly generated. For this scheme to be meaningful, we have 

to ensure that the reference trajectory is on the system’s attractor and that the repetition of this scheme samples the whole 

attractor with correct weights (the invariant measure). We solve this issue in the following way: We first integrate the system 

over ten years (175200 steps), starting from arbitrary initial conditions, and assume that after discarding this transient, the 170 

trajectory is on the attractor. We continue to integrate this single trajectory and consider segments of it as reference trajectories 
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for error growth, i.e., the many reference trajectories are simply segments of one very long trajectory, which ensures not only 

that all these segments are located on the attractor but that in addition, they sample the attractor according to the invariant 

measure.     

2.1. Initial error growth 175 

By “initial error growth,” we denote the growth of errors in the initial conditions, which limit predictability if a system is 

chaotic. In order to determine numerically the largest Lyapunov exponent, we have to ensure that initial perturbations point 

already into the locally most unstable direction since otherwise, errors might even shrink in short times (this is also a relevant 

issue in ensemble forecasts, and there find its solutions in using bred vectors (Toth and Kalnay, 1997)). We solve these issues 

in the following way: We start with a random perturbation of the reference trajectory of very small amplitude and let this 180 

trajectory evolve over time before determining its distance toward the reference trajectory. In other words, we discard some 

initial time interval of error growth since this is affected by some transient behavior before it starts to grow with the maximum 

Lyapunov exponent. 

We calculate the initial error growth in systems with one (L05-1), two (L05-2), and three (L05-3) scales to illustrate the 

behavior in systems with a different number of spatiotemporal scales. The three spatial scales 
1X , 

2X , and 
3X  for the L05-3 185 

system and two spatial scales
1X , and 

2X  for the L05-2 system cannot be separated in terms of a coordinate transform but are 

intrinsically coupled and superimposed in the variables totX  of the system. The initial conditions of the “reality” for L05-3 

and L05-2 systems are called ,0,tot nX , from which one finds 1,0,nX , 2,0,nX ,and 3,0,nX  through Eqs. (A10), (A11), and (A12) 

for the L05-3 system, and 1,0,nX , 2,0,nX  through Eqs. (A4), and (A5) for the L05-2 system. The initial conditions of the 

“reality” for the L05-1 system are called 0,nX . The initial values of the “prediction” are then for the L05-1 system 190 

0, 0,= (0)n n nX X e + , where (0)ne  are the initial errors randomly selected from the normal distribution ( = 0; = 0.01)ND   . 

Since the system’s state totX  is the sum over all spatiotemporal components, for L05-3 and L05-2 systems, any arbitrary but 

small error with spatially uncorrelated components affects only the smallest scale component. Only a spatially correlated initial 

error would appear in another component. However, since this error would immediately propagate into the small-scale 

variables and then grow fastest in these, a perturbation with initial errors in the smallest scale component is the only practical 195 

choice. The initial values of the “prediction” for the L05-3 system are then ,0, 1,0, 2,0, 3,0, 3, ,0, 3,= =tot n n n n n tot n nX X X X e X e + + + +

, where 3, (0)ne  are the initial errors randomly selected from the normal distribution ( = 0; = 0.001)ND   . Randomly 

selected from the same normal distribution are also the initial errors 2, (0)ne  of the L05-2 system, where the initial values of 

the “prediction” are ,0, 1,0, 2,0, 2, ,0, 2,= =tot n n n n tot n nX X X e X e + + + . 
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From the initial values of “reality” and “prediction,” we integrate the L05 systems equations (Eqs. (A1), (A8), and (A9)) for 200 

41.7 days ( = 2000K  steps). In each time step k  of the numerical integration, , ,k nX , and , ,k nX
  are obtained. The size of the 

error at a given time k t  is , , , , ,( ) =n k n k ne k t X X  
 − , where =1, ,k K , =1, ,n N  ( = 360N  variables for all used 

systems).   defines a scale, or sum of scales ( = ,1,2,3tot  (L05-3 system), = ,1,2tot  (L05-2 system)) and is therefore 

omitted for the L05-1 system. We perform = 400M  runs to calculate the average error growth. In each new run, the initial 

values ,0,nX  are the last values , ,K nX  of the previous run. The average initial error growth ( )E t  is calculated as the 205 

geometric mean of the runs of the Euclidean distances between “reality” and “prediction”:  

 ( ) ( )2
2

, ,

=1=1

1
= .

M N

M
tot n m

nm

E k t e k t
N



 
  

 
  (11) 

The geometric mean is chosen because of its suitability for comparison with growth governed by the largest Lyapunov 

exponent. For further information, see Bednar et al. (2014) or Ding and Li (2011). As a result, we have numerical averages for 

the error growth as a function of time steps after perturbing the reference trajectories in the full phase space and for each scale. 210 

We can convert these results into the error growth tendency (rate) as a function of the error magnitude.  

2.2. Model error growth 

  By “model error growth,” we denote the growth of errors caused by the inaccurate description of “reality” by the “model.” 

This inaccuracy involves small-scale atmospheric processes unresolved by the model, which for numerical weather prediction 

systems are approximated to the resolved scale by a procedure called parameterization. It also denotes model biases that are 215 

either unknown or have not yet been addressed (Allen et al., 2006). It is a common expectation that model errors in numerical 

weather forecasts can be reduced by improving the spatial and temporal resolution of the forecast system. 

To simulate this in the L05 systems environment (Appendix A), we use the L05-2 and L05-3 systems as the “reality” and the 

L05-1 system as the “model.” Thus, the unresolved or unknown scale is the small scale for the L05-2 system and the small 

and medium scale for the L05-3 system. This approach is justified by the fact that the L05-2 and L05-3 systems can be viewed 220 

as a variant of the L05-1 system:  

   ( ), 1 1 1,,
/ = , ,tot n n nL n

dX dt X X X F t− +  (12) 

 where ( )    2

2 2 2 1 2,1, 1,
= , ,n nn n

F t b X X c X X bX F+ − +  for the L05-2 system and 

( )        2 2

1 2 2 2 3 3 1 2 1 2 3 2 1 2, 2 3,1, 1, 1, 1,
= , , , ,n n nn n n n

F t b X X b X X c X X c X X b X b X F+ + + − − +  for the L05-3 system are treated as a 

forcing, which varies in a complicated manner with time. We parameterize these small-scale phenomena contained in ( )nF t  225 

by the average value of these phenomena, which is close to zero, and therefore we can write:  

 ( ) =15,nF t F  (13) 
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 where    represents the mean calculated over a long orbit on the L05-2 and L05-3 systems attractors. 

To calculate the average model error growth, we first define initial conditions that are the same for “model” and “reality” 

(perfect initial conditions assumption) and are determined from the values ,0,tot nX  of “reality” (L05-2 or L05-3 systems) at the 230 

end of the initial transient. Let us stress that we can use ,0,tot nX  of our high-resolution L05-3 or L05-2 system without any 

projection as the initial state of the L05-1 system and that the lack of smaller scales is only expressed by the lack of feedback 

from the smaller scales in the equation of motion. 

From these initial values, we integrate forward the L05-2 or L05-3 systems equations (“reality”) and the L05-1 system 

equations (“model”) for 41.7 days ( = 2000K  steps). In each time step k  of the numerical integration, , ,tot k nX  (“reality”) and 235 

,k nX  (“model”) are obtained. The size of the error at a given time k t  is , , , ,( ) =M n tot k n k ne k t X X − , where =1, ,k K , 

=1, ,n N  ( = 360N  variables for all used systems). We perform = 400L  runs to calculate the average error growth. In 

each new run, the initial values ,0,tot nX  are the last values , ,tot K nX  of the previous run. The average model error growth ( )ME t  

is calculated as the geometric mean of the runs of the Euclidean distances between “reality” and “model”:  

 ( ) ( )2
2

, ,

=1=1

1
= .

L N

L
M M n l

nl

E k t e k t
N

 
  

 
  (14) 240 

 As a result, we have numerical averages for the model error growth as a function of time steps. Note that in this framework, 

only , ,tot k nX  (L05-2 and L05-3 systems) are compared to ,k nX  (the L05-1 system) and not the individual scales. We can 

convert these results into the error growth tendency (rate) as a function of the error magnitude.  

2.3.  Initial and model error growth 

By “initial and model error growth,” we denote the combination of the initial error growth defined in Section 2.1. and the 245 

model error growth defined in Section 2.2. We describe the L05-2 and L05-3 systems as “reality” and the L05-1 system with 

perturbations in the initial conditions of “reality” as “model prediction.” 

In this setting, we do not discard the initial time interval of initial error growth because this transition period is negligible 

compared to the model error growth. The initial conditions of the “reality” for L05-3 and L05-2 systems are called ,0,tot nX  and 

determined in the same way described above. The initial values of the “model prediction” for the L05-1 system are then 250 

0, ,0,= (0)n tot n nX X e + , where (0)ne  are the initial errors randomly selected from the normal distributions 

( = 0; = 0.01)ND    and ( = 0; = 0.2)ND   . From initial values, we integrate forward the L05-2 or L05-3 systems 

equations (“reality”) and the L05-1 systems equations (“model prediction”) for 41.7 days ( = 2000K  steps). In each time step 

k  of the numerical integration, , ,tot k nX  (“reality”) and ,k nX   (“model prediction”) are obtained. The size of the error at a given 

time k t  is , , , ,( ) =M ie n tot k n k ne k t X X+
 − , where =1, ,k K , =1, ,n N  ( = 360N  variables for all used systems). We 255 
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perform = 400L  runs to calculate the average error growth. In each new run, the initial values ,0,tot nX  are the last values 

, ,tot K nX  of the previous run. The average initial and model error growth ( )M ieE t+
 is calculated as the geometric mean of the 

runs of the Euclidean distances between “reality” and “model prediction”:  

 ( ) ( )2
2

, ,

=1=1

1
= .

L N

L
M ie M ie n l

nl

E k t e k t
N

+ +

 
  

 
  (15) 

 As a result, we have numerical averages for the initial and model error growth as a function of time steps. Note that in this 260 

framework, only , ,tot k nX  (L05-2 and L05-3 systems) are compared to ,k nX  (the L05-1 system) and not the individual scales. 

We can convert these results into the error growth tendency (rate) as a function of the error magnitude.  

2.4. Drift 

Section 2.2 describes how we can numerically measure the effects of the model error on forecast accuracy. However, if we 

want to understand how the model error drives the model trajectory away from reality, we need an additional concept. The 265 

reason is that model errors at different positions along the trajectory are only weakly correlated. This is a consequence of the 

fact that the lack of small scales and fast degrees of freedom in the model equations dominates model errors. But if model 

errors at different positions along a trajectory are uncorrelated, then they can partially compensate each other, and their effect 

is not the same as if we assume that model errors along a trajectory are everywhere about the same. Therefore, We will recall 

the concept of drift as Orrell et al. (2001) discussed. For these purposes, let us first generally define the “model” (L05-1 system 270 

in our case) as ( ) ( )( )/ =dX t dt G X t  where nX   is the “model” state space vector ( = 360n in our case) and the “reality” 

state space vector ( ) nX t  . In general, n n  and it is necessary to project X  from the state space of “reality” to the state 

space of “model” (Data Assimilation for Numerical Prediction Models). In our case, = = 360n n , = totX X , and we use either 

the L05-2 system ( )1 2( ) / = ( ), ( )totdX t dt G X t X t  or the L05-3 system ( )1 2 3( ) / = ( ), ( ), ( )totdX t dt G X t X t X t  as “reality.” The 

model error eG  at the point ( )totX t  is then the difference between the “model” vector field (tendency) and the tendency of the 275 

projection of “reality” into the “model” space. In our case, we can write:  

 ( )( ) ( )( )
( )

= .
tot

e tot tot

dX t
G X t G X t

dt
−  (16) 

The drift vector ( )d   was introduced by Orrell et al. (2001) as  

 ( ) ( )( ) ( )( ) ( ) ( )
0 0

= = 0 .e tot tot tot totd G X t dt G X t dt X X
 

 − +   (17) 
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This is an accumulation of model errors along a piece of the model trajectory. As we will see in numerical simulations (Fig. 280 

11), the absolute value of drift | ( ) |d   will not grow approximately linearly in time, i.e., it is not the same as accumulating the 

absolute value of the model error | |eG  along the same piece of the trajectory. 

This is a consequence of the here considered case of neglected small scale motion: Since the ignored scales fluctuate fast, the 

model errors at successive positions on the trajectory lose their correlations. We checked this for our L05-models explicitly by 

calculating the auto-correlation function of the drift vectors  as a function of their time lag and found a very fast decay within 285 

a few time steps. Therefore, different from model errors in low-dimensional systems which can be assumed to be spatially 

highly correlated, one here accumulates random vectors, and the drift, therefore, follows a path that resembles a Brownian 

path, as already suggested in Orrel et al. (2001). There and in Orrell (2002), it is also shown how to approximate the integral 

by summing a series of short-time model errors over finite time steps t . The absolute value of drift | ( ) |d   as a function of 

  grows sub-linearly, as will be demonstrated later and gives a more realistic estimate of the role of model errors. What, 290 

however, is ignored here is that a model error in the first time step creates a kind of initial condition error for the second time 

step, which then would grow as an initial condition error. We will discuss this later. 

To calculate the average drift D  comparable to previous cases, we first calculate the time evolution of “reality” , ,tot k nX  (L05-

2 or L05-3 systems), calculated from the initial conditions after the transient period. From each time step k  of the time 

evolution of , ,tot k nX  “reality” (up to = 2000K  steps), we calculate the one-step t  time evolution of the “model.” 295 

, , ,=tot k n k nX X  are therefore viewed as initial conditions for the one-step t  time evolution of the “model.” The size of the 

drift at a given time k t  is the sum of all previous and current error vectors: ( )
1

, , 1,=0
( ) = (( 1) )

k

n j n tot j nj
d k t X j t X

−

+ +  − , 

where =1, ,k K , =1, ,n N  ( = 360N  variables for all used systems). Notice that it is not the absolute value of the t -

errors which are accumulated but the vectors (see Fig. 4), so that in the summation, there can be cancellation effects and hence 

a slower-than-linear growth of the drift with time. 300 

We perform = 400L  runs in order to calculate the average error growth. In each new run, the initial values ,0,tot nX  are the 

last values , ,tot K nX  of the previous run. The average drift ( )D t  is defined as the geometric mean of the runs of the Euclidean 

distances between “reality” and “model”:  

 ( ) ( )2
2

,

=1=1

1
= .

L N

L
n l

nl

D k t d k t
N

 
  

 
  (18) 

 As a result, we have numerical averages for the drift as a function of time steps. We can convert these results into the drift 305 

growth tendency as a function of the drift magnitude.  
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3. Error growth in the L05 systems – results and comparisons 

Based on the described methods, we calculate the average prediction error growth for L05 systems. We approximate the 

numerical error growth curves using the hypotheses Eqs. (1) - (6) and try to identify the most appropriate description. We use 

these results to determine how the average forecast error growth changes in a “model” where small-scale phenomena are 310 

omitted, but the model error is therefore created (perfect initial conditions assumption or initial and model error assumption) 

compared to a “model” where all phenomena are present, but the average forecast error growth is scale-dependent (perfect 

model assumption). The resulting behavior will be explained using the drift. 

3.1. Initial error growth 

Fig. 5a shows the initial error growth rate (tendency) /dE dt  as a function of the error magnitude E  for the L05-1 system, 315 

while Fig. 5b shows the error magnitude as a function of time. We also show the best fit results of the error growth models 

represented by Eqs. (1) to (6). It turns out that the initial part of the growth rate is linear without any significant offset, i.e., we 

see a linear increase with a beginning at ( = 0, / = 0)E dE dt . Therefore, constants in the error growth models which were 

included to represent the model error are consequently close to zero. Also, the power law fit yields a power close to 1. Because 

of the saturation of the error at large times, the error growth rate decays to zero when the error is large, which can be well 320 

represented by the factor (1 / )limE E−  in the error growth models. Hence, all models with this saturation term allow good fits 

to the error growth rate and the error magnitude as a function of time in the whole range and confirm that the L05-1 system is 

a classical chaotic system with the largest Lyapunov exponent of about 0.33   1/ day. 

The behavior is obviously different for the L05-2 system, which contains additionally small scale degrees of freedom, as shown 

in Fig. 6. Already, the initial part of the error growth rate (for small E ) is curved, hence the exponential growth model does 325 

not anymore provide a good fit. Introducing a non-vanishing error growth rate right from the beginning, i.e., starting from 

( = 0, / = )rE dE dt   which is the description by rdE , the approximation moves closer to the data, but this is in clear 

contradiction to the initial error growth idea: Due to the lack of model errors, the growth rate starts from 0. Also, the quadratic 

hypothesis is unable to reproduce this curvature well enough. Therefore, the data are best approximated by the power law in 

the initial part and by the extended power law with saturation on the whole range. 330 

What we found for the initial error growth of the L05-2 system is even more pronounced in the L05-3 system with three 

spatiotemporal scales. The superiority of approximations pdE  and epdE  over the other approximations is enhanced by the 

even faster growth of ( )totE t  compared to the exponential growth and ( )totE t  for the L05-2 system (Fig. 7). The reason for 

this behavior is described in Brisch and Kantz (2019) or in Bednar and Kantz (2022). Lorenz’s (1969) statement can summarise 

it: a typical quantity to be predicted is a superposition of the dynamics on different scales. After a fast growth of the small-335 

scale errors with saturation at these very same small scales, the large-scale errors continue to grow at a slower rate until even 

these saturate. This is the phenomenon of scale dependent error growth. We also see that if we interpret the three systems L05-
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1 to L05-3 as low and high resolution models, the high resolution model has larger instability and hence a shorter time until 

an ensemble of initial conditions has spread out on the attractor. If this were of relevance for the prediction horizon, then the 

high-resolution model would be less useful for forecasting than the low resolution model.  340 

3.2. Model error growth 

We use the L05-2 system as reality and make forecasts using the L05-1 system. Their suitably averaged differences give rise 

to the model error as a function of lead time. Fig. 8a (full black curve) shows the model error growth rate /dE dt  as a function 

of the error magnitude E , while 8b shows the time evolution of this error. We see an initially very fast error growth caused 

by the differences of the equations of motion of reality and model. After a short transient, we see in both panels of Fig. 8 a 345 

behaviour compatible with our error growth models. Those models with a constant term (i.e., the quadratic hypothesis with 

model error and the exponential growth with model error) provide the best fits, where, to be good in the whole range, the factor 

(1 / )limE E−  of the quadratic hypothesis with model error is needed. In view of what will follow, we stress that based on the 

data, both 
rE  and qE  provide good fits up to error magnitudes of about three units, with different values 0.27q   1/day and 

0.17r   1/day of the largest Lyapunov exponent. 350 

When we use L05-3 as “reality” and L05-1 as “model,” the same conclusions are valid for the model error growth rate /dE dt  

as a function of the error magnitude E  (Fig. 9a) and ( )ME t  (Fig. 9b). Note, however, that the rates / ( )dE dt E  have much 

larger maximal values and that ( )ME t  grows faster than when taking L05-2 as “reality.” But again, if we ignore the very initial 

part of the error growth rate for small values E , which the error growth models cannot reproduce, we see that rE  and qE  

provide the best fits.  355 

3.3. Initial and model error growth 

In both settings, we also show the results when we include a small initial condition error in addition to the model error. This 

initial condition error implies that the forecast error as a function of time starts with a non-zero value and correspondingly with 

a much lower growth rate than the model error alone, but apart from that, there are no strong effects. Figs. 8 and 9 show that 

it is not the net sum of the initial error growth ( )totE t  and the model error growth ( )ME t . ( )M ieE t+  goes from the initial value 360 

(0)M ieE +  through some transition period to the model error growth curve ( )ME t . ( )ME t  is therefore the limiting value to 

which ( )M ieE t+  is attracted. Indeed, black solid and dashed curves in the insets of Fig. 8b and Fig. 9b show that already, after 

time = 0.2t  the model error alone has grown so much that there is no effect of even of the larger initial condition error of 

magnitude (0) = 0.2E  anymore. The larger the initial error and the smaller the model error, the longer the transition period, 

but it is still short for realistic values of the initial condition error. For these reasons, it can be seen that the appropriate 365 

approximation for describing the variant with initial and model error remains the same as for describing the variant with model 
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error only, which is the exponential growth with model error, 
rdE  Eq. (5), for the early growth phase and the quadratic 

hypothesis with model error qdE , Eq. (6), for the entire length of the evolution (Fig. 8 and 9). 

3.4. Comparison of initial and model error growth 

We want to use the approximation formulae to construct the error curves for (0) = 0totE , = 0.1 , = 0.2 . The initial error 370 

magnitudes of 0.1  and 0.2  correspond to the relative values of the initial errors of current numerical weather prediction 

models for the L05 models. For the initial error growth ( )totE t  (for simplicity, let us redefine ( )totE t  to ( )ieE t ), we use the 

extended power law solution and find the parameter values ( )0.66= 0.28 1 / 7epdE E E −  for the L05-2 system and 

( )0.41= 0.38 1 / 7.1epdE E E −  for the L05-3 system, with initial values ( ) ( )0
0 0

ie
E →  (Fig. 10, full red curve), ( ) ( )0.1

0 = 0.1
ie

E  

(Fig. 10a, dashed red curve), and ( ) ( )0.2
0 = 0.2

ie
E  (Fig. 10b, dashed red curve). 375 

For the model error growth ( )ME t , we use the quadratic hypothesis with model error with the following best fit parameters: 

( ) / = (0.27 0.34)(1 / 7.6)qdE t dt E E + −  and (0) 0.1ME   for the L05-2 system and ( ) / = (0.38 1.47)(1 / 7.8)qdE t dt E E + −  

with (0) 0.1ME   for the L05-3 system. 

The reason why 
0E  is non-zero when using the approximation can be found in section 4.2. We can use the same 

approximations for the initial and model error growth ( )M ieE t+  as for the model error growth alone, ( )ME t  with 380 

( )0.1
(0) = 0.1

M ie
E

+
 for the L05-2 system and ( )(0.2) 0 = 0.2M ieE +  for the L05-3 system. The justification can be found in Section 

4.3. 

In addition to the graphical representation (Fig. 10), we compare the variants by expressing the times 
95%t , 

71%t , 
50%t , 

25%t  

when the error magnitude E  reaches 95%, 71%, 50%, and 25% of its limiting (saturated) value limE . In the literature, 
95%t  is 

understood as a practical predictability limit and 71%t  corresponds to climatic variability, according to Savijarvi (1995). For 385 

Fig. 10, let us first comment on the difference between the limiting (saturation) values limE  of the initial error curves ( )ieE t  

and the model error curves ( )ME t  or ( )M ieE t+ . The pure initial error curves are produced in the perfect model scenario, i.e., 

forecast and “reality” are obtained with the same system. When model error is present, the variability of forecast and reality is 

different, and hence the limiting error is larger, in agreement with Simmons et al. (1995) or Li et al. (2018). 

Fig. 10 also provides insight into our question of whether high-resolution or low-resolution models will produce better 390 

forecasts. We recall that high-resolution models suffer from much faster initial condition error growth due to the stronger 

instability of small scale motion. However, the small scales usually do not contribute to the forecast target. Fig. 10 shows that 

predictability is significantly worsened by the model error rather than by the initial error growth. This means that the average 

forecast error in a “model” where small-scale phenomena are omitted, but the model error is therefore present (black curves 
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( )ME t  and ( )M ieE t+
) grows significantly faster compared to a “model” where all scales are resolved (no model error), but the 395 

average forecast error growth is scale-dependent (red courves ( )ieE t ). However, this phenomenon depends on the relative 

magnitudes of the model error term  , the (effective) Lyapunov exponent  , and the initial condition error. If the growth 

rate   were larger and the model error smaller, then the exponential error growth would overwhelm the contribution of model 

error in every time step. In our numerical experiments using the L05-models, the magnitude of the initial condition error is 

tuned to values corresponding to initial condition errors in real weather forecasts, so we are tempted to believe that in weather 400 

forecasts, also high-resolution models should be superior. 

Specifically, for the L05-2 system (Fig. 10a), the forecast with model error (i.e., using L05-1 for the forecast), the time 
25t  is 

more than three times shorter than the limit without model and initial condition error ( (0) (0) 0ieE → ), being 25%, = 4Mt  days 

and 25%, (0) = 13iet  days, respectively. With increasing error magnitude, the ratio of forecast times decreases ( 50%, = 6Mt  days vs. 

( )50%, 0
= 19

ie
t days and 71%, = 9Mt  days vs. ( )71%, 0

= 24
ie

t days ) until 95%, = 16Mt  days, which is approximately half as large as 405 

( )95%, 0
= 37

ie
t  days. Adding the error of the initial condition does not significantly change the error growth for the model error 

variant ( ( ) ( ) ( )0.1M M ie
E t E t

+
 , see Section 4.3 for details). The error growth naturally increases for the variant with the initial 

error, and the ratio is reduced to twice the growth rate over the entire growth period ( ( )25%, 0.1
= 4

M ie
t

+
 days vs. ( )25%, 0.1

= 9
ie

t  

days, ( )50%, 0.1
= 6

M ie
t

+
 days vs. ( )50%, 0.1

= 14
ie

t days, ( )71%, 0.1
= 9

M ie
t

+
 days vs. ( )71%, 0.1

= 19
ie

t days, and ( )95%, 0.1
= 16

M ie
t

+
days vs. 

( )95%, 0.1
= 32

ie
t  days). 410 

For the L05-3 system (Fig. 10b) taken as truth, the effect es even more dramatic: Without initial error (respectively for 

( ) ( )0
0 0

ie
E → ), 25%, = 1Mt  days is seven times smaller than ( )25%, 0

= 7
ie

t  days. Gradually, the ratio decreases ( 50%, = 2Mt  days 

vs. ( )50%, 0
= 12

ie
t  days, and 71%, = 4Mt  days vs. ( )71%, 0

= 18
ie

t days ) until 95%, = 8Mt  days, which is approximately four times 

smaller than ( )95%, 0
= 34

ie
t  days. Adding the error of the initial condition does not significantly change the error growth for the 

model error variant ( ( ) ( ) ( )0.2M M ie
E t E t

+
 , see Section 4.3 for details). The growth changes for the variant with the initial 415 

error, and the ratio is reduced to five times the growth rate in the first half of growth ( ( )25%, 0.2
= 1

M ie
t

+
days vs. ( )25%, 0.2

= 5
ie

t  

days, ( )50%, 0.2
= 2

M ie
t

+
 days vs. ( )50%, 0.2

= 10
ie

t days, ( )71%, 0.2
= 4

M ie
t

+
 days vs. ( )71%, 0.2

= 16
ie

t days, and ( )95%, 0.2
= 8

M ie
t

+
days vs. 

( )95%, 0.2
= 34

ie
t  days). 

In the so far described numerical error growth study, we used L05-1 as a model and compared its performance to two types of 

reality with different spatiotemporal resolutions. We complemented this study by using as a single “reality” the L05-3 system 420 

and comparing the performance of the L05-1 and L05-2 models when using then for forecasts as two forecasts with different 

spatiotemporal resolutions. These findings (not shown) confirm the dominance of the model error over the initial condition 
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error growth, i.e., again, the model with the higher resolution provides better forecasts even for larger errors and therefore has 

a better prediction horizon. However, the effect in this setting is not as dramatic as in the above presented results. 

4. Error growth in the L05 systems – discussion and explanation of results 425 

In this section, we present considerations that explain the dominance of the model error in our forecast studies, where the 

notion of the drift (Section 2.4) plays a relevant role. We will consider the feedback of the drift as an initial error, which 

modifies the interpretation of the parameters in the exponential growth with model error 
rdE , Eq. (5), and the quadratic 

hypothesis with model error qdE , Eq. (6), and its relationship with the drift. 

4.1. Drift and its role in explaining the model error growth 430 

Fig. 11 compares the model error growth, ( )ME t  Eq. (14), the drift ( )D t  Eq. (18), and the exponential growth approximation 

with model error ( )rE t  Eq. (5). The curves are determined from the difference between the L05-2 and the L05-1 systems (Fig. 

11a) and between the L05-3 and the L05-1 systems (Fig. 11b) for error magnitudes where the saturation effect is not yet present 

(up to 2 and 3 days). We intend to understand the behavior of the model error since this is the issue in real forecasts. The drift 

( )D t  (Fig. 11, blue curve) describes very well the early part of the model error evolution ( )ME t  (Fig. 11, black curve), while 435 

at longer lead times, it is the exponential growth with model error contribution (Fig.11, black dashed line) which can be well 

fitted to the model error curve. Notice, however, that the drift is calculated numerically from the simulation data, like the model 

error curve, and hence does not contain any free parameters, while the exponential growth with model error has two free 

parameters, which allow us to optimally achieve the agreement between the black and dashed black curves. 

In particular, in the L05-3 model, for the times where the model error growth ( )ME t  can be fitted by ( )rE t , the drift ( )D t  440 

first overestimates the model error growth ME . Then, a significantly slower growth of the drift D  relative to the model error 

growth ME  is observed, corresponding to a decrease in the growth rate (tendency) of the drift / ( )dD dt D  compared to the 

increase in the model error growth rate (tendency) (insets in Fig. 11). 

As already mentioned in section 2.4, the drift can be viewed as the sum of the displacements from “reality,” created at each 

time step of the “model,” similar to how an error in the initial conditions will create an initial displacement at the initial time. 445 

If we interpret the drift increment 1( ) ( )k kD t D t −−  at each time step 1= k kt t t − − , =1, ,k K  as a new initial error at time kt

, then (similar to Orell et al. (2001)) we can model the model error growth ME  by applying the same time evolution assumption 

to 1( ) ( )k kD t D t −−  as for the initial error growth, i.e., the exponential growth 
t

De


 driven by the largest Lyapunov exponent 

D  of the “model” (L05-1 system). However, this growth should set in only at some time in the future since 1( ) (k kD t D t −−  

does not point into the locally most unstable direction (see Sections 2.1. and 3.1. for a description of the initial error growth 450 
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for the L05-1 system). We approximate this behavior in two different ways and will explore which one gives better results. 

(Fig. 12). In the first, 
1( ) ( )k kD t D t −−  evolves with time 

it  in a constant approximation as:  

 ( ) ( )
1

1
; = ,

k i M k

con k i t t
D i k

M k i K

t t t
F t t

e t t t


+

−

+ +

 


 

 (19) 

 while in a linearly decaying approximation as:  

 ( )
( )

( )( ) ( )
1

1
; =

1

i k k i M k

lin k i t t
D i k

M k k M k i K

t t t t t
F t t

t t e t t t






+

−

+ + +

− −  


− −  

 (20) 455 

 M  and   are parameters that we fix empirically. We propose the hypothesis ( )DE t  as a description of the model error 

growth ( )ME t  based on the sum of the individual increments of the drift:  

 ( ) ( ) ( ) ( )( ) ( ), 1

=1

= ; ,
i

M i D ap i k k ap k i

k

E t E t D t D t F t t− −   (21) 

 where ap  is the symbol for the constant ( con ) or linear ( lin ) approximation. 

In comparison to the exponential error growth with model error (with or without saturation), this is a modification in two 460 

relevant details: First, the model error is not the same at all time steps into the future like the constant 
r  or q , but it is the 

time-into-the-future dependent increment of the drift ( )D t , and second, the new contribution in a given time step is not 

amplified exponentially in the next step, but because of not pointing into the locally most unstable direction we let it either 

constant or even decay for a few time steps. 

Fig. 13 demonstrates how well the model error growth can be approximated by ( )DE t , particularly by the approximation with 465 

an initial linear decay , ( )D linE t . As the numerical value of the Lyapunov exponent D  in the hypotheses ( )DE t  we use the one 

determined as q  in the quadratic hypothesis with model error qdE , Eq. (6), which is , 05 2 = 0.27q L −  1/day from the difference 

between the L05-1 and L05-2 systems (Fig. 8) and , 05 3 = 0.38q L −  1/day from the difference between the L05-1 and L05-3 

systems (Fig. 9). The justification for using the parameter q  as D  can be found in Bednar et al. (2021). In short, we argue 

that q  is a better estimate of the Lyapunov exponent of the model system than, e.g., r . The parameters M  and   of the 470 

hypotheses ( )DE t  are determined empirically. It is, however, a bit puzzling that when using the value q  in , ( )D linE t , we can 

approximate that part of the model error growth curve ( )ME t , which can also be well approximated by the exponential growth 

with model error rdE  (Fig. 13), then leading to a value of the exponent which is different from q . Therefore, in the next 

section, we discuss the relationship between the drift D  and parameters   and   in qdE  (Eq. (6)) and rdE  (Eq. (5)). 
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4.2. Understanding the drift through parameters of the quadratic hypothesis and exponential growth both with model 475 

error 

We saw two meaningful approximations to the model error growth curve over lead time: The quadratic hypothesis with model 

error and the exponential growth with model error. The best fit parameter values of these two approximations are listed in 

Table 1. This Table shows that qdD dt  , but the most evident is the difference of the exponential growth exponent  , 

where for both “realities” L05-2 and L05-3, the exponent q  of the quadratic hypothesis is larger than 
r  of the best fit 480 

exponential error growth. 

To understand the meaning of the parameters of the exponential growth with model error 
rdE  (Fig. 8 and 9), let us first define 

the model error growth ,0 ( )DE t  based on the drift D , ignoring the initial decrease caused by ( )D t  not pointing into the locally 

most unstable direction:  

 ( )
( )

,0 1

=1

( ) = ( ) ( ) ,
i

t t
D i k

D i k k k i K

k

E t D t D t e t t t
 −

−−     (22) 485 

where 
D  is the largest Lyapunov exponent of the “model” (L05-1 system). The time derivative (calculated from the difference 

at successive time steps) of ,0 ( )DE t  is:  

 ( ) ( ),0

,0 ,0 ,0= ,
D

D D D D

dE dD
E E E

dt dt
  +  (23) 

where ( ),0/ ( ) = / ( )D k kdD dt E t dD dt t  , i.e., due to the monotonicity of ,0 ( )DE t  in time, we can exchange the dependence on 

t  by the dependence on ,0 ( )DE t  (see Fig. 14). Eq. (23) now claims that the red dashed curve, which is D E , plus the values 490 

of the blue curve taken at corresponding times 
kt , sum up to yield the red curve ( ( ))DE E t , where we approximate the slope 

of the linear increase of the red curve by the slope of the black curve, which describes the observed total error. 

So we focus now on those parts of the three curves > 0.3E  for L02-5 or for > 0.5E  for L05-3. As said, we observe that in 

this range of E , ,0 ,0/ ( )D DdE dt E  (Fig. 14, red curve) has the same growth rate (tendency) as / ( )M MdE dt E  (Fig. 14, black 

curve), which is expressed by 
r , fitting the ( )rE t  behavior of Eq. (5) to the data (Fig. 14, black dashed curve, , 05 2 = 0.17r L −  495 

1/day, , 05 3 = 0.25r L −  1/day) If we compare these parameter values to the fit using the quadratic hypothesis with model error, 

we see that r  is smaller than q  of qdE  ( , 05 2 = 0.27q L −  1/day, , 05 3 = 0.38q L −  1/day). In our interpretation of the model 

errors involving the drift, this is due to the decrease of the drift growth rate ( )/ ( )kdD dt D t  over time (Fig. 14, blue curve). 

Hence, r  of the rdE  approximation of ,0 ,0/ ( )D DdE dt E  is then an extrapolation of the linear decline of ( ),0/ ( )D kdD dt E t  to 

( ),0 0 = 0DE t . Therefore, if we solve Eq. (23) for /dD dt  and define ( ),0 ,0/ ( )D k D D DdD dt E t E  − , then =r D  . Eq. (23) 500 
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can be used to determine the drift decrease rate 
D : ( ),0 ,0 ,0= =r D r q D D D D D q rE E E       + − + → − . However, 

=r D   is not the same as 
r  in /MdE dt  (Fig. 14, black curve) because it is reduced by the transition term expressed by 

Eqs. (20) and (21) and 
D  is valid for ,0/ ( )DdD dt E  and not for / ( )dD dt D . In general, because 

,0 ,0/ ( ( ))D k D D DdD dt E t E  −  tends to decrease, >q r  .  Since / ( )M MdE dt E  is almost identical to / ( )M ie MdE dt E+
 and 

differs only in the early stage of development, the approximations of qdE  and 
rdE  are only marginally affected (Figs. 8a and 505 

9a). Therefore, information about the drift D  can be derived from these hypotheses also for the variant with initial and model 

error. 

For the sole initial condition error, we found that q r  , but this describes a setting very different from model error: In the 

initial condition error, we compare the forecast and reality of a given high-resolution model, which indeed has much larger 

error growth exponents for short times/small errors, due to small scale degrees of freedom. As soon as we talk about model 510 

errors (with or without initial error), we use the low-resolution L05-1 model for forecasts, and hence its parameters are relevant 

for the propagation of errors. 

In summary, we propose a new interpretation of the growth of forecast errors due to model errors: model errors in successive 

time steps of the forecasts are only weakly correlated. Therefore, modeling them by a constant term in the error growth dE  is 

inappropriate. The observed model forecast error growth can be modeled much more accurately if we use the accumulated 515 

model errors called drift, interpret the drift increments as additional initial condition errors, and propagate these forward in 

time. Then the decrease of the drift growth rate over forecast time can explain the growth rate of the model errors. Depending 

on what data are observed, one can either use the drift to predict the forecast errors, or use the forecast errors to infer the drift 

due to model error. 

5. Error growth in the ECMWF systems 520 

For the ECMWF forecasting system, we cannot perform error growth experiments, but we can check average forecast errors 

as a function of lead time. We, therefore, apply the new way of assessing the model error to the error growth ( )EFSE t  of the 

500 hPa geopotential height values (Magnusson, 2013) calculated (Magnusson and Kallen, 2013) as 25 annual averages over 

the Northern Hemisphere (20–90 ) obtained daily from 1 January 1987 to 31 December 2011. Over this period, we determine 

the decline in the average initial displacements of the “model” from “reality” per unit of time using the parameter q  of the 525 

quadratic hypothesis with model error. Since the parameter   is also used to describe an upscale error growth rate from small-

scale processes (Zhang et al., 2019), we check whether >q r  , as defined in Section 5.2, for q  determined by model error 

and q r   for q  determined from small-scale processes (see Section 4). 
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5.1. Methods of calculation 

To eliminate the effects of model errors, the initial error growth curve , ( )EFS ieE t  is calculated as the differences between two 530 

operational forecasts issued with one day lag for the same day. Specifically, we evaluate these for 27 different lead times and 

used the following pairs of lead times in hours: 0–24, 6–30, ..., 96–120, with 6 hours shift, and from 108–132, 120–144, ..., 

216–240 with 12 h shift. Detailed information about calculating the error growth of the ECMWF forecasting system can be 

found in Lorenz (1982). The error growth rate (tendency) is ( ), , ,/ ( ) ( ) /EFS ie EFS ie EFS iedE dt E t t E t t + −   with = 6t  hours 

for the first seventeen time steps and = 12t  hours for the rest. It is evident that this data analysis solely used data produced 535 

by the very same model. One can understand this one-day offset between two forecasts in the following way: At day 0, we use 

some initial condition and propagate it forward in time. At day 1, when a new forecast starts with new initial conditions, these 

can be interpreted as perturbations to the day-1 forecast started at day 0. So comparing now these two forecasts for the very 

same day as a function of lead time gives us the initial condition error growth. The only disadvantage of this procedure is that 

we cannot control the magnitude of the perturbation: What we interpret as perturbation is the deviation of the true forecast at 540 

day one from the new analysis, which is used to initialize the new forecast. 

The initial and model error growth curve , ( )EFS M ieE t+  is calculated as differences between operational forecasts and analyses 

from ERA-Interim for a given day. Forecasts range from 0.5 day ago relative to the given day to 10 days ago, with time step 

= 12t  hours. The difference between operational analysis and analysis from ERA-Interim is taken as the initial error. The 

error growth rate (tendency) is ( ), , ,/ ( ) ( ) /EFS M ie EFS M ie EFS M iedE dt E t t E t t+ + + + −   with = 12t  hours. 545 

5.2. Results and comparisons 

From the data, we calculate 25 annual averages of the initial error growth curve , ( )EFS ieE t  and 25 annual averages of the initial 

and model error growth curve , ( )EFS M ieE t+  and their growth rates (tendencies) , /EFS iedE dt  and , /EFS M iedE dt+ . We 

approximate the growth rates by the exponential growth with model error rdE  and by the quadratic hypothesis with model 

error qdE . Because the data are only up to 10 days and therefore do not cover the entire growth curve, and because qdE  is a 550 

three-parameter approximation, we first discuss the error in parameter estimation. Magnusson and Kallen (2013) showed that 

the error saturation parameter limE  estimated from the qdE  hypothesis underestimates the true limiting value. Bednar et al. 

(2021) showed that the deviations of the values of q  and q  of qdE  from the true values are anti-correlated, i.e., when one 

is overestimated, then the other is underestimated. The average value of q  over 25 annual averages of , ( )EFS ieE t  and 

, ( )EFS M ieE t+  has been determined by Bednar et al. (2021) to be 
1= 0.35q day −

, and to approximate the data, we fix q  to this 555 

value. Therefore, we decrease the oscillation of q  and bring limE  of qdE  closer to the values determined by Magnusson and 
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Kallen (2013). The fact that 
limE  is closer to the theoretical limit values estimated by Magnusson and Kallen (2013) justifies 

this approach. 

The resulting values are shown in Fig. 15. We find that , ,r ie q ie   and , ,<r M ie q M ie + + , which satisfies the hypothesis 

presented in Section 4.2. Here, ,r M ie +  (Fig. 15a, full red curve) has an approximately constant value, showing approximately 560 

the same decrease in 
D =  the drift rate / ( )dD dt D  over the years. Because it is shown in section 4.2 that 

( ), ,=D q M ie r M ie  + +− . 

For ,r ie  (Fig. 15a, full blue curve), an increase with years is observed, indicating an increase in the resolution of the ECMWF 

system with smaller spatiotemporal scale phenomena with a larger error growth rate. The parameter ,q M ie +  (Fig. 15b full blue 

curve) of the quadratic hypothesis with model error (Eq. (6)) shows an approximately linear decrease over the years. These 565 

values indicate that the average displacement value per unit of time /dD dt   decreased by 40% from 1987 to 2011, from 

5.6 m/day to 3.4 m/day. The parameter ,q ie  (Fig. 15b, full red curve) for the variant with an initial error shows an 

approximately constant value. Together with a constant value of ,q ie  (Fig 15a, black curve), this means that the shape of the 

error growth rate (tendency) / ( )ie iedE dt E  changes over the years only by adding a part for smaller 
ieE  as the model better 

describes smaller spatiotemporal scale phenomena, but this does not change the overall approximation of qdE , as can be seen 570 

in Fig. 16. These Figures also show the similarity to the error growth rates /dE dt  of the L05-2 and L05-3 systems (Figs. 6 - 

9) and the relevance of fixing q  to approximate the data using qdE .  

6. Conclusion and discussion 

Based on the fact that scale-dependent error growth implies an intrinsic predictability limit, we examined whether omitting 

atmospheric phenomena, which contribute little to the final value, will improve the predictability of the resulting value. In 575 

other words, how does the average forecast error growth change in a model where small-scale phenomena are omitted, but the 

model error is, therefore, larger, compared to a model where all phenomena are present, but the average forecast error growth 

is scale-dependent. For this, we used the L05 systems defined by Lorenz (2005) and Bednar and Kantz (2022) and the ECMWF 

systems with data from Magnusson (2013). 

We confirmed that for the multi-scale systems L05-2 and L05-3, the initial error growth ( )ieE t  can be well described by the 580 

power law pdE  Eq. (3) or the extended power law wdE  Eq. (4), respectively, while a simple exponential growth with model 

error rdE  (Eq. (5)) or the quadratic hypothesis with model error qdE  (Eq. (6)) are less appropriate. However, the non-zero 

parameter   in rdE  and qdE  describing the model error also generally relates the multi-scale nature of the system. We 
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showed that in the L05 and ECMWF data (in contrast to the model error scenario) q r  , i.e., the approximation of 

/ ( )ie iedE dt E  in the early stage grows faster than the approximation of the whole curve due to the presence of only smaller 585 

spatiotemporal scales in this part. 

For the scenarios of model error growth ( )ME t  and both initial and model error growth ( )M ieE t+
, we showed the 

appropriateness of the description using exponential growth with model error 
rdE  and quadratic hypothesis with model error 

qdE  (Figs. 8 and 5). For / ( )M MdE dt E , we explained the initial decline and subsequent growth described by 
rdE  using the 

drift D  (Fig. 11) defined by Orrell (2001), which we extended by a hypothesis that views the drift D  as a succession of initial 590 

errors followed by an exponential time evolution driven by the largest Lyapunov exponent   of the model after a transition 

period (Fig. 12). We identified q  , and the validity of >q r   based on the drift evolution was verified in the L05 and 

ECMWF systems (Figs. 14 and Eq. (21)). For the L05 systems, we have demonstrated that /q dD dt  , i.e., that from the 

q  value of the quadratic hypothesis with model error qdE  the average displacement per unit time (average drift rate) can be 

determined. 595 

For ECMWF systems (forecast of 500 hPa geopotential height), this means that from 1987 to 2011, we observe a decrease of 

the model error by approximately 40%, from an average displacement value of 5.6 m/day to 3.4 m/day. Note that while in 

1987, the error in initial displacement (initial error) was approximately 16 m (Magnusson and Kallen (2013), Bednar et al. 

(2021)), for the variant with initial and model error, a displacement of 5.6 m is produced every day in addition to this value. 

In 2011, the initial displacement was 6 m; for the variant with initial and model error, an average displacement of 3.4 m is 600 

produced daily. Thus, we observe a significant contribution of the model error to the error growth. This is also why the findings 

from the model error growth scenario can be applied to the initial and model error growth scenario, where the initial and model 

error growth goes asymptotically to the model error growth. 

It is also why omitting atmospheric phenomena, which contribute little to the final value, will not improve the predictability 

of the resulting value. The average prediction error grows faster in a model where small-scale phenomena are omitted, but the 605 

model error is therefore created, compared to a model where all phenomena are present, but the average forecast error growth 

is scale-dependent (Fig. 10). 

We now discuss the possibility that the growth of the displacement produced by the model error may also be scale-dependent. 

In our case, the model was an L05-1 system, i.e., a system with one scale and exponential error growth ( ( )DE t  hypothesis). A 

variant where the L05-2 system was used as the model and the L05-3 system as the “reality” was also tested. The resulting 610 

model error growth is approximately identical to the previous variant (L05-1 system as the model and L05-3 system as the 

“reality”), i.e., adding a small scale did not affect the exponential growth of the drift D  increment. However, it should be 

noted that the magnitude of the average drift per unit of time /q dD dt   is much greater than the limit (saturation) value of 

small-scale error magnitude 2,limE , so we are already in the region of exponential error growth of large-scale variables. For the 
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ECMWF system, it can be seen (Fig. 15) that over the years, the values of a parameter q  of the qdE  approximation of 615 

average initial error growth ( )ieE t  and initial and model error growth ( )ie ME t+
 converge, and the growth curves of the two 

variants are similar for the later analyzed years, as also confirmed by Froude et al. (2013). This means that, in contrast to the 

presented results of the L05 system, the drift rate of these years is low, and the issue of scale-dependent growth of the drift D  

increment is relevant and should be further investigated. 

Another topic for further research is extending the ( )DE t  hypothesis (Eq. (21)) to describe the model error growth ( )ME t  620 

over the entire range up to saturation rather than just the early part where exponential growth is valid. For the part of the time 

evolution of the model error where the growth slows down and reaches saturation, it can be seen that the drift must reach its 

limiting value and then no longer contributes to the model error growth and the exponential growth of the drift increment must 

slow down and reach its limiting value. However, the specific form needs to be investigated. 
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Appendix A: Lorenz’s L05 systems 

The L05-1 system was introduced by Lorenz (2005) as a spatial continuity modification of Lorenz’s (1996) system with N 710 

variables connected by governing equations:  

  
,

= , ,n

nL n

dX
X X X F

dt
− +  (A1) 

where  

   ( ) 2

2,
= =

, = ' ' / ,
J J

n L i n L j n L j i n L jL n
j J i J

X X X X X X L− − − − − + − + +

− −

− +   

=1, ,n N . nX  are unspecified (i.e., unrelated to actual physical variables), scalar meteorological quantities (units), F  is a 715 

constant representing external forcing and t  is time. The index is cyclic so that = =n N n N nX X X− +
 and variables can be 

viewed as existing around a latitude circle. If L  is even, '  denotes a modified summation in which the first and last terms 

are to be divided by 2. If L  is odd, '  denotes an ordinary summation. Generally, L  is much smaller than N  and = / 2J L  

if L is even and = ( 1) / 2J L −  if L  is odd. To a certain extent, the model quantitatively describes weather systems, but unlike 

the well-known Lorenz model of atmospheric convection (Lorenz, 1963), it cannot be derived from any atmospheric dynamic 720 

equations. The motivation was to formulate the simplest possible set of dissipative chaotically behaving differential equations 

that share some properties with the “real” atmosphere. Although mechanisms such as potential vorticity generation are lacking 

in the equations, the model generates 5 to 7 main highs and lows corresponding to planetary waves (Rossby waves). To keep 

5 to 7 main highs and lows, Lorenz (2005) suggested a ratio / = 30N L  and = 15F . The choice of parameters F , and the 

setting of time unit = 5 days, is also made to obtain a similar value of the largest Lyapunov exponent as the ECMWF forecasting 725 

system (Lorenz, 2005).  

The L05-2 system (extension to two Spatio-temporal scales) was also introduced by Lorenz (2005) as a modification of two 

scales Lorenz’s (1996) system, where scales were coupled by linear terms that together do not alter the large-scale plus small-

scale energy and where small-scale variables were driven entirely by the coupling. Rewriting the equations of the L05-1 

system, we would get: 730 

  1, 1 1 1, 2,,
/ = , ,n n nL n

dX dt X X X cX F− − +  (A2) 

https://doi.org/10.1175/1520-0493(1997)125%3c3297:EFANAT%3e2.0.CO;2
https://doi.org/10.1175/JAS-D-18-0269.1
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  2

2, 2 2 2, 1,1,
/ = , ,n n nn

dX dt b X X bX cX− +  (A3) 

c sets the rapidness of small scale compared to large scale, and b sets the small-scale amplitude size compared to large scale. 

Eqs. (A2) and (A3) have an unrealistic property compared to the numerical weather prediction systems. The large-scale and 

small-scale features are represented by separate sets of variables 
1X  and 

2X  instead of appearing as superimposed features 735 

of a single set 
totX . Lorenz (2005) wanted to keep the system as simple as possible, so instead of, for example, Fourier analysis, 

a procedure for expressing variables ,tot nX  as sums of 1,nX  and 2,nX  was introduced:  

 ( )1, ,

=

= ' ,
I

n tot n i

i I

X i X  +

−

−  (A4) 

 2, , 1,= .n tot n nX X X−  (A5) 

Parameters  ,  , and I  are chosen so that 
1X  is a low-pass filtered version of 

totX , and 
2X  represents the difference 740 

between the full signal 
totX  and the filtered signal. By this procedure, 

2X  has a much smaller amplitude than 
1X , and also its 

time evolution should be faster since the temporal derivative is related to the spatial derivative via the difference 

1, 1 1, 2( )n nX X+ −− , which for the low pass filtered signal 
1X  typically is smaller than for the signal 

2X . 

More precisely, Lorenz’s (2005) idea is that the parameters  ,   are chosen so that 
1X  equals totX  whenever totX  changes 

quadratically over the longitudes (variables) n −  I through n + I. It is when ( )
=

' = 1
I

i I
i 

−
−  and ( )2

=
' = 0

I

i I
i i 

−
− . 745 

By solving these equations, we get: 

 ( ) ( )2 3= 3 3 / 2 4 ,I I I + +  (A6) 

 ( ) ( )2 4 2= 2 1 / 2 .I I I + +  (A7) 

The procedures (Eqs. (A4) and (A5)) are functions of the interval length  ,I I− . 

When creating a system /totdX dt  as the sum of 1 /dX dt  and 2 /dX dt  (sum of Eqs. (A2) and (A3)), the coupling term 1,ncX  750 

in Eq. (A3), which enables short waves to develop, is combined with the dissipation term 1,nX−  in Eq. (A2). Therefore, the 

coupling term can be canceled entirely, or it can appear in 1X  rather than 2X  when totX  is analyzed, and there might be 

nothing to enable the short waves in 2X  to grow. Lorenz (2005) reformulated the coupling process by adding a small fraction 
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of 
1X  to 

2X  so small waves in 
2X  can amplify. It is done by replacing  2

2 2 1,1,
, nn

b X X cX+  by  2 2 1 1,
,

n
X X c X+  in Eq. 

(A3) , and L05-2 system would be: 755 

      2

, 1 1 2 2 2 1 1, 2,, 1, 1,
/ = , , , ,tot n n nL n n n

dX dt X X b X X c X X X bX F+ + − − +  (A8) 

where 2=c c b  . 

Based on the L05-2 system (Eqs. (A4) - (A8)), Bednar and Kantz (2022) designed a three levels (scales) system (L05-3): 

          2 2

, 1 1 1 2 2 2 3 3 1 2 1 2 3 2 1, 1 2, 2 3,, 1, 1, 1, 1,
/ = , , , , , ,tot n n n nL n n n n n

dX dt X X b X X b X X c X X c X X X b X b X F+ + + + − − − + (A9) 

where 
1c , 

2c , 
1b , 

2b  are parameters, and the procedure for expressing the variables are: 760 

 ( ) ( )( ) ( ) ( )( )( )
1

2 3 2 4 2

1, 1 1 1 1 1 1 ,

=
1

= ' 3 3 / 2 4 2 1 / 2 ,

I

n tot n i

i I

X I I I I I I i X +

−

+ + − + +  (A10) 

 ( ) ( )( ) ( ) ( )( )( )( )
2

2 3 2 4 2

2, 2 2 2 2 2 2 , 1,

=
2

= ' 3 3 / 2 4 2 1 / 2 ,

I

n tot n j n j

j I

X I I I I I I j X X+ +

−

+ + − + + −  (A11) 

 3, , 2, 1,= ,n tot n n nX X X X− −  (A12) 

where 
1I  and 

2I  set the length of the intervals  ,I I− . 

The parameters of L05 systems (L05-1, L05-2, L05-3) should be set so that all scales behave chaotically (the largest Lyapunov 765 

exponent of each scale is positive) and that all scales have a significant difference in amplitudes and fluctuation rates. For the 

L05-1 system (Eq. (A1)), the chaotic behavior is determined by the value of F and the number of variables N . For Eqs. (A2) 

and (A3), where the forcing F  acts only on a large scale, the chaotic behavior of small scale is created by coupling. The 

coupling size is cascaded from a large scale to a small one. Because the values of large-scale variables are determined by the 

forcing F , the F  value indirectly affects the small-scale chaotic behavior and must be chosen large enough to ensure chaotic 770 

behavior through coupling for all scales (levels). This fact must also apply to L05-2 and L05-3 systems, but procedures (A4) 

and (A5) for the L05-2 system and (A10) - (A12) for L05-3 system also affect the scales’ chaotic behavior, amplitude, and 

fluctuation rate through the choice of I (Lorenz, 2005). 

To maintain the required properties = 15F , = 360N , = 12L , and = 6J  is chosen for the L05-1 system (Fig. 1a). To have 

the small scale one hundred times smaller than the large scale, = 15F , = 360N , = 12L , = 6J , =10b , = 1c , = 10I  are 775 

selected for the L05-2 system (Fig. 2a). For the L05-3 system with requirements for the medium scale amplitude to be about 

ten times smaller than the large scale amplitude and the small scale amplitude to be about ten times smaller than the medium 



29 

 

scale amplitude and for the scales to have different oscillation rates (Fig. 3a), = 15F , = 360N , = 12L , = 6J , 
1 = 1b , 

2 = 10b , 
1 = 1c , 

2 = 1c , 
1 = 20I , 

2 = 10I . The calculation is done using a fourth-order Runge-Kutta method with a time step 

 t = 1/240 or 0.5 hours. 780 

 

 

 

 

 785 
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 L05-2 L05-3 

r  0.17 0.25 

r  0.33 1.15 

q  0.27 0.38 

q  0.34 1.47 

limE  7.6 7.8 

/dD dt  0.33 1.6 

 

Table  1:  Table of fitted constants of the different error growth approximations for the L05-2 model and the L05-3 model. All values 

except limE  are given as units/day or 1/day. 790 
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Figure 1. (a) Values of 
nX , 1, ,360n =  variables (red curve) of the L05-1 system at a given time (see Appendix A for more 

information on the system and its settings). (b) The time evolution t of the variable ( )1X t (red curve) and the time evolution of the 

initially nearby trajectory ( )( )( )1 00X e t+ (blue curve) of the system L05-1, where 
0 0.01e = .  795 
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 Figure 2. (a) Values of 1,nX  (large scale, red curve), 2,nX  (small scale, blue curve), ,tot nX (overall curve, black curve), 1, ,360n =  

variables of the L05-2 system at a given time (see Appendix A for more information on the system and its settings). (b) The time 

evolution t of the variable ( ),1totX t (red curve) and the time evolution of the initially nearby trajectory ( )( )( ),1 00totX e t+ (blue 

curve) of the system L05-2, where 
0 0.01e = .  800 
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 Figure 3. (a) Values of 1,nX  (large scale, red curve), 2,nX  (medium scale, yellow curve),  3,nX  (small scale, blue curve), ,tot nX

(overall curve, black curve), 1, ,360n =  variables of the L05-3 system at a given time (see Appendix A for more information on the 

system and its settings). (b) The time evolution t of the variable ( ),1totX t (red curve) and the time evolution of the initially nearby 

trajectory ( )( )( ),1 00totX e t+ (blue curve) of the system L05-2, where 
0 0.01e = .  805 
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 Figure 4. Schematic description of drift d calculation. The solid curve shows the time evolution of the “reality” projected into the 

“model” space ( )jX t  at the time jt j t=   for 1, ,5j = . The dashed curves show the short ( t ) time evolutions of the “model” 

( )jX t  for 
jt t  initiated at the points ( )jX t . Drift  ( )d t  is then the sum of the difference ( ) ( ) ( )1 1 1j j j jd t X t X t+ + += −  at each time 

step. 810 

 



35 

 

 

Figure 5. (a) Initial error growth tendency (rate) dE dt  as a function of the error magnitude E  ( totdE , black), approximation of 

the early part of the growth by exponential growth rate exdE (Eq. (1), green, dashed), exponential growth rate with model error rdE  

(Eq. (5), blue, dashed), power law pdE  (Eq. (3), red, dashed) and approximation of the full curve by growth rate of quadratic 815 

hypothesis qudE (Eq. (2), green), growth rate of quadratic hypothesis with model error qdE  (Eq. (6), blue) and extended power law 

epdE  (Eq. (4), red) for the L05-1 system. (b) Initial error growth E  as a function of time t ( totE , Eq. (11), black), approximation of 

the early part of the growth by integration of exdE ( exE , green, dashed) with 0.33ex =  1/day, integration of rdE  ( rE , blue, dashed) 

with 0.32r =  1/day and 0.00006r =  unit/day, integrations of pdE  ( pE , red, dashed) with 0.34a =  unit0.02/day and 0.02b =  and 

approximation of the full curve by integration of qvdE ( qvE , green) with 0.32qv =  1/day and lim 8.1E =  unit, integration of qdE (820 

qE , blue) with 0.32q =  1/day, 0.003q =  unit/day and lim 8.1E = unit and integration of epdE  ( epE , red) with 0.33a =  

unit0.03/day, 0.03b = and lim 8.1E = unit for the L05-1 system. The inset shows transient behavior before the error magnitude grows 

(for more details, see Section 2.1). 
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Figure 6. (a) Initial error growth tendency (rate) dE dt  as a function of the error magnitude E  ( totdE , black), approximation of 825 

the early part of the growth by exponential growth rate exdE  (Eq. (1), green, dashed), exponential growth rate with model error 

rdE  (Eq. (5), blue, dashed), power law pdE  (Eq. (3), red, dashed) and approximation of the full curve by growth rate of quadratic 

hypothesis qudE  (Eq. (2), green), growth rate of hypothesis with model error qdE  (Eq. (6), blue) and extended power law epdE  (Eq. 

(4), red) for the L05-2 system. (b) Initial error growth E  as a function of time t ( totE , Eq. (11), black), approximation of the early 

part of the growth by integration of exdE  ( exE , green, dashed) with 0.29ex =  1/day, integration of rdE  ( rE , blue, dashed) with 830 

0.26r =  1/day and 0.02r = unit/day, integrations of pdE  ( pE , red, dashed) with 0.25a = unit0.32/day and 0.32b =  and 

approximation of the full curve by integration of qvdE ( qvE , green) with 0.2qv =  1/day and lim 6.8E =  unit, integration of qdE  (

qE , blue) with 0.18q =  1/day, 0.05q =  unit/day and lim 6.8E =  unit and integration of epdE  ( epE , red) with 0.28a =  unit0.34/day, 

0.34b = and lim 7E =  unit for the L05-2 system. The inset shows transient behavior before the error magnitude grows (for more 

details, see Section 2.1). 835 
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 Figure 7. (a) Initial error growth tendency (rate) dE dt  as a function of the error magnitude E  ( totdE , black), approximation of 

the early part of the growth by exponential growth rate exdE  (Eq. (1), green, dashed), exponential growth rate with model error rdE  

(Eq. (5), blue, dashed), power law pdE  (Eq. (3), red, dashed) and approximation of the full curve by growth rate of quadratic 840 

hypothesis qudE  (Eq. (2), green), growth rate of quadratic hypothesis with model error qdE  (Eq. (6), blue) and extended power law 

epdE  (Eq. (4), red) for the L05-3 system. (b) Initial error growth E  as a function of time t  ( totE , Eq. (11), black), approximation of 

the early part of the growth by integration of exdE ( exE , green, dashed) with 0.46ex =  1/day, integration of rdE  ( rE , blue, dashed) 

with 0.35r =  1/day and 0.07r =  unit/day, integrations of pdE  ( pE , red, dashed) with 0.37a =  unit0.63/day and 0.63b =  and 

approximation of the full curve by integration of qvdE  ( qvE , green) with 0.2qv =  1/day and lim 6.9E =  unit, integration of qdE  (845 

qE , blue) with 0.14q =  1/day, 0.17q =  unit/day and lim 6.9E =  unit and integration of epdE  ( epE , red) with 0.38a =  unit0.59/day, 

0.59b =  and lim 7.1E =  unit for the L05-3 system. The inset shows transient behavior before the error magnitude grows (for more 

details, see Section 2.1). 
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Figure 8. (a) Model error growth tendency (rate) dE dt  as a function of the error magnitude E  ( MdE , black), initial and model 850 

error growth tendency dE dt  as a function of the error magnitude E  (
( )0.01M ie

dE
+

, black, dashed for ( )0 0.01E =  and 
( )0.2M ie

dE
+

, 

black, dot-dashed for ( )0 0.2E = ), approximation of the early part of the model growth by exponential growth rate exdE  (Eq. (1), 

green, dashed), exponential growth rate with model error rdE  (Eq. (5), blue, dashed), power law pdE  (Eq. (3), red, dashed) and 

approximation of the full curve by growth rate of quadratic hypothesis qudE  (Eq. (2), green), growth rate of quadratic hypothesis 

with model error qdE  (Eq. (6), blue) and extended power law epdE  (Eq. (4), red) for the L05-2 system as the “reality” and the L05-855 

1 system as the “model.” The inset shows the early phase. (b) Model error growth E  as a function of time t  ( ME , Eq. (14), black), 

initial and model error growth E  as a function of time t  (
( )0.01M ie

E
+

, Eq. (15), black, dashed for ( )0 0.01E = and 
( )0.2M ie

E
+

, Eq. (15), 

black, dot-dashed for ( )0 0.2E = ), approximation of the early part of the growth by integration of exdE  ( exE , green, dashed) with 

0.39ex =  1/day, integration of rdE  ( rE , blue, dashed) with 0.17r =  1/day and 0.33r =  unit/day, integrations of pdE  ( pE , red, 

dashed) with 0.52a =  unit0.64/day and 0.64b =  and approximation of the full curve by integration of qvdE ( qvE , green) with 860 

0.38qv =  1/day and lim 7.5E =  unit, integration of qdE ( qE , blue) with 0.27q =  1/day, 0.34q =  unit/day and lim 7.6E =  unit and 

integration of epdE  ( epE , red) with 0.61a =  unit0.39/day, 0.39b = and lim 7.6E =  unit for the L05-2 system as the “reality” and the 

L05-1 system as the “model.” The inset shows the early phase of the time evolution. 
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Figure 9. (a) Model error growth tendency (rate) dE dt  as a function of the error magnitude E  ( MdE , black), initial and model 865 

error growth tendency dE dt  as a function of the error magnitude E  (
( )0.01M ie

dE
+

, black, dashed for ( )0 0.01E = and 
( )0.2M ie

dE
+

, 

black, dot-dashed for ( )0 0.2E = ), approximation of the early part of the model growth by exponential growth rate exdE  (Eq. (1), 

green, dashed), exponential growth rate with model error rdE  (Eq. (5), blue, dashed), power law pdE  (Eq. (3), red, dashed) and 

approximation of the full curve by growth rate of quadratic hypothesis qudE (Eq. (2), green), growth rate of quadratic hypothesis 

with model error qdE  (Eq. (6), blue) and extended power law epdE  (Eq. (4), red) for the L05-3 system as the “reality” and the L05-870 

1 system as the “model.” The inset shows the early phase. (b) Model error growth E  as a function of time t  ( ME , Eq. (14), black), 

initial and model error growth E  as a function of time t (
( )0.01M ie

E
+

, Eq. (15), black, dashed for ( )0 0.01E = and 
( )0.2M ie

E
+

, Eq. (15), 

black, dot-dashed for ( )0 0.2E = ), approximation of the early part of the growth by integration of exdE ( exE , green, dashed) with 

0.83ex =  1/day, integration of rdE  ( rE , blue, dashed) with 0.25r =  1/day and 1.15r =  unit/day, integrations of pdE  ( pE , red, 

dashed) with 1.35a =  unit0.72/day and 0.72b =  and approximation of the full curve by integration of qvdE ( qvE , green) with 875 

0.77qv =  1/day and lim 7.8E =  unit, integration of qdE ( qE , blue) with 0.38q =  1/day, 1.47q =  unit/day and lim 7.8E =  unit and 

integration of epdE  ( epE , red) with 1.64a =  unit0.55/day, 0.55b = and lim 7.8E =  unit for the L05-3 system as the “reality” and the 

L05-1 system as the “model.” The inset shows the early phase of the time evolution. 
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Figure 10. Error growth E  as a function of time t . The full black curve shows model error growth ME  (Eq. (14)), the dashed black 880 

curve shows initial and model error growth M ieE +  (Eq. (15)), the full red curve displays initial error growth ieE  for ( )0 0E →  (Eq. 

(11)), and the dashed red curve displays initial error growth ieE  for (a) ( )0 0.1E   and (b) ( )0 0.2E   (Eq. (11)). Shown are 

calculations of the best-fit approximations for given types of error growth (see Section 3 for more details). The initial error growth 

ieE  is calculated for (a) the L05-2 system and (b) the L05-3 system. The model error growth ME  and initial + model error growth 

M ieE +  is calculated as (a) the difference between the L05-1 system and the L05-2 system and (b) between the L05-1 system and the 885 

L05-3 system. 
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Figure 11. Time evolution of drift D  (blue), model error ME  (black), and approximation by exponential growth with model error 

rE  (black, dashed). The inset shows the tendency (rate) of drift dD dt  (blue), model error rdE dt  (black), and rdE  (black, dashed) 

as a function of ( )D t , ( )ME t , and ( )rE t . (a) the difference between the L05-1 system and the L05-2 system and (b) between the 890 

L05-1 system and the L05-3 system.  
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Figure 12. Hypothesis ( )DE t  explaining the model error growth ( )ME t  (black curve). The drift increment ( ) ( )1k kD t D t −−  at each 

time step 1k kt t t − = − , =1, ,k K  is taken as the error of the initial conditions with an exponential growth 
te  driven by the largest 

Lyapunov exponent   of the “model” (L05-1 system). Since ( )d t  does not point into the locally most unstable direction, time 895 

evolution of ( ) ( )1k kD t D t −−  decrease in early time (black curve in the inset). A constant (red curve in the inset) or linear decrease 

(green curve in the inset) approximates this initial decrease. ( ) ( )1k kD t D t −−  evolves with time it  (dashed curves) in the constant 

approximation as: ( ); 1con k iF t t =  for k i M kt t t +   and ( ) ( )
; i kt t

lin k iF t t e
 −

=   for 1M k i Kt t t+ +   , and in the linear approximation as: 

( ) ( ); 1lin k i i kF t t t t= − −  for k i M kt t t +   and ( ) ( )( ) ( )
; 1 i kt t

lin k i M k kF t t t t e



−

+= − −   for 1M k i Kt t t+ +   . M  and   are found 

experimentally. The resulting hypothesis ( )DE t  describing the model error growth ( )ME t (black curve) is the sum of the individual 900 

increments: ( ) ( ) ( ) ( )( ) ( ), 1

1

;
i

M i D ap i k k ap k i

k

E t E t D t D t F t t−

=

 = −   where ap  is the symbol for the constant ( con ) or linear ( lin ) 

approximation. 
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Figure 13. Approximation of model error growth ( )ME t  (black curve) by exponential growth with model error rE  (black, dashed 

curve) and by hypotheses ,D conE  (Eqs. (19) and (21), red curve) and ,D linE  (Eqs. (20) and (21), green curve) based on drift D  (blue 905 

curve). (a) Calculation of model error ME  and drift D  from the difference between the L05-1 and L05-2 systems. The 

approximation ,D conE  is with 28M = , 0.27 =  1/day, and approximation ,D linE  is with 24M =  , 0.001 = , and 0.27 =  1/day. (b) 

Calculation of model error ME  and drift D  from the difference between the L05-1 and L05-3 systems. The approximation ,D conE  is 

with 43M = , 0.38 =  1/day, and the approximation ,D linE  is with 27M = , 0.005 = , and 0.38 =  1/day. The insets show the 

time differences (rates) of the quantities as a function of the quantities presented in the main figures. 910 
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Figure 14. The validity of Eq. (23) ( ( )( ) ( )( ) ( )( ) ( ),0

,0 ,0 ,0

D

k D k D k D k

dE
dD dt D t dD dt E t E t E t

dt
= = −  ) is shown by vertical lines, where 

the length of the blue ones is the same as the length of the red dotted teordD  ones at times 1 1t =  day, 2 1.75t =  day, and 3 2.5t =  day 

(from left to right) for (a) the difference between the L05-1 and L05-2 systems and at times 1 0.3t =  day, 2 0.6t =  day, and 3 0.9t =  

day (from left to right) for (b) difference between L05-1 and L05-3 systems, where ( )dD dD dt D= (Eq. (18), blue curve) is time 915 

difference of drift, ( )M M MdE dE dt E=  (Eq. (14), black curve) is model error growth, ( ),0 ,0 ,0D D DdE dE dt E=  is a hypothesis Eq. (23) 

(red curve), rdE  (Eq. (5), black dashed curve) is exponential growth with model error ( , 05 2 0.17 0.33r LdE E− =  + , 

, 05 3 0.25 1.15r LdE E− =  + ), and exdE  (Eq. (1), red dashed line) is exponential growth with the value of   determined from the 

quadratic hypothesis with model error qdE  (Eq. (6)) ( ( )( )05 2 0.27 0.34 1 7.6L qdE E E − → =  + − , and 

( )( )05 3 0.38 1.47 1 7.8L qdE E E − → =  + − ). 920 
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Figure 15. Values of parameters   (a) and   (b) of exponential growth with model error rdE  and quadratic hypothesis with model 

error qdE  approximated from annual averages (1987 – 2011) of the error growth tendencies (rates) , /EFS iedE dt  and , /EFS M iedE dt+  

of the ECMWF forecasting system’s 500 hPa geopotential height values over the Northern Hemisphere (for more details, see section 

5.1). (a) The black curve is 0.35q =  1/day determined as the average of the approximated q  of  qdE  hypothesis over 25 annual 925 

averages of , ( )EFS ieE t  and , ( )EFS M ieE t+ . The full red curve shows the values r  of the rdE  approximation of the 25 annual averages 

of , /EFS M iedE dt+ . The red dashed curve shows that the best approximation of ,r M ie +  is a constant function with  
, 0.25r M ie + =  1/day. 

The full blue curve shows the values r  of the rdE  approximation of the 25 annual averages of /EFSdE dt . The blue dashed curve 

shows that the best-fitting approximation of r  is a linear function 
,r ie that increases with years. (b) Values of q of qdE  hypothesis 

approximating 25 annual averages of , /EFS iedE dt  (full red curve) and 
, /EFS M iedE dt+

 (full blue curve). The red dashed curve shows 930 

that the best approximation of ,q ie  is a constant function with  
, 2.8q ie =  m/day. The blue dashed curve shows that the best-fitting 

approximation of ,q M ie +  is a linear function 
,r ie  decreasing with years. 
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Figure 16. Annual average from 2005 data of the error growth tendencies (rates) , /EFS M iedE dt+  (a) and , /EFS iedE dt  (b) of the 

ECMWF forecasting system’s 500 hPa geopotential height values over the Northern Hemisphere (full curves), approximation by the 935 

quadratic hypothesis with model error qdE  (Eq. (6)) with a constant value of the parameter 0.35q =  1/day (dot-dashed curves) and 

approximation by the exponential growth with model error rdE  (Eq. (5), dashed curves). We compare the data from the year 1990 

(red) to those of 2005 (black). 


