

1 **Supplementary Information**

2

3 *List of figures :*

4 **Figure S1.** Percent of values above the MDL for each element measured with the Xact.

5 **Figure S2.** (a) Changes in $\Delta Q/Q_{\text{exp}}$, $\Delta \text{UEV}_{\text{real}}$ and $\Delta \text{UEV}_{\text{noisy}}$ for $n-(n+1)$ -factor PMF_{metals} runs and (b)
6 Q/Q_{exp} , UEV_{real} and $\text{UEV}_{\text{noisy}}$ for PMF_{metals} runs from 1 to 8 factors. These PMF runs are performed for the
7 WFP dataset. The box plots located in the blue dashed-line area represent the values for the finalized 6-
8 factors bootstrap solution using the total metals dataset.

9 **Figure S3.** Factors time series (left) and profiles (right) from the PMF solution using the FDP dataset.
10 The regional background factor profile was constrained with an a-value of 0.1.

11 **Figure S4.** Criteria scores for the 100 bootstrapped runs from the PMF_{metals}. Each graph represents one
12 criterion for the different factors. The blue markers are for the factor criterion scores and the black
13 markers represent the second highest scores attributed to one of the remaining factors.

14 **Figure S5.** (a) NO_x, SO₂ and O₃ concentration and (b) wind speed and direction during OP measurement
15 period.

16 **Figure S6.** (a) Comparison between time series of PM₁ measured by FIDAS and time series of particulate
17 fraction reconstituted by the sum of chemical components ($r_s = 0.47$, $p < 0.001$). (b) Contribution to PM₁
18 of chemical components (%) measured from 11th July 2018 to 25th July 2018 (included firework episode,
19 n=91) by ToF-ACSM, Xact and aethalometer online analyzers.

20 **Figure S7.** (a) Average mass spectra profiles, (b) time-series, (c) pie chart contributions and (d) mean
21 diurnal cycles (solid lines and error bars indicate the standard deviation) for the 5 factors from the
22 PMF_{organics} solution.

23 **Figure S8.** (a) Pie chart contributions and (b) average diurnal profiles of factors from the PMF_{metals}
24 analysis. For the diurnal plots the red dots correspond to the mean, the bands are the median, the bottom
25 and top of the boxes represent the 25th and 75th percentile respectively, and the ends of the whiskers are
26 for the 10th and 90th percentiles.

27 **Figure S9.** NWR plots for the different factors from the PMF_{metals} analysis.

28 **Figure S10.** Probability density function of scaled residuals for the standalone ACSM_OA, ACSM, AE33
29 and Xact datasets.

30 **Figure S11.** Box plots of dust resuspension factor concentrations for different relative humidity (RH)
31 bins in %. The concentrations are enhanced under low RH conditions. The blue diamonds are the mean,
32 the bars inside the boxes the median, the bottom and top of the boxes are the 25th and 75th percentile,
33 respectively, and the ends of the whiskers are the 10th and 90th percentiles.

34 **Figure S12.** Criteria scores for the a-values sensitivity test runs from the PMF_{PM1}. Each graph represents
35 one criterion per factor. The grey markers are the unselected runs, the blue markers are the selected
36 runs for the related factor and the green markers are the effectively chosen runs.

37 **Figure S13.** Number of accepted solutions based on the PMF_{PM1} criteria list for the different a-values
38 explored in the sensitivity test. A-values associated to the greatest number of validated solutions were

39 chosen for the bootstrap PMF runs (i.e. 0.4 for biomass burning, 0.1 for cooking and 0.05 for industrial
40 constrained profiles).

41 **Figure S14.** Relative contributions of PM_1 factors profiles and unexplained variations from the PMF_{PM1}
42 analysis.

43 **Figure S15.** Comparison between the industrial metals profile from our study and ICP-MS profiles for
44 the $PM_{2.5}$ fraction in the industrial area of Fos-sur-mer (Sylvestre et al., 2017). Complex n°1 is a cast iron
45 converter complex, complex n°2 is a ore iron converter complex, complex n°3 is a blast furnace slag
46 storage and complex n°4 is an ore terminal.

47 **Figure S16.** Average diurnal profiles for SO_2 , Sh-IndOA and the sum of industrial and shipping factors
48 from the PMF_{metals} .

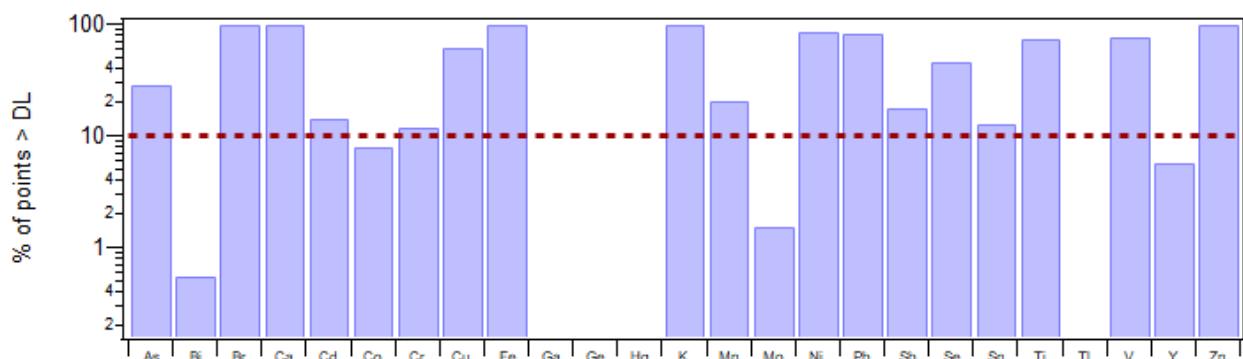
49 **Figure S17.** Residuals values of WLS models for (a) OP_{AA} and (b) OP_{DTT} . An outlier point (07/19/2018
50 03:00) was withdrawn to ensure homoscedasticity of residuals values.

51 **Figure S18.** Mean contribution of the sources identified by PMF_{PM1} over the OP sampling campaign
52 ($n = 86$) to (a) OP_{AA} , (b) OP_{DTT} , (c) PM_1 . Error bars represents the standard deviation of the data
53 distribution.

54

55 *List of tables :*

56 **Table S1.** List of elements measured with the Xact, their respective MDLs and the percent of
57 measurements above the MDL.


58 **Table S2.** Summary of statistics for the different PMF tests carried out on the WFP datasets of metals.
59 18 downweight conditions were tested for the PMF inputs. The matrix including a S2N downweight
60 and errors below MDLs downweighted with $\alpha_i = 2 \times r_{p95}$ (test n°12) was selected as final inputs.

61 **Table S3.** Intrinsic OP_{AA} and OP_{DTT} (OP_m) provided by weighted robust linear regression with an M-
62 estimator expressed in nmol·min⁻¹·µg⁻¹ of sources provided by **(a)** PMF_{organics} (scenario 1) and **(b)**
63 PMF_{metals} (scenario 2) over the OP sampling campaign (n = 90). Values are the mean ± standard deviation
64 from bootstraps runs for both OP assays. The model parameters R²_{adjusted} and Pearson's correlation
65 between model OP and observed OP are mentioned on the right.

66 **Table S4.** Factors identification for the PMF_{PM1} analyses between 5 and 12 factors. The green cells
67 represent the base case identification for the related factors. The remaining undefined factors for each
68 solution corresponded to mixed profiles not attributed to a specific source. The red squares are the base
69 cases used as reference profile constraints.

70 **Table S5.** Pearson's correlation coefficients between OP_{vAA} and OP_{vDTT} to the PM sources identified by
71 PMF_{PM1} model.

72

73

74 **Figure S1.** Percent of values above the MDL for each element measured with the Xact.

75

76

77

Elements	MDL (ng.m ⁻³)	Values > MDL (%)
As	0.11	29.3
Bi	0.23	0.6
Br	0.18	99.8
Ca	0.52	99.5
Cd	4.4	14.4
Co	0.24	8.1
Cr	0.2	12.0
Cu	0.14	63.3
Fe	0.3	100
Ga	0.1	0
Ge	0.1	0
Hg	0.21	0.2
K	2	100
Mn	0.25	20.6
Mo	0.84	1.5
Ni	0.17	86.6
Pb	0.22	84.8
Sb	9	18.0
Se	0.14	46.4
Sn	7.1	12.8
Ti	0.28	76.0
Tl	0.2	0
V	0.21	76.7
Y	0.48	5.8
Zn	0.12	100

78 **Table S1.** List of elements measured with the Xact, their respective MDLs and the percent of
79 measurements above the MDL.

80

81 **Error matrix downweights for PMF_{metals}**

82 Polissar et al. (1998) (Polissar et al., 1998a) first introduced an uncertainty of $5/6 \times \text{MDL}$ for data below
 83 MDL (set to $\text{MDL}/2$). The purpose was to provide relative errors for these values 2 to 5 times greater
 84 than the maximum relative errors of the data exceeding the MDLs. Here, several uncertainties values
 85 were tested for data below MDL by conducted a panel of PMF runs with 2 to 8 factors. The errors were
 86 calculated by applying a downweight coefficient (α) to the previous formula from Polissar et al. (1998)
 87 (Polissar et al., 1998a):

$$88 \quad \sigma_{i,j} = \alpha \times \frac{5}{6} \text{MDL}_i \quad \text{if } x_{i,j} < \text{MDL}_i \quad (\text{S1})$$

89 For all the elements i , α was set to 6, 10 and 14 in order to obtain a ratio of 2, 3.5 and 5, respectively,
 90 with the maximum relative error found in the dataset, i.e. 476% for Sn (the value corresponds to the 95th
 91 percentile instead of the max value to avoid outlier effects). Another test consisted in applying a
 92 dependant α based on the maximum relative error (95th percentile) for each element i (r_{P95}):

$$93 \quad \alpha_i = 2 \times r_{P95} \quad (\text{S2})$$

94 Where 2 was used to determine the same ratio between the relative error of data below the MDLs from
 95 Polissar et al. (1998) equation (167 %, considering the $\frac{5}{6} \text{MDL} / \frac{1}{2} \text{MDL}$ calculation) and the maximum
 96 relative error for the data greater than the MDLs (50%) found in Polissar et al. (1998) (Polissar et al.,
 97 1998a) dataset. A last test was performed with $\alpha=1$ (i.e. no downweight) for the comparison. Each PMF
 98 analysis was also conducted with and without 1/S2N downweight (Visser et al., 2015). The tests were
 99 performed on the WFP dataset and the results were synthetized in Table S2. Here we focus on the 5F-
 100 solutions results as they resolved unmixed factors and represented a statistically relevant number of
 101 factor (see section 2.4.2 in the main text).

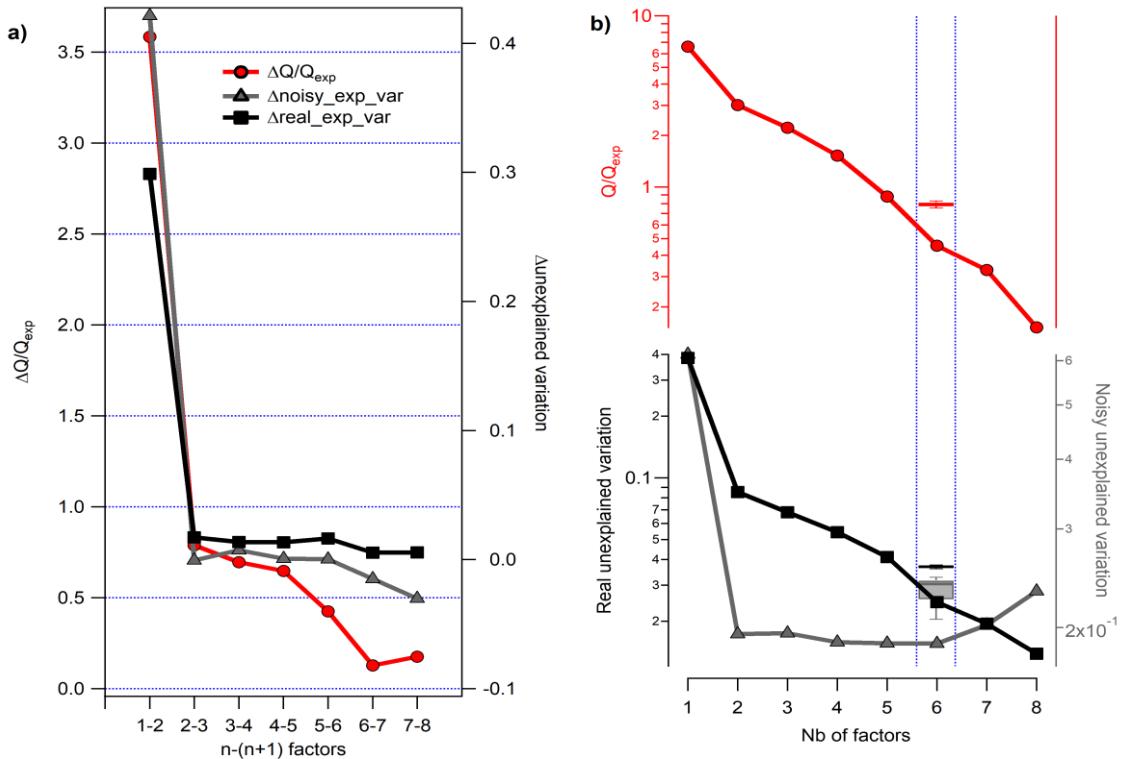
102 For all PMF solutions, applying the 1/S2N downweight provided lower scaled residuals as shown by
 103 the narrower width of fits. The solutions with $\alpha=1$ (i.e. no errors downweight for data <MDLs) were
 104 discarded due to less satisfactory mass reconstructions and residuals and higher average unexplained
 105 variations. The unexplained variation is a dimensionless quantity which indicates how much variation
 106 (in time or in each variable) is not explained by the factors (Canonaco et al., 2013). Thus, the unexplained
 107 variation of the i^{th} point for the factor k^{th} is:

$$108 \quad \text{UEV}_{ik} = \frac{\sum_{j=1}^m (|e_{ij}| / \sigma_{ij})}{\sum_{j=1}^m ((\sum_{k=1}^p |g_{ik} f_{kj}| + e_{ij}) / \sigma_{ij})} \quad (\text{S3})$$

109 UEV is further calculated for data with $\text{S2N}>2$ (UEV_{real}) or for noisy data ($\text{UEV}_{\text{noisy}}$).

110 The remaining tests gave comparable explained variations, mass reconstitutions and residuals. The
 111 uncertainties calculated with $\alpha_i = 2 \times r_{p95}$ (test n°12 in Table S2) were finally selected as error inputs
 112 for the data below the MDLs since this solutions resolved 5 unmixed factors with the best mean and
 113 median diurnal patterns for each identified source.

114

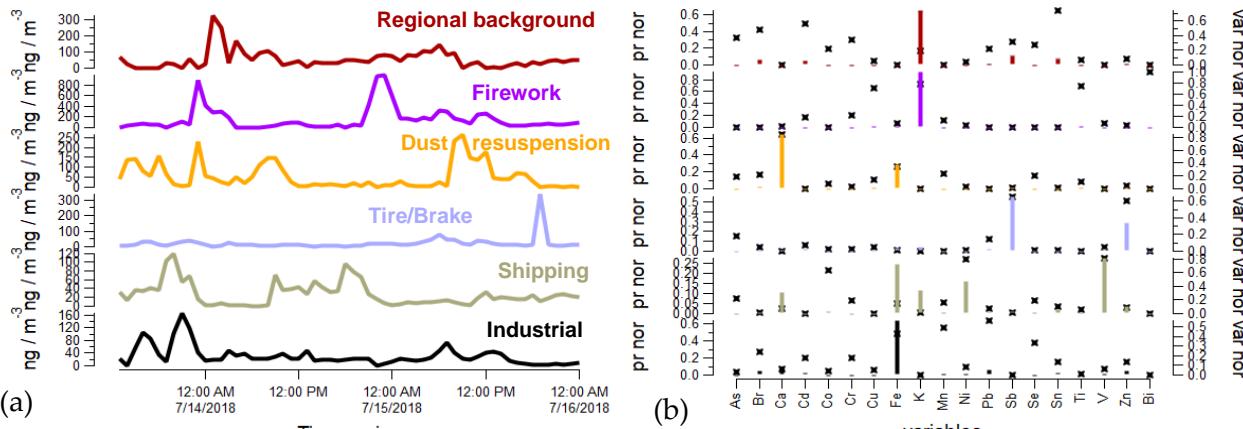

Tests	N°	Unexplained Variations			$\Sigma_{\text{factors}} \text{ vs } \Sigma_{\text{metals}}$		Sc residuals	
		F5 EV_Noise	F5 EV_Real	F5 EV_Sum	F5 Slope	F5 R ²	F5 center	F5 width
noDW_noS2N	1	0.215	0.049	0.264	0.987	0.958	0.094	0.337
noDW_S2N	2	0.221	0.042	0.263	0.987	0.959	0.059	0.201
DW6_ALL_noS2N	3	0.187	0.048	0.235	0.989	0.973	-0.023	0.137
DW6_ALL_S2N	4	0.203	0.033	0.236	1.004	0.985	-0.002	0.014
DW6_SPEC_noS2N	5	0.187	0.041	0.228	1.000	0.979	-0.010	0.089
DW6_SPEC_S2N	6	0.203	0.033	0.236	1.003	0.986	-0.002	0.014
DW10_ALL_noS2N	7	0.187	0.040	0.227	1.010	0.993	-0.020	0.074
DW10_ALL_S2N	8	0.201	0.033	0.234	1.015	1.000	-0.002	0.005
DW10_SPEC_noS2N	9	0.187	0.040	0.227	1.010	0.993	-0.020	0.073
DW10_SPEC_S2N	10	0.201	0.033	0.234	1.014	1.000	-0.002	0.005
Roll_DW_ALL_noS2N	11	0.188	0.041	0.229	1.007	0.988	-0.013	0.091
Roll_DW_ALL_S2N	12	0.203	0.034	0.237	1.010	0.995	-0.001	0.005
Roll_DW_SPEC_noS2N	13	0.187	0.041	0.228	1.006	0.988	-0.013	0.091
Roll_DW_SPEC_S2N	14	0.203	0.034	0.237	1.011	0.995	-0.002	0.011
DW14_ALL_noS2N	15	0.189	0.040	0.229	1.016	1.000	-0.023	0.063
DW14_ALL_S2N	16	0.204	0.032	0.236	1.017	0.999	-0.002	0.005
DW14_SPEC_noS2N	17	0.189	0.040	0.229	1.016	1.000	-0.023	0.063
DW14_SPEC_S2N	18	0.203	0.033	0.236	1.023	1.000	-0.001	0.003

115 **Table S2.** Summary of statistics for the different PMF tests carried out on the WFP datasets of metals.
 116 18 downweight conditions were tested for the PMF inputs. The matrix including a S2N downweight
 117 and errors below MDLs downweighted with $\alpha_i = 2 \times r_{p95}$ (test n°12) was selected as final inputs.

118

119

120

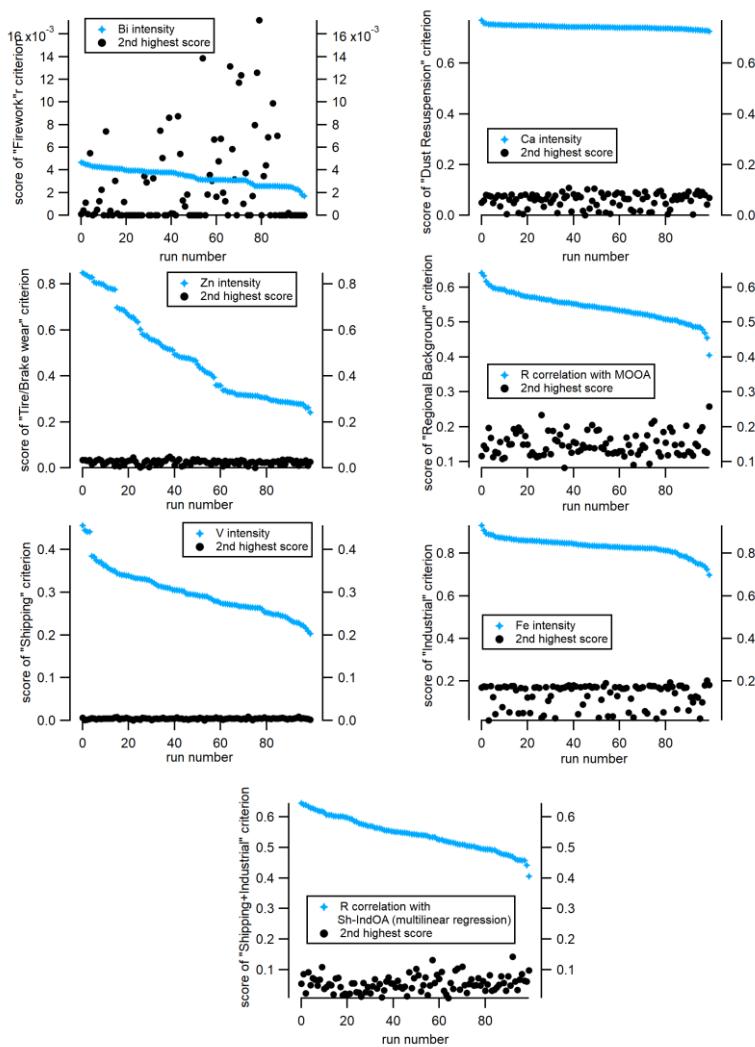


121

122 **Figure S2.** (a) Changes in $\Delta Q/Q_{\text{exp}}$, $\Delta \text{UEV}_{\text{real}}$ and $\Delta \text{UEV}_{\text{noisy}}$ for $n-(n+1)$ -factor PMF_{metals} runs and (b)
123 Q/Q_{exp}, UEV_{real} and UEV_{noisy} for PMF_{metals} runs from 1 to 8 factors. These PMF runs are performed for the
124 WFP dataset. The box plots located in the blue dashed-line area represent the values for the finalized 6-
125 factors bootstrap solution using the total metals dataset.

126

127


128

129 **Figure S3.** (a) Factors time series and (b) profiles from the PMF solution using the FDP dataset. The
130 regional background factor profile was constrained with an a-value of 0.1.

131

132 **Criteria selection for PMF_{metals}**

133 A first type of criterion was the use of the dominant element in the related factor. Thus, the Bi, Ca, Zn,
 134 V and Fe intensity in profiles were monitored for the Firework, Dust resuspension, Tire/brake wear,
 135 Shipping and Industrial factors, respectively. Then we inspected the r Pearson correlation with MOOA
 136 for the regional background. A last criterion was the r Pearson correlation based on the multilinear
 137 regression analysis of both shipping and industrial vs SO₂ concentrations. The statistical acceptance of
 138 a run was based on the comparison between the criterion scores of a factor and the second highest scores
 139 from the remaining factors (Fig. S4). For all criteria the second highest scores were much lower in every
 140 run, with some rejected scores for the firework criterion. In total 25% of the runs were discarded based
 141 on this criterion, and the remaining runs were averaged into a unique solution.

142

143 **Figure S4.** Criteria scores for the 100 bootstrapped runs from the PMF_{metals}. Each graph represents one
 144 criterion for the different factors. The blue markers are for the factor criterion scores and the black
 145 markers represent the second highest scores attributed to one of the remaining factors.

146

147 **Scenario and regression model selection for OP apportionment**

148 Three scenarii in the construction of the matrix of the source factors contribution to PM mass identified
149 by the three PMF have been considered to make the best use of the results from the different PMF:

150 • Scenario 1: OP apportionment from independent variables with the OA factors from PMF_{organics} (83
151 observations), following:

152 $OP = G \times \beta_g + \varepsilon$ (S4)

153 • Scenario 2: OP apportionment from independent variables considering only the metals factors from
154 PMF_{metals} (90 observations), following:

155 $OP = H \times \beta_h + \varepsilon$ (S5)

156 • Scenario 3: OP apportionment taking as independent variables PM₁ factors from PMF_{PM1} (78
157 observations), following (Eq. S6). In this configuration, the firework episode has been removed from
158 the data as the sources from the PMF_{PM1} analysis have been determined without including the
159 firework metal factor.

160 $OP = I \times \beta_i + \varepsilon$ (S6)

161 In (Eq. S4, S5, S6), OP vector ($px1$) is the observed OP expressed in volume unit, G matrix ($g \times (p+1)$) of
162 g sources (plus the intercept) is determined by PMF_{organics}, H matrix ($h \times (p+1)$) of h sources (plus the
163 intercept) is determined by PMF_{metal}, I matrix ($i \times (p+1)$) of i sources (plus the intercept) is determined
164 by PMF_{PM1}, and ε vector ($px1$) is the discrepancy between the model and the observations.

165 Three models were tested for the three scenarii (e.g. 9 solutions): weighted least squares linear
166 regression (WLS), weighted robust multiple linear regression with an iterative M-estimator, and partial
167 least square regression (PLS):

168 • WLS regression considers the uncertainties σ of the OP measurements by minimizing the weighted
169 sum of squares function (WSS):

170 $WSS(\beta) = \sum_{i=1}^p w_i (y_i - \sum_{j=1}^n x_{ij} * \beta_j)^2, w_i = \frac{1}{\sigma_i}$ (S7)

171 where y_i is the measured OP (p observations), x_{ij} is the values of n sources determined by PMF and σ_i
172 is the OP uncertainties. This method already used in this purpose in previous studies (Borlaza et al.,
173 2021; Weber et al., 2018, 2021) well suited to extracting maximum information from small data sets.
174 Ordinary Least Squares (OLS) is a simple special case of WLS where $\sigma = 1$.

175 • Linear weighted robust regression methods by M-estimator minimizes the function q :

176 $M(\beta) = \sum_{i=1}^p \rho(w_i (y_i - \sum_{j=1}^n x_{ij} * \beta_j))$ (S8)

$$177 \quad \rho_k(x) = \begin{cases} \frac{x^2}{2} & \text{if } |x| < k = 1.5 \\ k \left(|x| - \frac{k}{2} \right) & \text{if } |x| \geq k = 1.5 \end{cases} \quad (S9)$$

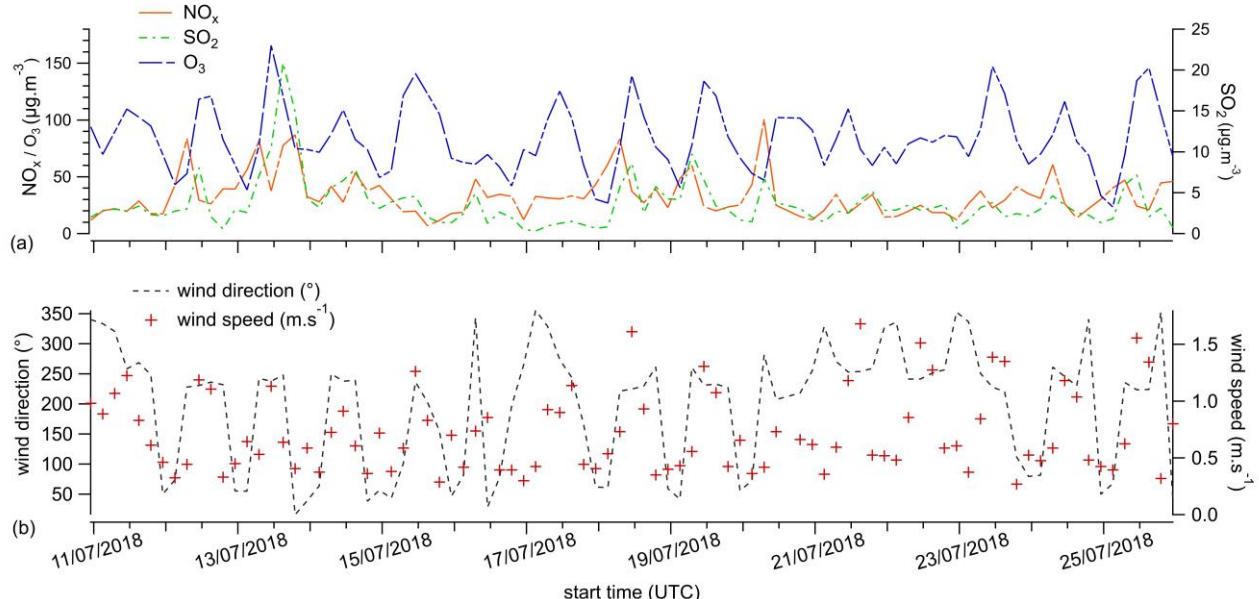
178 Based on similar work in Grange et al. (2022), Huber's function q and $k=1.5$ were used in this study.
 179 This technique is adapted to data sets presenting particular events(de Menezes et al., 2021), as fireworks
 180 on 13th and 14th of July -National day of France- in our data set. Indeed, the regression by successive
 181 iterations implies lower weights on outliers, which tends to underestimate these points. We can note
 182 WLS regression is a simple special case where $q(x) = x^2$.

183 • PLS regression is a method that reduces the predictors to a smaller set of uncorrelated components
 184 and performs least squares regression on these components. It is especially useful when dependent
 185 variables are highly correlated. Moreover, unlike multiple regression, PLS does not imply that the
 186 predictors are fixed but can be measured with error, making PLS more robust to measurement
 187 uncertainties.

188

189 **OP apportionment from PMF_{organics} (scenario 1) and PMF_{metals} (scenario 2)**

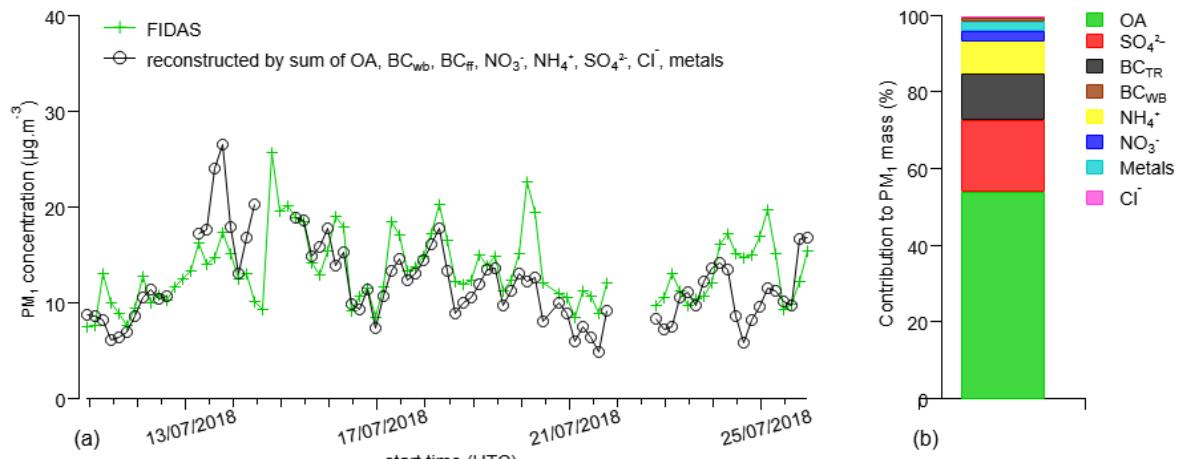
190 M-estimator inversion model's results issued from PMF_{organics} (scenario 1) and PMF_{metals} (scenario 2)
 191 alone are respectively presented in Table S 3a. and Table S 3b. β coefficients (i.e intrinsic OP, see 2.5)
 192 obtained by M-estimator model from PMF_{metals} display values an order of magnitude higher than those
 193 issued from PMF_{organics} inversion. This stress the importance of metals in OP apportionment, for both
 194 assays. Among the organic factors, only the Sh-IndOA factor seems to be slightly more sensitive to
 195 OP_{VDTT}. The Firework factor constrains a significant part of the data, implying a fairly high Pearson's
 196 correlation coefficient between OP_{model} and OP_{observed}. Nevertheless, R²_{adjusted} of both M-estimator
 197 inversion models in scenario 1 (only organic fraction of PM is considered) indicated that the percentage
 198 of OP_{AA} and OP_{DTT} variance explained by the models is weak. On the other hand, several studies
 199 highlighted the role of Secondary Organic Aerosol (SOA) in the oxidative potential indicating that
 200 apportion OP from the metallic data alone is an incomplete step. Finally, the bootstrap method (see 2.5)
 201 applied to the four M-estimator models in these two scenarii did not achieve their convergence and are
 202 therefore not robust. Overall, this confirms that OP reflects the overall redox-activity of wide spectra of
 203 multispecies of organics, inorganics, metals and synergistic/antagonistic reactions between these
 204 compounds, and assess the importance to consider all these chemical compounds in the OP
 205 apportionment process.


206
207
208
209
210
211
212

(a)	Intercept	COA	HOA	LOOA	MOOA	Sh-IndOA	R^2_{adjusted}	$r (OP_{\text{observed}}/OP_{\text{model}})$
OP _{AA}	0.19 ± 0.04	0.00 ± 0.02	0.02 ± 0.01	0.10 ± 0.04	0.04 ± 0.02	0.24 ± 0.09	0.27	0.48***
OP _{DTT}	0.38 ± 0.10	-0.04 ± 0.10	-0.12 ± 0.05	0.23 ± 0.04	0.1 ± 0.07	1.41 ± 0.15	0.41	0.51***

(b)	Intercept	Firework	Industrial	Regional background	Shipping	Tire brake	R^2_{adjusted}	$r (OP_{\text{observed}}/OP_{\text{model}})$
OP _{AA}	0.36 ± 0.02	1.57 ± 0.16	3.21 ± 0.42	2.30 ± 0.33	-0.74 ± 0.68	n.c.	0.66	0.73***
OP _{DTT}	0.61 ± 0.12	4.17 ± 0.83	-1.24 ± 1.64	7.11 ± 2.30	17.0 ± 5.3	6.0 ± 4.60	0.38	0.61***

Table S3. Intrinsic OP_{AA} and OP_{DTT} (OP_m) provided by weighted robust linear regression with an M-estimator expressed in nmol.min⁻¹.μg⁻¹ of sources provided by (a) PMF_{organics} (scenario 1) and (b) PMF_{metals} (scenario 2) over the OP sampling campaign (n = 90). Values are the mean ± standard deviation from bootstraps runs for both OP assays. The model parameters R^2_{adjusted} and Pearson's correlation between model OP and observed OP are mentioned on the right.


Figure S5. (a) NO_x, SO₂ and O₃ concentration and **(b)** wind speed and direction during OP measurement period.

213

214

215

216

217

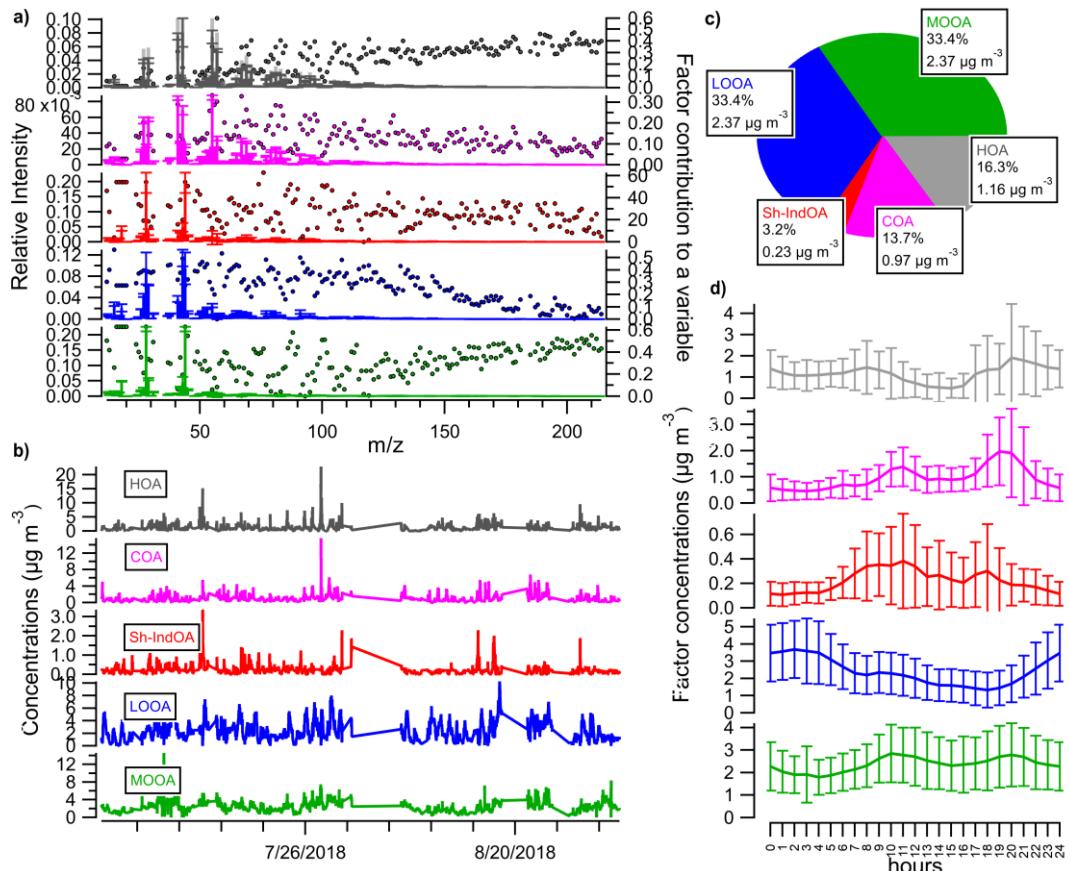
218 **Figure S6.** (a) Comparison between time series of PM₁ measured by FIDAS and time series of particulate
 219 fraction reconstituted by the sum of chemical components ($r_s = 0.47$, $p < 0.001$); (b) Contribution to PM₁
 220 of chemical components (%) measured from 11th July 2018 to 25th July 2018 (included firework episode,
 221 n=91) by ToF-ACSM, Xact and aethalometer online analyzers.

222

223

224

225

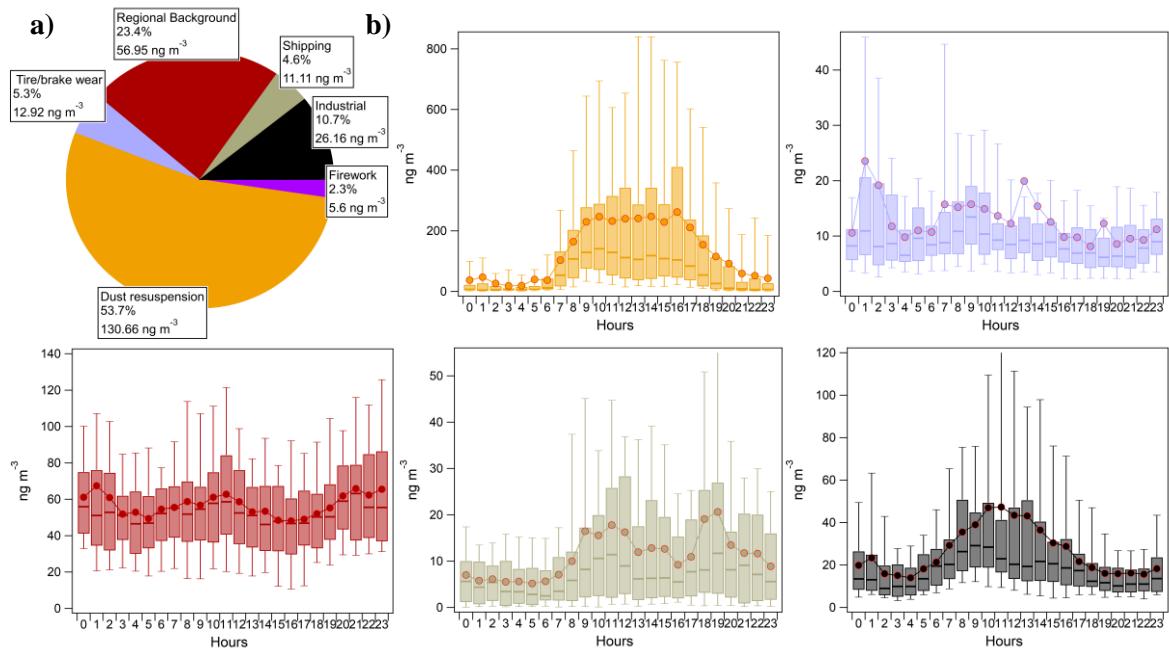

226

227

228

229

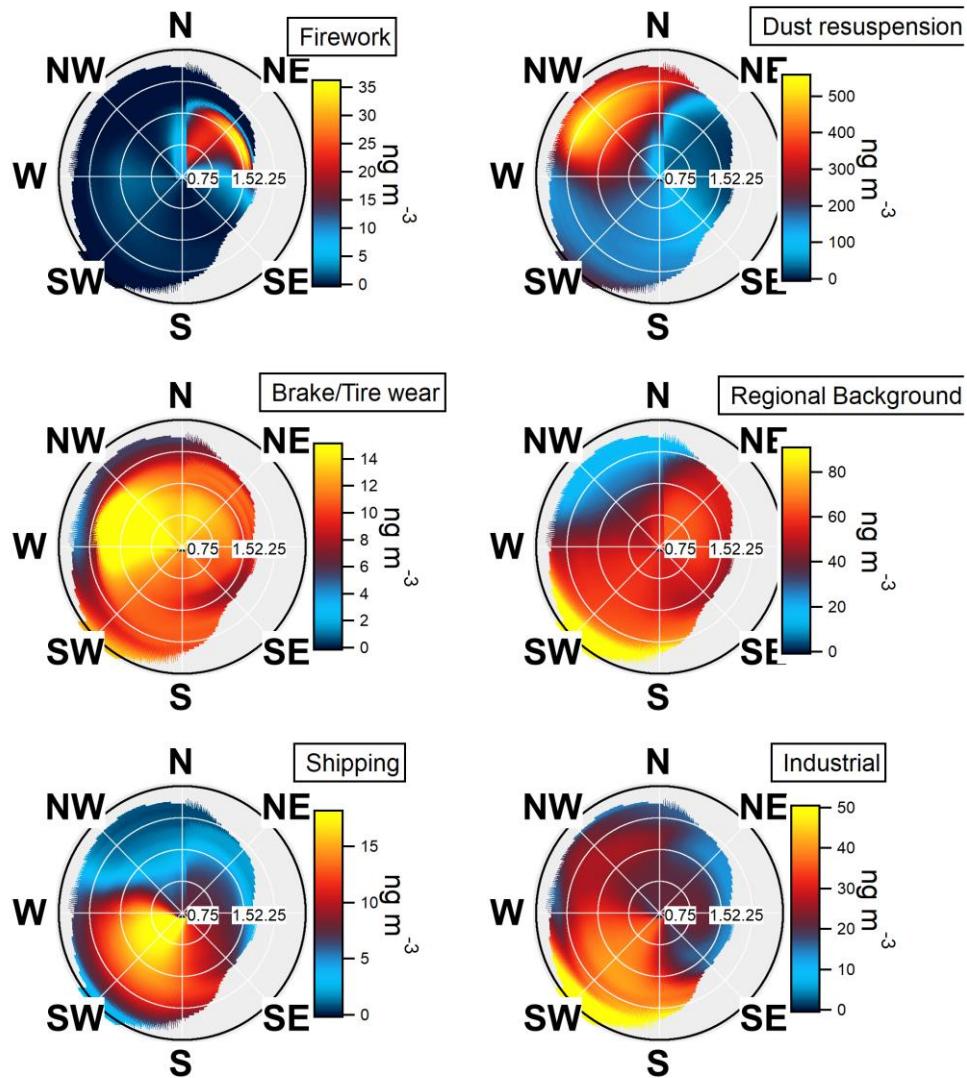
230



231

232 **Figure S7.** (a) Average mass spectra profiles, (b) time-series, (c) pie chart contributions and (d) mean
 233 diurnal cycles (solid lines and error bars indicate the standard deviation) for the 5 factors from the
 234 PMF_{organics} solution.

235


236

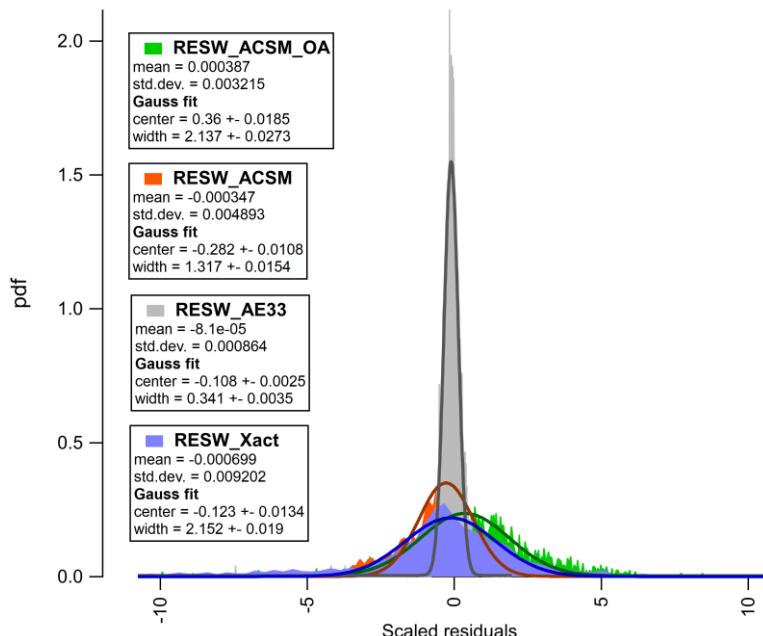
237

238 **Figure S8. (a)** Pie chart contributions and **(b)** average diurnal profiles of factors from the PMF_{metals}
239 analysis. For the diurnal plots the red dots correspond to the mean, the bands are the median, the bottom
240 and top of the boxes represent the 25th and 75th percentile respectively, and the ends of the whiskers are
241 for the 10th and 90th percentiles.

242

243

244 **Figure S9.** NWR plots for the different factors from the PMF_{metals} analysis.

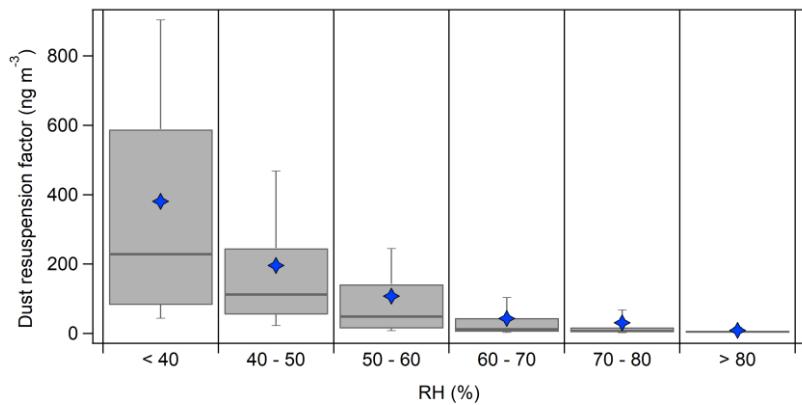

245

246 **C-value weighting**

247 The instrument weight was controlled by applying a scaling factor (i.e. C-value) to the uncertainties of
 248 each group of components (Slowik et al., 2010):

249
$$(\sigma'_{i,j})_s = \frac{(\sigma_{i,j})_s}{C_s} \quad (S10)$$

250 σ represents the uncertainties, C the scaling value applied to the s datasets. Here we distinguished the
 251 PMF_{organics} (ACSM_OA), PMF_{metals} (Xact), ACSM inorganics (ACSM) and BC (AE33) datasets. A well
 252 balanced solution should show magnitude of scaled residuals independent from the instrument. Since
 253 their scaled residuals were rather in the same range, a C-value of 1 was chosen for ACSM_OA, Xact and
 254 ACSM datasets and resulted in unweighted results. However, we applied a C-value of 5 to the AE33
 255 dataset, meaning that dataset of BC concentrations were upweighted. The overlapping of scaled
 256 residuals from the different instrument datasets is shown in Figure .



257

258 **Figure S10.** Probability density function of scaled residuals for the standalone ACSM_OA, ACSM, AE33
 259 and Xact datasets.

260

261

262

263 **Figure S11.** Box plots of dust resuspension factor concentrations for different relative humidity (RH)
264 bins in %. The concentrations are enhanced under low RH conditions. The blue diamonds are the mean,
265 the bars inside the boxes the median, the bottom and top of the boxes are the 25th and 75th percentile,
266 respectively, and the ends of the whiskers are the 10th and 90th percentile.

267

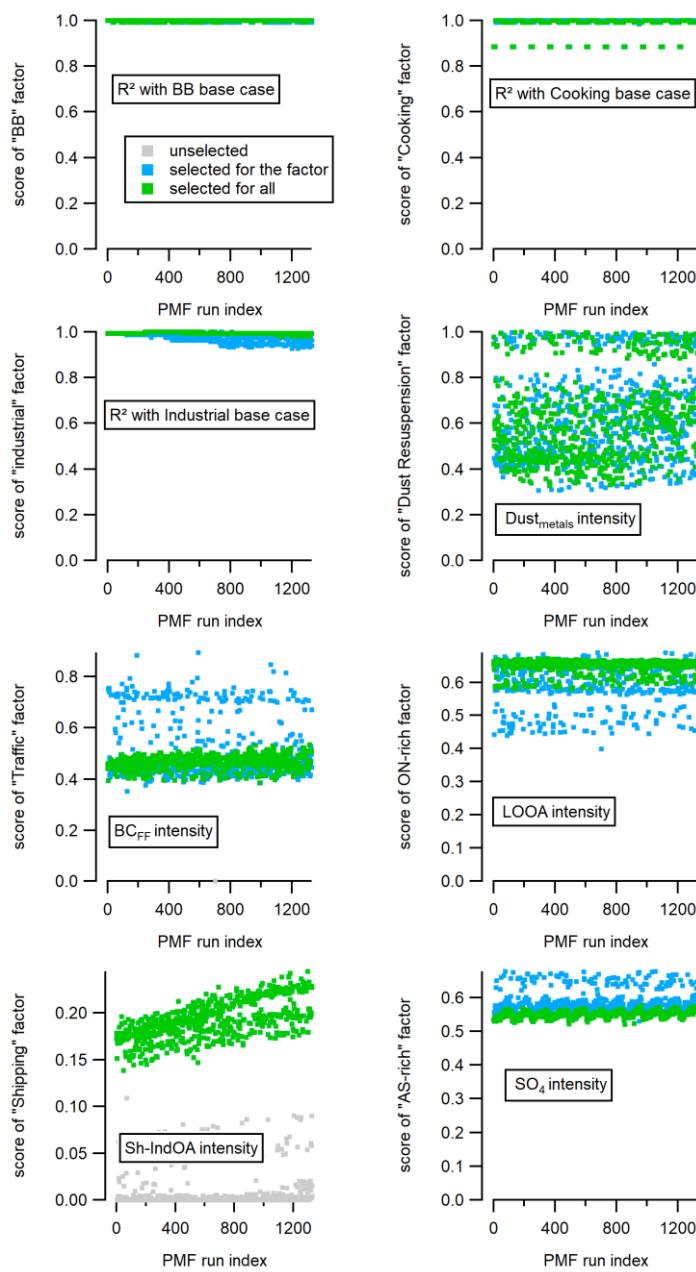
268

269

270 **Factors identification and rotational ambiguity exploration for PMF_{PM1}**

271 Seed runs between 1 and 12 factors were examined. The factors interpretability was based on profiles
 272 consistency and our expectations from the factors composition. The summarizes the occurrence of 8
 273 well-identified factors in all runs between 5 and 12 factors. The choice of a 8-factors solution is supported
 274 also by mathematical diagnostics ($\Delta Q/Q_{exp}$, mass reconstruction, ΔUEV – not presented here) which
 275 showed that realistic solutions can be found up to 5 factors. While some factors are easily resolved in
 276 most of the solutions (e.g. dust resuspension) some others are retrieved from an elevated number of
 277 factor (e.g. shipping and cooking are found in up to 9 factors-solution).

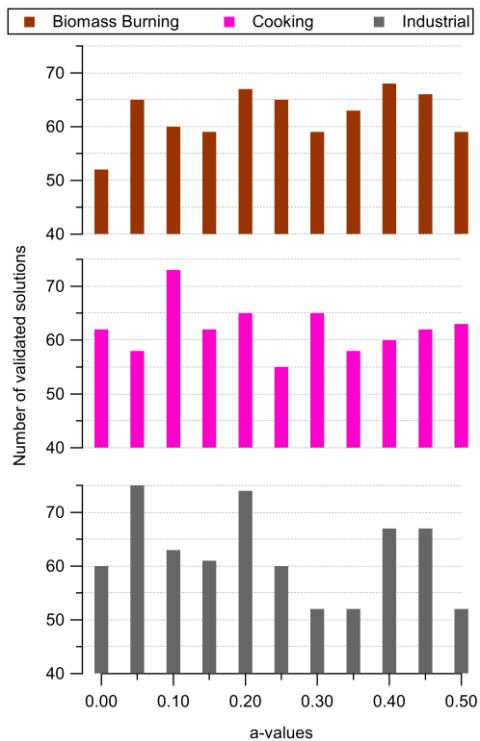
278 Therefore, the solution was constrained using base case profiles (Table). The biomass burning, cooking
 279 and industrial factors were constrained as they presented unstable profiles across the different runs.
 280 Constraining the industrial factor allow an improved separation of the shipping factor (see the
 281 discussion below).


282

	5F	6F	7F	8F	9F	10F	11F	12F
Traffic								
Dust								
AS-rich								
ON-rich								
Industrial								
Shipping								
BB								
Cooking								

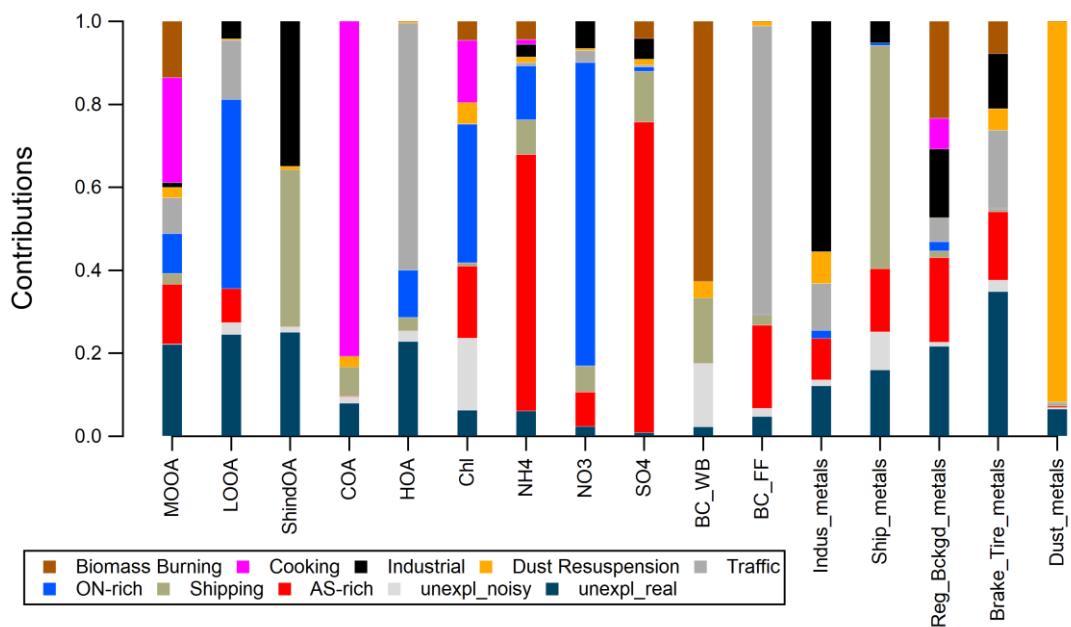
283 **Table S4.** Factors identification for the PMF_{PM1} analyses between 5 and 12 factors. The green cells
 284 represent the base case identification for the related factors. The remaining undefined factors for each
 285 solution corresponded to mixed profiles not attributed to a specific source. The red squares are the base
 286 cases used as reference profile constraints.

287 To inspect the best combination of a-values for the profile constraints, we performed a-values sensitivity
 288 analyses by scanning a-values from 0 to 0.5 with increment of 0.05, leading to 1330 outcomes. The
 289 goodness of the solutions was examined with a criteria selection list and the scores are presented in the
 290 Figure . First, the R^2 correlations between biomass burning, cooking and industrial factors with their
 291 corresponding constraint were monitored. Then, we monitored the intensity of the dominant variable
 292 in the related factor profiles: $Dust_{metals}$ for dust resuspension, BC_{FF} for traffic, $LOOA$ for ON-rich, SO_4^{2-}
 293 for AS-rich and $Sh-IndOA$ for shipping. $Sh-IndOA$ was inspected instead of $shipping_{metals}$ to ensure a
 294 clear separation between shipping and industrial factors since $Sh-IndOA$ is assumed to only be
 295 attributed to these two factors. For the first seven criteria, the scores were much higher than the second
 296 highest scores (not displayed in the graph). Therefore, some runs were only discarded based on the


297 shipping criterion as we only selected the runs whose Sh-IndOA intensity was in the same range than
 298 the base case profile from the preliminary analyses. Moreover, the selected runs (green markers in
 299 Figure) showed similar scores intensity for traffic, ON-rich, AS-rich and dust resuspension than those
 300 found in their respective base case profile. In the end, the same criteria list was used for the bootstrap
 301 runs selection.

302
 303 **Figure S12.** Criteria scores for the a-values sensitivity test runs from the PMF_{PM1} . Each graph represents
 304 one criterion per factor. The grey markers are the unselected runs, the blue markers are the selected
 305 runs for the related factor and the green markers are the effectively chosen runs.

306


307

308

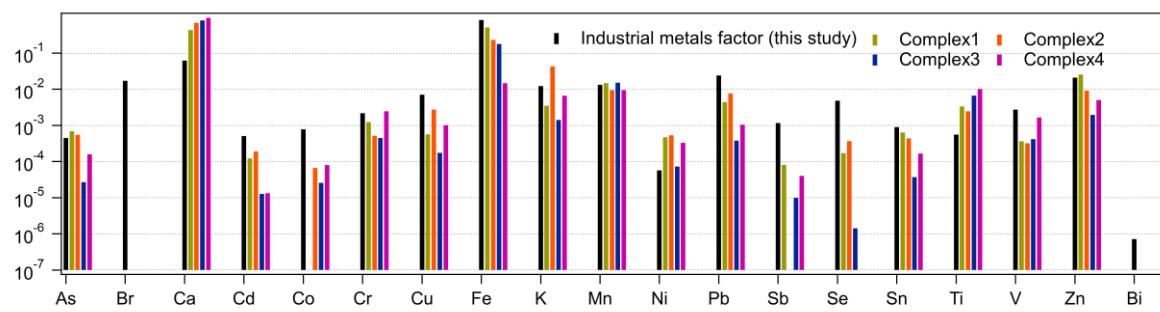
309 **Figure S13.** Number of accepted solutions based on the $\text{PMF}_{\text{PM}1}$ criteria list for the different a-values
 310 explored in the sensitivity test. A-values associated to the greatest number of validated solutions were
 311 chosen for the bootstrap PMF runs (i.e. 0.4 for biomass burning, 0.1 for cooking and 0.05 for industrial
 312 constrained profiles).

313

314

315 **Figure S14.** Relative contributions of PM₁ factors profiles and unexplained variations from the PMF_{PM1}
316 analysis.

317

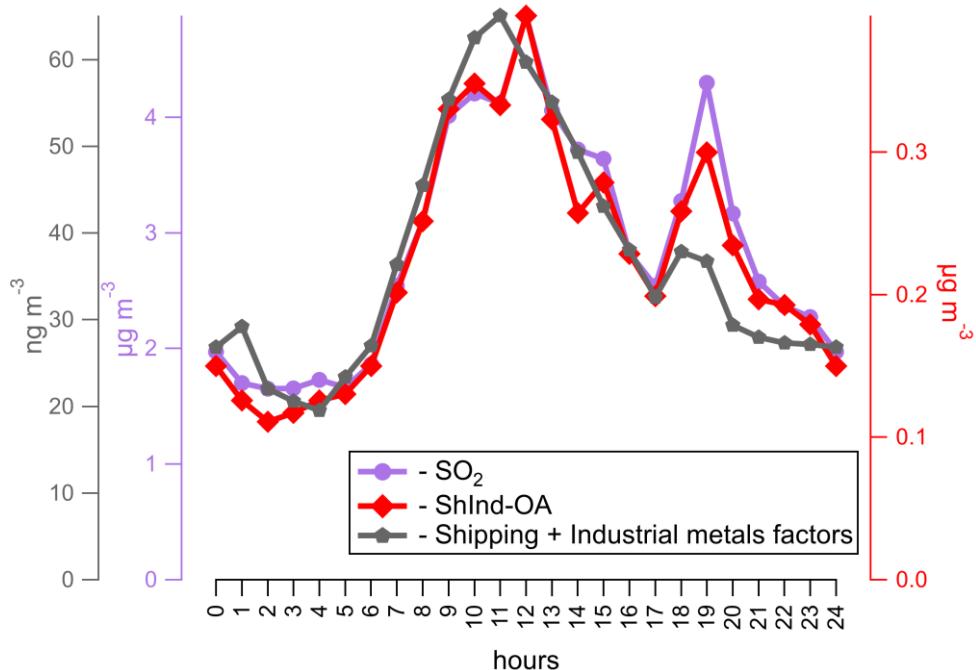

318

319

320

321

322



323

324 **Figure S15.** Comparison between the industrial metals profile from our study and ICP-MS profiles for
325 the PM_{2.5} fraction in the industrial area of Fos-sur-mer (Sylvestre et al., 2017). Complex n°1 is a cast iron
326 converter complex, complex n°2 is a ore iron converter complex, complex n°3 is a blast furnace slag
327 storage and complex n°4 is an ore terminal.

328

329

330

331 **Figure S16.** Average diurnal profiles for SO₂, Sh-IndOA and the sum of industrial and shipping factors
 332 from the PMF_{metals}.

333

334

335

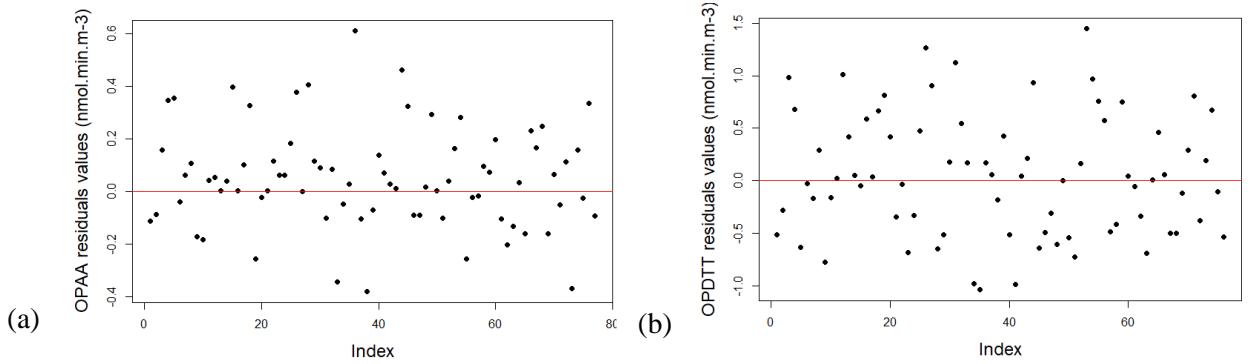
336

337

338 **Associations between both OP and sources of PM**

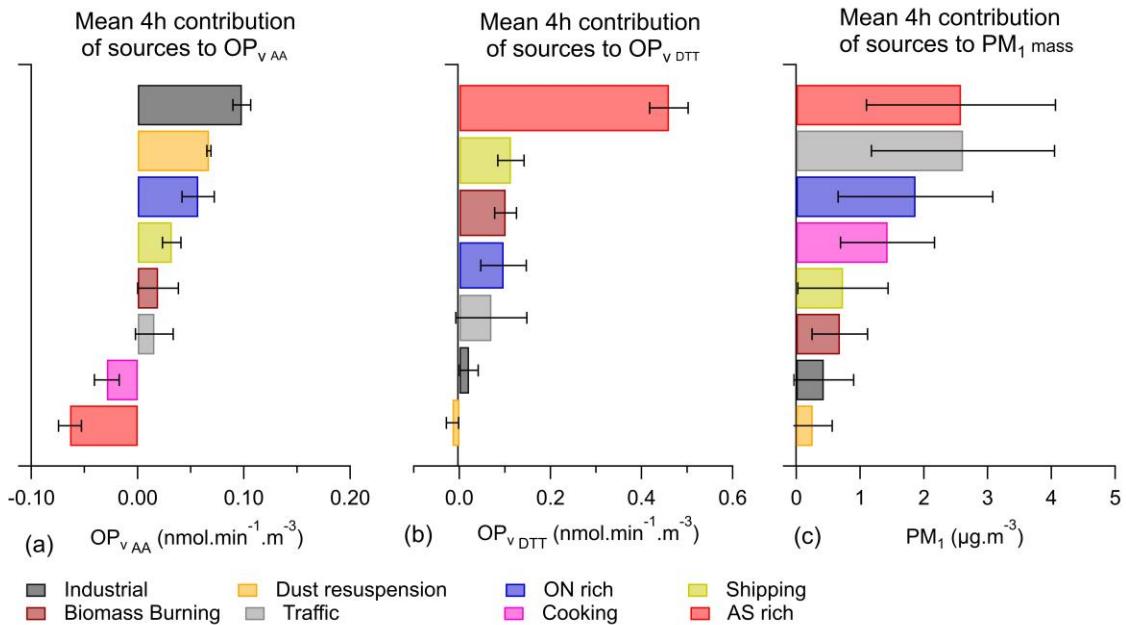
339 Pearson's correlation coefficients (r) between the source factor contributions identified by the PMF_{PM1}
 340 and both OP assays are presented in Table with the idea to provide a first estimate of the associated
 341 sources with OP. We note that no source strongly correlates alone to both OP assays, but moderate
 342 correlations ($0.3 < r < 0.5$) can be noted for both OP vs. Traffic source (OP_{vAA} : $r=0.40$, $p < 0.001$ - OP_{vDTT} :
 343 $r=0.34$, $p < 0.01$) and Shipping source (OP_{vAA} : $r=0.32$ - OP_{vDTT} : $r=0.30$, $p < 0.01$). OP_{vAA} also correlates
 344 moderately with Industrial source ($r=0.41$, $p < 0.001$) and ON-rich source ($r=0.32$, $p < 0.01$). Finally, OP_{vDTT}
 345 displays a mild correlation with AS-rich source ($r=0.36$, $p < 0.01$), but this correlation might be attributed
 346 to a collinearity with PM mass ($r \text{ OP}_{\text{vDTT}} \text{ vs } \text{SO}_4^{2-}=0.46$, $r \text{ OP}_{\text{vDTT}} \text{ vs } \text{NH}_4^+=0.47$ - $p < 0.001$).

347


Biomass Burning	Cooking	Industrial	Dust resuspension	Traffic	ON- rich	Shipping	AS- rich
OP_{vAA}	0.15	0.18	0.41**	0.13	0.40***	0.32***	0.32**
OP_{vDTT}	0.12	-0.02	0.14	0.14	0.34**	0.19	0.30

*** $p < 0.001$, ** $p < 0.01$

348 **Table S5.** Pearson's correlation coefficients between OP_{vAA} and OP_{vDTT} to the PM sources identified by
 349 PMF_{PM1} model.


350

351

Figure S17. Residuals values of WLS models for (a) OP_{AA} and (b) OP_{DTT}. An outlier point (19 July 2018 03:00) was withdrawn to ensure homoscedasticity of residuals values.

352
353
354

Figure S18. Mean contribution of the sources identified by PMF_{PM1} over the OP sampling campaign (n = 86) to (a) OP_{AA}, (b) OP_{DTT}, (c) PM₁. Error bars represents the standard deviation of the data distribution.

355