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Abstract. This study explores the role of snowpack in polar boundary layer chemistry, especially as a direct source of reactive 15 

bromine (BrOX=BrO+Br) and nitrogen (NOX=NO+NO2) in the Arctic springtime. Surface snow samples were collected daily 

from a Canadian high Arctic location at Eureka, Nunavut (80°N, 86°W) from the end of February to the end of March in 2018 

and 2019. The snow was sampled at several sites representing distinct environments: sea ice, inland close to sea level, and a 

hilltop ~600 m above sea level (asl). At the inland sites, surface snow salinity has a double-peak distribution with the first and 

lowest peak at 0.001-0.002 practical salinity unit (psu), which corresponds to the precipitation effect, and the second peak at 20 

0.01–0.04 psu, which is likely related to the salt accumulation effect (due to los of water vapour by sublimation). Snow salinity 

on sea ice has a triple-peak distribution; its first and second peaks overlap with the inland peaks, and the third peak at 0.2–0.4 

psu is likely due to the sea water effect (a result of upward migration of brine).  

At all sites, snow sodium and chloride concentrations increase by almost tenfold from the top 0.2 cm to ~1.5 cm in depth. 

Surface snow bromide at sea level is significantly enriched, indicating a net sink of atmospheric bromine. Moreover, surface 25 

snow bromide at sea level has an increasing trend over the measurement period, with mean slopes of 0.024 µM d-1 in the 0-0.2 

cm layer and 0.016 µM d-1 in the 0.2–0.5 cm layer. Surface snow nitrate at sea level also shows a significant increasing trend, 

with mean slopes of 0.27, 0.20, and 0.07 µM d-1 in the top 0.2 cm, 0.2–0.5 cm, and 0.5–1.5 cm layers, respectively. Using 

these trends, an integrated net deposition flux of bromide of (1.01±0.48)×107 molecules cm-2 s-1 and an integrated net 

deposition flux of nitrate of (2.6±0.37)×108 molecules cm-2 s-1 were derived.  In addition, the surface snow nitrate and bromide 30 

at inland sites were found to be significantly correlated (R=0.48-0.76) with [NO3-]/[Br-] ratio of 4-7 indicating a possible 
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acceleration effect of reactive bromine in atmospheric NOX-to-nitrate conversion. This is the first time such an effect has been 

seen in snow chemistry data obtained with a sampling frequency as short as one day. 135 

BrO partial column (0-4 km) data measured by MAX-DOAS show a clear decreasing trend in March 2019, which 

agrees with the derived surface snow bromide deposition flux indicating that bromine in Eureka atmosphere and surface snow 

did not reach a photochemical equilibrium state and the photochemical release flux of reactive bromine from snow must be a 

weak process and smaller than the derived bromide deposition flux of ~1×107 molecules cm-2 s-1. 

1 Introduction 140 

Reactive bromine (BrOX=BrO+Br) and reactive nitrogen (NOX=NO+NO2) are two important families in atmospheric 

chemistry, both of which play a critical role in determining the oxidising capacity of the polar boundary layer (Morin et al., 

2008). However, the processes involved in the sources, sinks, and recycling of reactive bromine and nitrogen in the air-snow-

sea ice system are not fully understood (Abbatt et al., 2012) or parameterised, which prevents quantification of their effects 

and the ability to make robust predictions for the changing climate using numerical chemical models.  145 

Reactive nitrogen-rich air observed in the Arctic troposphere is mainly anthropogenic and subject to long-range 

transport (Dickerson, 1985). During winter, gaseous nitric acid (HNO3) or particulate bond nitrate (p-NO3) is removed from 

the air via dry and wet deposition. HNO3 and p-NO3 mainly dissolve to form nitrate (NO3-) upon contact with the snow cover 

(Diehl et al., 1995; Abbatt, 1997). Nitrate that accumulates in snowpack can release gaseous NOX and HONO in spring via 

photolysis (Dubowski et al., 2001; Honrath et al., 2002), with the processes controlled by many factors including 150 

meteorological parameters and chemical, optical, and physical snow properties.  These include photolabile 

NO3− concentrations, the amount of light-absorbing impurities, the temperature-dependent quantum yields of NO3− photolysis, 

and the timing of precipitation (Beine et al., 2003; Frey et al., 2013; Chan et al., 2015; Zatko et al., 2016; Winton et al., 

2020). The measured snow-NOX emission fluxes in polar regions vary from site to site, ranging from near zero to 

>1.0×109 molecules cm–2 s–1 (Jones et al., 2001; Zhou et al., 2001; Honrath et al., 2002; Beine et al., 2002; 2003; Oncley et 155 

al., 2004; Frey et al., 2013; Chan et al., 2018). A direct measurement of nitrate dry deposition flux was made by Björkman et 

al. (2013) in Svalbard using a tray sampling approach. They reported a total flux of 10.27±3.84 mg m-2 (September 2009 to 

May 2010) which is roughly equivalent to a mean flux of 4×108 molecules cm–2 s–1. In addition, precipitation at Svalbard 

dominates nitrate supply to snow, with dry deposited HNO3 only accounting for 10-14% of total nitrate (Beine et al., 2003; 

Björkman et al., 2013).          160 

Observations show that sea-ice regions have the highest tropospheric bromine oxide (BrO) loading on Earth (Wagner 

and Platt, 1998). BrO enhancements are normally observed in the polar boundary layer during springtime and are referred to 

as “bromine explosion” events (BEEs). It is well known that saline substrates are the eventual source of reactive bromine 

(Wagner and Platt, 1998; Oum et al., 1998; Simpson et al., 2007a). Salts may be supplied to the snow surface by upward 

migration from sea ice, by frost flowers being wind-blown to the snow surface, or by wind-transported aerosols generated by 165 
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sea spray (Domine et al., 2004). However, the dominant source bromine and the underlying processes involved remain unclear, 170 

with more than half a dozen different candidates proposed. These include frost flowers (Kaleschke et al., 2004; Piot and von 

Glasow, 2008), first-year sea ice surface (Simpson et al., 2005; 2007b), open leads/polynyas (e.g., Peterson et al., 2016; Kirpes 

et al., 2019; Criscitiello et al., 2021), snowpack on tundra (Pratt et al., 2013), snowpack on sea ice (Custard et al., 2017; 

Peterson et al., 2019), snowpack on ice sheets (Thomas et al., 2011), and sea salt aerosols from blowing snow (Yang et al., 

2008; 2010; 2019, 2020; Frey et al., 2020; Huang et al., 2020). Significant progress has been made in recent decades, with data 175 

showing that frost flowers and open leads are only of minor or local importance (Domine et al., 2005; Obbard et al., 2009; 

Huang et al., 2020). In addition, the proposed stratospheric BrO intrusion (Salawitch et al., 2010) has also been found to be 

less important than previously thought (Theys et al., 2011). Currently, the major debate surrounds the relative importance of 

the two remaining candidates – snowpack and blowing snow (e.g., Bognar et al., 2020; Marelle et al., 2021; Swanson et al., 

2022).  180 

Reactive bromine can directly cause polar boundary layer ozone depletion events (ODEs), whereby near-surface 

ozone concentrations in spring drop below 10 ppbv (part per billion by volume), reaching close to 0 ppbv in some cases 

(Bottenheim et al., 1986; Barrie et al., 1988; Tarasick and Bottenheim, 2002; Jacobi et al., 2012). In addition, BrOX can affect 

reactive nitrogen (Morin et al., 2008) and hydroxyl radicals (HOX=OH+ HO2) (Bloss et al., 2007, 2010; Brough et al., 2019) 

as well as elemental mercury oxidation (e.g., Holmes et al., 2006; Parella et al., 2012; Angot et al., 2016; Xu et al., 2016; Wang 185 

et al., 2019) and dimethyl sulphide oxidation (Hoffmann et al., 2016).  

It is well-known that BrOX can directly react with NOX via the following reactions R1 and R2:      

BrO(g) + NO2(g) à BrONO2(g)         (R1) 

BrONO2(g) + H2O(aq) àHNO3(g) + HOBr(g)      (R2) 

The product HOBr in R2 can photolyze to reform Br atoms (R3) which then react with ozone to form BrO (R4) to 190 
further oxidise NOX in R1.  

HOBr(g) + hn à Br(g) + OH(g)         (R3) 

Br(g) + O3(g) àBrO(g) + O2(g)        (R4) 

 Therefore, the net reaction of R1-R4 is:  

NO2(g) + O3(g) +H2O(aq) + hn àHNO3(g) + O2(g)       (R5). 195 

This means that under sunlight and in the presence of bromine, ozone and NOX molecules will be consumed 

effectively via chain reactions. Thus, the presence of BrOX may accelerate the conversion from NOx to nitrate and influence 

the atmospheric nitrogen budget. Previous modelling work has estimated that bromine chemistry can cause NOX reductions of 

60-80% at high latitudes in spring (Yang et al., 2005).  

The emission fluxes of reactive bromine from blowing snow are all based on parameterisation in models (Yang et al., 200 

2008; 2010, 2020; Huang et al., 2020; Swanson et al., 2020; Marelle et al., 2021). There are currently no direct measurements 

of bromine emission flux from blowing snow. Regarding snowpack bromine emission, a direct gradient measurement of Br2 
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and BrCl above a patch of snowpack was made near Utqiaġvik, Alaska (Custard et al., 2017), who reported emission fluxes of 

0.7–12 × 108 molecules cm−2 s−1. However, their emission fluxes were based on a field dataset obtained over only a few days. 

Model emission schemes estimated reactive bromine emission fluxes of 9.0 × 107 to 2.7 × 109 molecules cm−2 s−1, and the 210 

emission flux is highly dependent on the parameters applied (Lehrer et al., 2004; Poit et al., 2009; Toyota et al., 2014; Falk 

and Sinnhuber, 2018; Marelle et al., 2021). The removal of inorganic bromine species (such as HBr, HOBr, Br2, BrCl, BrONO2 

and BrO) from the atmosphere via wet and dry depositions is mainly calculated by models (e.g., Yang et al., 2005; 2010; 

Parella et al., 2012; Legrand et al., 2016); thus far, deposition flux has not been reported.  

Both nitrate and bromide undergo post-depositional processing within the snowpack (i.e. photochemistry), and the 215 

observationally derived flux represents the net direction of emission and deposition. A net source of Br2 and BrCl was measured 

over snowpack which was enriched in bromide (Custard et al., 2017); this is likely due to the fact that deposition and emission 

are two different processes, and they may occur at different times and at different depths and with different rates. For example, 

the deposited bromide and nitrate may be largely confined to the top few cm layer, while photochemistry may occur only in 

daytime and across a deep depth (depending on the e-folding depth (Domine et al., 2008)).  220 

Different methods have been used to derive the flux of deposited ions to snow (Cadle et al., 1991; Beine et al., 2003; 

Macdonald et al., 2017). For instance, Björkman et al. (2013) applied three different methods to derive nitrate dry deposition 

flux at Svalbard: tray sampling, glacial sampling, and modelling. Macdonald et al. (2017) derived major ion (including nitrate) 

deposition fluxes at Alert, Nunavut, from freshly fallen snow samples collected on average every four days. However, they 

could not derive bromide deposition flux, likely due to the efficient post-depositional loss of bromide given the sampling 225 

interval of 1 to 19 days. In this study we apply a methodology similar to, but slightly different from, that used by Macdonald 

et al. (2017). We deliberately increase temporal sampling resolution to ~24 hours and collect snow samples directly from the 

snowpack surface using a vertical resolution of 2-3 mm. This vertical resolution enables us to collect fresh falling snow from 

trace precipitation (an amount of precipitation greater than zero, but too small to be measured by standard methods). Because 

of mixing of surface snow particles due to wind, samples collected in the skin layer are not solely from snow recently fallen 230 

in the past 24 hours (with exceptions in very calm conditions); rather, they represent a mixture of various snow particles. Thus, 

ions measured in the surface layer are not only due to deposition in the past 24 hours, but also to deposition in previous days. 

Therefore, by looking into the average change of ions within a time scale of 24 hours, we are able to derive a mean net 

deposition flux of ions such as nitrate and bromide. To that end, we collected the top 1.5 cm of snow in three sub-layers: 0-

0.2, 0.2-0.5, and 0.5-1.5 cm at several sampling sites (including onshore and offshore sites as well as on the top of a hill) in 235 

the high Arctic at Eureka (80°N, 86°W), Nunavut, Canada (Figure 1) daily during early spring in 2018 and 2019. The aim of 

this study is to derive a net deposition flux of bromide and nitrate to surface snow and then to infer the role that snowpack 

plays as a direct source of reactive bromine and nitrogen. Methods and datasets are described in Section 2. The results are 

reported in Section 3. Discussions and atmospheric implications of this study are in Section 4, with conclusions given in 

Section 5. 240 
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2 Methods and datasets 

2.1 Sampling site and local meteorology 

Eureka is one of the coldest and driest places in the Canadian Arctic, with an average air temperature of -37°C and 265 

precipitation of ~2 mm in March. Surface inversions are frequently observed in winter-spring (~84% of the time), and boundary 

layer height is in the range of 400-800 m (Bradley et al., 1992). Due to the local geography and cold weather, sea ice near the 

Eureka Weather Station (EWS) is thick (e.g., >1.5 m in early spring) and stable. Satellite-based sea ice data show that there 

are no clearly identifiable leads or open waters within 600-800 km to the north and west of Eureka in early spring (Bognar et 

al., 2020). Therefore, the impact of local open leads is negligible. In addition, modelling work shows that this area is only 270 

weakly influenced by open ocean sea spray (Rhodes et al., 2017), thus open-ocean sourced bromine influence is of secondary 

importance (Yang et al., 2020). Under calm weather conditions, the atmospheric boundary layer at Eureka is generally shallow 

and stratified. Thus, the measurements made at the Polar Environment Atmospheric Research Laboratory (PEARL) Ridge 

Laboratory, located on the top of a hill (610 m asl) (Figure 1) are mainly representative of the free tropospheric influence; 

however, under unstable condition such as cyclones, the PEARL Ridge Lab is within the extended boundary layer. In early 275 

spring, the UV index changes dramatically from very low levels at the end of February to higher levels at the end of March 

(Figure S1), mainly due to the rapid increase in daily solar elevation angles after polar sunrise on February 21. 

Sea water starts to freeze in late September at Eureka, with snow accumulating in the following months (before 

December).  Therefore, snowpack depth does not change much after December, which is consistent with the results of an 

Arctic snow depth survey by Warren et al. (1999). On sea ice, snowpack depth near EWS is 10-30 cm, while snow depth inland 280 

varies from only a few cm at convex locations to more than half a meter at concave locations. The type of sea ice in the Slidre 

Fiord is mainly first-year ice. However, a large iceberg was grounded in the fiord since Summer 2018, which has significantly 

affected 2019 snow salinity and ionic concentrations on sea ice (see section 3). 

2.2 Snow sampling 

As can be seen from Figure 1, several sampling sites were located between EWS and the PEARL Ridge Lab. The two 285 

major sampling sites at sea level are ~5 km to the west of EWS: one on sea ice (named “Sea ice,” ~100 m offshore) and one 

onshore (named “Onshore,” ~50 m inland). There are two additional inland sites (also close to sea level) just behind EWS: the 

PEARL “0PAL” (Zero Altitude PEARL Auxiliary Laboratory) site and the “Creek” site which are close together and ~1000 

m from the sea ice. The PEARL Ridge Lab (hereafter, referred to as PEARL) is another major sampling site, which is ~15 km 

to the west of EWS on top of a hill. In addition, a few snow samples were collected from the Eureka airport (~70 m asl, ~3 km 290 

to the east of EWS) and on the sea ice in front of EWS; however, these samples were not for ionic analysis due to local 

contamination concerns.  

There are two types of surface snow observed at Eureka. One consists of fluffy mobile snow particles, loosely 

connected and white in colour. They mainly cover the top 0.5 cm of snow, and are a mixture of recent falling snow, drifting 
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snow, and deposited ice crystals. On slightly raised surfaces that face the predominant winds, there is a wind-crust layer that 

is light brown in colour and hard to break, representing aged snow. In 2018, these two types of surface snow were deliberately 

collected for salinity analysis. All samples were collected using their sampling tubes to scratch them from the surface, roughly 

at a depth of 0.3–0.5 cm.  

A small patch of snow (about 1 m by 2 m) was identified at each major sampling site (Sea ice, Onshore and PEARL) 315 

for daily snow sampling. In 2019, surface snow was collected using a small shovel with a funnel. Since March 4 daily snow 

samples were collected from three sub-layers (0-0.2, 0.2-0.5 and 0.5-1.5 cm). To investigate local geographic variation, a few 

snow samples were randomly collected across a distance of 1-2 m at each sampling site (from two snow layers: 0-0.5 and 0.5-

1.5 cm between February 26 and March 3). On March 4 and 5, validation samples were collected during a precipitation event 

from three snow layers (0-0.2, 0.2-0.5 and 0.5-1.5 cm) at the 0PAL, Onshore and Sea ice sites.    320 

In addition to surface snow, airborne snow samples were collected on a daily basis using a mounted tray outside. For 

example, one tray was mounted outside the 0PAL building (~1 m above the ground), and another one was mounted on the roof 

of PEARL (~1.5 m above the roof and ~11 m above the ground). In windy conditions, most of the samples collected by trays 

consist of blowing snow particles. In calm conditions, trace samples from deposited ice crystals and growing hoar frost at the 

edge of the tray can be collected. During precipitation events, freshly falling snow can be sampled. The trays were swept clean 325 

daily after snow sampling using a clean brush. 

For logistical reasons, the time of day for surface snow sampling could not be fixed. Samples were normally collected 

either in the morning (local 9:30-11:00 AM local time) or in the afternoon (local 2:30-5:00 PM local time). This enables the 

samples to be used to investigate the photochemistry effect.  Since March 15, 2019, the majority of samples from Sea ice and 

Onshore was collected in the afternoon.     330 

Column snow samples were collected (at a vertical resolution of 1-3 cm) from a few sampling sites at irregular 

intervals, but mainly during March 4–12 in both 2018 and 2019. Ionic column results are reported based on seven 2019 columns 

(three at Sea ice and four at Onshore) and two 2018 columns (one at Sea ice and one at Onshore). Snow density was measured 

in 2018 at a vertical resolution of 3 cm using a snow cutter and a hanging scale. The snow density result is shown in Figure 

S2.  335 

2.3 Salinity measurements and ionic analysis 

All snow samples collected were transferred to 50 mL polypropylene tubes with screw caps (Corning CentriStar), 

which prior to field deployment had been rinsed with ultra-high-purity (UHP) water and dried in a class 100 clean laboratory 

in Cambridge, UK. All tubes with samples were put in a dark bag for temporary storage before moving into ice core boxes for 

storage and transportation. One set of snow samples were melted in the 0PAL laboratory to measure aqueous conductivity 340 

using a conductivity meter (SensIon 5, Hach) with a measurement range of 0–200 mScm-1 and a maximum resolution of 0.1 

µScm-1 at low conductivities (0–199.9 µScm-1). Conductivity values were converted into psu, approximately equivalent to the 
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weight of dissolved inorganic matter in grams per kilogram of seawater. Accuracy as stated by the manufacturer is ±0.001 psu 

at low salinities (<1 psu). Results are shown in Figure 2. 

The 2018 snow samples were shipped frozen back to Cambridge, UK shortly after the campaign, and the 2019 samples 

were shipped frozen directly to the Canadian Ice Core Lab (CICL) at the University of Alberta. All samples were only melted 375 

prior to the ion chromatography (IC) analysis, apart from a small portion of the samples that had been melted for salinity 

measurements. The 2018 samples were analysed in October 2018 and the 2019 samples were analysed in December 2019. 

Elevated salinity samples were diluted with UHP water, typically by a factor of 10 or 100 based on the estimated salinity. Due 

to the presence of fine particulates in the snow samples, all 2019 samples were filtered using Millex-GP Express PES 

Membrane, Sterile, 33 mm, 0.22 µm filters (Merck Millipore Ltd., Cork, Ireland). The 2018 snow samples were analysed using 380 

Thermo Scientific Dionex ICS-4000 ion chromatography systems, with ions of Na+, Ca2+, Mg2+, K+, NH4+, Cl-, Br-, SO4=, NO3-

, F-, acetate, formate, oxalate and MSA measured. The 2019 samples for IC analysis were run on a Dionex ICS-5000+ with 

ions of Na+, Ca2+, Mg2+, K+, Cl-, Br-, SO4=, NO3-, and MSA measured. Anion analysis was performed using an ionPac AS18-

Fast-4µm column, and cation analysis was performed using an IonPac CS12A column. The eluents for ion chromatography 

were generated with a Dionex hydroxide eluent generation cartridge (EGC) for anion analyses and a Dionex methanesulfonic 385 

acid EGC for cation analyses. 

Multiple samples (in 2019) were analysed to assess precision. The relative standard deviations of duplicate analyses, 

limits of detection (LOD, = 3 times standard deviation of filter blank average peak area), and limits of quantification (LOQ, = 

10 times standard deviation of filter blank average peak area) for all sequences (~40 samples analysed per sequence) are 

reported in Table S1. The LOD of Br- is 0.200 µM with a relative standard deviation of 0.023 µM and the LOD of NO3- is 390 

0.484 µM with a relative standard of deviation of 0.037 µM. The mean statistical results for the ionic analysis of the 2018 and 

2019 samples are given in Tables S2 and S3, respectively.  Mean values excluded outliers, defined as values more than 1.5 

interquartile ranges above the upper quartile or below the lower quartile. Column means were calculated using values 

exclusively within the depth range ≥1.5 and ≤	20 cm. Interpolation for vertical profile data consisted of 2-cm bin averages 

from 1.5-cm depth to the bottom of the snowpack.  395 

2.4 MAX-DOAS measurements and BrO retrieval 

Multi-axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements of BrO partial columns were 

performed at the PEARL Ridge Lab. Spectra were recorded in the ultra-violet (UV) using a grating spectrometer (spectral 

resolution 0.45 nm) with a cooled (200 K) charge-coupled device (CCD) detector at 0.4–0.5 nm resolution. Elevation angles 

of 30°, 15°, 10°, 5°, 2°, 1°, and -1° were used in the elevation scans, and measurements were only taken with solar elevation 400 

above 4°. Differential slant column densities (dSCDs) of BrO and the oxygen dimer (O4) were retrieved using the DOAS 

technique with the settings described in Zhao et al. (2016) and Bognar et al. (2020). Reference spectra for the DOAS analysis 

were temporally interpolated from zenith measurements taken before and after each elevation scan. dSCDs were converted to 

profiles using a two-step optimal estimation method (Frieβ et al, 2011). First, aerosol extinction profiles were retrieved from 
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O4 dSCDs, and then the extinction profiles were used as a forward model parameter in the BrO vertical profile retrieval. The 

retrievals were performed for 0–4 km altitude on a grid with 0.2-km resolution. Due to the elevation of the measurement site, 415 

the instrument often measures BrO in the free troposphere, except during strong wind episodes and storms that generate a deep 

boundary layer (Bognar et al., 2020).  

2.5 Complementary datasets 

There are two sets of local meteorology data used in this work: one from EWS (the archived data are available at 

Historical Data - Climate - Environment and Climate Change Canada (ECCC) (weather.gc.ca)) and one from the PEARL 420 

Ridge Lab. In addition to the continuous datasets such as pressure, temperature and wind speeds, archived hourly data were 

used to derive daily weather conditions, such as blowing snow event, fog, ice crystal and trace precipitation. In addition, 

ECMWF 6-hourly interim (ERA-interim) meteorological data were used to explore large-scale weather conditions. Surface 

ozone measurements were made by a TEI 49i ozone analyzer deployed at 0PAL (Bognar et al., 2020). Hourly mean surface 

ozone data are available since the instrument was installed in late 2016. The UV index measured during the campaign period 425 

in 2018 and 2019 is shown in Figure S1 (and data from the ECCC Brewer spectrophotometer available winthin Fioletov et al. 

(2005)). In addition, NOAA back-trajectory output from the Hybrid Single-Particle Lagrangian Integrated Trajectory 

(HYSPLIT) model (Stein et al., 2015; Rolph et al. 2017) is used for diagnosing the air-mass history of selected events.   

3 Results 

3.1 Snow salinities 430 

Figure 2 shows snow salinity distributions over sea ice (purple) and inland (orange) from all measurements, except 

for the tray samples. Inland snow has a dual peak distribution with the first and second peaks appearing at 0.001–0.002 psu 

and 0.01–0.04 psu, respectively. On sea ice, snow has a triple peak distribution, with the first and second peaks overlapping 

with the inland peaks, indicating similar origins. The third peak at 0.2–0.4 psu clearly reflects sea water influence.  

Table 1 shows mean and median snow salinities (psu) in tray samples, at inland and sea ice sites, as well as in two 435 

snow types: soft fluffy snow and aged hard snow. Tray samples have the lowest mean value of 0.0070±0.0088 psu (N=14) 

which is lower than the inland mean (0.0290±0.113 psu, N=211) and the Sea ice mean (0.296±1.640 psu, N=146) by ~4 times 

and ~40 times, respectively. The lowest tray sample salinity of 0.00178 psu corresponded to a falling snow event on March 6, 

2019 in calm weather conditions, and is close to the first peak salinity obtained in the surface layer snow, indicating that this 

first peak of surface snow salinity (0.001-0.002 psu) is likely due to the precipitation dilution effect (due to less salt in falling 440 

snow). The tray samples median of 0.0035 psu is roughly one-third and one-tenth of the inland and sea ice samples median 

values (0.0115 and 0.0375 psu, respectively), but close to their second salinity peak, which is in line with the fact that the  

majority of tray samples are wind-blown particles.   
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The salinity difference between the two types of surface snow is significant. For example, at PEARL, the mean 465 

salinity of the soft fluffy snow is 0.0039±0.0029 psu (N=7), which is ~4 times less than that of the hard aged snow 

(0.0175±0.0046 psu (N=2)). At the Onshore site, the difference is ~11-fold (0.00327±0.00273 psu (N=73) vs. 0.0364±0.0112 

psu (N=20)). At the Sea ice site, the difference increases to ~23-fold (0.0105±0.0104 psu (N=44) vs. 0.2372±0.3836 psu 

(N=17)). Comparing these values with the snow salinity distributions in Figure 2, the soft fluffy snow salinity is seen to overlap 

well with the first peak, and the aged snow salinity overlaps well with the second peak. This indicates that fresh falling snow 470 

and the subsequent salt accumulation effect (due to water vapour loss by sublimation) are responsible the first and the second 

salinity peak, respectively. The third salinity peak (0.2–0.4 psu) on sea ice is likely due to the sea water effect (due to upward 

migration of brine), which is also observed in Weddell Sea surface snow (Figure 16 in Frey et al., 2020). In addition, the 

second snow salinity peak on sea ice (0.02–0.04 psu) is consistent with Weddell Sea snow salinity on multi-year sea ice, which 

indicates that the salts on multi-year ice surface layers could be a result of the accumulation effect for deposited salts following 475 

the sublimation of water vapour rather than a direct sea water impact from the bottom (via the so-called wicking migration 

effect). However, the Weddell Sea snow salinity does not resolve the first salinity peak at 0.001–0.002 psu observed in Eureka, 

which could be due to the coarse vertical sampling resolution (2-3 cm) applied in their sampling.        

Figure 3 shows surface snow salinity vertical profiles from the first layer (0–0.2 cm) to the third layer (0.5–1.5 cm), 

and Figure S3 shows column salinity profiles. Note that tray samples salinity is shown in the upper panel of Figure 3. Salinity 480 

in the third layer is ~8 and ~15 times that of the first layer at the Onshore site and the Sea ice site, respectively. The larger 

vertical gradient seen on sea ice is likely due to sea water influence from below. At PEARL, the vertical trend is not clear, 

perhaps due to the very thin soft fluffy layer (only a few mm) and the thick crust layer observed at the top of the hill where 

winds are stronger. Generally, tray samples salinity at the 0PAL site is on average larger than that at the PEARL site; a similar 

result is also reflected in major ions, such as [Cl-] and [NO3-] (Figure 4 and S4). The relatively low salinity at the PEARL site 485 

is likely attributed to the higher geographic altitude (~600 m) and the higher height of the mounted tray above the ground (e.g., 

~11 m at PEARL versus ~1 m at 0PAL).    

The column salinity profiles in Figure S3 are predominantly 2018 data. Snow salinities at all inland sites do not vary 

much with distance from the surface. PEARL has the lowest column mean salinity (0.0023±0.0019 psu). Onshore has >10 

times the salinity (0.036±0.034 psu). The highest column mean snow salinity was observed on sea ice in 2018, with a mean 490 

value (top 20 cm) of 1.673±2.09 psu, the maximum salinity of 18.73 psu was measured at the sea ice interface sample. It is 

interesting to note that the 2019 column mean on sea ice (top 20 cm) is very low (0.085±0.026 psu), about 20 times lower than 

the 2018 value, which is likely due to  the dilution effect from the large iceberg grounded near Eureka.  

The snow depth at the 2018 Sea ice sampling site is in a range of 24~28 cm, a similar snow depth range (25-29 cm) 

at the 2019 Sea ice site was measured, this is partly because we deliberately chose a similar snow depth for sampling. In 495 

addition, the measured precipitation amount between October 2017 and March 2018 is 20 mm, and the amount between 

October 2018 and March 2019 is 19.4 mm, implying a similar snow depth on sea ice. Therefore, the significant difference in 

column snow salinity between these two years cannot be due to snowpack depth difference, rather the difference could be due 
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to the saline supply at the sea ice interface. For example, the 2019 bottom snow (1~3 cm above the sea ice interface) salinity 

is smaller than the 2018 bottom snow salinity by more than an order of magnitude (Figure S3),  indicating a possible dilution 

effect in 2019 from the iceberg grounded near EWS.           

3.2 Ion concentrations 640 

Figure 4 shows vertical profiles of 2019 snow ions [Na+], [Cl-], [NO3-], [Br-], non-sea-salt bromide (noted as nss[Br-

] =[Br-]obs-0.0018×[Na+]obs), non-sea-salt [SO42-] (nss[SO42-]=[SO42-]obs-0.601×[Na+]obs) and enrichment factors of Br-, Cl- and 

SO42-. Non-sea-salt values are calculated with the aim of removing salt effects on the concentration of bromine and sulphate, 

which assists data interpretation particularly in comparisons between offshore and onshore sites as well as from different snow 

depths. The enrichment factor is calculated following the equation of EFX=([X]/[Na]obs)/([X]/[Na]seawater), where [X]/[Na]obs 645 

represents the ratio of ion X to sodium in a sample, and [X]/[Na]seawater is the ratio in standard sea water (Wilson, 1975). If EFY 

>1.0, ion X is enriched and if <1.0 it is depleted. To highlight the surface snow results, a lognormal Y-axis is applied. Tray 

sample results are plotted in the top panel of each plot. Figure S4 shows the remaining profiles, including [Ca2+], [Mg2+], [K+], 

[SO42-] and enrichment of [Ca2+], [Mg+] and [K+].  

As can be seen from Figure 4(a) and data in Table S3, the tray sample mean [Na+] (19.86±9.78 µM) at PEARL is 1.7  650 

times that of the first layer mean (11.80±5.20 µM), and at 0PAL, and the tray sample mean [Na+] (36.99±23.25 µM) is 1.2 

times that of the first layer mean (31.33±34.37 µM). For [Cl-] (Figure 4(b)), the factor is 1.5 and 1.3 times at PEARL and 

0PAL, respectively. The enhancement of tray sample salts is likely due to the accumulation effect following the water loss via 

sublimation processes. However, this accumulation effect cannot explain the even larger enhancement in [NO3-] and nss[Br-] 

seen in Figure 4(c) and (e), respectively. For instance, at 0PAL, the tray sample mean [NO3-] (3.41±2.05 µM) is 3.6 times the 655 

first layer mean (0.96±0.21 µM), and at PEARL, the tray sample [NO3-] (2.23±1.37 µM) is 1.8 times the first layer mean 

(1.24±0.50 µM). Eureka snow [NO3-] is close to fresh snow nitrate of 2.5 µM at Alert in winter (Mcdonald et al., 2012), but 

smaller than snow nitrate of ~7 µM at Barrow, Alaska (Krnavek et al., 2012).    

For nss[Br-], at 0PAL, the tray sample mean (0.24±0.19 µM) is 2.4 times the first layer mean (0.10±0.07 µM). This 

indicates that airborne snow particles may uptake more gaseous nitric acid and soluble bromine species from the air than snow 660 

on the ground. The deposition rate of chemical compounds to the ground is controlled by a series of transport steps - 

aerodynamic, sub-layer of the boundary and surface resistance (Wu et al., 1992).    

Similar to snow salinity profiles (Figure 3), 2019 surface snow [Na+] (and [Cl-]) increases significantly from the first 

layer to the third layer, e.g., by about 20-fold at Onshore, 30-fold at Sea ice, and 8-fold at PEARL (Figure 4(a) and (b)). The 

lowest sodium concentrations in the first layer are likely due to the precipitation dilution effect (due to less salt in falling snow 665 

particles). [Br-] (Figure4(d)) and [SO4=] (Figure S4(d)) show a similar vertical gradient, however nss[Br-] (Figure 4(e)) and 

nss[SO4=] (Figure 4(f)) do not show such an increasing trend indicating the surface layer enhancement of the salts is largely 

due to the accumulation effect. Moreover, the first layer nss[Br-] is generally higher than the second layer (0PAL is an 
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exception), indicating the deposited bromide is from the air. A similar result is also see in the bromine enhancement factor 

(Figure 4(g)). Regarding the 0PAL exception, this is mainly due to the two days when samples were collected during and 

shortly after the precipitation event (on March 4 and 5, 2019).   

The first layer [Br-] (Figure 4(d)) at Sea ice (0.40±0.20 µM (N=40)) and Onshore (0.40±0.17 µM (N=38)) are almost 

the same, however, in the second and third layers, [Br-] at Sea ice (3.03±4.14 µM (N=51)) are significantly higher than that at 790 

Onshore (0.38±0.22 µM (N=58)) by more than an order of magnitude. When the sea water contribution is removed, the nss[Br-

] concentration (Figure 4(e)) are not significantly different from each other (0.24±0.19 µM (N=32) vs 0.21±0.17 µM (N=50)), 

strongly indicating similar atmospheric influence at the two sites.  

The column mean nss[Br-] values at Sea ice is 0.22±0.18 µM (N=17) and at Onshore is 0.30±0.31 µM (N=89). Both 

values are positive, indicating a net sink of atmospheric bromine prior to the measurements. However, at PEARL, the positive 795 

nss[Br-] was only observed in the tray samples (0.28±0.20 µM (N=21)) and the first snow layer (0.28±0.12 µM (N=31)). The 

column mean nss[Br-] at PEARL is -0.05±0.08 µM (N=34) (Table S3), indicating snowpack at the top of the hill is bromide 

depleted. Due to the lack of temporal variation information, the timing of the bromine depletion cannot be determined (e.g., 

before or after the precipitation), nor whether it occurred soon after sunrise on February 21. The 2018 snow samples at PEARL 

do not show clear bromine depletion (Figure S5(d)), as the column mean nss[Br-] is slightly positive (0.01±0.01 µM (N=8)) 800 

(Table S2). Snow bromide enrichments were reported at other Arctic sea level locations, e.g. in the vicinity of Barrow, Alaska 

(Simpson et al., 2005), at other Canadian Arctic Archipelago sites (Xu et al., 2016) and on first-year sea ice (Peterson et al., 

2019). However, at elevated sites in Svalbard (i.e. a few hundred meters above sea level), both bromide enrichment (Spolaor 

et al., 2013) and depletion (Jacobi et al., 2019) were measured.   

Figure 4(g-i) shows enrichment factors for Br-, Cl- and SO42- in 2019 snow samples. All these anions are significantly 805 

enriched in surface layers and in tray samples, indicating important airborne sources. In particular, the calculated EFBr- values 

in the tray samples and the first and second layers are larger than 10. Due to lack of simultaneous measurements of soluble 

inorganic bromine and filter aerosols, the dominant form of deposited bromide is unknown. Figure S4 shows that cations 

[Ca2+], [Mg+] and [K+] are also enriched, especially in the bottom part at inland sites. In particular, [Ca2+] enrichment factors 

at Onshore and PEARL sites are larger than 10, indicating strong terrestrial dust influence during the late autumn when the 810 

land is not completely covered by snow.    

Like snow salinity results, major snow ions on sea ice also have a large perturbation from 2018 to 2019. For example, 

the 2018 column mean snow sodium on sea ice (Tables S2 and S3) is 3-4 times that of the 2019 column mean, which is 

consistent with the relatively low snow salinity observed in 2019 due to the presence of a large iceberg grounded in the valley. 

In 2018, the column mean (1.5–20 cm) bromide on sea ice is 10.74±8.52 µM (N=80) (Table S2), while in 2019, it is only 815 

6.47±5.36 µM (N=66) (Table S3). The lower 2019 snow bromide on sea ice is likely attributed to the freshwater dilution by 

the iceberg. However, they are both much smaller than mean 30.6 µM on thick first year ice (FYI) and 92.5µM on thin FYI at 

Barrow, Alaska (Krnavek et al., 2012). Yet, surface snow bromide does not follow the column mean pattern; instead, the 2018 
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surface snow bromide is even lower than that of the 2019 values. For example, bromide in the top 0.5 cm snow layer in 2018 1010 

is 0.23±0.10 µM (N=36), which is significantly lower than the 2019 value of 0.40±0.20 µM (N=40) in the 0–0.2 cm layer and 

the value of 3.03±4.14 µM (N=51) in the 0.2–0.5 cm layer. The lower 2018 surface snow bromide loading is likely related to 

the extremely low BrO partial columns measured in March at Eureka by MAX-DOAS (Bognar et al., 2020), during which 

unusually calm weather, low aerosol optical depth (AOD) and coarse-mode aerosol (likely SSA) concentrations were observed 

(see Section 3.3 and Figure 5 below for more details). These results indicate that top layer snow bromide is largely controlled 1015 

by atmospheric processes rather than by the underlying snowpack. This conclusion is also consistent with previous findings 

that bromide concentrations at low salinities are dominated by atmospheric exchange (Krnavek et al., 2012). Interestingly, 

surface layer nitrate concentrations between 2018 and 2019 are not significantly different, e.g. the 2018 top 0.5 cm snow nitrate 

on sea ice is 3.13±1.00 µM (N=33), comparable to the 2019 first layer nitrate on sea ice of 3.46±1.55 µM (N=37).   

3.3 Geographic heterogeneity of snow bromide and nitrate   1020 

Using the samples collected between February 26 and March 3, 2019, local geographic differences (across distances 

of 1~2 m) of snow sodium, nitrate, and bromide were assessed at each sampling site (Table S4). For bromide, the smallest 

heterogeneity is found at inland sites, particularly at PEARL, with the largest heterogeneity at Sea ice. For instance, top 0.5 

cm snow [Br-] is 0.28±0.14 µM (nss[Br-]=-0.05±0.07 µM) at PEARL, compared to [Br-] of 0.30±0.13 µM (nss[Br-]=0.25±0.13 

µM) at Onshore and 0.67±0.74 µM (nss[Br-]=0.43±0.48 µM) at Sea ice. Deeper layer snow bromide heterogeneity is generally 1025 

larger than the upper layer (with an exception at PEARL), which is likely due to the large uncertainty of accumulated bromide. 

The smallest standard deviation of nss[Br-] is at PEARL (0.075 µM), with the medium 0.21 µM at Onshore, and the largest 

0.73 µM at Sea ice. Nitrate in the top 0.5 cm and the 0.5-1.5 cm layer are not significantly different, indicating they are 

independent of snow salts. The top 1.5 cm mean [NO3-] at Sea ice is 3.62±1.34 µM, at Onshore is 2.95±0.86 µM, and at 

PEARL is 2.03±0.43 µM. As with bromide, PEARL has the smallest mean value and uncertainty. Note that the source of 1030 

uncertainty is not solely from geographic variation; other factors such as temporal variations (see section 3.4) as well as the 

bias in depth estimation all contribute to the uncertainty.    

On March 4 and 5, 2019, snow samples were collected during a precipitation event (Figure 6(a)), from three sub-

layers (0-0.2, 0.2-0.5, and 0.5-1.5 cm) at the 0PAL, Onshore and Sea ice sites (also in Table S4). The 0.2 mm precipitation 

meant a ~1 cm snowfall on the surface, which explains the low concentrations and low variability of [Br-] at Onshore. 1035 

Moreover, the top 0.2 cm snow [Br-] (0.12±0.00 µM) at Onshore is very close to that for 0PAL (~5 km away) (0.14±0.02 µM), 

indicating they are under the same atmospheric influence. However, at Sea ice the first layer [Br-] (0.38±0.04 µM) is ~3 times 

of that of the onshore value, highlighting the underlying sea ice effect. The sea ice effect is more significant in the second (0.2-

0.5 cm) layer, where high [Br-] (5.73±5.57 µM) was measured. However, the corresponding nss[Br-] (0.01±0.04 µM) in the 

second layer at Sea ice is very low, and close to the nss[Br-] (0.01±0.00 µM) at 0PAL also indicating the same atmospheric 1040 

influence. For nitrate, the precipitation effect is less significant, the sea level mean [NO3-] (3.28±1.10 µM) is very close to the 
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Sea ice mean obtained during February 26-March 3. The sea level nitrate is also higher than the hilltop mean of 2.03±0.43 

µM, indicating a vertical gradient of atmospheric nitrogen oxide between the boundary layer and the free troposphere.  

3.4 Time series of surface snow [Br-] and [NO3-] 

Figure 5 shows the 2018 time series of local meteorology (a-b), surface ozone at 0PAL and 0-4 km MAX-DOAS BrO 

partial column (c), and top 0.5 cm snow [Na+] (d), [NO3-] (e), [Br-] (f), and nss[Br-] (g) at the Sea ice, Onshore, and PEARL 1060 

sites. Figure 6 shows the 2019 time series of meteorology (a-b), surface ozone at 0PAL and 0-4 km BrO partial column (c), 

and tray samples [Na+] (d), [NO3-] (e), [Br-] (f), and nss[Br-] (g) at the 0PAL and PEARL sites. Figure 7 shows the 2019 time 

series of surface snow nitrate (a-c) and non-sea-salt bromide (d-f) in three sub-layers: 0–0.2 cm, 0.2–0.5 cm, and 0.5–1.5 cm.  

Extremely calm conditions were observed in March 2018, with wind speeds <5 m s-1 most days. Figure 5(a) shows 

strong inversions between EWS and PEARL in March, e.g., the temperature difference between these two heights can be 1065 

>10°C. Blowing snow events were only recorded on March 3 and 5, 2018 which is unusually infrequent. On the contrary, 

March 2019 was very windy, with blowing snow events recorded on March 1, 2, 4, 12–14, 18, 19, 23–25, and 28, 2019, 

approximately 40% of the days.  

March 2018 had a very low background BrO partial column of ~1×1013 molecules cm−2 or less (Figure 5(c)), while 

March 2019 had a background BrO partial column almost two times the 2018 level (Figure 6(c)). Accordingly, surface ozone 1070 

concentrations in March 2018 were generally higher than that in March 2019. For example, the background surface ozone in 

March 2018 was mainly around 30 ppbv, and in March 2019, the background surface ozone is mainly below 20 ppbv indicating 

accelerated ozone losses due to enhanced BrO loading in the air. In addition, March BrO partial columns show significant 

decreasing trends with a linear slope of (-7.21±0.38)×1011 molecules cm−2 d-1 (R=0.60) in 2018 and of (-3.03±0.05)×1011 

molecules cm−2 d-1 (R=0.64) in 2019, indicating that a lower tropospheric air mass over Eureka is losing bromine.    1075 

Here we focus on the 2019 datasets (Figures 6 and 7) for further discussion. The meteorology record indicates that 

fog events were recorded on March 7, 15, 17-20, 22, 23 and 28, 2019. Some of these events were accompanied by precipitation 

(daily amount ≥0.2 mm, as shown in Figure 6(b)). Precipitation events were recorded on March 5, 6, 7, 10, 15, 19, 27, 28, 30, 

and 31 with a total monthly precipitation of 2 mm. On average, precipitation occurs at a frequency of every ~3 days, which is 

consistent with the average Arctic snow age used in Huang and Jeaglé (2012). In addition, if trace precipitation events are 1080 

included, occurring on March 1, 2, 4, 5, 6, 10-13, 15, 18-21, 24, and 28 (~50% of the time), then the average precipitation 

frequency is reduces to every 1.5 days.  

Tray sample sodium has a large day-to-day variability (Figure 6(d)). The low sodium concentrations measured on 

March 6 and 11, 2019 are likely due to the precipitation dilution effects, and the high sodium concentrations measured on 

March 4–5, 13–14, and 24 are likely related to the windy conditions. In general, 0PAL tray sample sodium does not show a 1085 

clear increasing trend with time, though this is evident at PEARL.  
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Tray sample nitrate at 0PAL shows a clear increasing trend (Figure 6(e)) with a mean slope of 0.177±0.073 µM d-1 

(R=0.46, p=0.020, N=24) (Table S5). At Sea ice, snow nitrate in the first layer (0–0.2 cm) has a slope of 0.253±0.101 µM d-1 1200 

(R=0.50, p=0.022, N=21), and at Onshore it is 0.285±0.124 µM d-1 (R=0.48, p=0.033, N=20). In the second layer (0.2–0.5 

cm), snow nitrate slope at Sea ice is 0.235±0.054 µM d-1 (R=0.70, p=0.0003, N=22) and at Onshore it is 0.165±0.063 µM d-1 

(R=0.52, p=0.017, N=21). In the third layer (0.5–1.5 cm), snow nitrate slopes at Sea ice and Onshore are smaller, 0.057±0.025 

µM d-1 (R=0.41, p=0.027, N=29) and 0.08±0.027 µM d-1 (R=0.51, p=0.007, N=27), respectively. These slope values are only 

1/5 to 1/3 of the top two-layer values, indicating a reduced nitrate deposition flux to deeper snow layers. The standard 1205 

deviations of nitrate slope at sea level are ½ to ¼ of the mean slope values indicating the linear regression fits are statistically 

significant. 

Nitrate at PEARL behaves differently. For instance, the increasing trend is not statistically dfferent from zero in 

PEARL tray samples and in the first layer. Moreover, a negative slope was obtained in the second and third layers, respectively. 

These results indicate that deposition flux at the top of the hill is reduced and cannot compensate for the nitrate loss via 1210 

photolysis. The positive slope at sea level indicates the deposited nitrate during the ~1 day period was larger than the 

photochemical loss during daytime.   

Surface snow [Br-] and nss[Br-] show a very similar increasing trend (Figure 6(f) versus 6(g)); this is due to the large 

bromine enrichment factor or weak sea water impact. The 2019 tray sample nss[Br-] slope at 0PAL is 0.023±0.006 µM d-1 

(R=0.64, p<0.001, N=24 ), which is very close to the first layer slope values (Figure 7(d)) at Onshore and at Sea ice where the 1215 

trends are statistically significant (p<0.02, Table S5). In the second snow layer, the slope values (Figure 7(e)) are still positive 

but with large p values (0.13-0.18). Tray sample nss[Br-] slope at PEARL is 0.013±0.006 µM d-1 (R=0.56, p=0.04, N=14) 

which is smaller than that at 0PAL. In the first and second snow layer at PEARL, slope values are positive and statistically 

significant (Table S5). Due to the few measurements in the third layer, a robust trend could not be derived, while the Onshore 

dataset indicates a near zero slope (0.003±0.007 µM d-1) (R=0.11, p=0.63, N=23, Figure 7(f)). In the first and second layers, 1220 

standard deviation values are about ½ to ¼ of the slope values, indicating the bromide trends derived are statistically significant. 

Due to the large uncertainty, no clear trend (i.e. a zero slope) was obtained.     

In addition to the long-term trend, both nitrate and bromide show a large day-to-day perturbation. For instance, the 

maximum nitrate concentration of >15 µM was observed on March 18, 2019 in both tray samples and the first layer snow, 

which is likely associated with a heavy fog event, lasting more than 16 hours with visibility decreasing from >10 km before 1225 

the fog event to only 1~2 km. Meanwhile, snow bromide also showed an enhancement, e.g. with concentrations >1 µM 

measured at the Sea ice and Onshore sites (Figure 7(d)). Another large bromide enhancement event was observed in tray 

samples on March 22, 2019, also associated with a >6 hours fog event. March 15, 2019 experienced the longest fog event (>17 

hours), however, bromide and nitrate did not show any enhancements, which could be related to the precipitation effect as a 

0.2 mm precipitation was recorded.   1230 
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In general, there is not a clear correlation between surface snow sodium and bromide at Eureka. However, on March 

4, 14 and 24, 2019 when it was very windy, high bromide and sodium concentrations were observed indicating blowing snow 

sourced sea salt contributions. 

As noted above, March 18, 2019 was a heavy fog day. The signals of enhanced snow nitrate can be detected in tray 1435 

samples and the first layer and is still slightly detectable in the second layer at the Onshore site (Figure 7(a-b)). However, the 

enhancement signal disappears in the third layer, indicating the fog-related nitrate deposition is mainly confined to the top 0.5 

cm snow layer.  

The 2018 time series dataset shows a similar story. For example, top 0.5 cm snow nitrate at the Sea ice site has a slope 

of 0.240±0.032 µM d-1 (R=0.93, p<0.001, N=11, Table S5) and at the Onshore site it is 0.166±0.073 µM d-1 (R=0.61, p=0.047, 1440 

N=11). However, 2018 snow [Br-] and nss[Br-] do not show a clear increasing trend (Figure 5(f, g) and Table S5). The slope 

at Onshore is very small and not significant (0.005±0.005 µM d-1, R=0.27, N=11), indicating a weak bromide deposition flux. 

Although the 2018 snowpack column bromide on sea ice is several times the 2019 column mean (Tables S2&S3), the small 

bromide deposition flux in 2018 is likely due to the calm weather and the extremely low BrO loading as measured by MAX-

DOAS (Bognar et al., 2020).  1445 

3.5 Morning versus afternoon nitrate and nss[Br-] 

Compared to morning samples, afternoon samples at Eureka undergo 3-7 more hours of sunlight, which means 

photochemical loss of nitrate and bromide from snowpack may be enhanced as a result. The 2019 morning and afternoon 

concentrations of nitrate and nss[Br-] are shown in Figure 8. The mean [NO3-] for morning samples (at Sea ice and Onshore) 

is 3.02±1.56 µM, which is larger than the afternoon mean of 2.79±1.45 µM by 0.23 µM; at the PEARL site, the morning-1450 

afternoon difference is 0.48 µM (1.66±0.48 µM in the morning vs. 1.18±0.47 µM in the afternoon). However, from Figure 8 

and Table S6 we find the morning-afternoon differences are well within the error bars of the morning and afternoon samples, 

and therefore cannot conclude that the small mean difference is a photochemical loss.      

Snow bromide also shows a similar weak morning-afternoon difference, however the signals are not significant across 

all sampling sites. For example, at the Onshore site, the morning, nss[Br-] in the first layer is 0.25±0.12 µM (N=12, p<0.001), 1455 

which is larger than the afternoon 0.23±0.21 µM (N=8, p=0.019) by 0.02 µM; in the third layer the morning-afternoon 

difference is negative (-0.04 µM), calculated from the morning mean of 0.18±0.22 µM (N=16, p=0.005) and the afternoon 

mean of 0.22±0.26 µM (N=12, p=0.013) (Table S6). At the Sea ice site, the morning nss[Br-] in the first layer is smaller than 

the afternoon (by 0.01 µM); in the second layer, the morning nss[Br-] (0.18±0.03 µM, N=10, p<0.001) is larger than the 

afternoon (0.13±0.09 µM, N=6, p=0.022) by 0.02 µM. Based on the available data shown in Figure 8, a mean morning-1460 

afternoon difference of 0.018 µM at sea level is derived. At PEARL, the morning-afternoon change is 0.07 µM (0.22±0.13 

µM vs 0.15±0.03 µM). Although the small positive morning-afternoon change is well in line with the possible daytime 
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photochemical loss, due to the large error bars we cannot conclude that this signal is statistically meaningful. Therefore, we 

cannot claim that daytime photochemistry for snow bromide and nitrate is detected in this study.  

Note that the tray sample [NO3-] and nss[Br-] responded differently, with morning concentrations generally lower 

than their afternoon values. For example, at 0PAL the morning mean [NO3-] for the tray samples (1.54±0.69 µM, N=5, 

p=0.007) is only half of the afternoon mean (3.27±1.80 µM, N=8, p=0.001). For bromide, at PEARL the morning mean nss[Br-1515 

] for the tray samples (0.28±0.18 µM, N=8, p=0.003) is also smaller than the afternoon mean (0.30±0.24 µM, N=9, p=0.005) 

by 0.02 µM. This finding is consistent with the vertical profiles of nitrate and bromide shown in Figure 4(c) and (e), where the 

tray sample [NO3-] at 0PAL is 3.6 times the first layer nitrate, and at PEARL it is 2.1 times the first layer nitrate. Additionally, 

the tray sample nss[Br-] at 0PAL is 2.6 times the first layer value. The enhancement of tray sample concentrations is likely due 

to the small amount of snow water collected by trays; the small addition of bromide deposited could increase its concentration 1520 

much more than it would affect the large reservoir of surface snow.  

3.6 Deposition flux of bromide and nitrate 

The daily slopes of nitrate and bromide concentrations derived above can be used to calculate their deposition flux to 

snowpack following this new equation:  

𝐹𝑙𝑢𝑥 = !
"∑ 𝑆#𝐻#𝐷#$

#%&           (R3) 1525 

where Flux is mean net deposition flux (deposition minus emission, in units of molecules cm-2 s-1) over the observational 

period from snow layer 1 to n, A is Avogadro’s number of gas (6.02×1023 molecules mole-1), T is seconds in a day (86400 s d-

1), Sk is the derived daily slope in snow layer k (in µM d-1), Hk is the corresponding snow layer depth (in cm), and Dk is snow 

density of the layer (in g cm-3). 

In this study, n=3. A low snow density of 0.15 g cm-3 is used for the top two layers, and 0.3 g cm-3 is used for the 1530 

third layer. For nitrate, a mean slope value at sea level (from the Sea ice and Onshore sites) of 0.27, 0.2, and 0.07 µM d-1 were 

used in the first, second, and third layers, respectively. Therefore, an integrated nitrate deposition flux of 2.6×108 molecules 

cm-2 s-1 from the top 1.5 cm snow is obtained. At PEARL, the integrated deposition flux is negative (-1.0×108 molecules cm-2 

s-1) according to the mean slope of 0.0, -0.013, and -0.04 µM d-1 in the three sub-layers. According to the statistical analysis 

results shown in Table S5, we can work out a mean slope error of 0.066 µM d-1 at sea level and 0.019 µM d-1 at PEARL. If we 1535 

compare that to the average slopes derived of 0.28 µM d-1 at sea level and -0.018 µM d-1, we can work out relative errors of 

37% at sea level and 95% at PEARL. Therefore, we have an integrated nitrate deposition flux of (2.6±0.37)×108 molecules 

cm-2 s-1 at sea level and (-1.0±1.06)×108 molecules cm-2 s-1 at PEARL. These results indicate that surface snow at sea level is 

a net sink of atmosphereic nitrate, and at the top of the hilltop it is a source of reactive nitrogen; however, the negative flux 

derived at PEARL has a large error bar, indicating the flux has a large uncertainty.  Our derived nitrate deposition flux at sea 1540 

level Eureka is close to the winter average flux of 2.7×108 molecules cm-2 s-1 derived at Alert, Nunavut (Macdonald et al., 

2017) and ~4×108 molecules cm–2 s–1 at Svalbard (Björkman et al., 2013), justifying the method used in this work.  
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For bromide, the integrated deposition flux from R6 is 1.01×107 molecule cm-2 s-1 at sea level, using a mean slope of 

0.024, 0.016, and 0.0 µM d-1 in the three sub-layers, respectively. At PEARL, the integrated flux is 7.9×106 molecules cm-2 s-

1. Similarly, from Table S5 we can derive a mean slope error of 0.0096 µM d-1 at sea level and 0.0059 µM d-1 at PEARL (for 

the top two layers). If we compare that to the average slope of 0.02 µM d-1 at sea level and 0.015 µM d-1 at PEARL, we have 

relative errors of 48% at sea level and 39% at PEARL. Therefore the integrated bromide flux is (1.01±0.48)×107 molecules 1570 

cm-2 s-1 at sea level and (0.79±0.31)×107 molecules cm-2 s-1 at PEARL. This small vertical gradient strongly indicates that BrO 

concentrations (and total inorganic bromine species) at sea level and in the free troposphere are not significantly different at 

Eureka, which agrees with the conclusion in Bognar et al. (2020). This implies that either bromine at Eureka is mixed well in 

the lower troposphere (mainly during strong wind events with enhanced BrO) or local snowpack at sea level is not a large 

source of reactive bromine. As mentioned previously, from winter to early spring the Eureka boundary layer is very shallow 1575 

and stratified in calm conditions, thus most of the time PEARL is in the free troposphere. Therefore, if local snowpack on sea 

ice in the fiord is a large source of reactive bromine, an enhanced deposition flux at sea level should be detected. In addition, 

previous work focusing on atmospheric chemistry has demonstrated that large BrO enhancement events observed in Eureka 

in early springtime are mostly transported via cyclones (Zhao et al., 2016; 2017; Yang et al., 2020). The transported bromine 

in association with storms means well-mixed bromine species from the surface up to the free troposphere (>1 km), which 1580 

explains the small vertical gradient of deposited bromine flux in this current work.    

3.7 Bromine mass balance analysis 

For gas-phase bromine (as a family), its concentration Cair in the air can be expressed as: 
'(!"#
')

= 𝑃*+, −
(!"#
-!"#

         (R7) 

where Pair is the emission flux of reactive bromine from snowpack and tair is the lifetime of bromine species in the air. The 1585 

second term  (!"#
-!"#

 on the right side represents removal of bromine from the air via deposition. At an equilibrium state, 

concentration Cair will reach a stable level (=Pair×tair). However, from Figures 5(c) and 6(c), we see a significant decreasing 

trend of BrO partial column, indicating the input term Pair is much smaller than the loss term  (!"#
-!"#

. If we take the linear 

decreasing slope of (-7.21±0.38)×1011 molecules cm−2 d-1 in 2018, and (-3.03±0.05)×1011 molecules cm−2 d-1 in 2019, and 

apply a 30% partitioning of BrO in total gas bromine species as calculated by models (Legrand et al., 2016), then the loss rate 1590 

of total bromine species is (-2.52±0.13)×107 molecules cm−2 s-1 in 2018 and (-1.05±0.02)×107 molecules cm−2 s-1 in 2019. The 

2019 removal flux is in good agreement with the derived snow bromide deposition flux of (1.01±0.48)×107 molecules cm-2 s-

1, implying the snow bromide is a deposit of atmospheric gas-phase bromine.  

In addition, this linear decreasing trend can be re-expressed by an exponential function, as a mathematical solution 

of R7. For example, 2018 BrO follows an exponential function of exp(-0.059×t) and the 2019 BrO follows a function of exp 1595 

(-0.024×t) with very similar R values to the linear regressions (see Figures 5(c) and 6(c)). From this we can derive a lifetime 
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of ~17 days in 2018 and ~42 days in 2019, which are about 2-10 times the model-derived global mean lifetimes of ~10 days 

(von Glasow et al., 2004) and 4-5 days (Yang et al., 2005).   

Similarly, for snow bromide concentration Csnow, its time-dependent evolution can be expressed as: 
'($%&'
')

= 𝑃.$/0 −
($%&'
-$%&'

        (R8) 

where Psnow is the snow bromide input from the air, which equals the gas-phase bromine loss term (!"#
-!"#

 in R7, and tsnow is the 1630 

lifetime of snow bromide. The second term  ($%&'
-$%&'

 on the right side represents release of snow bromide (via photochemistry), 

which equals the input term Pair in R7. At a photochemical steady state and under the assumption that snow bromide lifetime 

tsnow does not change much during the measurement period, a constant Csnow=Psnow´tsnow is expected. However, Figure 6 

indicates that Csnow increases linearly, suggesting the input term Psnow must be much larger than the loss term ($%&'
-$%&'

 (namely the 

daytime photochemical release of bromide from the surface snow must be much smaller than the deposited bromide).  1635 

If we assume the net increase of bromide in the surface snow layer is roughly balanced by the release of reactive 

bromine from the whole snow column, then a rough bromine mass balance could be reached. This means the emission flux of 

reactive bromine from snowpack photochemistry is about the same as the deposited bromide flux of (1.01±0.48)×107 molecules 

cm-2 s-1 at sea level. But this emission flux will balance the gas-phase bromine removal flux of (-1.05±0.002)×107 molecules 

cm−2 s-1 and should result in a stable atmospheric bromine level rather than a decreased BrO trend as observed, unless the BrO 1640 

partitioning in total bromine species decreases with time in early spring (March here). Otherwise, we must conclude that 

deposition of bromide to surface snow is more likely “one-way”, namely the photochemical release of reactive bromine from 

snowpack must be very weak, and much smaller than the derived deposition flux on the order of 1×107 molecules cm−2 s-1.  

3.8 Relationship between surface snow [NO3-] and [Br-] 

There are multiple sources of snowpack bromide and nitrate. For example, bromide may come from reactive bromine 1645 

gases (such as HOBr, BrO and BrONO2) and the terminal product HBr in both gas phase and particle phase. Due to the lack 

of in-situ data, we cannot accurately quantify the contribution of HBr to snow bromide at Eureka. However, modelling work 

(focusing on Antarctic coastal Dumont d’Urville chemistry) indicates that reactive bromine species dominate total gaseous 

inorganic bromine. For example, gas phase HOBr and BrO together account for ~2/3 of total inorganic bromine on average, 

and gas phase HBr only accounts for 12%. In austral spring (September-October), HBr partitioning is higher but does not 1650 

exceed 25% (from Figure 14 of Legrand et al., 2016). Bromine may accumulate as gas phase HBr when ozone depletion has 

terminated (Lehrer et al., 2004), but during the campaign period surface ozone rarely dropped below 2-3 ppbv (Figures 5(a) & 

6(a)); therefore, gas phase HBr accounts for a small fraction of total inorganic bromine. In addition, airborne particles can take 

up gas phase HBr from the air. Size-dependent aerosol data from both hemispheres indicate that the smallest particles (sub-

micron size mode) are normally enhanced in Br- (as compared to sea salt reference), while large-sized particles are slightly Br- 1655 

depleted (Alvarez-Aviles et al., 2007; Legrand et al., 2016). Figure S7 shows that at the Onshore site surface snow sodium and 
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bromide are not significantly correlated apart from in the third layer. At Sea ice, surface snow sodium and bromide are largely 

correlated but with [Br-]/[Na+] ratios larger than the sea water ratio (~0.0065) indicating that surface snow gains bromide from 

the air at Eureka. This is in line with the finding at coastal Alaska (Simpson et al., 2005). Moreover, the observed large bromide 1660 

enhancement factor (>10, Figure 4g and Section 3.2) strongly indicates that bromide in surface snow is not related to sea salt. 

Thus, it is reasonable to make the assumption that nssBr- mainly comes from reactive bromine species.  

However, a significant relationship between surface snow [NO3-] and [Br-] (Figure 9) in tray samples at 0PAL, 0–0.2 

cm, and 0.2–0.5 cm layer snow at the Onshore site (2019), and the top 0.5 cm snow at the Onshore site (2018), with coefficient 

R in the range of 0.4-0.7. This relationship remains when nss[Br-] is used in the analysis with a similar R of 0.23–0.66 (Figure 1665 

S6). In early spring, due to the small solar zenith angle, atmospheric OH is very low and the dominant pathway of oxidising 

NOx to form nitrate is likely via the chain reactions R1-R4. From the net reaction in R5 we can see that without net consumption 

of bromine, NOx and ozone can be effectively consumed, which means more than one NOx molecule can be converted to 

nitrate per bromine atom.  Figure 9 shows that the ratio of [NO3-]/[Br-] ranges from 3.5–6.8, indicating that one molecule 

bromide deposited to the surface is likely accompanied by 4–7 nitrate molecules, attributed to the fast recycling of gas-phase 1670 

bromine species before they deposit to the surface snow. For the first time we see field evidence on a time scale of one day 

showing this effect such as via reactions R1-R4. This finding further confirms previous conclusions regarding the role that 

reactive bromine plays in determining high latitude atmospheric reactive nitrogen (e.g., Yang et al., 2005; Morin et al., 2008). 

Such a relationship can be detected in surface snow on sea ice due to the sea water effect on bromide as shown in Figure S7. 

However, we do see a weak correlation between them at PEARL (not shown).  1675 

4 Discussions and implications to polar chemistry 

It is reasonable to assume that a rough balance of bromine can be reached in both the atmosphere and the snowpack 

over the sea ice zone. However, once bromine rich air masses transport from sea ice into inland tundra areas, the bromine 

budget balance breaks down. In particular, air starts to lose gas-phase bromine and snow begins to gain extra bromide from 

the air, as we observed at Eureka. However, if quick photochemical equilibrium is reached in surface snow, then we should 1680 

see a stable bromide concentration in snow. The same goes for gas-phase bromine in the air. However, the significant decrease 

in BrO partial column in the lower troposphere and the increase in surface snow bromide strongly indicate that they do not 

reach a photochemical equilibrium state in early spring. Moreover, the significant trends show that it is very likely that snow 

Relatively low nitrate concentrations of 0.1-8.2 µM were detected in Arctic sea ice (Clark et al., 2020); their isotope-

based investigation of the origin of nitrate indicates that the atmospheric contribution accounts for 40% or less of the sea ice 

nitrate, demonstrating the importance of atmospheric reactive nitrogen to sea ice nitrate. Our data indicate that there is no 

significant relationship between sodium and nitrate in surface snow, which is consistent with the finding for Alaska (Krnavek 

et al., 2012).  
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photochemical release of reactive bromine is a very weak process, and the emission flux must be much smaller than the derived 

removal flux for gas-phase bromine and the snow bromide deposition flux, which is around 1×107 molecules cm-2 s-1. 1695 

Snow nitrate can be directly photo-dissociated under sunlight, while snow bromide activation needs heterogeneous 

photochemistry. Therefore, photons are a necessary but not a sufficient condition for bromine recycling. For example, the 

heterogeneous reactions for snowpack bromide reactivation involve three transport steps: aerodynamics brings gas HOBr or 

ozone to the near surface sub-layer, and the subsequent transport requires gas molecules to pass through the quasi-laminar 

boundary layer before they can eventually be absorbed by snow particles. It has been shown that the above three processes 1700 

vary greatly, depending on the depositing species and surface characteristics (Wu et al., 1992). The bromide loss rate from 

surface snow is somehow rate-limited by the deposition flux of hypohalous acid such as HOBr or ozone. This could be one 

reason for the possible weak emission flux of snow reactive bromine. 

Snowpack is thought to be a highly permeable material, meaning gasses and fine aerosols could penetrate into deep 

layers (Harder et al., 1996; Björkman, et al., 2013) due to the exchange of air with the atmosphere (Sturm and Johnson, 1991; 1705 

Albert and Hardy, 1995; Colbeck, 1997; Albert et al., 2002). However, our data show that most deposited species were in the 

top 0.5 cm layer. For example, at sea level nitrate slopes reduce significantly from the first layer mean of 0.26 µM d-1 to the 

second layer mean of 0.20 µM d-1 and third layer mean of 0.07 µM d-1. A similar trend is also obtained for nss[Br-] slopes, 

with the first layer slope of 0.023, the second layer slope of 0.014, and the third layer slope of 0.0 µM d-1. These results indicate 

deposited nitrate and bromide are largely confined to the skin layer. The fog-related bromide and nitrate enhancements are 1710 

only found in the top two layers (<0.5 cm), which agrees with conclusions of Domine et al. (2004) who state that the aerosol 

effect on snow ion concentrations is limited to the top few cm. In extreme conditions, applying the above derived absolute 

nitrate deposition flux (0.632 µM d-1) and absolute nss[Br-] deposition flux (0.064 µM d-1) to all three layers allows for a nitrate 

deposition flux of 1.65×109 molecules cm-2 s-1 and a bromide deposition flux of  1.72×108 molecules cm-2 s-1 to be calculated. 

These may represent the upper limits of the deposition fluxes of nitrate and bromine.  1715 

As shown above, the uncertainty of the bromide measurements is larger in the third layer and on sea ice, where the 

accumulated salts and sea water make the non-sea-salt bromine signals harder to detect. We also do not have samples from 

deeper snow layers (>1.5 cm); therefore, our measurements may underestimate the deposition flux of nitrate and bromide. 

Although the snow e-folding depth (light attenuation) at Eureka was not measured, previous measurements at other polar sites 

indicate that it varies from a shallow 2-5 cm (Erbland et al., 2013) to a deep 10-20 cm (France et al., 2011) in Antarctica. At 1720 

Cambridge Bay, Canada, an e-depth of 16 cm was reported in March snowpack (Xu et al., 2016). Therefore, the loss of nitrate 

and bromide via photochemistry or the release of reactive nitrogen and bromine may come from a deeper snow layer, which 

we have no data to confirm.   

In addition, the method used to derive the deposition flux of nitrate and bromide is different from the instrument-

based measurements of gas reactive nitrogen and bromine. For bromine, the method is largely dependent on the choice of 1725 

sampling location, ideally where the snowpack on sea ice and at inland are less disturbed by other bromine sources such as 

https://www.tandfonline.com/doi/full/10.3402/tellusb.v65i0.19071
https://www.tandfonline.com/doi/full/10.3402/tellusb.v65i0.19071
https://www.tandfonline.com/doi/full/10.3402/tellusb.v65i0.19071
https://www.tandfonline.com/doi/full/10.3402/tellusb.v65i0.19071
https://www.tandfonline.com/doi/full/10.3402/tellusb.v65i0.19071
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open leads, polynyas, and sea spray. Therefore, this method may not work well in areas where sea ice has a significant amount 

of mobility, with sea ice opening and closing frequently. The conclusions derived in this study may only be representative of 

local characteristics, as sea ice conditions at Eureka are quite different from those in the central Arctic (Shupe et al., 2022). 

However, the physical and chemical processes involved in bromide deposition and reactive bromine release may remain the 1730 

same across locations. To confirm this, a more comprehensive field campaign under typical Arctic sea ice conditions is needed.  

Note that the lifetime of an individual reactive bromine species such as BrO and HOBr is short (only a few minutes) 

under sunlight. However, the quick recycling via photochemically heterogeneous reactions to convert inactive HBr back to the 

active form (such as Br2 or BrCl) means that as a family, the lifetime of total inorganic bromine species is in fact much longer 

e.g., from the model estimated global mean of 4-10 days (Yang et al., 2005; von Glasow et al., 2004) to this study estimation 1735 

of 17-41 days in early spring at Eureka. For nitrogen oxides (NOC), the lifetime in Arctic springtime is 2-6 days (Stroud et al., 

2007). It is important to note that within a stable boundary layer, the typical time needed for a surface signal to reach the upper 

layer is 7-30 hrs (Stull, 1988). Therefore, within the one-day timescale selected for snow sampling, emitted reactive bromine 

and nitrogen should have sufficient time to mix well in the boundary layer and reach a quasi-equilibrium state with other 

processes, including deposition and photochemistry.  1740 

5 Summaries and conclusions 

Skin layer snow salinity at the inland site has a double-peak distribution, with the first peak at 0.001-0.002 psu 

corresponding to the precipitation effect, and the second peak at 0.01–0.04 psu likely due to the salt accumulation effect. Snow 

salinity on sea ice has a triple-peak distribution and the third peak at 0.2–0.4 psu is clearly related to the sea water effect due 

to the upward migration of brine on sea ice. The presence of an iceberg in the valley could significantly dilute ice and column 1745 

snow salinity as observed in 2019 samples.  

Based on daily surface snow sampling in the Canadian high Arctic, an integrated spring nitrate deposition flux of 

(2.6±0.37)×108 molecules cm-2 s-1 has been derived from the top 1.5 cm snow in the fiord of Eureka. At the top of the hill 

(PEARL Ridge Lab, ~600 m), nitrate deposition flux is negative (-1.0±1.06)×108 molecules cm-2 s-1) indicating snow is losing 

nitrate in early spring. Integrated bromide deposition flux at sea level is (1.01±0.48)×107 molecules cm-2 s-1; at the hilltop, the 1750 

deposition flux is (0.79±0.31)×107 molecules cm-2 s-1. The small vertical gradient between the boundary layer and the free 

troposphere indicates local snowpack is a weak reactive bromine emission source. On the contrary, the large vertical gradient 

in nitrate deposition flux strongly indicates that snowpack at sea level is a large emission source of reactive nitrogen. In 

addition, the bromide deposition flux at sea level is more than an order of magnitude smaller than the nitrate deposition flux.   

Due to the large error bars, we could not derive robust conclusions regarding whether snow nitrate and bromide in 1755 

the morning samples were generally higher than in the afternoon samples. We therefore could not derive any conclusion 

regarding snowpack photochemistry. In addition, BrO partial column (0-4 km) data measured by MAX-DOAS show a clear 

decreasing trend in March 2019, which agrees with the derived surface snow bromide deposition flux indicating that bromine 
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in Eureka atmosphere and surface snow did not reach a photochemical equilibrium state and the release flux of reactive bromine 

from snow must be a weak process and smaller than the derived bromide deposition flux of ~1×107 molecules cm-2 s-1, which 

flux is smaller than previously estimated flux by a factor of more than an order of magnitude.  1820 

Due to the lack of field data on typical Arctic sea ice, we cannot conclusively say whether the result obtained in this 

study is a local characteristic or can be extended to a broad Arctic area. However, our finding is in line with the conclusion 

made by Legrand et al. (2016) that snowpack bromine emission is not important over the Antarctic Plateau.  

Additionally, we find skin layer snow nitrate and bromide are significantly correlated with a [NO3-]/[Br-] ratio of 4–

7, indicating reactive bromine could effectively accelerate NOX-to-nitrate conversion. This is the first time such an effect has 1825 

been seen on a timescale of one day. This also reinforces the importance of reactive bromine in polar and high latitude reactive 

nitrogen budgets, and its atmospheric oxidising capacity. 

Another finding of this study is that surface snow (<0.5 cm) nitrate and bromide are significantly correlated with a 

[NO3-]/[Br-] ratio of 4–7. This means reactive bromine could effectively accelerate NOX-to-nitrate conversion. This is the first 

time such an effect has been seen on a timescale of one day. This also reinforces the importance of reactive bromine in polar 1830 

and high latitude reactive nitrogen budgets, and its atmospheric oxidising capacity. 
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Table 1. Mean and median snow salinities (psu) in various snow samples: in tray, at inland and sea ice sites. Surface snow 
(<0.5 cm) salinities are in two snow types: fluffy soft snow and aged hard snow.     

 Snow types Sample 
number 

Year Mean ± 1 standard 
deviation 

Median 

Tray samples all   14 2019 0.0070±0.0088 0.0035 
Inland samplesa all   211 2018, 2019 0.0290±0.1130 0.0115 
Sea ice samplesb all  146  2018, 2019 0.2960±1.6400 0.0374 
PEARL surface fluffy soft 7 2018 0.0039±0.0029 0.0038 

 aged hard 2 2018 0.0175±0.0046 0.0175 
Onshore surface fluffy soft 73 2018 0.0033±0.0027 0.0021 

 aged hard 20 2018 0.0364±0.0112 0.0375 
Sea ice surface fluffy soft 44 2018 0.0105±0.0104 0.0057 

 aged hard 17 2018 0.2372±0.3836 0.0896 
a Inland data contain all salinity measurements for snow samples in the surface layers and columns collected at the Onshore, 2135 

0PAL/Creek, PEARL and airport sites. b Sea ice data contain all salinity measurements for samples in the surface layers and 

columns collected over sea ice (see Section 2.2).  
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 2150 

 
Figure 1. Local map with location of snow sampling sites marked by circles. The Eureka Weather Station (EWS) is marked 

by a star and the Eureka airport is marked by a triangle. The small inset box shows the location of the main map of Ellesmere 

Island, Canada. Image copyright: @Google Earth/Google Maps.  
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Figure 2. Eureka snow salinity probability distribution. The data include 2018 and 2019 snow sample measurements. The 2160 

distribution over sea ice includes 146 snow samples, and the distribution at inland sites includes 211 snow samples (see Table 

1).  
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 2165 
Figure 3. Mean snow salinity from the top 1.5 cm in three sub-layers: 0–0.2 cm, 0.2–0.5 cm, and 0.5–1.5 cm at the Sea ice, 

Onshore and PEARL sites (lower panel), and tray sample salinity at the 0PAL and PEARL sites (upper panel). The horizontal 

error bar represents one standard deviation. Note that tray samples at 0PAL were from a mounted tray outside the 0PAL 

building, approximately 1 m above the ground. Tray samples at PEARL were from a mounted tray (~1.5 m) on the roof of the 

PEARL Ridge Laboratory (~11 m above the ground).   2170 
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Figure 4. Vertical profiles of 2019 snow ions [Na+] (a), [Cl-] (b), [NO3-] (c), [Br-] (d), non-sea-salt (nss)[Br-] (e), nss[SO42-] (f) 

and enrichment factor of [Br-] (g), [Cl-] (h) and [SO42-] (i) (see Section 3.2 for details).  
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Figure 5. Time series of 2018 data. Air temperature at Eureka Weather Station (EWS) and PEARL and daily total precipitation 

(³0.2 mm) are shown in panel a. Local weather conditions are marked by symbols in panels a and b: squares represent fog (>2 2180 

hours), star representing ice crystals (>2 hours), circles represent trace precipitation (> 2 hours), and triangles represent blowing 

snow (>2 hours). Atmospheric pressure at EWS and wind speeds at EWS and at PEARL Ridge Laboratory are plotted in panel 

b; One-hourly surface ozone at 0PAL and MAX-DOAS BrO (0-4 km) partial columns from the PEARL Ridge Laboratory are 

in panel c; The exponential regression for BrO data is shown by grey dashed line with regression function and correlation 

coefficient R value given in brackets; the linear regression curve is also added with R value shown only. Note that the BrO 2185 

data time is in fraction of day and counted from 1970 January 1st. Top 0.5 cm snow [Na+] (d), [NO3-](e), [Br-] (f) and nss[Br-] 

(g) and corresponding linear regression function against time and correlation coefficient R at each site are given. More 

statistical details of the linear regressions in each panel are given in Table S5.        
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Figure 6. Same as Figure 5 but for 2019 snow time series. Noe that the meteorology data are only from the Eureka 2240 

Weather Station and the ionic data are tray samples [Na+] (d), [NO3-] (e), [Br-] (f), and non-sea-salt (nss)[Br-] (g). Table S5 

gives more   statistical details of the linear regressions in each panel. Local weather conditions are marked by symbols in 

panels a and b. Squares represent fog, stars represent ice crystals, circles represent trace precipitation, and triangles represent 

blowing snow.        
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 2260 

Figure 7. Time series of 2019 snow nitrate (a-c) and non-sea-salt bromide (d-f) in three sub-layers: 0–0.2 cm, 0.2–0.5 cm, and 

0.5–1.5 cm at four sampling sites (Sea ice, Onshore, PEARL and 0PAL). Linear regression function against time and 

correlation coefficient R are given. See Table S5 for statistical details of the linear regressions.        

.       
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Figure 8. Morning and afternoon nss[Br-] and [NO3-] from available snow samples collected between March 3-16, 2019. Note 2270 

that only the mean values with p<0.1 (in Table S6) are shown and used for the morning-afternoon difference calculation.  
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Figure 8. Scatter plot of surface snow nitrate versus bromide in (a) tray samples (2019), (b) 0–0.2 cm layer (2019) (c) 0.2–0.5 2275 

cm layer (2019), and (d) 0–0.5 cm layer (2018). Linear regression and corresponding correlation coefficient R are given.       
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