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Referee 1  

We are grateful to the referee for devoting their time to our manuscript. The valuable 

comments and suggestions will help us to improve the paper. 

We will here respond to comments made: 

The parameters of these systems are set so that all scales behave chaotically. Though it is not 

totally clear how robust the results are if the parameters are perturbed. 

As long as parameters are such that all scales are chaotic, we do not expect any qualitative 

changes with respect to the studied scenario. We tried to ensure the robustness of the results 

by considering two cases of "reality" (L05-2 and L05-3 systems). Furthermore, we tested as 

"reality" the L05-1 system with 360 variables and as "model" the L05-1 system with 180 and 

90 variables. The results are consistent with the presented results. We are aware of the need to 

test the results on "real" systems. 

The explanation of the initial decline and subsequent growth of the rate of model error growth 

by the notion of ``drift" is a nice attempt, though it is not totally clear if this is special for the 

L-05 systems. 

"Drift" was used by Orrell (2002) to explain the initial decline and subsequent growth of the 

rate of model error growth for the ECMWF system (500 hPa, Northern hemisphere for 10 d in 

October 1999 and total energy globally over a 15 d period in December 2000) . Therefore, the 

results do not appear to apply only to the L05 system. We have further confirmed the behavior 

resulting from "drift" on the ECMWF system data in Section 5. 

In the abstract, where is the claim "Generally, a system with model error (omitting 

phenomena) will not improve predictability." supported in the maintext? How general is it? 

This seems to be a very strong statement. If not, I suggest weaken this statement.   

We have replaced "Generally" with "In other words" (Lines 11 – 12). 

Although it maybe natural, it would be good to give a sentence of explanation about why 

choosing L05-2 and L05-3 as "reality" 

A full explanation of why L05-2 and L05-3 systems are selected as the reality is given in 

Section 2.2. In addition, we have added a sentence to the introduction on lines 128 – 129 

("The omitted scale is the small scale for the L05-2 system and the small and medium scale 

for the L05-3 system. "). Information on why we do not use the L05-2 system as model and 

L05-3 system as reality is given on lines 614-615. 

Is "this" in line 9 ``initial error growth? Perhaps good to be more specific. 

The word "product" was added to line 9. 

How about adding references to the relevant figures after "as we will see in numerical 

simulations" in line 270? 

Reference was added. 

Would you explain why geometric mean is used rather than the usual arithmetic mean in 

model error growth and drift terms in (11), (14), (15), (18) ? 
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We added an explanation on line 200: "The geometric mean is chosen because of its 

suitability for comparison with growth governed by the largest Lyapunov exponent. For 

further information, see Bednar et al. (2014) or Ding and Li (2011). " 

The drift d(tau) at the beginning of line 271 is not defined yet, It does not seems to be the drift 

VECTOR in line 269. Please clarify.  

d(tau) was changed to the absolute value of drift d(tau). 

Please be consistent in terminology. For example, is ``the drift D(tau)" on Page 279 the same 

as d(tau) in line 271?  Is it the same as the "the averaged drift D" in line 283?  

We improved consistency in terminology. We related D(t) to eq. (18) and d(tau) to eq. (17). 

Perhaps include a table summarizing the heavy notation involved.  

We itemized the numbers of the equations. We hope this will help readability. 

The reference list will look better it it was itemized. 

We itemized the reference list. 

I am not totally convinced (or understand) that the notion of the "drift" introduced really 

explain the model error growth as claimed. It seems that, taking time-average without an 

absolute value is similar to looking at the original system, when the system is ergodic. 

Perhaps the authors can explain more on what ``explain" means other than showing another 

summary statistics of the system. 

The difference is that it is the summation of vectors created from the difference in time 

evolution of different systems (but with the same initial conditions) after one time step. The 

model errors at successive time steps as vectors are not strongly correlated, and that therefore 

accumulating their absolute values is very different from accumulating them as vectors, where 

the absolute values sum will grow much faster than the vector valued sum, and that this 

slower error growth now gives a better explanation of the deviation of the trajectories. 

References: 

Bednář, H., Raidl, A., and Mikšovský, J.: Initial Error Growth and Predictability of Chaotic 

Low-dimensional Atmospheric Model, IJAC, 11, 256–264, https://doi.org/10.1007/s11633-

014-0788-3 2014.  

Ding, R., Li, J.: Comparisons of two ensemble mean methods in measuring the average error 

growth and the predictability, Acta Meteorol Sin, 25, 395–404, 

https://doi.org/10.1007/s13351-011-0401-4, 2011. 

Orrell, D.: Role of the metric in forecast error growth: how chaotic is the weather?, Tellus, 54, 

350-362, https://doi.org/10.1034/j.1600-0870.2002.01389.x, 2002. 

 

 

 

 



4 
 

Referee 2 

We are grateful to the referee for devoting his time to our manuscript. We will here respond to 

comments made to support the validity of the article for publishing: 

This paper tries to explain why omitting atmospheric phenomena, which contribute little to 

the final value, will not improve the predictability of the resulting value. However, this paper 

does not provide a complete theory to show this. Although this article says that a theory 

explaining and describing this behavior is developed, I did not find any strict mathematical 

theory in this article. 

The developed theory is not strictly mathematical but is based on a strictly mathematical 

theory describing the model error growth (Drift - Section 2.4), presented by Orrell (Orrell et 

al., 2001; Orrell, 2002) and on a strictly mathematical theory of classical low dimensional 

chaos, where one observes an exponential error growth of a tiny initial error whose exponent 

is given by the largest Lyapunov exponent of the system. Our extension that sees Drift 

produced at each time step as the error of the initial conditions is based on an experiment with 

Lorenz L05 systems (Appendix A) and explains and describes the model error growth in this 

experimental setting (Section 4). The derived results are then verified in the ECMWF systems 

(Section 5). Because it is not a theory in a strictly mathematical sense. We replace the term 

“theory” with the term “hypothesis”. We believe that our hypothesis Eq. (21) is as worthy of 

publication as other already commonly accepted experiment-based hypotheses such as Eqs. 

(2)-(6). 

Line 20: …“the instability of the system with respect to initial condition errors has grown”…, 

the instability is not clear? 

By instability we mean the error growth rate of the initial conditions of ECMWF systems, 

which is expressed by the Lambda parameter from Eq. (5). The values can be seen in Figure 

15a - blue curve. More details can be found in Section 5. For better understanding, we have 

added "(error growth rate)" to the text. 

Line 95:” …. the constant b in Eq. (5) which, irrespective of initial condition errors, will lead 

to a deviation of the model solution from reality…”. It seems that there is no a constant b in 

Eq. (5). 

b has been replaced in the text by betha. We thank the referee for spotting this misprint. 

Line 120: “….Including small spatiotemporal scales, i.e., improving the model's spatial and 

temporal resolution, therefore enhances the instability with respect to initial condition 

error”…. the exact meaning of the instability is not clear. 

By instability we mean the error growth rate of the initial conditions. Brisch and Kantz (2019) 

and Zhang et al. (2019) associated initial error growth with scale-dependent error growth, 

where tiny errors grow much faster than larger ones. Lorenz (1969) gave a sketch of such 

error growth: a typical quantity to be predicted is a superposition of the dynamics on different 

scales. After a fast growth of the small-scale errors with saturation at these very same small 

scales, the large-scale errors continue to grow at a slower rate until even these saturate. We 

have added "(error growth rate)" to the text. 
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Line 140: “….We measure the error magnitude e(t) after fixed time intervals ..”. there is not 

any expression for e(t). 

On line 140, e(t) is defined as the error magnitude after fixed time intervals. The expressions 

for the settings are shown on lines 192, 226 and 245. 

Line 160: “…. For this scheme to be meaningful, we have to ensure that the reference 

trajectory is on the system's attractor and that the repetition of this scheme samples the whole 

attractor with correct weights (the invariant measure)….”.  the existence of attractors in this 

system is not clear. 

Lorenz L05 systems are widely accepted chaotic systems with a positive largest Lyapunov 

exponent (which is computed and presented). For L96 system (Lorenz, 1996) the existence of 

attractor has been shown, and because our system can be expected to be in the same model 

class, we expect the existence of a chaotic attractor. 

Line 195: There is no definition of . Line 230: There is no definition of . Line 245: There is no 

definition of . 

It is probably meant that Eqs. (11), (14) and (15) are not definitions from a strictly 

mathematical sence, so we replace the expression "is defined" by "is calculated". 

References: 

Brisch, J., and Kantz, H.: Power law error growth in multi-hierarchical chaotic system-a 

dynamical mechanism for finite prediction horizon, New J. Phys., 21, 1–7, 

https://doi.org/10.1088/1367-2630/ab3b4c, 2019. 

Lorenz, E. N.: The predictability of a flow which possesses many scales of motion, Tellus, 21, 

289–307,  https://doi.org/10.1111/j.2153-3490.1969.tb00444.x, 1969. 

Lorenz, E. N.: Predictability: a problem partly solved, in: Predictability of Weather and 

Climate, edited by: Palmer, T., and Hagedorn, R., Cambridge University Press, Cambridge, 

UK, 1–18, https://doi.org/10.1017/CBO9780511617652.004, 1996. 

Orrell, D., Smith, L., Barkmeijer, J., and Palmer, T. N.: Model error in weather forecasting, 

Nonlin. Processes Geophys., 8, 357–371, https://doi.org/10.5194/npg-8-357-2001, 2001. 

Orrell, D.: Role of the metric in forecast error growth: how chaotic is the weather?, Tellus, 54, 

350-362, https://doi.org/10.1034/j.1600-0870.2002.01389.x, 2002. 

Zhang, F., Sun, Q., Magnusson, L., Buizza, R., Lin, S. H.,Chen J. H., and Emanuel K.: What 

is the Predictability Limit of Multilatitude Weather, J. Atmos.  Sci., 76, 1077–1091, 

https://doi.org/10.1175/JAS-D-18-0269.1, 2019. 

Lorenz, E. N.: The predictability of a flow which possesses many scales of motion, Tellus, 21, 

289–307,  https://doi.org/10.1111/j.2153-3490.1969.tb00444.x, 1969. 
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Referee 3 (Report 1)  

We are grateful to the referee for devoting their time to our manuscript. The valuable comments 

and suggestions will help us to improve the paper. 

We will here respond to comments made: 

The designed system is based on systems created by Lorenz (2005). The first and simplest of this type is the low-

dimensional atmospheric system (L96) presented by Lorenz (1996). It is a nonlinear model, with N variables 

connected by governing equations 

 
2 1 1 1/ = ,n n n n n ndX dt X X X X X F− − + −− + − +  (1) 

 =1, ,n N . 
2 1 1, , ,n n n nX X X X− − +

 are unspecified (i.e., unrelated to actual physical variables) scalar 

meteorological quantities (units), F  is a constant representing external forcing, and t  is time. The index is cyclic 

so that = =n N n N nX X X− +
 and variables can be viewed as existing around a latitude circle. Nonlinear terms of Eq. 

(1) simulate advection. Linear terms represent mechanical and thermal dissipation. The model quantitatively, to a 

certain extent, describes weather systems, but, unlike the well-known Lorenz model of atmospheric convection 

(Lorenz, 1963), it cannot be derived from any atmospheric dynamic equations. The motivation was to formulate 

the simplest possible set of dissipative chaotically behaving differential equations that share some properties 

with the “real” atmosphere. One of the model’s properties is to have 5 to 7 main highs and lows that 

correspond to planetary waves (Rossby waves) and several smaller waves corresponding to synoptic-scale 

waves. For Eq. (1), this is only valid for = 30N . Lorenz (2005), therefore, introduced spatial continuity 

modification (L05). Eq. (1) is then rewritten to the form: 

  
,

= , ,n

nL n

dX
X X X F

dt
− +  (2) 

 where 

   ( ) 2

2,
= =

, = ' ' /
J J

n L i n L j n L j i n L jL n
j J i J

X X X X X X L− − − − − + − + +

− −

− +   

 If L  is even, '  denotes a modified summation, in which the first and last terms are to be divided by 2. If L  is 

odd, '  denotes an ordinary summation. Generally, L  is much smaller than N  and = / 2J L  if K  is even and 

= ( 1) / 2J L −  if L  is odd. To keep a desirable number of main highs and lows, Lorenz (2005) suggested a 

ratio / = 30N L  and = 15F . The choice of parameters F , and the setting of time unit = 5 days, is also made 

to obtain a similar value of the largest Lyapunov exponent as the ECMWF forecasting system (Lorenz, 2005). 

A two-level (scales) system (L96-2) was introduced by Lorenz (1996) by coupling two such systems, each of 

which, aside from the coupling, obeys a suitably scaled variant of Eq. (1). There are N  variables nX  plus J N  

variables ,j nY  defined for =1, ,n N and =1, ,j J . Governing equations are: 

 ( )2 1 1 1 ,

=1

/ = / ,
J

n n n n n n j n

j

dX dt X X X X X F c b Y− − + −− + − + −   (3) 

 ( ), 2, 1, 1, 1, ,/ = / ,j n j n j n j n j n j n ndY dt cbY Y cbY Y cY c b X− − + −− + − +  (4) 
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 where c  sets the rapidness of small scale compared to large scale, b  sets the small scale amplitude size 

compared to large scale. , , ,= =j n N j n N j nY Y Y− +  while , , 1=j J n j nY Y+ + and , , 1=j J n j nY Y− − . 
nX  represent the values of 

some quantity in N  sectors of latitude circle, while the variables ,j nY  ( 1,1 2,1 ,1 1,2 2,2 ,2 3,1, , , , , , , , ,J JY Y Y Y Y Y Y ) can 

represent some other quantity in JN  sectors.  

A two-level (scales) system introduced by Lorenz (2005) is: 

  
,

/ = , ,n n nL n
dX dt X X X cY F− − +  (5) 

  2

1,
/ = , .n n nn

dY dt b Y Y bY cX− +  (6) 

 Eq. (6) is analogue to Eq. (1) (if we substitute F for Xn), and Eq. (5) is analogue to Eq. (2) (aside from the 

coupling where c  is the coupling coefficient, and that 
nY  fluctuates b  times as rapidly, and their amplitude 

is reduced by the factor b ).  

(A) Different two-scale models in Lorenz (1996) and Lorenz (2005). Will it be feasible for 

providing a diagram for illustrating the grid system within the 2005 two-scale model? 

Figure RR1 shows the similarity of the 1996 (Eqs. (3) and (4)) and 2005 (Eqs. (5) and (6)) two-

scale systems in the attempt to maintain 5 to 7 main highs and lows and several smaller waves 

for large scales nX . While for the 1996 two-scale system, this is ensured by a number of N 

large scale variables nX  close to 30 (and a number of JN variables for the small scales), for the 

2005 system, it is ensured by linking the nX  variables as described in Eq. (2) (with the same 

number of small scale variables, however, determined from Eq. (1), Figure RR2). The 2005 

two-scale system thus produces a smoother and more realistic evolution of the large-scale 

variable while maintaining properties similar to the 1996 system. 

The systems used in this manuscript, which are described in Appendix A (of the manuscript), 

address one more condition that brings them closer to real systems. This condition is the fact 

that the large scale and small scale features in Eqs. (3) – (6) are represented by separate sets of 

variables instead of appearing as superimposed features of a single set. To satisfy this condition, 

the coupling of one small-scale variable and one large-scale variable is more realistic than the 

coupling that is present in the 1996 system (Eqs. (3) and (4)). 
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Figure RR1: Comparison of longitudinal profiles at one time of two-scale Lorenz systems (a) from 

1996 (Eqs. (3) and (4)) and (b) from 2005 (Eqs. (5) and (6)).  

 

 

Figure RR2: Comparison of schematic illustrations of two-scale Lorenz systems (a) from 1996 (Eqs. 

(3) and (4)) (taken from Figure R2 of the referee report) and (b) from 2005, where the inner wave 

curve represents the large-scale variables described by Eq. (5), which produce 5-7 main waves, and 

where the outer curve represents the small-scale variables described by Eq. (6), which are not limited 

by the number of waves. In contrast to (a), one large scale variable is coupled to one small scale 

variable. 

(B) Dependence of findings on temporal spacing (i.e., ∆t) and "spatial" spacing (e.g., the 

number of sectors, N).  It would be ideal for additional tests with a smaller ∆t = 10-5 (or ∆t = 

10-4). Additionally, the choice of N and L should be explored since N = 960 and L = 32 were 

used in Lorenz (2005). 

The choice of the variable N = 360 was made because the value of the largest Lyapunov 

exponent λL05 of the system described by Eq. (2) (F = 15, time unit = 5 days) does not change 

for N = 360 and N = 960 (Table RR1) and therefore we chose the lower of the two values for 

computational efficiency. 

N 05L  

30 0.70 

60 0.29 

90 0.35 

120 0.32 

150 0.33 

360 0.33 

960 0.33 

Table RR1: Values of the largest Lyapunov exponent λL05 for selected numbers of variables N in the 

2005 Lorenz system (Eq. (2), F = 15, time unit = 5 days). 
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Figure RR3 compares the time evolution of the average value of the variables for the 2005 

Lorenz system (Eq. (2)) with time step ∆t=1/240 and ∆t=1/2400. It can be seen that the values 

are similar. Given this, we use the larger time step dt=1/240 for faster computations. 

 

Figure RR3: Comparison of the time evolution of the mean value of the variables (N = 360) for the 

2005 Lorenz system (Eq. (2)) based on the same initial conditions with time step ∆t=1/240 (red dashed 

curve) and ∆t=1/2400 (black dotted curve). 

(C) Impact of model's configuration and complexity on critical points (equilibrium points).  

Based on the linearization theorem, critical points of the Lorenz systems could roughly indicate 

the local behavior of the solutions. As a result, initial error growth should display a dependence 

on the equilibrium state. Please consider identifying the appearance of the critical points and 

perform stability analysis using the Jacobian matrix of the linearized system at each of the 

critical points. 

While for analytical studies the instability of fixed points (critical points) is certainly of high 

interest, we are interested in the typical error growth and therefore focus on the Lyapunov 

exponent on the chaotic attractor. Since the phase space is so high dimensional, we are not 

even sure that unstable fixed points are embedded in the chaotic attractor or whether they are 

outside, as they are in the Lorenz 1963 low dimensional model. We therefore calculate the 

maximal LE numerically in the following way: a reference trajectory (considered the "truth" 

or verification) and a trajectory which is the numerical solution of the systems with a given 

error, are repeatedly generated. For this scheme to be meaningful, we have to ensure that the 

reference trajectory is on the system's attractor and that the repetition of this scheme samples 

the whole attractor with correct weights (the invariant measure). We solve this issue in the 

following way: We first integrate the system over ten years (175200 steps), starting from 

arbitrary initial conditions, and assume that after discarding this transient, the trajectory is on 

the attractor. We continue to integrate this single trajectory and consider segments of it as 

reference trajectories for error growth, i.e., the many reference trajectories are simply 

segments of one very long trajectory, which ensures not only that all these segments are 
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located on the attractor but that in addition, they sample the attractor according to the 

invariant measure. 

Larger F may produce a larger eigenvalue (a larger real part of the eigenvalue), suggesting a 

larger growth rate. Based on the following preliminary analysis of the one- and two-scale 

models with the same value of the forcing parameter F, the effective forcing parameter for the 

two-scale model is smaller, yielding a smaller leading eigenvalue (i.e., a smaller real part of 

the eigenvalue). This is consistent with the finding that Figures 5 and 6 display larger growth 

rates ( λ) within the one-scale system (e.g., L05-1) than the two-scale system (e.g., L05-2). 

Figure RR4 compares the error growth rates of the L05-1 (Eq. (A1) in manuscript), L05-2 

(Eq. (A8) in manuscript), and L05-3 (Eq. (A9) in manuscript) systems. In contrast to the 

reviewer's findings, the figure shows the smallest growth rate for the L05-1 system and the 

largest for the L05-3 system. We confirm that the effective forcing for slow variables is 

weaker, indicating a smaller growth rate within the two-scale model, as compared to the one-

scale model. However, it should be noted that in Figure RR4 the values of the single-scale 

system (L05-1) are not compared with the large-scale values of the multi-scale systems (L05-

2 and L05-3), but are compared with the total values of the L05-2 and L05-3 systems, where 

the large-scale and small-scale features are appearing as superimposed features of a single set. 

 

Figure RR4: Initial error growth tendency (rate) dE dt  as a function of the error magnitude E for L05-

1 system (Black, Eq. (A1) in manuscript), for L05-2 system (Red, Eq. (A8) in manuscript), and for L05-

3 system (Blue, Eq. (A9) in manuscript). 

A justification for the use of the L05-2 (Eq. (A8) in manuscript) and L05-3 (Eq. (A9) in 

manuscript) systems as the "reality" and the L05-1 system as the "model." is presented in the 

manuscript (Lines 210-220): 

“This approach is justified by the fact that the L05-2 and L05-3 systems can be viewed as a variant of the L05-1 

system:  

   ( ), 1 1 1,,
/ = , ,tot n n nL n

dX dt X X X F t− +  (12) 
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 where ( )    2

2 2 2 1 2,1, 1,
= , ,n nn n

F t b X X c X X bX F+ − +  for the L05-2 system and 

( )        2 2

1 2 2 2 3 3 1 2 1 2 3 2 1 2, 2 3,1, 1, 1, 1,
= , , , ,n n nn n n n

F t b X X b X X c X X c X X b X b X F+ + + − − +  for the L05-3 system 

are treated as a forcing, which varies in a complicated manner with time. We parameterize these small-scale 

phenomena contained in ( )nF t  by the average value of these phenomena, which is close to zero, and therefore 

we can write:  

 ( ) =15,nF t F  (13) 

 where    represents the mean calculated over a long orbit on the L05-2 and L05-3 systems attractors.“ 

 

Please provide justifications for the choice of b1 = 10 for the two-scale system but b1 = 1 for 

the three-scale system. Additionally, within the three-scale system, are nonlinear terms (e.g., c1 

and c2 in Eq. A9) applied for coupling the "sub-systems" for the small- and medium-scale 

variables with the large-scale system? Please comment on the impact of c1 and c2 on system's 

stability. 

The parameters of any multi-level Lorenz’s system (L96-2, L05-2, L05-3) should be set so 

that all levels behave chaotically (the largest Lyapunov exponent of each level is positive) and 

that all levels have a significant difference in amplitudes and fluctuation rates. For the L-96 

system (Eq. (1)), the chaotic behavior is determined by the value of F , and the number of 

variables N . Lorenz (2005) states that as long as 12N   chaos is found when > 5F  (for 

= 4N  it is when >12F  and for > 6N  when > 8F ). In cases such as the L96-2 system 

(Eqs. (3) and (4)), where the forcing F  acts only on the largest scale, the chaotic behavior of 

smaller scales is created by coupling. The size of the coupling is cascaded from the largest 

scale to the smaller ones. Because the values of the largest scale variables are determined by 

the forcing F , the F  value indirectly affects the smaller scales’ chaotic behavior and must be 

chosen large enough to ensure chaotic behavior through coupling for all scales (levels). For 

the L05-2 system (Eq. (A8)), variables are superposed features of a single set calculated by 

Eqs (A4) and (A5). In addition to those mentioned above, this procedure affects the chaotic 

behavior, amplitude, and fluctuation rate of the levels, and the choice of I between 10 and 20 

may be optimal (Lorenz, 2005). In order to maintain the required properties of the two scales 

L05-2 system, Lorenz (2005) chose N = 960, L = 32, I = 12, F = 15, b = 10, and c = 2.5 (note 

that for L05-2 and L05-3 systems it is not possible to directly determine the amplitude 

and fluctuation rate of smaller scales using spatiotemporal scaling factors b, because 

these values are mainly determined by the procedure for expressing variables and the 

length of the intervals  ,I I− ). 

For the L05-3 system (Eqs. (A9) – (A12)), it is necessary to specify eight parameters. We tested 

that the values of coupling coefficients c 1  and c 2  do not affect the L05-3 system compared to 

the values of other parameters, and therefore for simplification 1 =1c  and 2 =1.c  The parameter 

=15F  is set the same as for other L05 systems. For the medium scale amplitude to be 

approximately ten times smaller than the large scale amplitude and the small scale amplitude to 

be approximately ten times smaller than the medium scale amplitude and for the scales to have 

different oscillation rates, the spatiotemporal scale factors are chosen b 1  = 1 and b 2  = 10 and 
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interval lengths I
1
 = 20, and I

2
 = 10. N = 360 turned out to be most suitable for the chaotic 

behavior of all three levels (found experimentally). 

(D) Separations of initial and model errors 

We fully agree with the comment. We simulate the initial error growth in the same systems 

(perfect model assumption), and the model error growth with zero initial error (perfect initial 

conditions assumption). Combination of both is studied in section 3.3 of the manuscript. 

(E) Validity of error saturation for periodic attractors and coexisting attractors. Have you 

observed periodic solutions? Can you comment on the validity of error saturation for periodic 

solutions? Have you observed multistability in your ensemble runs? 

In our research, we focused only on the average value of error growth (over variables and 

number of runs). We set all the scales through the parameters of the Lorenz systems to behave 

chaotically (details can be found in Bednar and Kantz (2022)) and the evolution of the average 

error growth did not show signs of periodic solution or multistability. 

 

Specific Comments: 

(1) Please check consistency in the capitalization of the initial letters of words within a title. 

We checked and fixed it. Thank you for pointing this out. (Lines 1-2). 

(2) Lines 45-50, the application of the Lyapunov exponent (LE) is not accurate. A global LE 

represents a long-term average of "local" growth rates (determined by the separations of two 

nearby trajectories). Initial separations should remain small. Local growth rates may vary with 

time. As a result, Eq. (1) with a constant growth rate is valid only for a finite time interval. 

During different time internals, different growth rates may appear. Note that in addition to one 

positive LE, solution's boundedness is another important feature that defines a chaotic system. 

We have added information about boundedness and validity for a finite time interval. (Lines 

47-48) 

(3) Lines 45-55, please consider referring to the growth rates in Eqs. (1) and (2) as the 

exponential growth rate (with a J-shaped curve) and logistic growth rate (with a S-shaped 

curve), respectively. 

 We changed the description of Eqs. (1) and (2). (Lines 816-819, 828-830, 841-843, 855-856, 

870-871). 

(4) Line 80, the term "error growth laws" should be rephrased since they are not necessarily 

physical laws. 

We replaced the term law with the term hypothesis. (Lines 81, 307) 

(5) Lines 122, statements are not accurate. Unless additional forcing terms are introduced, 

improving model's spatial or temporal resolution does not necessarily enhance instability. 

(Please think of a convergent Taylor series.) 

We added to the introduction: “Buizza (2010), Magnusson and Kallen (2013) or Jacobson 

(2001) show that improving the model's spatial and temporal resolution will improve the 
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ability to predict, especially for short forecast range (Buizza, 2010). However, the cited 

studies work with models that do not model small spatiotemporal phenomena (they are 

parameterized) and whose initial condition error magnitude is larger than the magnitude of 

these phenomena. We have verified the fact that the high resolution model (that models small 

scales) is less stable than the low resolution model (that doesn't model small scales) against 

initial condition errors (Bednar and Kantz, 2022; Budanur and Kantz, 2022), and that 

therefore the issue of omitting small scales has another facet. Our new approach models and 

omits small spatiotemporal scales using…” (Lines 129-135)  

(6) Lines 128-130: it is wired that the two-scale system contains large- and small-scale systems 

while the three-scale system adds a medium scale, in addition to large- and small-scale flows. 

Any justifications? 

It would be more natural to take the L05-2 and L05-1 systems as the model and the L05-3 

system as the reality. ). A variant where the L05-2 system was used as the model and the L05-

3 system as the "reality" was also tested. The resulting model error growth is approximately 

identical to the previous variant (L05-1 system as the model and L05-3 system as the 

"reality"). That's why we chose the settings we present. Further, it would be more natural for 

the L05-2 system to have a small scale comparable to the medium scale of the L05-3 system. 

However, our intention was to be close to the L05-2 system presented by Lorenz (2005), 

whose small scale is equivalent to the small scale of our L05-3 system.  

(7) Lines 160-165, have you observed coexisting attractors (e.g., more than one attractors) in 

your ensemble runs? (e.g., see multistability in Van Kekem and Sterk 2018a,b, 2019; Pelzer et 

al., 2020). 

In our research, we focused only on the average value of error growth (over variables and 

number of runs) and we did not observe signs of multistability. 

(8) Line 170, does the statement "errors might even shrink in short times" indicates the 

existence of a stable manifold? 

Yes, the Lorenz L05-systems possess rather high dimensional stable manifolds, along which 

trajectories are attracted towards the attractor. Calculation of the Lyapunov-dimension done 

by us for L05-2 show this very clearly, the attractor dimension is much smaller than the phase 

space dimension, where the attractor is the unstable manifold. But the statement on line 170 

does not indicate the existence of a stable manifold but the fact that initial perturbations might 

not point into the locally most unstable direction. 

(9) Lines 194, while N=360 was used in this study, N=960 was appied in Lorenz (2005). 

Thank you for pointing this out. The problem is already discussed in comment (B). 

(10) line 186, how many time steps for the transfer of error to the small-scale variables? 

The error would immediately (one time step) propagate into the small-scale variables. 

(11) Section 3.1, please confirm whether the leading LE in the L05-1 system is larger 

(smaller) than that in the L05-2 (L05-03) system. 

Figure RR4 compares the error growth rates of the L05-1 (Eq. (A1) in manuscript), L05-2 (Eq. 

(A8) in manuscript) and L05-3 (Eq. (A9) in manuscript) systems. The figure shows the smallest 
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growth rate for the L05-1 system and the largest for the L05-3 system (therefore also for LE). 

It should be noted that for the L05-2 and L05-3 systems, the error growth rate is scale 

dependent. 

(12) Line 382-394: The key point that higher resolution model produces better predictability 

is acceptable. However, it is not clear whether Figure 10 is sufficient to support this point. 

Please see details in the last specific comment below. 

Please see the discussion at comment (17) 

(13) Line 656: The statement "Based on the fact that scale-dependent error growth implies an 

intrinsic predictability limit" is not accurate. A finite growth rate may indicate a limit for 

practical predictability. By comparison, a finite intrinsic predictability is established by the 

feature of chaos (e.g., sensitive dependence on initial condition, SDIC; e.g., Shen, Pielke Sr., 

and Zeng, 2023) 

Our statement really refers to the finite intrinsic predictability that is established by the 

features of chaos. The statement is based on Brisch and Kantz (2019), Bednar and Kantz 

(2022), and Budanur and Kantz (2022). 

(14) Lines 612 - 623, discussions are duplicated; they are the same as those in Lines 600-611. 

We deleted the duplicated part. Thank you for pointing this out. 

(15) Line 715, the parameter "K" should be replaced by "L". 

We replaced K by L. Thank you for pointing this out. 

(16) Line 716, Lorenz (2005) did not explicitly suggest the ratio of N/L = 30 nor provide 

justification for the choice of N = 960 and L = 32. 

We assume the requirement for a model to have 5 to 7 main highs and lows that correspond to 

planetary waves (Rossby waves) and several smaller waves corresponding to synoptic-scale 

waves, and we follow the text of Lorenz (2005) on the pages 1579 (Fig. RR5) and 1580 (Fig 

RR6). 



15 
 

 

Figure RR5: Page 1579 in Lorenz (2005). 
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Figure RR6: Page 1580 in Lorenz (2005). 

(17) page 40, line 870-875, Figure 10. Figure's title and captions are confusing. Since L05-02 

and L05-03 systems were used to provide the "ground true" (or reference) for computing 

errors, these errors do not represent the errors of the L05-02 and L05-03 systems, 

respectively, the growth of initial errors within the L05-02 or L05-03 system does contribute 

to the growth of differences of the solutions between the L05-1 and L05-02 (or L05-03) 

systems. 

 For a comparison in Figures 5-7, let's simply choose λ+, = 0.33, 0.29, and 0.46 for the L05-

1, L05-2, and L05-3 systems, respectively. The comparison of the above selected growth rates 

produces a consistent finding that larger differences (in error growths) are reported in Figure 

10b than in Figure 10a. However, on the other hand, considering differences between the 

L05-02 and L05-03 systems, the differences may produce the largest growth rates as 

compared to those in Figure 10a and Figure 10b. 

The question under investigation in this paper is whether omitting small scale atmospheric 

phenomena, which contribute little to the final value, will improve the predictability of the 

resulting value. In other words, how does the average forecast error growth change in a model 

where small-scale phenomena are omitted but where model errors are therefore introduced, 

compared to a model where all phenomena are present but the average forecast error growth is 

scale-dependent. So if we use L05-02 and L05-03 systems to provide the "ground true" (or 
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reference) then, when searching for an answer to the research question, it is reasonable to use 

the results presented in Figure 10. 

Figures 5-7 show that, the L05-1 system is a classical chaotic system with the largest Lyapunov 

exponent of about 0.33   1/ day. The data of the L05-2 and L05-3 are best approximated by 

the power law . For a power law: ( )
( )ln

:= = = ,p

d E E
E aE

dt E

 −  with an exponent   and a 

coefficient > 0a , the error growth rate 
1

( ) ln( ( ) / ( ))E E t t E t
t

  +


 is expected to be a function of 

the error magnitude E , and is not constant as for classical chaotic systems. For exponential 

growth (classical chaos) exp

e 0( ) =
t

xpE t E e


 and for an initial error 
0E  going to zero, the time 

limt  at 

which the error reaches a limiting value 
limE , goes to infinity: 0

0

exp

ln ln
= 0.lim

lim

E E
t for E



−
→ →  

However, a strict predictability limit 
limt  exists for scale-dependent error growth even when the 

initial error 
0E  vanishes. For a description by a power law pdE , the predictability limit 

limt  is: 

( ) ( )0 0= ( ) / = / ( ) < 0.b b b

lim limt E t E a b t E a b for E−  →   →   

It is true that if we show the growth of the model and initial error in Figure 10, this is the initial 

error of the L05-1 system, but this is consistent with the question under investigation. At the 

same time, Figure 10 compares the strictly model error growth (no initial error) with the strictly 

initial error growth (L05-2, L05-3 systems), where the initial error is limiting towards zero and 

is then a strict predictability limit. 
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Referee 4 (Report 2)  

We are grateful to the referee for devoting their time to our manuscript. The valuable 

comments and suggestions will help us to improve the paper. 

We will here respond to comments made: 

The abstract states, “This system shows that omitting small spatiotemporal scales will reduce 

predictability more than modeling it. In other words, a system with model error (omitting 

phenomena) will not improve predictability.” However, this conclusion is not new. The 

abstract of Jacobson (2001), for example, states, “Statistics from outer nested domains 

indicated that the coarser the grid spacing, the greater the underprediction of ozone.” Table 2 

of the same paper quantifies the impact of grid spacing on model accuracy against data for 

25 parameters, including meteorological (wind speed/direction, temperature, pressure, RH), 

and air quality parameters, in each of four nested domains. The paper concludes (Section 6), 

“For many parameters…accuracy improved from the coarsest to finest regional domains.” 

Please include a discussion of Jacobson (2001) in your Introduction and indicate whether any 

other reference you are aware of have also shown the conclusion you are making (that 

omitting spatiotemporal scales reduces model predictability against data) through a 

comparison of model results at different scales with data. 

We added to the abstract: “that significantly affect the ability to predict” (Line 11) 

 We added to the introduction: “Buizza (2010), Magnusson and Kallen (2013) or Jacobson 

(2001) show that improving the model's spatial and temporal resolution will improve the 

ability to predict, especially for short forecast range (Buizza, 2010). However, the cited 

studies work with models that do not model small spatiotemporal phenomena (they are 

parameterized) and whose initial condition error magnitude is larger than the magnitude of 

these phenomena. We have verified the fact that the high resolution model (that models small 

scales) is less stable than the low resolution model (that doesn't model small scales) against 

initial condition errors (Bednar and Kantz, 2022; Budanur and Kantz, 2022), and that 

therefore the issue of omitting small scales has another facet. Our new approach models and 

omits small spatiotemporal scales using…” (Lines 129-135)  

Abstract. Also, what is missing in the abstract is a summary of results relative to model 

resolution. How much does improving the resolution, say by a factor of 2 in each the north-

south and east-west direction, reduce the error over a specified period of time? 

A comparison of how much an improvement in resolution reduce the error over a specified 

period of time is made in Section 3.4 (lines 367-422). This full comparison is too extensive 

for the requirements of the abstract, so we have restricted information in the abstract to: “This 

system shows that omitting small spatiotemporal scales that significantly affect the ability to 

predict will reduce predictability more than modeling it. In other words, a system with model 

error (omitting phenomena) will not improve predictability.” (lines 11-13). 

We are also more interested in the general qualitative perspective (whether omitting small 

scale phenomena that contribute little to the forecasted product but significantly affect the 

ability to predict this product will improve the predictability of the resulting value) than in 

specific quantitative values, because these depend on the parameters of the particular system 

and its setting. 
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The authors use the ECMWF model. Please clarify what parameters this model conserves. 

Does it conserve mass, momentum, kinetic energy, vorticity, enstrophy, and/or potential 

enstrophy? Do you hypothesize that the non-conservation of some of these properties may 

affect the results. Can you hypothesize whether results using the ECMWF would give different 

results from those of a different model, such as the UCLA GCM, which conserves different 

properties (mass, kinetic energy, vorticity, and potential enstrophy in that case)? 

We used 500 hPa geopotential height values of ECMWF systems calculated as 25 annual 

averages over the Northern Hemisphere (20–90 ) obtained daily from 1 January 1987 to 31 

December 2011. Data was obtained from Magnusson (2013).  

Magnusson and Kallen (2013) summarized the development of the ECMWF system during 

that period: “Since the operational start in 1979, the ECMWF forecast model and the data 

assimilation system have been continuously developed. Among the important upgrades is the 

introduction of four-dimensional variational data assimilation (4D-Var) at the end of 1997 and 

subsequent changes in the use of data in the assimilation were undertaken (Simmons and 

Hollingsworth 2002). One important change here was the upgrade of the usage of raw 

microwave radiances from the Television Infrared Observation Satellite (TIROS) Operational 

Vertical Sounder (TOVS) and Advanced TIROS TOVS (ATOVS) satellite-borne instruments 

in the year 2000. A major change in the model physics took place in 2007 when changes to the 

convection scheme and the vertical diffusion were introduced (Bechtold et al. 2008). A 

comprehensive description of the changes between 2005 and 2008 is given in Jung et al. 

(2010).” Unfortunately, we did not find in the cited articles what parameters the systems 

conserve (we suppose that it is based on the primitive equations and hence conserves mass 

and momentum, but certainly there is some damping (modeling viscosity), so that energy 

might not be conserved). 

Regarding the question of whether non-conservation of some of these properties may affect 

the results. Drift described in Section 2.4 is a general description of how to characterize a 

model error and is therefore universal.  The extension described in Section 4.1 describes the 

time evolution of the drift generated at each time step using exponential growth. The 

universality of this hypothesis has to be confirmed. 

Along those lines, in general, do you think the conclusions drawn with this model apply to 

other models?  

We examined whether omitting atmospheric phenomena, which contribute little to the final 

value, will improve the predictability of the resulting value. For this, we used the L05 systems 

defined by Lorenz (2005) and Bednar and Kantz (2022) and the ECMWF systems with data 

from Magnusson (2013). We have shown that omitting atmospheric phenomena, which 

contribute little to the final value, will not improve the predictability of the resulting value. 

The average prediction error grows faster in a model where small-scale phenomena are 

omitted, but the model error is therefore created, compared to a model where all phenomena 

are present, but the average forecast error growth is scale-dependent. We think that our 

conclusions are general and can by applied to other models. 
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Referee 3 (Report 1 04 Mar 2024)  

We are grateful to the referee for devoting time to our manuscript.  

We will here respond to comments made: 

 

(Comment 1) The reviewer acknowledges the authors' efforts in 

addressing the review comments. However, the current format of 

their responses lacks point-by-point clarification, posing challenges 

in evaluating their responses. Therefore, it is recommended to 

reformat the responses for clarity………………………………………………………….…23 

 

(Comment 2) Furthermore, considering the authors' assertion that 

the proposed 05 system simulates "5 to 7 main highs and lows that 

correspond to planetary waves (Rossby wave)," it would be 

advantageous to discuss whether the proposed system, without the 

Coriolis force, could replicate key features of the Rossby wave, 

including phase speeds. Historically, experiments such as dishpan 

experiments aimed to "simulate" weather features, yielding diverse 

outcomes like chaotic solutions and vacillation (e.g., limit  

cycle)…………………………………………………………………………………….……38 

 

(Comment 3) This study extends from the authors' previous 

research. The reviewer acknowledges the related efforts. However, 

after examining their earlier studies, the reviewer proposes the 

following: 1. Document and report the calculation of Lyapunov 

exponents (LEs) within the proposed 05 system. For instance, 

employing the 1963 model with common parameters, the largest LE 

(LE1) is 0.906, as exemplified in the link provided 

(https://sprott.physics.wisc.edu/chaos/lorenzle.htm). This task holds 

significant importance. 2. Develop the error growth model, e.g., 

dE/dt = sigma E (1 - E/Es), and furnish a mathematical expression 

for sigma and LE1 of the proposed system. It should be noted that 

 the long-time average of (1/E dE/dt) is not precisely equal to sigma………………………..40 
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(Comment 1)  - Referee 3 (Report 1 04 Dec 2023) - reformated 

We are grateful to the referee for devoting their time to our manuscript. The valuable comments 

and suggestions will help us to improve the paper. 

We will here respond to comments made: 

 

(Major Comment A) Different two-scale models in Lorenz (1996) and Lorenz (2005) 

Figure R1 displays the two-scale model proposed by Lorenz (1996, 2006), including Eqs. (3.2)-

(3.3) of Lorenz (2006). It is worth mentioning that Lorenz (1966) and Lorenz (2006) are the 

same article. Eq (3.2) for the large-scale flow does not include the explicit forcing term "F", 

which appears in his one-scale model. This is a typo. For the small-scale flow in Eq. (3.3), 

where F is not explicitly included, the coupling term acts as the forcing to derive the small scale 

process. Within the two-scale model, the grid system was illustrated in Figure R2 derived from 

Wilks (2005). Such a grid system is similar to the grid system of the multiscale modeling 

framework (MMF, e.g., Tao et al. 2008; Shen et al. 2011), consisting of a general circulation 

model (GCM, e.g., Lin et al. 2003; Lin 2004; Shen et al. 2006) for large-scale flows, and 

multiple copies of a cloud model (e.g., Tao 2003) for small-scale flows. Specifically, a copy of 

the cloud model at fine resolutions is embedded within each grid of the GCM.  

Within the 2005 models, Lorenz first included additional nonlinear terms in the 1996 one-scale 

model (e.g., Eq. 8 in Figure R3) for slow variables (represented as Xn). Based on the 1996 one-

scale model with coefficients of ("b2 ", "b", "0") for nonlinear terms, dissipative terms, and 

forcing term, respectively, a subsystem for fast variables (represented as Yn) was deployed and 

coupled with the subsystem for the slow variables. The coupled system with a 3 coefficient of 

"c" for coupling terms is referred to as the two-scale system (Eqs. 12a and 12b in Figure R4). 

The coupling terms were established based on a one-to-one relationship between Xn and Yn. 

Thus, the Lorenz 2005 two-scale model is different from the 1996 two-scale model. Will it be 

feasible for providing a diagram for illustrating the grid system within the 2005 two-scale 

model? 
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Response: Figure RR1 shows the similarity of the 1996 (Eqs. (1a) and (1b) in Figure R1) and 

2005 (Eqs. (12a) and (12b) in Figure R4) two-scale systems in the attempt to maintain 5 to 7 

main highs and lows and several smaller waves for large scales nX . While for the 1996 two-

scale system, this is ensured by a number of N large scale variables nX  close to 30 (and a 

number of JN variables for the small scales), for the 2005 system, it is ensured by linking the 

nX  variables as described in Eq. (8) in Figure R3 (with the same number of small scale 

variables, however, determined from Eq. (3.1) in Figure R1, see Figure RR2). The 2005 two-

scale system thus produces a smoother and more realistic evolution of the large-scale variable 

while maintaining properties similar to the 1996 system. 

The systems used in this manuscript, which are described in Appendix A (of the manuscript), 

address one more condition that brings them closer to real systems. This condition is the fact 

that the large scale and small scale features in Eqs. (1a) – (1b) in Figure R2 and Eqs. (12a) – 

(12b) in Figure R4 are represented by separate sets of variables instead of appearing as 

superimposed features of a single set. To satisfy this condition, the coupling of one small-scale 

variable and one large-scale variable is more realistic than the coupling that is present in the 

1996 system (Eqs. (1a) and (1b) in Figure R2). 

 

Figure RR1: Comparison of longitudinal profiles at one time of two-scale Lorenz systems (a) from 

1996 (Eqs. (1a) and (1b) in Figure R2) and (b) from 2005 (Eqs. (12a) and (12b) in Figure R4).  

 

Figure RR2: Comparison of schematic illustrations of two-scale Lorenz systems (a) from 1996 (Eqs. 

(1a) and (1b) in Figure R2) and (b) from 2005, where the inner wave curve represents the large-scale 

variables described by Eq. (12a) in Figure R4, which produce 5-7 main waves, and where the outer 

curve represents the small-scale variables described by Eq. (12b) in Figure R4, which are not limited by 

the number of waves. In contrast to (a), one large scale variable is coupled to one small scale variable. 
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(Major Comment B)  Dependence of findings on temporal spacing (i.e., ∆t) and "spatial" 

spacing (e.g., the number of sectors, N) 

 

As an analogy, the CFL condition, requiring c∆t/∆x < 1, here c is the space speed, suggests the 

importance of selecting temporal and spatial spacings for solution's stability. In this study, it is 

important to explore the impact of ∆t and N. 

 

Similarly, the concept of computational chaos (Lorenz 1989) also suggests the importance of 

wisely choosing ∆t. Computational chaos appears “when the exact solution varies periodically 

with time, there is sometimes a range of time increment where the computed solution is chaotic” 

(Lorenz 2006). Computational chaos can be illustrated by a comparison of the Logistic 

differential equation and the Logistic map (i.e., difference equation). While the former has 

analytical, regular solutions, the latter produces chaotic solutions when a control parameter is 

sufficiently large. A dependence of the control parameter on a temporal spacing (i.e., ∆t) can be 

shown by deriving the Logistic map from the Logistic differential equation (Shen et al. 2023). 

In this study, ∆t is 1/240 ~ 4.2 × 10-3 unit, N = 360 (indicating a "spatial" spacing), and L = 12 

(i.e., indicating complexities of scale interaction). It would be ideal for additional tests with a 

smaller ∆t = 10-5 (or ∆t = 10-4). Additionally, the choice of N and L should be explored since N 

= 960 and L = 32 were used in Lorenz (2005). 

As discussed below, the values of the coefficients for the coupling terms could impact the 

growth rate of the system as well. 

 

Response: The choice of the variable N = 360 was made because the value of the largest 

Lyapunov exponent λL05 of the system described by Eq. (8) in Figure R3 (F = 15, time unit = 5 

days) does not change for N = 360 and N = 960 (Table RR1) and therefore we chose the lower 

of the two values for computational efficiency. 

N 05L  

30 0.70 

60 0.29 

90 0.35 

120 0.32 

150 0.33 

360 0.33 

960 0.33 

Table RR1: Values of the largest Lyapunov exponent λL05 for selected numbers of variables N in the 

2005 Lorenz system (Eq. (8) in Figure R3, F = 15, time unit = 5 days). 

 

Figure RR3 compares the time evolution of the average value of the variables for the 2005 

Lorenz system (Eq. (8) in Figure R3) with time step ∆t=1/240 and ∆t=1/2400. It can be seen 

that the values are similar. Given this, we use the larger time step dt=1/240 for faster 

computations. 
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Figure RR3: Comparison of the time evolution of the mean value of the variables (N = 360) for the 2005 

Lorenz system (Eq. (8) in Figure R3) based on the same initial conditions with time step ∆t=1/240 (red 

dashed curve) and ∆t=1/2400 (black dotted curve). 

(Major Comment C) Impact of model's configuration and complexity on critical points 

(equilibrium points)  

 

Based on the linearization theorem, critical points of the Lorenz systems could roughly indicate 

the local behavior of the solutions. As a result, initial error growth should display a dependence 

on the equilibrium state. Please consider identifying the appearance of the critical points and 

perform stability analysis using the Jacobian matrix of the linearized system at each of the 

critical points. 

 

Below, a simple illustration for the linear stability analysis is provided using the 1996 one-scale 

model with N = 5. Based on the Figure R5 and Table R1, it is suggested that a larger F may 

produce a larger eigenvalue (a larger real part of the eigenvalue), suggesting a larger growth 

rate.  

Based on the following preliminary analysis of the one- and two-scale models with the same 

value of the forcing parameter F, the effective forcing parameter for the two-scale model is 

smaller, yielding a smaller leading eigenvalue (i.e., a smaller real part of the eigenvalue). This 

is consistent with the finding that Figures 5 and 6 display larger growth rates ( λ) within the 

one-scale system (e.g., L05-1) than the two-scale system (e.g., L05-2). [Such a finding is 

supported by the so-called aggregated negative feedback reported by Shen 2014, 2019.]  

 

Consider Eqs. (A2) and (A3). From the nonlinear terms of Eq. (A2) and (A3), we expect that 

X1,1 = X1,2 = X1,3 = ⋯ X1,c and X2,1 = X2,2= ⋯ X2,c may be a critical point. Here, X1,c and X2,c 

represent the value of steady state solutions for the slow and fast variables, respectively. From 

Eq. (A3), we have X2,c = cX1,c/b. Plugging the above into Eq. (A2), the right hand side of Eq. 

(A2) contains two dissipative terms, −X1,n and −c2X1,c/b, yielding X1,c = bF/(b + c2) < F. Namely, 

the effective forcing for slow variables is weaker, indicating a smaller growth rate within the 

two-scale model, as compared to the one-scale model. 
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On the other hand, the above along with Figure R5 and Table R1 only provide a preliminary, 

qualitative, analysis. The authors may want to further verify or comment the above since the 

Jacobian matrix for the two-scale system that includes fast variables is larger, as compared to 

the Jacobian within the corresponding one-scale system. 

 

 For example, with the two-scale or three-scale system, the value of parameter "b1" (b1 > 1) 

determine the (temporal) scale as well as the magnitude of the fast variables. Please provide 

justifications for the choice of b1 = 10 for the two-scale system but b1 = 1 for the three-scale 

system. Additionally, within the three-scale system, are nonlinear terms (e.g., c1 and c2 in Eq. 

A9) applied for coupling the "sub-systems" for the small- and medium-scale variables with the 

large-scale system? Please comment on the impact of c1 and c2 on system's stability. 
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Response: While for analytical studies the instability of fixed points (critical points) is certainly 

of high interest, we are interested in the typical error growth and therefore focus on the 

Lyapunov exponent on the chaotic attractor. Since the phase space is so high dimensional, we 

are not even sure that unstable fixed points are embedded in the chaotic attractor or whether 

they are outside, as they are in the Lorenz 1963 low dimensional model. We therefore calculate 

the maximal LE numerically in the following way: a reference trajectory (considered the "truth" 

or verification) and a trajectory which is the numerical solution of the systems with a given 

error, are repeatedly generated. For this scheme to be meaningful, we have to ensure that the 

reference trajectory is on the system's attractor and that the repetition of this scheme samples 

the whole attractor with correct weights (the invariant measure). We solve this issue in the 

following way: We first integrate the system over ten years (175200 steps), starting from 

arbitrary initial conditions, and assume that after discarding this transient, the trajectory is on 

the attractor. We continue to integrate this single trajectory and consider segments of it as 

reference trajectories for error growth, i.e., the many reference trajectories are simply segments 

of one very long trajectory, which ensures not only that all these segments are located on the 

attractor but that in addition, they sample the attractor according to the invariant measure. 

 

Figure RR4 compares the error growth rates of the L05-1 (Eq. (A1) in manuscript), L05-2 (Eq. 

(A8) in manuscript), and L05-3 (Eq. (A9) in manuscript) systems. In contrast to the reviewer's 

findings, the figure shows the smallest growth rate for the L05-1 system and the largest for the 

L05-3 system. We confirm that the effective forcing for slow variables is weaker, indicating a 

smaller growth rate within the two-scale model, as compared to the one-scale model. However, 

it should be noted that in Figure RR4 the values of the single-scale system (L05-1) are not 

compared with the large-scale values of the multi-scale systems (L05-2 and L05-3), but are 

compared with the total values of the L05-2 and L05-3 systems, where the large-scale and 

small-scale features are appearing as superimposed features of a single set. 

 

Figure RR4: Initial error growth tendency (rate) dE dt  as a function of the error magnitude E for L05-

1 system (Black, Eq. (A1) in manuscript), for L05-2 system (Red, Eq. (A8) in manuscript), and for L05-

3 system (Blue, Eq. (A9) in manuscript). 
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A justification for the use of the L05-2 (Eq. (A8) in manuscript) and L05-3 (Eq. (A9) in 

manuscript) systems as the "reality" and the L05-1 system as the "model." is presented in the 

manuscript (Lines 220-228 in revised manuscript): 
“This approach is justified by the fact that the L05-2 and L05-3 systems can be viewed as a variant of the L05-1 

system:  

   ( ), 1 1 1,,
/ = , ,tot n n nL n

dX dt X X X F t− +  (12) 

 where ( )    2

2 2 2 1 2,1, 1,
= , ,n nn n

F t b X X c X X bX F+ − +  for the L05-2 system and 

( )        2 2

1 2 2 2 3 3 1 2 1 2 3 2 1 2, 2 3,1, 1, 1, 1,
= , , , ,n n nn n n n

F t b X X b X X c X X c X X b X b X F+ + + − − +  for the L05-3 system are 

treated as a forcing, which varies in a complicated manner with time. We parameterize these small-scale 

phenomena contained in ( )nF t  by the average value of these phenomena, which is close to zero, and therefore we 

can write:  ( ) =15,nF t F  (13) 

 where    represents the mean calculated over a long orbit on the L05-2 and L05-3 systems attractors.“ 

 

The parameters of any multi-level Lorenz’s system (L96-2, L05-2, L05-3) should be set so that 

all levels behave chaotically (the largest Lyapunov exponent of each level is positive) and that 

all levels have a significant difference in amplitudes and fluctuation rates. For the L-96 system 

(Eq. (3.1) in FIgure R1), the chaotic behavior is determined by the value of F , and the number 

of variables N . Lorenz (2005) states that as long as 12N   chaos is found when > 5F  (for 

= 4N  it is when >12F  and for > 6N  when > 8F ). In cases such as the L96-2 system (Eqs. 

(1a) and (1b) in Figure R2), where the forcing F acts only on the largest scale, the chaotic 

behavior of smaller scales is created by coupling. The size of the coupling is cascaded from the 

largest scale to the smaller ones. Because the values of the largest scale variables are determined 

by the forcing F , the F  value indirectly affects the smaller scales’ chaotic behavior and must 

be chosen large enough to ensure chaotic behavior through coupling for all scales (levels). For 

the L05-2 system (Eq. (A8)), variables are superposed features of a single set calculated by Eqs 

(A4) and (A5). In addition to those mentioned above, this procedure affects the chaotic 

behavior, amplitude, and fluctuation rate of the levels, and the choice of I between 10 and 20 

may be optimal (Lorenz, 2005). In order to maintain the required properties of the two scales 

L05-2 system, Lorenz (2005) chose N = 960, L = 32, I = 12, F = 15, b = 10, and c = 2.5 (note 

that for L05-2 and L05-3 systems it is not possible to directly determine the amplitude and 

fluctuation rate of smaller scales using spatiotemporal scaling factors b, because these 

values are mainly determined by the procedure for expressing variables and the length of 

the intervals  ,I I− ). 

For the L05-3 system (Eqs. (A9) – (A12)), it is necessary to specify eight parameters. We tested 

that the values of coupling coefficients c
1
 and c

2
 do not affect the L05-3 system compared to 

the values of other parameters, and therefore for simplification 1 =1c  and 2 =1.c  The parameter 

=15F  is set the same as for other L05 systems. For the medium scale amplitude to be 

approximately ten times smaller than the large scale amplitude and the small scale amplitude to 

be approximately ten times smaller than the medium scale amplitude and for the scales to have 

different oscillation rates, the spatiotemporal scale factors are chosen b
1
 = 1 and b

2
 = 10 and 

interval lengths I
1
 = 20, and I

2
 = 10. N = 360 turned out to be most suitable for the chaotic 

behavior of all three levels (found experimentally). 
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(Major Comment D) Separations of initial and model errors 

Based on the linearization theorem, a locally linearized system may represent the local feature 

of the corresponding nonlinear system (for a hyperbolic critical point). The stability of the 

linearized system depends on locations of the critical points that depend on model's complexity 

(i.e., nonlinear terms in the system). Thus, the model complexity (i.e., nonlinear terms) could 

impact the critical points and thus the growth of the initial errors. As a result, it is not easy to 

separate the initial errors and model errors. (For example, given the same initial error for a 

large-scale variable, the time varying difference between two nearby trajectories are different 

in two different models.) 

Response: We fully agree with the comment. We simulate the initial error growth in the same 

systems (perfect model assumption), and the model error growth with zero initial error (perfect 

initial conditions assumption). Combination of both is studied in section 3.3 of the manuscript. 

(Major Comment E) Validity of error saturation for periodic attractors and coexisting 

attractors 

Earlier studies suggest that the Lorenz 1996 two-scale model could produce nonlinear periodic 

solutions. In your ensemble runs, have you observed periodic solutions? Can you comment on 

the validity of error saturation for periodic solutions? 

Additionally, recent studies reported the appearance of multistability (for coexisting attractors) 

within the 1996 model (e.g., Van Kekem and Sterk 2018a,b, 2019; Pelzer et al. 2020). Have you 

observed multistability in your ensemble runs? 

Response: In our research, we focused only on the average value of error growth (over variables 

and number of runs). We set all the scales through the parameters of the Lorenz systems to 

behave chaotically (details can be found in Bednar and Kantz (2022)) and the evolution of the 

average error growth did not show signs of periodic solution or multistability. 

 

Specific Comments: 

(Specific Comments 1) Please check consistency in the capitalization of the initial letters of 

words within a title. 

Response: We checked and fixed it. Thank you for pointing this out. (Lines 1-2 in revised 

manuscript): 

“Analysis of model error in forecast errors of Eextended Aatmospheric Lorenz' 05 Ssystems and the ECMWF 

system“ 

(Specific Comments 2) Lines 45-50, the application of the Lyapunov exponent (LE) is not 

accurate. A global LE represents a long-term average of "local" growth rates (determined by 

the separations of two nearby trajectories). Initial separations should remain small. Local 

growth rates may vary with time. As a result, Eq. (1) with a constant growth rate is valid only 

for a finite time interval. During different time internals, different growth rates may appear. 

Note that in addition to one positive LE, solution's boundedness is another important feature 

that defines a chaotic system. 
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Response: We have added information about boundedness and validity for a finite time interval. 

(Lines 47-48 in revised manuscript) 

“In low-dimensional bounded chaotic systems with at least one positive Lyapunov exponent, the growth of 

infinitesimal errors is exponential for a finite time interval, given by a linear time derivative:“ 

(Specific Comments 3) Lines 45-55, please consider referring to the growth rates in Eqs. (1) 

and (2) as the exponential growth rate (with a J-shaped curve) and logistic growth rate (with a 

S-shaped curve), respectively. 

Response: We changed the description of Eqs. (1) and (2). (Lines 808-810, 820-822, 833-835, 

846-848, 861-863 in revised manuscript). 

“the early part of the growth by exponential growth rate exdE (Eq. (1), green, dashed), exponential growth rate with 

model error rdE  (Eq. (5), blue, dashed), power law pdE  (Eq. (3), red, dashed) and approximation of the full curve 

by growth rate of quadratic hypothesis qudE (Eq. (2), green), growth rate of quadratic hypothesis with model error 

qdE  (Eq. (6), blue) and extended power law“ 

“the early part of the growth by exponential growth rate exdE  (Eq. (1), green, dashed), exponential growth rate 

with model error rdE  (Eq. (5), blue, dashed), power law pdE  (Eq. (3), red, dashed) and approximation of the full 

curve by growth rate of quadratic hypothesis qudE  (Eq. (2), green), growth rate of hypothesis with model error qdE  

(Eq. (6), blue) and extended power law epdE “  

“the early part of the growth by exponential growth rate exdE  (Eq. (1), green, dashed), exponential growth rate 

with model error rdE  (Eq. (5), blue, dashed), power law pdE  (Eq. (3), red, dashed) and approximation of the full 

curve by growth rate of quadratic hypothesis qudE  (Eq. (2), green), growth rate of quadratic hypothesis with model 

error qdE  (Eq. (6), blue) and extended power law“ 

“black, dot-dashed for ( )0 0.2E = ), approximation of the early part of the model growth by exponential growth rate 

exdE  (Eq. (1), green, dashed), exponential growth rate with model error rdE  (Eq. (5), blue, dashed), power law 

pdE  (Eq. (3), red, dashed) and approximation of the full curve by growth rate of quadratic hypothesis qudE  (Eq. 

(2), green), growth rate of quadratic hypothesis“ 

“black, dot-dashed for ( )0 0.2E = ), approximation of the early part of the model growth by exponential growth 

rate exdE  (Eq. (1), green, dashed), exponential growth rate with model error rdE  (Eq. (5), blue, dashed), power law 

pdE  (Eq. (3), red, dashed) and approximation of the full curve by growth rate of quadratic hypothesis qudE (Eq. 

(2), green), growth rate of quadratic hypothesis” 

(Specific Comments 4) Line 80, the term "error growth laws" should be rephrased since they 

are not necessarily physical laws. 

Response: We replaced the term law with the term hypothesis. (Lines 81, 309 in revised 

manuscript) 

“While the above-listed error growth lawsapproximations are supposed to approximate the effectively observed 

average error“ 

“numerical error growth curves using the hypotheses or laws Eqs. (1) - (6) and try to identify the most appropriate 

description. “ 
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(Specific Comments 5) Lines 122, statements are not accurate. Unless additional forcing terms 

are introduced, improving model's spatial or temporal resolution does not necessarily enhance 

instability. (Please think of a convergent Taylor series.) 

Response: We added to the introduction:  

“Buizza (2010), Magnusson and Kallen (2013) or Jacobson (2001) show that improving the model's spatial and 

temporal resolution will improve the ability to predict, especially for short forecast range (Buizza, 2010). However, 

the cited studies work with models that do not model small spatiotemporal phenomena (they are parameterized) 

and whose initial condition error magnitude is larger than the magnitude of these phenomena. We have verified 

the fact that the high resolution model (that models small scales) is less stable than the low resolution model (that 

doesn't model small scales) against initial condition errors (Bednar and Kantz, 2022; Budanur and Kantz, 2022), 

and that therefore the issue of omitting small scales has another facet. Our new approach models and omits small 

spatiotemporal scales using…”  

(Lines 129-135 in revised manuscript)  

(Specific Comments 6) Lines 128-130: it is wired that the two-scale system contains large- and 

small-scale systems while the three-scale system adds a medium scale, in addition to large- and 

small-scale flows. Any justifications? 

Response: It would be more natural to take the L05-2 and L05-1 systems as the model and the 

L05-3 system as the reality. ). A variant where the L05-2 system was used as the model and the 

L05-3 system as the "reality" was also tested. The resulting model error growth is approximately 

identical to the previous variant (L05-1 system as the model and L05-3 system as the "reality"). 

That's why we chose the settings we present. Further, it would be more natural for the L05-2 

system to have a small scale comparable to the medium scale of the L05-3 system. However, 

our intention was to be close to the L05-2 system presented by Lorenz (2005), whose small 

scale is equivalent to the small scale of our L05-3 system.  

(Specific Comments 7) Lines 160-165, have you observed coexisting attractors (e.g., more 

than one attractors) in your ensemble runs? (e.g., see multistability in Van Kekem and Sterk 

2018a,b, 2019; Pelzer et al., 2020). 

Response: In our research, we focused only on the average value of error growth (over variables 

and number of runs) and we did not observe signs of multistability. 

(Specific Comments 8)  Line 170, does the statement "errors might even shrink in short times" 

indicates the existence of a stable manifold? 

Response: Yes, the Lorenz L05-systems possess rather high dimensional stable manifolds, 

along which trajectories are attracted towards the attractor. Calculation of the Lyapunov-

dimension done by us for L05-2 show this very clearly, the attractor dimension is much smaller 

than the phase space dimension, where the attractor is the unstable manifold. But the statement 

on line 170 does not indicate the existence of a stable manifold but the fact that initial 

perturbations might not point into the locally most unstable direction. 

(Specific Comments 9) Lines 194, while N=360 was used in this study, N=960 was appied in 

Lorenz (2005). 

Response: Thank you for pointing this out. The problem is already discussed in comment 

(Major Comment B). 
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(Specific Comments 10) line 186, how many time steps for the transfer of error to the small-

scale variables? 

Response: The error would immediately (one time step) propagate into the small-scale 

variables. 

(Specific Comments 11) Section 3.1, please confirm whether the leading LE in the L05-1 

system is larger (smaller) than that in the L05-2 (L05-03) system. 

Response: Figure RR4 compares the error growth rates of the L05-1 (Eq. (A1) in manuscript), 

L05-2 (Eq. (A8) in manuscript) and L05-3 (Eq. (A9) in manuscript) systems. The figure shows the 

smallest growth rate for the L05-1 system and the largest for the L05-3 system (therefore also 

for LE). It should be noted that for the L05-2 and L05-3 systems, the error growth rate is scale 

dependent. 

(Specific Comments 12) Line 382-394: The key point that higher resolution model produces 

better predictability is acceptable. However, it is not clear whether Figure 10 is sufficient to 

support this point. Please see details in the last specific comment below. 

Response: Please see the discussion at: (Specific Comments 17) 

(Specific Comments 13) Line 656: The statement "Based on the fact that scale-dependent error 

growth implies an intrinsic predictability limit" is not accurate. A finite growth rate may indicate 

a limit for practical predictability. By comparison, a finite intrinsic predictability is established 

by the feature of chaos (e.g., sensitive dependence on initial condition, SDIC; e.g., Shen, Pielke 

Sr., and Zeng, 2023) 

Response: Our statement really refers to the finite intrinsic predictability that is established by 

the features of chaos. The statement is based on Brisch and Kantz (2019), Bednar and Kantz 

(2022), and Budanur and Kantz (2022). 

(Specific Comments 14) Lines 612 - 623, discussions are duplicated; they are the same as those 

in Lines 600-611. 

Response: We deleted the duplicated part. Thank you for pointing this out. 

(Specific Comments 15) Line 715, the parameter "K" should be replaced by "L". 

Response: We replaced K by L. Thank you for pointing this out. 

(Specific Comments 16) Line 716, Lorenz (2005) did not explicitly suggest the ratio of N/L = 

30 nor provide justification for the choice of N = 960 and L = 32. 

Response: We assume the requirement for a model to have 5 to 7 main highs and lows that 

correspond to planetary waves (Rossby waves) and several smaller waves corresponding to 

synoptic-scale waves, and we follow the text of Lorenz (2005) on the pages 1579 (Fig. RR5) 

and 1580 (Fig RR6). 
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Figure RR5: Page 1579 in Lorenz (2005). 
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Figure RR6: Page 1580 in Lorenz (2005). 

(Specific Comments 17)  page 40, line 870-875, Figure 10. Figure's title and captions are 

confusing. Since L05-02 and L05-03 systems were used to provide the "ground true" (or 

reference) for computing errors, these errors do not represent the errors of the L05-02 and L05-

03 systems, respectively, the growth of initial errors within the L05-02 or L05-03 system does 

contribute to the growth of differences of the solutions between the L05-1 and L05-02 (or L05-

03) systems. 

For a comparison in Figures 5-7, let's simply choose λ+, = 0.33, 0.29, and 0.46 for the L05-1, 

L05-2, and L05-3 systems, respectively. The comparison of the above selected growth rates 

produces a consistent finding that larger differences (in error growths) are reported in Figure 

10b than in Figure 10a. However, on the other hand, considering differences between the L05-

02 and L05-03 systems, the differences may produce the largest growth rates as compared to 

those in Figure 10a and Figure 10b. 

Response: The question under investigation in this paper is whether omitting small scale 

atmospheric phenomena, which contribute little to the final value, will improve the 

predictability of the resulting value. In other words, how does the average forecast error growth 

change in a model where small-scale phenomena are omitted but where model errors are 

therefore introduced, compared to a model where all phenomena are present but the average 

forecast error growth is scale-dependent. So if we use L05-02 and L05-03 systems to provide 
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the "ground true" (or reference) then, when searching for an answer to the research question, it 

is reasonable to use the results presented in Figure 10. 

Figures 5-7 show that, the L05-1 system is a classical chaotic system with the largest Lyapunov 

exponent of about 0.33   1/ day. The data of the L05-2 and L05-3 are best approximated by 

the power law . For a power law: ( )
( )ln

:= = = ,p

d E E
E aE

dt E

 −  with an exponent   and a 

coefficient > 0a , the error growth rate 
1

( ) ln( ( ) / ( ))E E t t E t
t

  +


 is expected to be a function of 

the error magnitude E , and is not constant as for classical chaotic systems. For exponential 

growth (classical chaos) exp

e 0( ) =
t

xpE t E e


 and for an initial error 
0E  going to zero, the time 

limt  at 

which the error reaches a limiting value 
limE , goes to infinity: 0

0

exp

ln ln
= 0.lim

lim

E E
t for E



−
→ →  

However, a strict predictability limit 
limt  exists for scale-dependent error growth even when the 

initial error 
0E  vanishes. For a description by a power law pdE , the predictability limit 

limt  is: 

( ) ( )0 0= ( ) / = / ( ) < 0.b b b

lim limt E t E a b t E a b for E−  →   →   

It is true that if we show the growth of the model and initial error in Figure 10, this is the initial 

error of the L05-1 system, but this is consistent with the question under investigation. At the 

same time, Figure 10 compares the strictly model error growth (no initial error) with the strictly 

initial error growth (L05-2, L05-3 systems), where the initial error is limiting towards zero and 

is then a strict predictability limit. 
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(Comment 2) Furthermore, considering the authors' assertion that the proposed 05 system 

simulates "5 to 7 main highs and lows that correspond to planetary waves (Rossby wave)," it 

would be advantageous to discuss whether the proposed system, without the Coriolis force, 

could replicate key features of the Rossby wave, including phase speeds. Historically, 

experiments such as dishpan experiments aimed to "simulate" weather features, yielding diverse 

outcomes like chaotic solutions and vacillation (e.g., limit cycle). 

Response: Lorenz and Emanuel (1998) showed that the initial wave of the L96 system has a 

westward phase velocity and an eastward group velocity, which is in agreement with the 

evolution of Rossby waves. We show a description of the evolution of the incipient waves of 

the L96 system in Figure RR7. Lorenz and Emanuel (1998) also showed a numerical calculation 

of the evolution of the L96 system, which is presented in Figure RR8. In the same manner, we 

present in Figure RR9 the numerical calculation of the evolution of the L05 system for N = 30 

(left column) and N = 360 (right column). From Figures RR8 and RR9, we can see the 

agreement and confirmation of the theoretical calculation. 

 
Figure RR7: Description of the evolution of the incipient waves of the L96 system (Pages 400-401 in 

(Lorenz and Emanuel, 1998)). 
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Figure RR8: Numerical documentation of the evolution of the incipient waves of the L96 system 

(Page 401 in (Lorenz and Emanuel, 1998)). 

 
Figure RR9: Numerical documentation of the evolution of the incipient waves of the L05 system for 

N = 30 (left column) and N = 360 (right column). Longitudinal profiles of Xj at 6-h intervals, 

with F = 15, when initially X15 =  F + 0.008 or X180 =  F + 0.008  and Xj  = F when j ≠ 15 or j 

≠ 180. 
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(Comment 3) This study extends from the authors' previous research. The reviewer 

acknowledges the related efforts. However, after examining their earlier studies, the reviewer 

proposes the following: 

(Comment 3.1) Document and report the calculation of Lyapunov exponents (LEs) within the 

proposed 05 system. For instance, employing the 1963 model with common parameters, the 

largest LE (LE1) is 0.906, as exemplified in the link provided  

(https://sprott.physics.wisc.edu/chaos/lorenzle.htm). This task holds significant importance. 

Response: Table RR1 shows the values of the largest Lyapunov exponent LE1 of the L05 

system described by Eq. (8) in Figure R3 for selected numbers of variables N (F = 15, time unit 

= 5 days) calculated by Sprott's (2006) method. 

N LE1 

30 0.70 

60 0.29 

90 0.35 

120 0.32 

150 0.33 

360 0.33 

960 0.33 

Table RR1: Values of the largest Lyapunov exponent LE1 for selected numbers of variables N 

in the 2005 Lorenz system (Eq. (8) in Figure R3, F = 15, time unit = 5 days). 

 

We also calculated the largest Lyapunov exponent LE1  in the L05-3 system (three scales, N = 

390, F = 15, time unit = 5 days) using the method of Sprott (2006). We determined the 

maximal Lyapunov exponents in all four cases and find the values LE1 = 2.5 (day)−1 for 

overall and small scale and LE1 = 2 (day)−1 for medium and small scale. The similarity of the 

values for all levels indicates that they are coupled, so that the maximal Lyapunov exponent 

when calculated in the double limit E0→0 and t→∞ shows up in arbitrary subsystems. The 

evolution of the errors E can always be studied in a way to see the largest exponent of the 

system (done here), but also in a way to see a value which would be the exponent of the 

corresponding sub-system if one were able to isolate this, but this cannot be calculated using 

standard methods for calculating the largest Lyapunov exponent. 

 

(Comment 3.2) Develop the error growth model, e.g., dE/dt = sigma E (1 - E/Es), and furnish 

a mathematical expression for sigma and LE1 of the proposed system. It should be noted that 

the long-time average of (1/E dE/dt) is not precisely equal to sigma. 
For a chaotic L05 system with average initial error growth E(t), the largest Lyapunov 

exponent is defined as: LE1=limt→∞limϵ→0 (1/t)ln(E(t)/ϵ). This exponential growth is 

associated with single scale systems, infinitesimal initial error ϵ, and the early part of the error 

growth. For a not infinitesimally small initial error and the entire evolution of the error, 

Lorenz (1982) defined the quadratic hypothesis: dE/dt = sigma E (1 - E/Es). The error growth 

rate, for comparison with LE1, can be determined as: 1/E dE/dt = sigma (1 - E/Es). Thus, the 

sigma determines the value at the beginning of the decrease in the error growth rate  

(dE/dt = sigma*E(t) in the limit E/Es << 1 with sigma ≈ LE1, Figure RR10). Sigma is an 

approximation of LE1, which is biased by the error due to the approximation of the data, not 

the infinitesimal initial error, and the use of data from the entire development period. 
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Figure RR10: Exponential growth E(t) = E(0) exp(sigma*t) (left figure, black curve) and 

sigma determined from 1/E(dE/dt) of E(t) = E(0) exp(sigma*t) as a function of E (right figure, 

black curve). Growth of E(t) determined from the quadratic hypothesis (left figure, red curve) 

and linear decline determined from 1/E dE/dt = sigma (1 - E/Es) as a function of E (right 

figure, red curve). 
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Referee 3 (Report 1 15 May 2024)  

We are grateful to the referee for devoting time to our manuscript.  

We will here respond to comments made: 
 

(Major Comment A) Concerning the physical relevance of the model, the qualitative features 

such as patterns, phase, and group velocities within the system fail to convince, primarily 

because the equation omits mechanisms like potential vorticity (PV) generation necessary for 

planetary waves (Rossby waves). To address this issue, it is advisable to include a disclaimer 

stating: "Although the equation lacks the forcing terms essential for generating planetary waves, 

it qualitatively mimics features similar to those of the Rossby wave." 

Response: We have added the information that planetary waves are not generated by potential 

vorticity. (Lines 717-721 in revised manuscript): 

To a certain extent, the model quantitatively describes weather systems, but unlike the well-known Lorenz model 

of atmospheric convection (Lorenz, 1963), it cannot be derived from any atmospheric dynamic equations. The 

motivation was to formulate the simplest possible set of dissipative chaotically behaving differential equations that 

share some properties with the “real” atmosphere. Although mechanisms such as potential vorticity generation are 

lacking in the equations, the model generates 5 to 7 main highs and lows corresponding to planetary waves (Rossby 

waves). To keep 5 to 7 main highs and lows that correspond to planetary waves (Rossby waves), Lorenz (2005) 

suggested a ratio / = 30N L  and = 15F . 

(Major Comment B) Regarding the impact of small-scale processes, this study and the existing 

literature identify two types of such processes. 

Type (1) involves small-scale processes introduced through an increased number of grid points 

or spectral modes. In this study, models with a larger number 𝑁 incorporate smaller scale 

processes. However, as shown in Table RR1, increasing N reduces the magnitude of the 

Lyapunov exponent for smaller values of 𝑁. For larger 𝑁 values (N=150, 360, 960), the 

Lyapunov exponents remain the same (but why?), indicating that the inclusion of smaller scale 

processes does not enhance instability. 

In contrast, type (2) involves small scale processes through model coupling. The reviewer notes 

that not only do the newly introduced small scale processes but also the coupling methodology 

potentially impact the system's stability. [It should be noted that in real-world models, smaller 

spatial and temporal scale processes associated with parameterizations typically fall into this 

category.] 

Indeed, the reviewer has previously formulated a set of generalized Lorenz models 

demonstrating several key insights: (1) incorporating spectral modes and additional dissipative 

terms at higher wavenumbers can lead to systems that only exhibit chaotic behaviors at higher 

critical values of the Rayleigh parameter (e.g., Shen 2019); (2) integrating smaller-scale heating 

processes could lead to system destabilization (e.g., Shen 2015); (3) selecting specific spectral 

models, akin to model coupling, can significantly influence the stability of the system. 

This is why the reviewer recommended investigating (i) the impact of the coupling coefficients 

(ii) the potential role of nonlinear terms in generating additional critical points. Regrettably, 

these comment have not been addressed adequately. To remedy this, it is advised to 

acknowledge the following: (a) the two types of small scale processes that may generate 

different feedback effects, and (b) the role of coupling as another influential factor in 
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determining the stability of the coupled system and the true impact of small scale processes on 

stability. 

(As a result, the following statement in Abstract is not accurate: When studying the initial error 

growth, it turns out that small scale phenomena, which contribute little to the forecast product, 

significantly affect the ability to predict this product.) 

Response: For the L05-1 system, it is not valid that increasing N allows the involvement of 

smaller scale processes. The reason is that for the L05-1 system, there is an attempt to keep 6-

7 main waves and several smaller waves through the linking of Xn variables. For a smaller 

number of variables N, the smaller waves are more pronounced and therefore the value of the 

Lyapunov exponent is larger for smaller N. For larger N, the ratio of major and minor waves is 

similar and therefore the value of the Lyapunov exponent remains the same for higher N. 

Smaller scales are added to L05 systems using the procedure described on lines 731-764 (in 

revised manuscript): 

Lorenz (2005) wanted to keep the system as simple as possible, so instead of, for example, Fourier analysis, a 

procedure for expressing variables ,tot nX  as sums of 1,nX  and 2,nX  was introduced:  

 ( )1, ,

=

= ' ,
I

n tot n i

i I

X i X  +

−

−  (A7) 

 2, , 1,= .n tot n nX X X−  (A8) 

Parameters  ,  , and I  are chosen so that 
1X  is a low-pass filtered version of 

totX , and 
2X  represents the 

difference between the full signal totX  and the filtered signal. By this procedure, 
2X  has a much smaller amplitude 

than 1X , and also its time evolution should be faster since the temporal derivative is related to the spatial derivative 

via the difference 1, 1 1, 2( )n nX X+ −− , which for the low pass filtered signal 
1X  typically is smaller than for the signal 

2X . 

More precisely, Lorenz’s (2005) idea is that the parameters  ,   are chosen so that 1X  equals totX  whenever 

totX  changes quadratically over the longitudes (variables) n −  I through n + I. It is when ( )
=

' = 1
I

i I
i 

−
−  and 

( )2

=
' = 0

I

i I
i i 

−
− . By solving these equations, we get: 

 ( ) ( )2 3= 3 3 / 2 4 ,I I I + +  (A9) 

 ( ) ( )2 4 2= 2 1 / 2 .I I I + +  (A10) 

The procedures (Eqs. (A4) and (A5)) are functions of the interval length  ,I I− . 

When creating a system /totdX dt  as the sum of 1 /dX dt  and 2 /dX dt  (sum of Eqs. (A2) and (A3)), the coupling 

term 1,ncX  in Eq. (A3), which enables short waves to develop, is combined with the dissipation term 1,nX−  in Eq. 

(A2). Therefore, the coupling term can be canceled entirely, or it can appear in 1X  rather than 2X  when totX  is 
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analyzed, and there might be nothing to enable the short waves in 
2X  to grow. Lorenz (2005) reformulated the 

coupling process by adding a small fraction of 
1X  to 

2X  so small waves in 
2X  can amplify. It is done by replacing 

 2

2 2 1,1,
, nn

b X X cX+  by  2 2 1 1,
,

n
X X c X+  in Eq. (A3) , and L05-2 system would be: 

      2

, 1 1 2 2 2 1 1, 2,, 1, 1,
/ = , , , ,tot n n nL n n n

dX dt X X b X X c X X X bX F+ + − − +  (A11) 

where 2=c c b  . 

Based on the L05-2 system (Eqs. (A4) - (A8)), Bednar and Kantz (2022) designed a three levels (scales) system 

(L05-3): 

          2 2

, 1 1 1 2 2 2 3 3 1 2 1 2 3 2 1, 1 2, 2 3,, 1, 1, 1, 1,
/ = , , , , , ,tot n n n nL n n n n n

dX dt X X b X X b X X c X X c X X X b X b X F+ + + + − − − +

 (A12) 

where 
1c , 

2c , 
1b , 

2b  are parameters, and the procedure for expressing the variables are: 

 ( ) ( )( ) ( ) ( )( )( )
1

2 3 2 4 2

1, 1 1 1 1 1 1 ,

=
1

= ' 3 3 / 2 4 2 1 / 2 ,

I

n tot n i

i I

X I I I I I I i X +

−

+ + − + +  (A13) 

 ( ) ( )( ) ( ) ( )( )( )( )
2

2 3 2 4 2

2, 2 2 2 2 2 2 , 1,

=
2

= ' 3 3 / 2 4 2 1 / 2 ,

I

n tot n j n j

j I

X I I I I I I j X X+ +

−

+ + − + + −  (A14) 

 3, , 2, 1,= ,n tot n n nX X X X− −  (A15) 

where 1I  and 2I  set the length of the intervals  ,I I− . 

In our case, coupling refers to the linking of different scales that allows the formation of smaller 

waves. It should be noted that the smaller scales are filtered out of the overall Xtot variable by 

the method described by equations A4-A5 for the L05-2 system and A10-A12 for the L05-3 

system, and thus this is more of a reviewer's type of process (1). The processes described in 

Shen (2019) and Shen (2015) would then be comparable to adding another variable that affects 

the variable Xtot, but which is not filtered out of Xtot. For example, if we define the constant F 

in L05 systems as a variable and describe it by its own ordinary differential equation dF/dt. 

Depending on the definition of dF/dt, we could then obtain phenomena similar to those 

described in Shen (2019)  and Shen (2015).  

It is shown in Bednar and Kantz (2022) that in the power law dEp/dt = aE(1-b), the coupling rate 

(as defined in L05 systems) is described by the value of the parameter a and does not affect the 

value of b. From this we conclude the general validity of the published results for different 

coupling rates. 

We agree that the statement in the abstract may not always be valid in general and have therefore 

modified it. (Lines 8-9 in revised manuscript): 

When studying the initial error growth, it may turns out that small scale phenomena, which contribute little to the 

forecast product, significantly affect the ability to predict this product. 
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(Major Comment C) This research commenced by presuming the existence of a Lyapunov 

exponent (LE) and proceeded to formulate various ODEs aimed at determining the 

predictability horizons, emphasizing the impact of (reducing) initial conditions. However, the 

reviewer wishes to highlight several crucial points: (1) the LE signifies a time-averaged 

measure; (2) all the ODEs (with b > 0) examined in this study maintain continuous dependence 

on initial conditions (CDIC) across infinite time intervals, which precludes them from 

disclosing finite predictability for chaotic solutions. Additional insights and related discussions, 

which are available in Shen (2024), are provided below: 

(1) For a linear ODE given by E' = sigma E, the solution E grows unboundedly. Predictability 

horizons can be extended by reducing initial errors or elevating thresholds. 

(2) In the Logistic ODE, the solution E is bounded. However, the zero state (backward in time) 

and saturation value (forward in time) are only asymptotically reachable, implying that 

predictability horizons may also be extended by reducing initial errors or raising thresholds. 

(3) For the major ODE in this study, E' = a E^{1-b} with a > 0 and Eo > 0, its solution is written 

as follows: 

E = (Eo^b + abt)^{1/b} 

Please note that the above solution is (1) unbounded for b > 0 and (2) unbounded within a finite 

time interval (i.e., Tmax = - Eo^b / (ab)) for b < 0 and finite Eo. It appears t have been considered 

in this study. For instance, Equation (9) becomes invalid for b < 0. 

The author appreciates the discussion using the above solution that initial growth rates might 

not always be exponential. However, such formulations do not yield reliable pred horizons over 

longer periods. More importantly, what is the relationship between the parameter "a" and the 

Lyapunov exponent? The same inquiry applies to the Logistic ODE: between the parameter 

"sigma" and the Lyapunov exponent? 

Response: The authors and most certainly also the referee understand that the mathematical 

concept of the Lyapunov exponent is of limited value for the growth of forecast errors starting 

from finite (i.e., non-infinitesimal) perturbations and having a finite extension of the attractor. 

Therefore, empirical/numerical error growth is always limited to growing not beyond a finite 

value, and it might show behaviors different from an exponential growth also in the initial 

growth phase, in which case the relation to the value of the mathematically defined Lyapunov 

exponent of the system cannot be exact. 

Our definition of the predictability horizon is the time when the mean error growth reaches 95% 

of a saturation value Elim. The intrinsic predictability is then this time when the average error of 

initial conditions (ie(0)) goes limitingly to zero. The intrinsic predictability horizon for scale-

dependent error growth was determined using an extended power law (Eq. (4) in the revised 

manuscript), where the values of the parameters a,b, Elim were determined from an 

approximation of the data and at Eie(0) -> 0. 

The "sigma" parameter in the logistic ODE approximates the largest Lyapunov exponent for 

scale-independent error growth. For the power law (Eq. (3) in revised manuscript) and the 

extended power law (Eq. (4) in revised manuscript), when describing scale-dependent error 

growth, the parameter b is related to the largest Lyapunov exponents of each scale. The 
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parameter a describes the degree of coupling of each scale. A detailed discussion and meaning 

of the parameters a, b can be found in Bednar and Kantz (2022) in Section 3.3.1 

(Major Comment D) While Figure RR4 suggests the smallest growth rate for the L05-1 system 

and the largest for the L05-3 system, this appears inconsistent with the data from Figures 5-7, 

show 0.46 for the L05-1, L05-2, and L05-3 systems, respectively. Could you provide any 

explanations for this discrepancy? 

Response: For finite perturbations, where the initial error growth is not perfectly exponential 

and later some saturation occurs, there is no uniquely defined error growth rate, but only fitted 

values of the parameters of the different error growth laws. 

Based on the reviewer's reported value of 0.46, we assume that the reviewer is considering the 

value of the error growth rate for exponential growth (lambdaex) reported for the L05-3 system. 

Fig. 7 shows the value lambdaex = 0.46 1/day. (Lines 843-846 in revised manuscript) 

the early part of the growth by integration of exdE ( exE , green, dashed) with 0.46ex =  1/day, integration of rdE  (

rE , blue, dashed) with 0.35r =  1/day and 0.07r =  unit/day, integrations of pdE  ( pE , red, dashed) with 0.37a =  

unit0.63/day and 0.63b =  and approximation of the full curve by integration of qvdE  ( qvE , green) with 0.2qv =  

1/day and lim 6.9E =  unit, integration of qdE  ( qE , blue) with 0.14q =  1/day, 0.17q =  unit/day and lim 6.9E =  

unit 

 Fig. 5 shows the value lambdaex = 0.33 1/day. (Lines 818-821 in revised manuscript) 

the early part of the growth by integration of exdE ( exE , green, dashed) with 0.33ex =  1/day, integration of rdE  (

rE , blue, dashed) with 0.32r =  1/day and 0.00006r =  unit/day, integrations of pdE  ( pE , red, dashed) with 

0.34a =  unit0.02/day and 0.02b =  and approximation of the full curve by integration of qvdE ( qvE , green) with 

0.32qv =  1/day and lim 8.1E =  unit, integration of qdE ( qE , blue) with 0.32q =  1/day, 0.003q =  unit/day and 

lim 8.1E = unit 

Fig. 6 shows the value lambdaex = 0.29 1/day. (Lines 829-833 in revised manuscript) 

the early part of the growth by integration of exdE  ( exE , green, dashed) with 0.29ex =  1/day, integration of rdE  

( rE , blue, dashed) with 0.26r =  1/day and 0.02r = unit/day, integrations of pdE  ( pE , red, dashed) with 0.25a =

unit0.32/day and 0.32b =  and approximation of the full curve by integration of qvdE ( qvE , green) with 0.2qv =  

1/day and lim 6.8E =  unit, integration of qdE  ( qE , blue) with 0.18q =  1/day, 0.05q =  unit/day and lim 6.8E =  

unit  

It can be seen that the lambdaex value is not the same for the L05-1, L05-2 and L05-3 systems. 

It is true that the lambdaex value is lowest for the L05-2 system and not for the L05-1 system, 

but this is because lambdaex is not a suitable indicator for scale-dependent error growth. 
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