Supplementary materials

Surface snow bromide and nitrate at Eureka, Canada in early spring and implications for polar boundary layer chemistry

Xin Yang¹, Kimberly Strong², Alison S. Criscitiello³, Marta Santos-Garcia^{1*}, Kristof Bognar^{2**}, Xiaoyi Zhao⁴, Pierre Fogal², Kaley A. Walker², Sara M., Morris⁵, and Peter Effertz^{6,7}

- ¹British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
 ²Department of Physics, University of Toronto, Toronto, ON, Canada
 ³Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
 ⁴Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
 ⁵NOAA Earth System Research Laboratories, Physical Sciences Laboratory, Boulder, CO, USA
 ⁶Cooperative Institute for Research in Environmental Science CU Boulder, Boulder, CO, USA
 - ⁷NOAA Earth System Research Laboratories, Global Monitoring Laboratory, Boulder, CO, USA

*Now at School of Geosciences, University of Edinburgh, Edinburgh, UK

**Now at 3v Geomatics Inc., Vancouver, BC, Canada

Correspondence to: Xin Yang (xinyang55@bas.ac.uk)

15

Table S1. Overview of relative standard deviations of duplicate analyses for 2019 samples (n=36), and average limits of detection (LOD)^a and limits of quantification (LOQ)^b. The units are μ M.

	MSA	Cl	Br⁻	NO ₃ -	$SO_4^=$	Na ⁺	\mathbf{K}^+	Mg^{2+}
Relative	-	0.034	0.023	0.037	0.011	0.109	0.263	0.391
Standard								
deviation								
LOD ^a (µM)	0.070	0.367	0.200°	0.484 ^d	0.531	0.696	1.228	0.741
LOQ ^b (µM)	0.260	1.185	0.238°	0.484 ^d	1.780	2.305	4.092	2.510

^a LOD = 3x standard deviation of filter blank average peak area. ^b LOQ = 10x standard deviation of filter blank average peak

20 area. ^c and ^d Br⁻ and NO₃⁻ did not have filter blank background and therefore LOD and LOQ were defined as 3x and 10x the minimum measurable peak area, respectively.

Table S2. Statistical results for the ionic analysis of the 2018 snow samples at the Sea ice, Onshore, PEARL and Creek sites. The units are μ M.

					20:	18			
			0-0.5	cm			Column	average	
		n	mean	std	median	n	mean	std	median
	[0]*]	36	0.23	0.10	0.24	80	10.74	8 5 2	7.63
	[DI]	30	12 55	6.15	12.66	80	5822.27	5166.40	3131 57
	[C]]	22	2.33	2.62	1 20	80	62 /2	51.40	20 22
		33	2.42	2.02	1.20	30	03.43	51.40	20.23
	[F]	30	0.09	0.03	0.10	/3	1.16	0.40	1.21
		30	1.64	0.04	1.62	80	55.35	41.15	28.47
	[MSA]	26	15.16	0.05	16.26	2	0.32	0.04	0.32
	[Acelale]	26	6.02	9.92	10.20	24	91.49	9.74	69.94 4.04
Sea ice	[NH. ⁺]	34	0.02	0.00	0.38	53	5 11	3.88	3.96
	[Oxalate]	34	3.69	2 54	4 40	41	8 24	7.69	2 27
	[Mg ²⁺]	32	1.86	0.77	1.84	81	338.56	259.62	172.65
	[Na ⁺]	32	3.18	2.00	3.29	75	1437.78	722.12	1120.23
	[NO.]	33	3 17	1.00	3 32	87	4 95	2 75	4 66
	[NO ₃]	24	0.72	0.20	0.52	60	162.62	07.14	176 52
	[504]	34	0.75	0.38	0.37	09	105.02	97.14	1/0.55
	nss-[Br]	30	0.22	0.10	0.23	82	5.69	6.79	3./1
	1155-[504]	52	0.49	0.26	0.45	70	87.17	115.15	00.07
	(0-1)	22	0.27	0.11	0.20	60	0.22	0.22	0.25
	[Br]	33	11 46	6.60	11.41	66	122.02	70.75	106.96
	[CI]	27	6.20	E 22	2.21	66	16 11	70.75	10.80
	[Ca]	32	6.28	5.23	3.31	66	16.11	7.74	18.14
	[F]	8	0.05	0.05	0.05	63	0.13	0.06	0.11
	[K']	33	0.57	0.65	0.23	65	3.40	2.04	3.65
Onshore	[MSA]	- 4	0.13	0.06	0.12	34	0.01	0.01	0.01
	[Acetate]	31	1 39	0.73	1 39	58	0.75	0.31	0.71
		30	1 33	0.27	1.55	57	1 12	0.27	1.08
		33	0.19	0.55	0.20	73	0.50	0.34	0.41
	[Ma ²⁺]	26	1 40	1 19	0.20	66	19.22	12 31	18 77
		20	7 17	4 75	7.26	65	79.70	56.94	71.62
		2/	2 22	1.75	2 0 2	60	2 01	0.72	2 07
	[NU ₃]	54	5.22	1.45	2.65	00	5.91	0.75	5.97
	[SO ₄ ⁻]	33	1.55	1.12	0.97	64	6.20	1.78	6.35
	nss-[Br]	33	0.23	0.09	0.24	61	0.18	0.14	0.16
	nss-[SO ₄ ⁻]	23	0.51	0.36	0.34	65	1.11	3.12	0.97
	(0.1)		0.00	0.06	0.05	27	0.02	0.02	0.02
	[Br]	0	25.22	20.67	14.22	37	7.70	0.02 E 46	7.01
	[[[]]]	0	25.22	20.07	14.22	30	1.01	0.05	1.01
		0	1.41	1.46	1.09	42	1.91	0.95	1.05
	[F]	5	0.06	0.03	0.06	24	0.03	0.02	0.02
			0.36	0.29	0.25	37	0.19	0.08	0.20
		7	5.00	0.00	0.01 E 94	37	1 52	1 20	1.06
	[Formate]	8	6.34	3.15	8.03	39	0.51	0.10	0.56
PEARL	[NH. ⁺]	2	1.50	0.54	1.50	43	0.72	0.60	0.47
	[Oxalate]	- 8	0.91	0.46	1 16	37	0.08	0.03	0.09
	[Mg ²⁺]	7	1.13	1.77	0.36	38	0.99	0.62	0.79
	[Na ⁺]	7	5.92	13.78	0.65	37	6.69	4.93	5.68
	[NO.]	8	2 07	0.66	1.86	37	0.71	0.26	0.66
	[10]		0.04	0.00	0.97	41	1 75	0.20	1.64
	[304]	0	0.94	0.40	0.87	41	1.75	0.85	0.01
	nss-[Br]	- 0	0.06	0.05	0.05	50	1.06	0.01	1.01
	1155-[504]	/	0.50	0.54	0.70	44	1.00	0.78	1.01
	[Br]]	12	0.06	0.01	0.06	27	0.63	0.58	0.41
	[0]]	12	7 53	3 22	6.82	27	0.03	104.62	162 47
	[Ca ²⁺]	13	6.26	4.26	5.43	22	9.16	6.93	8 31
		13	0.20	4.20	0.02	22	0.25	0.55	0.31
		11	0.03	0.02	0.05	27	0.25	0.10	0.21
		10	0.13	0.05	0.11	10	0.50	0.40	0.47
	[Acetate]	10	6 59	0.14	6.45	23	5.87	0.01	5.86
	[Formate]	13	1.34	0.54	1.22	27	5.75	3.31	8.03
Creek	[NH4 ⁺]	13	1.67	0.57	1.55	20	1.10	1.30	0.14
	[Oxalate]	13	0.17	0.02	0.16	27	0.97	0.41	1.17
	[Mg ²⁺]	13	1.44	1.12	1.23	23	5.14	5.06	3.96
	[Na ⁺]	12	5.22	2.32	4.55	23	15.76	13.32	14.08
	[NO ₂]	12	1 45	0.52	1 46	25	4 15	0.75	4.03
	[SO 2]	10	1.75	0.32	1.40	25	60.49	36./1	60.95
	1504 J	11	0.05	0.01	0.05	20	00.48	0 54	0.33
	nss-[S0,2]	12	0.97	0.19	0.96	27	58.02	35.58	54.43

Table S3. Statistical results for the ionic analysis of the 2019 snow samples at the Sea ice, Onshore, PEARL and 0PAL sites. Note that the airborne samples were collected by the mounted tray above the ground (\sim 1 m at 0PAL and 11 m at PEARL). The units are μ M.

			Airbo	orne	:		0-0.2	cm	:		201 0.2-0.5	6 Cm	:		0.5-1-5	cu			Column	average	
		c	mean	std	median	c	mean	std	median	c.	mean	std	nedian	c	mean	std	median	c.	mean	std	
	[Br ⁻]					40	0.40	0.20	0.37	51	3.03	4.14	0.84	36	9.31	5.14	10.72	99	6.47	5.36	
	[cl ⁻]					41	61.25	68.76	25.06	33	180.72	244.14	64.42	16	2887.67	2472.62	2718.74	33	1660.12	2080.86	
	[Mg ²⁺]					36	9.68	12.49	4.46	43	168.88	213.56	57.26	17	264.31	221.14	392.24	46	202.59	196.83	
	[Na [†]]					38	29.52	32.25	14.98	34	149.80	197.82	43.99	12	1189.99	1470.62	320.53	19	390.39	304.5	
anipac	[N0 ³]					37	3.46	1.55	3.50	61	4.83	2.32	5.15	61	2.90	1.18	2.88	75	2.67	1.1	00
	[S04 ²]					41	4.54	2.96	4.74	42	29.51	43.19	9.23	21	122.89	96.44	99.36	40	58.89	62.5	\sim
	nss-[Br ⁻]					39	0.35	0.20	0.34	32	0.24	0.19	0.19	8	0.58	0.77	0.20	17	0.22	0.1	00
	nss-[SO ₄ ²⁻]					39	2.52	1.53	2.89	28	1.85	2.73	1.24	∞	3.12	3.01	2.42	19	1.54	2.6	
	[Br ⁻]					38	0.40	0.17	0.37	28	0.38	0.22	0.31	64	0.97	0.86	0.53	104	0.99	0.9	
	[cl ⁻]					39	28.60	24.93	14.82	46	54.09	44.48	41.13	38	86.52	93.13	62.15	62	101.74	84.5	1 ())
	[Mg ²⁺]					31	1.79	1.95	0.70	56	31.53	43.17	8.80	62	51.75	52.64	9.76	102	52.30	51.9	6 1 1
ou o do an O	[Na [†]]					39	17.06	15.32	10.20	46	37.60	32.62	27.57	56	278.79	343.11	52.32	93	297.66	336.1	57
Unsnore	[N0 ³]					36	3.76	1.99	3.58	61	3.84	2.18	3.67	63	3.41	1.52	4.16	101	3.06	1.5	- CT 1
	[S04 ²]					42	4.11	2.41	4.38	51	6.06	4.86	5.01	64	14.67	11.49	8.61	104	14.98	11.4	
	nss-[Br ⁻]					38	0.36	0.19	0.34	50	0.21	0.17	0.20	56	0.35	0.32	0.21	89	0.30	0.3	-
	nss-[SO ₄ ²]					42	2.56	2.21	2.84	46	2.40	1.90	1.90	50	-1.36	10.17	1.47	91	-4.65	13.1	
	[Br]	21	0.35	0.1	8 0.39	31	0.30	0.12	0.31	32	0.22	0.10	0.17	28	0.19	0.05	0.18	32	0.19	0.0	
		19	26.82	12.1	4 22.87	33	17.71	6.54	18.59	57	120.88	115.60	47.27	58	127.37	88.05	52.73	99	117.73	85.3	
	[Mg ²⁺]	19	2.06	1.9	2 1.11	32	1.04	0.67	0.84	56	13.23	14.65	3.84	58	13.39	11.26	5.37	99	12.29	10.8	
	[Na [†]]	19	19.86	9.7	5 17.65	34	11.80	5.20	10.84	56	85.49	79.83	36.53	58	93.06	63.96	43.03	99	87.62	61.6	
PEARL	[N0 ³]	18	2.23	1.3	7 2.29	23	1.24	0.50	1.13	51	1.29	0.63	1.00	58	1.42	0.63	1.15	57	1.42	0.6	-
	[S04 ²]	20	5.51	3.5	5 5.92	35	3.82	2.16	4.04	58	7.74	4.44	7.65	57	5.74	3.17	4.41	63	6.13	3.6	
	nss-[Br ⁻]	21	0.28	0.2(0.23	31	0.28	0.12	0.29	33	0.00	0.13	-0.03	31	-0.05	0.08	-0.07	34	-0.05	0.0	(1)
	nss-[SO4 ²⁻]	22	4.63	4.2	4 4.55	36	3.19	2.20	3.46	56	2.32	2.24	2.05	56	0.01	1.53	-0.10	58	0.18	1.7	
	[Br ⁻]	42	0.38	0.2	4 0.34	S	0.15	0.01	0.15	6	0:30	0.15	0.28	ŝ	0.35	0.07	0.39	ŝ	0.35	0.0	
	[ci ⁻]	42	57.33	55.8	2 35.20	9	44.90	47.59	27.38	6	86.66	53.97	108.75	2	60.66	49.44	69.82	2	60.66	49.4	
	[Mg ²⁺]	38	6.13	6.4	8 4.00	m	9.11	5.68	7.80	6	9.77	7.56	13.16	2	11.80	7.26	7.71	5	11.80	7.26	
	[Na [†]]	41	36.99	38.4	23.25	9	31.33	34.37	19.07	6	62.31	39.36	80.94	5	70.64	34.89	50.67	5	70.64	34.89	
OLAL 0	[N03 ⁻]	40	3.41	2.0	5 2.81	æ	0.96	0.21	0.91	00	2.16	1.07	1.82	S	2.02	0.23	2.07	ŝ	2.02	0.23	
	[S04 ²]	45	5.47	3.6	1 4.31	9	2.45	1.95	2.00	6	5.06	3.69	5.58	S	6.14	0.52	5.98	5	6.14	0.52	
	nss-[Br ⁻]	40	0.24	0.1	9 0.18	9	0.10	0.07	0.14	6	0.18	0.11	0.12	5	0.22	0.12	0.31	5	0.22	0.1	0
	nss-[SO ₄ ²]	44	2.17	2.3	7 2.46	4	0.56	0.10	0.59	6	1.32	1.90	0.28	5	1.90	1.75	3.08	5	1.90	1.75	

		Depth	N	a ⁺	NO	D ₃ -	B	r⁻	nss-	Br⁻
Period	Sites	(cm)	mean	std	mean	std	mean	std	mean	std
		0.0-0.5	129.33	148.65	4.27	1.74	0.67	0.74	0.43	0.48
	Sea ice	0.5-1.5	336.12	316.92	2.96	0.94	7.67	5.51	0.98	0.97
		0.0-0.5	26.13	21.04	2.27	0.71	0.30	0.13	0.25	0.13
	Onshore	0.5-1.5	581.53	315.89	3.62	1.01	3.87	3.76	0.67	0.29
Feb 26- Mar 3		0.0-0.5	185.09	65.44	2.06	0.47	0.28	0.14	-0.05	0.07
2019	PEARL	0.5-1.5	150.87	30.09	2.00	0.38	0.25	0.10	-0.02	0.08
		0-0.2	-	-	1.98	0.34	0.38	0.04	-	-
		0.2-0.5	520.98	27.56	3.22	1.50	5.73	5.57	0.01	0.04
	Sea ice	0.5-1.5	-	-	1.77	0.19	12.91	-	-	-
		0-0.2	32.39	0.64	-	-	0.12	0.00	0.06	0.00
		0.2-0.5	75.56	14.85	1.59	0.17	0.22	0.04	0.09	0.03
	Onshore	0.5-1.5	49.31	9.41	1.92	0.58	0.23	0.02	0.14	0.03
		0-0.2	71.22	25.51	1.19	0.00	0.14	0.02	0.01	0.03
Mar 4 &		0.2-0.5	104.82	2.44	2.73	1.23	2.42	2.54	0.10	0.00
5, 2019	0PAL	0.5-1.5	-	_	-	_	-	-	-	-

30 Table S4 Geographic heterogeneity of snow ions (Na⁺, NO₃⁻, Br⁻ and nss[Br⁻]) at each sampling site with snow samples randomly collected from a small area (2m × 2m) during two periods in 2019.

Table S5 Regression analyses (i.e., number of observations, standard error of slope (μ M), and *p*-values) for key linear models used in this study and associated with Figures 5, 6 and 7.

Figures	linear regressions	Sites	Number of observations	Standard error of slope (µM)	p-value
Figure 5	(d) [Na ⁺] vs time	sea ice	11	0.65117	0.17666
		Onshore	11	1.3248	0.018913
		PEARL	2	-	-
	(e) $[NO_3^-]$ vs time	sea ice	11	0.031625	3.37E-05
		Onshore	11	0.07233	0.047092
		PEARL	2	-	-
	(f) [Br-] vs time	sea ice	11	0.0059219	0.31536
		Onshore	11	0.0058544	0.21431
		PEARL	2	0	-
	(g) nss-[Br ⁻]	sea ice	11	0.0054474	0.42219
		Onshore	11	0.0050932	0.8453
		PEARL	2	-	-
Figure 6	(d) Tray [Na⁺] vs time	PEARL	14	1.6482	0.19785
		OPAL	24	1.1562	0.47351
	(e) Tray [NO ₃ -] vs time	PEARL	12	0.06437	0.35704
		OPAL	24	0.07293	0.024153
	(f) Tray [Br ⁻] vs time	PEARL	14	0.0038572	0.00091149
		OPAL	24	0.0057058	0.0010769
	(g) Tray nss-[Br ⁻] vs time	PEARL	14	0.0056266	0.04216
		OPAL	24	0.0058292	0.00069418
Figure 7	(a) 0-0.2cm [NO ₃ -] vs time	Sea ice	21	0.10137	0.022069
		Onshore	20	0.12408	0.033649
		PEARL	13	0.033592	0.63919
	(b) 0.2-0.5cm [NO ₃ -] vs time	Sea ice	22	0.053913	0.00030065
		Onshore	21	0.062582	0.016509
		PEARL	18	0.013772	0.24503
	(c) 0.5-1.5cm [NO ₃ -] vs time	Sea ice	29	0.024566	0.027422
		Onshore	27	0.027371	0.0071189
		PEARL	26	0.0081262	7.64E-07
	(d) 0-0.2cm nss-[Br ⁻] vs time	Sea ice	21	0.0096136	0.019895

<u>.</u>				
	Onshore	20	0.0080688	0.010627
	PEARL	17	0.0035759	0.0048613
(e) 0.2-0.5cm nss-[Br-] vs time	Sea ice	12	0.012075	0.17789
	Onshore	17	0.0088479	0.13183
	PEARL	10	0.0069285	0.035824
(f) 0.5-1.5cm nss-[Br-] vs time	Sea ice	4	0.05373	0.1602
	Onshore	23	0.0070587	0.63092
	PEARL	13	0.0048105	0.9346

Figure S1. UV index at Eureka, Canada (79.989N, 85.934W, 8.7 m) during (a) March 24-31, 2018 and (b) March 24-31, 2019.

Figure S2. Snow density profiles measured in 2018 at the Sea ice, Onshore, and PEARL sampling sites (see Figure 1).

50 Figure S3. Snow salinity profiles in 2018 and 2019 samples. Top 0.5 cm snow sample mean salinities (collected in 2018) are plotted at a depth of 0.25 cm. At each site, two types of surface snow are collected: one is soft fluffy white colour snow and one is hard, light brown colour snow. The horizontal error bar represents one standard deviation value. 2019 sea ice profile includes only one column collected on Feb 27 at Sea ice site. 2018 inland profile includes two columns – one from Onshore and one from Creek site. The bottom interface snow-ice sample was collected on March 1 2018 at Sea ice site.

Figure S4. Vertical profiles of 2019 ions (a) $[Ca^{2+}]$, (b) $[Mg^{2+}]$, (c) $[K^+]$, (d) $[SO_4^{2-}]$, and enrichments of (e) $[Ca^{2+}]$, (f) $[Mg^+]$, and (g) $[K^+]$ (see Section 3.2 for details).

Figure S5. Vertical profiles of 2018 ions (a) [Na⁺], (b) [NO₃⁻], (c) [Br⁻], and (d) nss[Br⁻].

Figure S6. Same as Figure 7, except here nss[Br-] is used in the scatter plot and relationship analysis.