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74 Figure S1. Percent of values above the MDL for each element measured with the Xact.

75

76

77
Elements MDL (ng.m?)  Values > MDL (%)
As 0.11 29.3
Bi 0.23 0.6
Br 0.18 99.8
Ca 0.52 99.5
Cd 4.4 14.4
Co 0.24 8.1
Cr 0.2 12.0
Cu 0.14 63.3
Fe 0.3 100
Ga 0.1 0
Ge 0.1 0
Hg 0.21 0.2
K 2 100
Mn 0.25 20.6
Mo 0.84 1.5
Ni 0.17 86.6
Pb 0.22 84.8
Sb 9 18.0
Se 0.14 46.4
Sn 7.1 12.8
Ti 0.28 76.0
Tl 0.2 0
\Y% 0.21 76.7
Y 0.48 5.8
Zn 0.12 100

78  Table S1. List of elements measured with the Xact, their respective MDLs and the percent of
79  measurements above the MDL.

80
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Error matrix downweights for PMFmetals

Polissar et al. (1998) (Polissar et al., 1998a) first introduced an uncertainty of 5/6 x MDL for data below
MDL (set to MDL/2). The purpose was to provide relative errors for these values 2 to 5 times greater
than the maximum relative errors of the data exceeding the MDLs. Here, several uncertainties values
were tested for data below MDL by conducted a panel of PMF runs with 2 to 8 factors. The errors were
calculated by applying a downweight coefficient (a) to the previous formula from Polissar et al. (1998)

(Polissar et al., 1998a):
o-i,j =aXZMDLL- ifxi,j <MDLl (S]_)

For all the elements i, @ was set to 6, 10 and 14 in order to obtain a ratio of 2, 3.5 and 5, respectively,
with the maximum relative error found in the dataset, i.e. 476% for Sn (the value corresponds to the 95t
percentile instead of the max value to avoid outlier effects). Another test consisted in applying a

dependant a based on the maximum relative error (95t percentile) for each element i (rpgs):
a; = 2 X Tpos (82)

Where 2 was used to determine the same ratio between the relative error of data below the MDLs from
Polissar et al. (1998) equation (167 %, considering the ZM DL/ % MDL calculation) and the maximum

relative error for the data greater than the MDLs (50%) found in Polissar et al. (1998) (Polissar et al.,
1998a) dataset. A last test was performed with a=1 (i.e. no downweight) for the comparison. Each PMF
analysis was also conducted with and without 1/S2N downweight (Visser et al., 2015). The tests were
performed on the WFP dataset and the results were synthetized in Table S2. Here we focus on the 5F-
solutions results as they resolved unmixed factors and represented a statistically relevant number of

factor (see section 2.4.2 in the main text).

For all PMF solutions, applying the 1/S2N downweight provided lower scaled residuals as shown by
the narrower width of fits. The solutions with a=1 (i.e. no errors downweight for data <MDLs) were
discarded due to less satisfactory mass reconstructions and residuals and higher average unexplained
variations. The unexplained variation is a dimensionless quantity which indicates how much variation
(in time or in each variable) is not explained by the factors (Canonaco et al., 2013). Thus, the unexplained
variation of the it point for the factor kt is:

it (eijl /o)
YT (Cheil9in Frjl+eip/oif)

UEVy, = (S3)

UEYV is further calculated for data with S2N>2 (UEV'eal) or for noisy data (UEVoisy).



110
111
112
113

114

115
116
117

118
119
120

median diurnal patterns for each identified source.

The remaining tests gave comparable explained variations, mass reconstitutions and residuals. The
uncertainties calculated with a; = 2 X 1pg5 (test n°12 in Table S2) were finally selected as error inputs

for the data below the MDLs since this solutions resolved 5 unmixed factors with the best mean and

Unexplained Variations

Lfactors VS Lmetals

Sc residuals

Tests N° F5 F5 F5 F5
EV Noise EV_Real EV Sum|/>o°Pe FOR® |FScenter .
noDW _noS2N 1 0215 0049 0264 |0987 0958 |0.094 0337
noDW_S2N 2 0.221 0042 0263|0987 0959 0059  0.201
DW6_ALL_noS2N 3 0187 0048 0235 |0.989 0973 |-0023 0137
DW6_ALL_S2N 4 0203 0033 0236 |1.004 0985 |-0002 0014
DW6_SPEC_noS2N 5 0187 0041 0228 |1.000 0979 |-0.010  0.089
DW6_SPEC_S2N 6 0203 0033 0236 |1.003 0986 |-0002 0014
DW10_ALL noS2N 7 0187 0040 0227 |1.010 0993 |-0.020  0.074
DW10_ALL_S2N 8 0.201 0033 0234 |1.015 1.000 [-0.002  0.005
DW10_SPEC_noS2N 9 0187 0040 0227 |1.010 0993 |-0.020 0073
DW10_SPEC_S2N 10 0.201 0033 0234 |1.014 1000 [-0.002  0.005
Roll DW_ALL_ noS2N 11 0188 0041 0229 |1.007 0988 |-0013 0091
Roll DW_ALL_S2N 12 0203 0034 0237 |1.010 0995 |-0.001  0.005
Roll_DW_SPEC_noS2N 13 0187 0041 0228 |1.006 0988 |-0013 0091
Roll DW_SPEC_S2N 14 0203 003 0237 |1011 0995 |-0.002 0011
DW14 ALL noS2N 15 0189 0040 0229 |1.016 1000 [-0023  0.063
DW14_ALL_S2N 16 0204 0032 0236 |1.017 0999 |-0.002  0.005
DW14_SPEC noS2N 17 0189 0040 0229 |1.016 1000 [-0023 0063
DW14_SPEC_S2N 18 0203 0033 023 |1.023 1000 [-0.001  0.003

Table S2. Summary of statistics for the different PMF tests carried out on the WFP datasets of metals.
18 downweight conditions were tested for the PMF inputs. The matrix including a S2N downweight
and errors below MDLs downweighted with a; = 2 X rpg5 (test n°12) was selected as final inputs.
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132 Criteria selection for PMFmetals

133 A first type of criterion was the use of the dominant element in the related factor. Thus, the Bi, Ca, Zn,
134V and Fe intensity in profiles were monitored for the Firework, Dust resuspension, Tire/brake wear,
135  Shipping and Industrial factors, respectively. Then we inspected the r Pearson correlation with MOOA
136 for the regional background. A last criterion was the r Pearson correlation based on the multilinear
137  regression analysis of both shipping and industrial vs SOz concentrations. The statistical acceptance of
138  arunwas based on the comparison between the criterion scores of a factor and the second highest scores
139 from the remaining factors (Fig. S4). For all criteria the second highest scores were much lower in every
140  run, with some rejected scores for the firework criterion. In total 25% of the runs were discarded based

141  on this criterion, and the remaining runs were averaged into a unique solution.
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143  Figure S4. Criteria scores for the 100 bootstrapped runs from the PMFmetass. Each graph represents one
144 criterion for the different factors. The blue markers are for the factor criterion scores and the black
145  markers represent the second highest scores attributed to one of the remaining factors.
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Scenario and regression model selection for OP apportionment

Three scenarii in the construction of the matrix of the source factors contribution to PM mass identified

by the three PMF have been considered to make the best use of the results from the different PMF:

e  Scenario 1: OP apportionment from independent variables with the OA factors from PMForganics (83
observations), following:

OP=GxBy+e¢ (S4)

e  Scenario 2: OP apportionment from independent variables considering only the metals factors from
PMFmetais (90 observations), following;:
OP=HXf,+¢ (S5)

e Scenario 3: OP apportionment taking as independent variables PM1 factors from PMFem1 (78
observations), following (Eq. 56). In this configuration, the firework episode has been removed from
the data as the sources from the PMFrm1 analysis have been determined without including the
firework metal factor.

OP=IXp +¢ (S6)

In (Eq. S4, S5, S6), OP vector (px1) is the observed OP expressed in volume unit, G matrix (g x (p+1)) of
g sources (plus the intercept) is determined by PMForganics, H matrix (h x (p+1)) of h sources (plus the
intercept) is determined by PMFmeta, I matrix (i x (p+1)) of i sources (plus the intercept) is determined

by PMFewmi, and € vector (px1) is the discrepancy between the model and the observations.

Three models were tested for the three scenarii (e.g. 9 solutions): weighted least squares linear
regression (WLS), weighted robust multiple linear regression with an iterative M-estimator, and partial

least square regression (PLS):

e  WLS regression considers the uncertainties o of the OP measurements by minimizing the weighted

sum of squares function (WSS):

WSS (B) = X0y wi (vi = Xjerxy * )" wi = (S7)

where y; is the measured OP (p observations), x;; is the values of n sources determined by PMF and o;
is the OP uncertainties. This method already used in this purpose in previous studies (Borlaza et al.,
2021; Weber et al., 2018, 2021) well suited to extracting maximum information from small data sets.

Ordinary Least Squares (OLS) is a simple special case of WLS where o =1.

e Linear weighted robust regression methods by M-estimator minimizes the function o:

M (B) =37 p(w; i oy xij * B) (S8)
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x2
= if x| <k=15

2

x| - %) if |x] = k=15

pe(x) = (S9)
k(

Based on similar work in Grange et al. (2022), Huber’s function o and k=1.5 were used in this study.

This technique is adapted to data sets presenting particular events(de Menezes et al., 2021), as fireworks

on 13t and 14t of July -National day of France- in our data set. Indeed, the regression by successive

iterations implies lower weights on outliers, which tends to underestimate these points. We can note

WLS regression is a simple special case where o(x) = x2.

e PLSregression is a method that reduces the predictors to a smaller set of uncorrelated components
and performs least squares regression on these components. It is especially useful when dependent
variables are highly correlated. Moreover, unlike multiple regression, PLS does not imply that the
predictors are fixed but can be measured with error, making PLS more robust to measurement

uncertainties.

OP apportionment from PMForganics (scenario 1) and PMFmetais (scenario 2)

M-estimator inversion model’s results issued from PMForganics (scenario 1) and PMFmetas (scenario 2)
alone are respectively presented in Table S 3a. and Table S 3b. 3 coefficients (i.e intrinsic OP, see 2.5)
obtained by M-estimator model from PMFmetais display values an order of magnitude higher than those
issued from PMPForganics inversion. This stress the importance of metals in OP apportionment, for both
assays. Among the organic factors, only the Sh-IndOA factor seems to be slightly more sensitive to
OPworr. The Firework factor constrains a significant part of the data, implying a fairly high Pearson’s
correlation coefficient between OPmodel and OPobserved. Nevertheless, RZdjused of both M-estimator
inversion models in scenario 1 (only organic fraction of PM is considered) indicated that the percentage
of OPaa and OPorr variance explained by the models is weak. On the other hand, several studies
highlighted the role of Secondary Organic Aerosol (SOA) in the oxidative potential indicating that
apportion OP from the metallic data alone is an incomplete step. Finally, the bootstrap method (see 2.5)
applied to the four M-estimator models in these two scenarii did not achieve their convergence and are
therefore not robust. Overall, this confirms that OP reflects the overall redox-activity of wide spectra of
multispecies of organics, inorganics, metals and synergistic/antagonistic reactions between these
compounds, and assess the importance to consider all these chemical compounds in the OP

apportionment process.
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Intercept COA HOA LOOA MOOA Sh-IndOA R? ajusted | I (OPobserved/OPmodel)
OPaa 0.19+ 0.04 0.00+0.02 0.02+£0.01 0.10 £ 0.04 0.04 £0.02 0.24 £ 0.09 0.27 0.48***
OPp1T 0.38+ 0.10 -0.04 £0.10 -0.12 £ 0.05 0.23+0.04 0.1+0.07 1.41+0.15 0.41 0.51***

(b)
Regional
Intercept Firework Industrial € Shipping Tire brake R? ajusted | I (OPobserved/OPmodel)
background

OPaa 0.36+ 0.02 1.57+0.16 3.21+0.42 230+0.33 -0.74 £ 0.68 n.c. 0.66 0.73%**
OPoTT 061+ 0.12 417 +£0.83 -1.24+1.64 7114230 17.0t5.3 6.0 £ 4.60 0.38 0.61%**

Table S3. Intrinsic OPaa and OPbrr (OPm) provided by weighted robust linear regression with an M-estimator
expressed in nmol.min.ug* of sources provided by (a) PMForganics (scenario 1) and (b) PMFmetais (scenario 2)
over the OP sampling campaign (n = 90). Values are the mean + standard deviation from bootstraps runs for
both OP assays. The model parameters R2adjusted and Pearson’s correlation between model OP and observed
OP are mentioned on the right.
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Figure S5. (a) NOx, SOz and Os concentration and (b) wind speed and direction during OP measurement

period.
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218  Figure S6. (a) Comparison between time series of PM1 measured by FIDAS and time series of particulate
219  fraction reconstituted by the sum of chemical components (rs= 0.47, p <0.001); (b) Contribution to PM1
220 of chemical components (%) measured from 11t July 2018 to 25 July 2018 (included firework episode,
221  n=91) by ToF-ACSM, Xact and aethalometer online analyzers.
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232 Figure S7. (a) Average mass spectra profiles, (b) time-series, (c¢) pie chart contributions and (d) mean
233 diurnal cycles (solid lines and error bars indicate the standard deviation) for the 5 factors from the
234 PMForganics solution.
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C-value weighting

The instrument weight was controlled by applying a scaling factor (i.e. C-value) to the uncertainties of

each group of components (Slowik et al., 2010):

12 ( i,')S
(@'i)s = ¢ (S10)

o represents the uncertainties, C the scaling value applied to the s datasets. Here we distinguished the
PMForganics (ACSM_OA), PMFmetas (Xact), ACSM inorganics (ACSM) and BC (AE33) datasets. A well
balanced solution should show magnitude of scaled residuals independent from the instrument. Since
their scaled residuals were rather in the same range, a C-value of 1 was chosen for ACSM_OA, Xact and
ACSM datasets and resulted in unweighted results. However, we applied a C-value of 5 to the AE33
dataset, meaning that dataset of BC concentrations were upweighted. The overlapping of scaled

residuals from the different instrument datasets is shown in Figure .
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Figure S10. Probability density function of scaled residuals for the standalone ACSM_OA, ACSM, AE33
and Xact datasets.
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263  Figure S11. Box plots of dust resuspension factor concentrations for different relative humidity (RH)
264 bins in %. The concentrations are enhanced under low RH conditions. The blue diamonds are the mean,
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Factors identification and rotational ambiguity exploration for PMFrm1

Seed runs between 1 and 12 factors were examined. The factors interpretability was based on profiles
consistency and our expectations from the factors composition. The summarizes the occurrence of 8
well-identified factors in all runs between 5 and 12 factors. The choice of a 8-factors solution is supported
also by mathematical diagnostics (AQ/Qexp, , mass reconstruction, AUEV — not presented here) which
showed that realistic solutions can be found up to 5 factors. While some factors are easily resolved in
most of the solutions (e.g. dust resuspension) some others are retrieved from an elevated number of

factor (e.g. shipping and cooking are found in up to 9 factors-solution).

Therefore, the solution was constrained using base case profiles (Table ). The biomass burning, cooking
and industrial factors were constrained as they presented unstable profiles across the different runs.
Constraining the industrial factor allow an improved separation of the shipping factor (see the

discussion below).

Traffic
Dust
AS-rich
ON-rich

Industrial

Shipping
BB
Cooking

Table S4. Factors identification for the PMFrmi analyses between 5 and 12 factors. The green cells
represent the base case identification for the related factors. The remaining undefined factors for each
solution corresponded to mixed profiles not attributed to a specific source. The red squares are the base
cases used as reference profile constraints.

To inspect the best combination of a-values for the profile constraints, we performed a-values sensitivity
analyses by scanning a-values from 0 to 0.5 with increment of 0.05, leading to 1330 outcomes. The
goodness of the solutions was examined with a criteria selection list and the scores are presented in the
Figure . First, the R? correlations between biomass burning, cooking and industrial factors with their
corresponding constraint were monitored. Then, we monitored the intensity of the dominant variable
in the related factor profiles: Dustmetas for dust resuspension, BCrr for traffic, LOOA for ON-rich, SOs*
for AS-rich and Sh-IndOA for shipping. Sh-IndOA was inspected instead of shippingmetais to ensure a
clear separation between shipping and industrial factors since Sh-IndOA is assumed to only be
attributed to these two factors. For the first seven criteria, the scores were much higher than the second

highest scores (not displayed in the graph). Therefore, some runs were only discarded based on the
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shipping criterion as we only selected the runs whose Sh-IndOA intensity was in the same range than
the base case profile from the preliminary analyses. Moreover, the selected runs (green markers in
Figure ) showed similar scores intensity for traffic, ON-rich, AS-rich and dust resuspension than those
found in their respective base case profile. In the end, the same criteria list was used for the bootstrap

runs selection.
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Figure S12. Criteria scores for the a-values sensitivity test runs from the PMFrmi. Each graph represents
one criterion per factor. The grey markers are the unselected runs, the blue markers are the selected
runs for the related factor and the green markers are the effectively chosen runs.
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Figure S13. Number of accepted solutions based on the PMFrmi criteria list for the different a-values
explored in the sensitivity test. A-values associated to the greatest number of validated solutions were
chosen for the bootstrap PMF runs (i.e. 0.4 for biomass burning, 0.1 for cooking and 0.05 for industrial
constrained profiles).
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Figure S14. Relative contributions of PM1 factors profiles and unexplained variations from the PMFrm1

analysis.
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Figure S15. Comparison between the industrial metals profile from our study and ICP-MS profiles for
the PMzs fraction in the industrial area of Fos-sur-mer (Sylvestre et al., 2017). Complex n°1 is a cast iron
converter complex, complex n°2 is a ore iron converter complex, complex n°3 is a blast furnace slag
storage and complex n°4 is an ore terminal.
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Associations between both OP and sources of PM

Pearson’s correlation coefficients (r) between the source factor contributions identified by the PMFrm
and both OP assays are presented in Table with the idea to provide a first estimate of the associated
sources with OP. We note that no source strongly correlates alone to both OP assays, but moderate
correlations (0.3< r<0.5) can be noted for both OP vs. Traffic source (OPvaa: r=0.40, p<0.001 - OPvprr:
r=0.34, p<0.01) and Shipping source (OPvaa: r=0.32 - OPwrr: r=0.30, p<0.01). OPvaa also correlates
moderately with Industrial source (r=0.41, p<0.001) and ON-rich source (r=0.32, p<0.01). Finally, OPvotr
displays a mild correlation with AS-rich source (r=0.36, p<0.01), but this correlation might be attributed
to a collinearity with PM mass (r OPwrr vs SO+>=0.46, r OPvorr vs NHa*= 0.47 - p<0.001).

Biomass Dust ON- AS-
Cooking  Industrial Traffic Shipping
Burning resuspension rich rich
OPvaa 0.15 0.18 0.41 0.13 0.40™ 0.32 0.32 0.17
OPvoprr 0.12 -0.02 0.14 0.14 0.34" 0.19 0.30 0.36"
"p <0.001, "p <0.01

Table S5. Pearson’s correlation coefficients between OPvaa and OPworrto the PM sources identified by
PMFrm1 model.
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Figure S17. Residuals values of WLS models for (a) OPaa and (b) OPbrr. An outlier point (19 July 2018
03:00) was withdrawn to ensure homoscedasticity of residuals values.
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Figure S18. Mean contribution of the sources identified by PMFemi over the OP sampling campaign
(n=86) to (a) OPaa, (b) OPprr, (¢) PM1. Error bars represents the standard deviation of the data
distribution.



