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 77 

Elements MDL (ng.m-3) Values > MDL (%)  

As 0.11 29.3 

Bi 0.23 0.6 

Br 0.18 99.8 

Ca 0.52 99.5 

Cd 4.4 14.4 

Co 0.24 8.1 

Cr 0.2 12.0 

Cu 0.14 63.3 

Fe 0.3 100 

Ga 0.1 0 

Ge 0.1 0 

Hg 0.21 0.2 

K 2 100 

Mn 0.25 20.6 

Mo 0.84 1.5 

Ni 0.17 86.6 

Pb 0.22 84.8 

Sb 9 18.0 

Se 0.14 46.4 

Sn 7.1 12.8 

Ti 0.28 76.0 

Tl 0.2 0 

V 0.21 76.7 

Y 0.48 5.8 

Zn 0.12 100 

Table S1. List of elements measured with the Xact, their respective MDLs and the percent of 78 

measurements above the MDL. 79 

 80 



Error matrix downweights for PMFmetals 81 

Polissar et al. (1998) (Polissar et al., 1998a) first introduced an uncertainty of 5/6 × MDL for data below 82 

MDL (set to MDL/2). The purpose was to provide relative errors for these values 2 to 5 times greater 83 

than the maximum relative errors of the data exceeding the MDLs. Here, several uncertainties values 84 

were tested for data below MDL by conducted a panel of PMF runs with 2 to 8 factors. The errors were 85 

calculated by applying a downweight coefficient (𝛼) to the previous formula from Polissar et al. (1998) 86 

(Polissar et al., 1998a): 87 

𝜎𝑖,𝑗 = 𝛼 ×
5

6
𝑀𝐷𝐿𝑖   if 𝑥𝑖,𝑗 < 𝑀𝐷𝐿𝑖          (S1) 88 

 For all the elements 𝑖, 𝛼 was set to 6, 10 and 14 in order to obtain a ratio of 2, 3.5 and 5, respectively, 89 

with the maximum relative error found in the dataset, i.e. 476% for Sn (the value corresponds to the 95th 90 

percentile instead of the max value to avoid outlier effects). Another test consisted in applying a 91 

dependant 𝛼 based on the maximum relative error (95th percentile) for each element 𝑖 (𝑟𝑃95): 92 

𝛼𝑖 = 2 × 𝑟𝑃95           (S2) 93 

Where 2 was used to determine the same ratio between the relative error of data below the MDLs from 94 

Polissar et al. (1998) equation (167 %, considering the 
5

6
𝑀𝐷𝐿

1

2
𝑀𝐷𝐿⁄  calculation) and the maximum 95 

relative error for the data greater than the MDLs (50%) found in Polissar et al. (1998) (Polissar et al., 96 

1998a) dataset. A last test was performed with 𝛼=1 (i.e. no downweight) for the comparison. Each PMF 97 

analysis was also conducted with and without 1/S2N downweight (Visser et al., 2015). The tests were 98 

performed on the WFP dataset and the results were synthetized in Table S2. Here we focus on the 5F-99 

solutions results as they resolved unmixed factors and represented a statistically relevant number of 100 

factor (see section 2.4.2 in the main text). 101 

For all PMF solutions, applying the 1/S2N downweight provided lower scaled residuals as shown by 102 

the narrower width of fits. The solutions with 𝛼=1 (i.e. no errors downweight for data <MDLs) were 103 

discarded due to less satisfactory mass reconstructions and residuals and higher average unexplained 104 

variations. The unexplained variation is a dimensionless quantity which indicates how much variation 105 

(in time or in each variable) is not explained by the factors (Canonaco et al., 2013). Thus, the unexplained 106 

variation of the 𝑖th point for the factor 𝑘th is: 107 

𝑈𝐸𝑉𝑖𝑘 =
∑ (|𝑒𝑖𝑗|/𝜎𝑖𝑗)𝑚

𝑗=1

∑ ((∑ |𝑔𝑖𝑘∙𝑓𝑘𝑗|
𝑝
𝑘=1

+𝑒𝑖𝑗)/𝜎𝑖𝑗)𝑚
𝑗=1

                           (S3) 108 

𝑈𝐸𝑉 is further calculated for data with S2N>2 (UEVreal) or for noisy data (UEVnoisy).  109 



The remaining tests gave comparable explained variations, mass reconstitutions and residuals. The 110 

uncertainties calculated with 𝛼𝑖 = 2 × 𝑟𝑃95 (test n°12 in Table S2) were finally selected as error inputs 111 

for the data below the MDLs since this solutions resolved 5 unmixed factors with the best mean and 112 

median diurnal patterns for each identified source.   113 

 114 

Tests N° 
Unexplained Variations Σfactors vs Σmetals  Sc residuals 

F5 

EV_Noise 

F5 

EV_Real 

F5 

EV_Sum 
F5 Slope F5 R² F5 center 

F5 

width 

noDW_noS2N 1 0.215 0.049 0.264 0.987 0.958 0.094 0.337 

noDW_S2N 2 0.221 0.042 0.263 0.987 0.959 0.059 0.201 

DW6_ALL_noS2N 3 0.187 0.048 0.235 0.989 0.973 -0.023 0.137 

DW6_ALL_S2N 4 0.203 0.033 0.236 1.004 0.985 -0.002 0.014 

DW6_SPEC_noS2N 5 0.187 0.041 0.228 1.000 0.979 -0.010 0.089 

DW6_SPEC_S2N 6 0.203 0.033 0.236 1.003 0.986 -0.002 0.014 

DW10_ALL_noS2N 7 0.187 0.040 0.227 1.010 0.993 -0.020 0.074 

DW10_ALL_S2N 8 0.201 0.033 0.234 1.015 1.000 -0.002 0.005 

DW10_SPEC_noS2N 9 0.187 0.040 0.227 1.010 0.993 -0.020 0.073 

DW10_SPEC_S2N 10 0.201 0.033 0.234 1.014 1.000 -0.002 0.005 

Roll_DW_ALL_noS2N 11 0.188 0.041 0.229 1.007 0.988 -0.013 0.091 

Roll_DW_ALL_S2N 12 0.203 0.034 0.237 1.010 0.995 -0.001 0.005 

Roll_DW_SPEC_noS2N 13 0.187 0.041 0.228 1.006 0.988 -0.013 0.091 

Roll_DW_SPEC_S2N 14 0.203 0.034 0.237 1.011 0.995 -0.002 0.011 

DW14_ALL_noS2N 15 0.189 0.040 0.229 1.016 1.000 -0.023 0.063 

DW14_ALL_S2N 16 0.204 0.032 0.236 1.017 0.999 -0.002 0.005 

DW14_SPEC_noS2N 17 0.189 0.040 0.229 1.016 1.000 -0.023 0.063 

DW14_SPEC_S2N 18 0.203 0.033 0.236 1.023 1.000 -0.001 0.003 

Table S2. Summary of statistics for the different PMF tests carried out on the WFP datasets of metals. 115 

18 downweight conditions were tested for the PMF inputs. The matrix including a S2N downweight 116 

and errors below MDLs downweighted with 𝛼𝑖 = 2 × 𝑟𝑃95 (test n°12) was selected as final inputs. 117 
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 119 

 120 



 121 

Figure S2. (a) Changes in ∆Q/Qexp, ∆UEVreal and ∆UEVnoisy for n-(n+1)-factor PMFmetals runs and (b) 122 

Q/Qexp, UEVreal and UEVnoisy for PMFmetals runs from 1 to 8 factors. These PMF runs are performed for the 123 

WFP dataset. The box plots located in the blue dashed-line area represent the values for the finalized 6-124 

factors bootstrap solution using the total metals dataset. 125 
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 128 

Figure S3. (a) Factors time series and (b) profiles from the PMF solution using the FDP dataset. The 129 

regional background factor profile was constrained with an a-value of 0.1.   130 
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Criteria selection for PMFmetals 132 

A first type of criterion was the use of the dominant element in the related factor. Thus, the Bi, Ca, Zn, 133 

V and Fe intensity in profiles were monitored for the Firework, Dust resuspension, Tire/brake wear, 134 

Shipping and Industrial factors, respectively. Then we inspected the r Pearson correlation with MOOA 135 

for the regional background. A last criterion was the r Pearson correlation based on the multilinear 136 

regression analysis of both shipping and industrial vs SO2 concentrations. The statistical acceptance of 137 

a run was based on the comparison between the criterion scores of a factor and the second highest scores 138 

from the remaining factors (Fig. S4). For all criteria the second highest scores were much lower in every 139 

run, with some rejected scores for the firework criterion. In total 25% of the runs were discarded based 140 

on this criterion, and the remaining runs were averaged into a unique solution.     141 

 142 

Figure S4. Criteria scores for the 100 bootstrapped runs from the PMFmetals. Each graph represents one 143 

criterion for the different factors. The blue markers are for the factor criterion scores and the black 144 

markers represent the second highest scores attributed to one of the remaining factors.   145 
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Scenario and regression model selection for OP apportionment 147 

Three scenarii in the construction of the matrix of the source factors contribution to PM mass identified 148 

by the three PMF have been considered to make the best use of the results from the different PMF: 149 

 Scenario 1: OP apportionment from independent variables with the OA factors from PMForganics (83 150 

observations), following: 151 

𝑂𝑃 = 𝐺 × 𝛽𝑔 + 𝜀                            (S4) 152 

 Scenario 2: OP apportionment from independent variables considering only the metals factors from 153 

PMFmetals (90 observations), following: 154 

𝑂𝑃 = 𝐻 × 𝛽ℎ + 𝜀                   (S5) 155 

 Scenario 3: OP apportionment taking as independent variables PM1 factors from PMFPM1 (78 156 

observations), following (Eq. S6). In this configuration, the firework episode has been removed from 157 

the data as the sources from the PMFPM1 analysis have been determined without including the 158 

firework metal factor.  159 

𝑂𝑃 = 𝐼 × 𝛽𝑖 + 𝜀                   (S6) 160 

In (Eq. S4, S5, S6), OP vector (px1) is the observed OP expressed in volume unit, G matrix (g x (p+1)) of 161 

g sources (plus the intercept) is determined by PMForganics, H matrix (h x (p+1)) of h sources (plus the 162 

intercept) is determined by PMFmetal, I matrix (i x (p+1)) of i sources (plus the intercept) is determined 163 

by PMFPM1, and ε vector (px1) is the discrepancy between the model and the observations.  164 

Three models were tested for the three scenarii (e.g. 9 solutions): weighted least squares linear 165 

regression (WLS), weighted robust multiple linear regression with an iterative M-estimator, and partial 166 

least square regression (PLS): 167 

 WLS regression considers the uncertainties σ of the OP measurements by minimizing the weighted 168 

sum of squares function (WSS): 169 

𝑊𝑆𝑆 (𝛽) = ∑ 𝑤𝑖
𝑝
𝑖=1 (𝑦𝑖 −  ∑ 𝑥𝑖𝑗

𝑛
𝑗=1 ∗ 𝛽𝑗)

2
, 𝑤𝑖 =  

1

𝜎𝑖
                                                    (S7) 170 

where 𝑦𝑖  is the measured OP (p observations), 𝑥𝑖𝑗  is the values of n sources determined by PMF and 𝜎𝑖 171 

is the OP uncertainties. This method already used in this purpose in previous studies (Borlaza et al., 172 

2021; Weber et al., 2018, 2021) well suited to extracting maximum information from small data sets. 173 

Ordinary Least Squares (OLS) is a simple special case of WLS where σ = 1. 174 

 Linear weighted robust regression methods by M-estimator minimizes the function ρ:  175 

𝑀 (𝛽) = ∑ 𝜌(𝑤𝑖
𝑝
𝑖=1 (𝑦𝑖  ∑ 𝑥𝑖𝑗

𝑛
𝑗=1 ∗ 𝛽𝑗))                                                                                                         (S8) 176 



𝜌𝑘(𝑥) = {

  𝑥2

2
                         𝑖𝑓 |𝑥| < 𝑘 = 1.5

𝑘 (|𝑥| −  
𝑘

2
)                        𝑖𝑓 |𝑥] ≥  𝑘 = 1.5              

                   (S9) 177 

Based on similar work in Grange et al. (2022), Huber’s function ρ and k=1.5 were used in this study. 178 

This technique is adapted to data sets presenting particular events(de Menezes et al., 2021), as fireworks 179 

on 13th and 14th of July -National day of France- in our data set. Indeed, the regression by successive 180 

iterations implies lower weights on outliers, which tends to underestimate these points. We can note 181 

WLS regression is a simple special case where ρ(x) = x².  182 

 PLS regression is a method that reduces the predictors to a smaller set of uncorrelated components 183 

and performs least squares regression on these components. It is especially useful when dependent 184 

variables are highly correlated. Moreover, unlike multiple regression, PLS does not imply that the 185 

predictors are fixed but can be measured with error, making PLS more robust to measurement 186 

uncertainties. 187 

 188 

OP apportionment from PMForganics (scenario 1) and PMFmetals (scenario 2) 189 

M-estimator inversion model’s results issued from PMForganics (scenario 1) and PMFmetals (scenario 2) 190 

alone are respectively presented in Table S 3a. and Table S 3b. β coefficients (i.e intrinsic OP, see 2.5) 191 

obtained by M-estimator model from PMFmetals display values an order of magnitude higher than those 192 

issued from PMForganics inversion. This stress the importance of metals in OP apportionment, for both 193 

assays. Among the organic factors, only the Sh-IndOA factor seems to be slightly more sensitive to 194 

OPvDTT. The Firework factor constrains a significant part of the data, implying a fairly high Pearson’s 195 

correlation coefficient between OPmodel and OPobserved. Nevertheless, R²adjusted of both M-estimator 196 

inversion models in scenario 1 (only organic fraction of PM is considered) indicated that the percentage 197 

of OPAA and OPDTT variance explained by the models is weak. On the other hand, several studies 198 

highlighted the role of Secondary Organic Aerosol (SOA) in the oxidative potential indicating that 199 

apportion OP from the metallic data alone is an incomplete step. Finally, the bootstrap method (see 2.5) 200 

applied to the four M-estimator models in these two scenarii did not achieve their convergence and are 201 

therefore not robust. Overall, this confirms that OP reflects the overall redox-activity of wide spectra of 202 

multispecies of organics, inorganics, metals and synergistic/antagonistic reactions between these 203 

compounds, and assess the importance to consider all these chemical compounds in the OP 204 

apportionment process. 205 
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 212 

 213 

Figure S5. (a) NOx, SO2 and O3 concentration and (b) wind speed and direction during OP measurement 214 

period. 215 

  216 

Table S3. Intrinsic OPAA and OPDTT (OPm) provided by weighted robust linear regression with an M-estimator 

expressed in nmol.min-1.µg-1 of sources provided by (a) PMForganics (scenario 1) and (b) PMFmetals (scenario 2) 

over the OP sampling campaign (n = 90). Values are the mean ± standard deviation from bootstraps runs for 

both OP assays. The model parameters R²adjusted and Pearson’s correlation between model OP and observed 

OP are mentioned on the right. 



 217 

Figure S6. (a) Comparison between time series of PM1 measured by FIDAS and time series of particulate 218 

fraction reconstituted by the sum of chemical components (rs = 0.47, p <0.001); (b) Contribution to PM1 219 

of chemical components (%) measured from 11th July 2018 to 25th July 2018 (included firework episode, 220 

n=91) by ToF-ACSM, Xact and aethalometer online analyzers. 221 
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 231 

Figure S7. (a) Average mass spectra profiles, (b) time-series, (c) pie chart contributions and (d) mean 232 

diurnal cycles (solid lines and error bars indicate the standard deviation) for the 5 factors from the 233 

PMForganics solution. 234 

 235 

  236 



 237 

Figure S8. (a) Pie chart contributions and (b) average diurnal profiles of factors from the PMFmetals 238 

analysis. For the diurnal plots the red dots correspond to the mean, the bands are the median, the bottom 239 

and top of the boxes represent the 25th and 75th percentile respectively, and the ends of the whiskers are 240 

for the 10th and 90th percentiles. 241 
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 243 

Figure S9. NWR plots for the different factors from the PMFmetals analysis. 244 
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C-value weighting  246 

The instrument weight was controlled by applying a scaling factor (i.e. C-value) to the uncertainties of 247 

each group of components (Slowik et al., 2010): 248 

(𝜎′𝑖,𝑗)𝑠 =
(𝜎𝑖,𝑗)𝑠

𝐶𝑠
             (S10) 249 

𝜎 represents the uncertainties, 𝐶 the scaling value applied to the 𝑠 datasets. Here we distinguished the 250 

PMForganics (ACSM_OA), PMFmetals (Xact), ACSM inorganics (ACSM) and BC (AE33) datasets. A well 251 

balanced solution should show magnitude of scaled residuals independent from the instrument. Since 252 

their scaled residuals were rather in the same range, a C-value of 1 was chosen for ACSM_OA, Xact and 253 

ACSM datasets and resulted in unweighted results. However, we applied a C-value of 5 to the AE33 254 

dataset, meaning that dataset of BC concentrations were upweighted. The overlapping of scaled 255 

residuals from the different instrument datasets is shown in Figure . 256 

 257 

Figure S10. Probability density function of scaled residuals for the standalone ACSM_OA, ACSM,  AE33 258 

and Xact datasets. 259 

 260 

  261 



 262 

Figure S11. Box plots of dust resuspension factor concentrations for different relative humidity (RH) 263 

bins in %. The concentrations are enhanced under low RH conditions. The blue diamonds are the mean, 264 

the bars inside the boxes the median, the bottom and top of the boxes are the 25th and 75th percentile, 265 

respectively, and the ends of the whiskers are the 10th and 90th percentiles. 266 

 267 

 268 

  269 



Factors identification and rotational ambiguity exploration for PMFPM1 270 

Seed runs between 1 and 12 factors were examined. The factors interpretability was based on profiles  271 

consistency and our expectations from the factors composition. The summarizes the occurrence of 8 272 

well-identified factors in all runs between 5 and 12 factors. The choice of a 8-factors solution is supported 273 

also by mathematical diagnostics (∆Q/Qexp, , mass  reconstruction, ∆UEV – not presented here) which 274 

showed that realistic solutions can be found up to 5 factors. While some factors are easily resolved in 275 

most of the solutions (e.g. dust resuspension) some others are retrieved from an elevated number of 276 

factor (e.g. shipping and cooking are found in up to 9 factors-solution). 277 

Therefore, the solution was constrained using base case profiles (Table ). The biomass burning, cooking 278 

and industrial factors were constrained as they presented unstable profiles across the different runs. 279 

Constraining the industrial factor allow an improved separation of the shipping factor (see the 280 

discussion below). 281 

 282 

 5F 6F 7F 8F 9F 10F 11F 12F 

Traffic                 

Dust                 

AS-rich                 

ON-rich                 

Industrial                 

Shipping                 

BB                 

Cooking                 

Table S4. Factors identification for the PMFPM1 analyses between 5 and 12 factors. The green cells 283 

represent the base case identification for the related factors. The remaining undefined factors for each 284 

solution corresponded to mixed profiles not attributed to a specific source. The red squares are the base 285 

cases used as reference profile constraints. 286 

To inspect the best combination of a-values for the profile constraints, we performed a-values sensitivity 287 

analyses by scanning a-values from 0 to 0.5 with increment of 0.05, leading to 1330 outcomes. The 288 

goodness of the solutions was examined with a criteria selection list and the scores are presented in the 289 

Figure . First, the R² correlations between biomass burning, cooking and industrial factors with their 290 

corresponding constraint were monitored. Then, we monitored the intensity of the dominant variable 291 

in the related factor profiles: Dustmetals for dust resuspension, BCFF for traffic, LOOA for ON-rich, SO42- 292 

for AS-rich and Sh-IndOA for shipping. Sh-IndOA was inspected instead of shippingmetals to ensure a 293 

clear separation between shipping and industrial factors since Sh-IndOA is assumed to only be 294 

attributed to these two factors. For the first seven criteria, the scores were much higher than the second 295 

highest scores (not displayed in the graph). Therefore, some runs were only discarded based on the 296 



shipping criterion as we only selected the runs whose Sh-IndOA intensity was in the same range than 297 

the base case profile from the preliminary analyses. Moreover, the selected runs (green markers in 298 

Figure ) showed similar scores intensity for traffic, ON-rich, AS-rich and dust resuspension than those 299 

found in their respective base case profile. In the end, the same criteria list was used for the bootstrap 300 

runs selection. 301 

 302 

Figure S12. Criteria scores for the a-values sensitivity test runs from the PMFPM1. Each graph represents 303 

one criterion per factor. The grey markers are the unselected runs, the blue markers are the selected 304 

runs for the related factor and the green markers are the effectively chosen runs. 305 

 306 
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 308 

Figure S13. Number of accepted solutions based on the PMFPM1 criteria list for the different a-values 309 

explored in the sensitivity test. A-values associated to the greatest number of validated solutions were 310 

chosen for the bootstrap PMF runs (i.e. 0.4 for biomass burning, 0.1 for cooking and 0.05 for industrial 311 

constrained profiles). 312 
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 314 

Figure S14. Relative contributions of PM1 factors profiles and unexplained variations from the PMFPM1 315 

analysis. 316 

 317 

 318 

 319 

 320 

 321 

 322 

 323 

Figure S15. Comparison between the industrial metals profile from our study and ICP-MS profiles for 324 

the PM2.5 fraction in the industrial area of Fos-sur-mer (Sylvestre et al., 2017). Complex n°1 is a cast iron 325 

converter complex, complex n°2 is a ore iron converter complex, complex n°3 is a blast furnace slag 326 

storage and complex n°4 is an ore terminal. 327 
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 330 

Figure S16. Average diurnal profiles for SO2, Sh-IndOA and the sum of industrial and shipping factors 331 

from the PMFmetals. 332 
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 336 
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Associations between both OP and sources of PM 338 

Pearson’s correlation coefficients (r) between the source factor contributions identified by the PMFPM1 339 

and both OP assays are presented in Table  with the idea to provide a first estimate of the associated 340 

sources with OP. We note that no source strongly correlates alone to both OP assays, but moderate 341 

correlations (0.3< r<0.5) can be noted for both OP vs. Traffic source (OPvAA: r=0.40, p<0.001 - OPvDTT: 342 

r=0.34, p<0.01) and Shipping source (OPvAA: r=0.32 - OPvDTT: r=0.30, p<0.01). OPvAA also correlates 343 

moderately with Industrial source (r=0.41, p<0.001) and ON-rich source (r=0.32, p<0.01). Finally, OPvDTT 344 

displays a mild correlation with AS-rich source (r=0.36, p<0.01), but this correlation might be attributed 345 

to a collinearity with PM mass (r OPvDTT vs SO42-=0.46, r OPvDTT vs NH4+ = 0.47 - p<0.001). 346 

 347 

Table S5. Pearson’s correlation coefficients between OPvAA and OPvDTT to the PM sources identified by 348 

PMFPM1 model. 349 

 350 

  351 

 

 

Biomass 

Burning 
Cooking Industrial 

Dust 

resuspension 
Traffic 

ON-

rich 
Shipping 

AS-

rich 

OPv AA 0.15 0.18 0.41*** 0.13 0.40***  0.32*** 0.32** 0.17 

OPv DTT 0.12 -0.02 0.14 0.14 0.34** 0.19 0.30 0.36** 

***p < 0.001, **p < 0.01 
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(a) (b) 

Figure S17. Residuals values of WLS models for (a) OPAA and (b) OPDTT. An outlier point (19 July 2018 

03:00) was withdrawn to ensure homoscedasticity of residuals values. 

 

Figure S18. Mean contribution of the sources identified by PMFPM1 over the OP sampling campaign 

(n = 86) to (a) OPAA, (b) OPDTT, (c) PM1. Error bars represents the standard deviation of the data 

distribution. 


